WO2003022389A1 - Distillation device and distillation method using this device - Google Patents

Distillation device and distillation method using this device Download PDF

Info

Publication number
WO2003022389A1
WO2003022389A1 PCT/JP2002/001705 JP0201705W WO03022389A1 WO 2003022389 A1 WO2003022389 A1 WO 2003022389A1 JP 0201705 W JP0201705 W JP 0201705W WO 03022389 A1 WO03022389 A1 WO 03022389A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation
evaporator
liquid
heat exchanger
distillation column
Prior art date
Application number
PCT/JP2002/001705
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Noda
Hiroshi Yamaji
Original Assignee
Kansai Chemical Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co., Ltd. filed Critical Kansai Chemical Engineering Co., Ltd.
Priority to JP2003526513A priority Critical patent/JP4058410B2/en
Publication of WO2003022389A1 publication Critical patent/WO2003022389A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • B01D3/322Reboiler specifications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4205Reflux ratio control splitter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation

Definitions

  • the present invention relates to a distillation apparatus and a steaming method using the apparatus. More specifically, the present invention relates to an evaporator having a liquid spraying device, a distillation device having a heat exchanger at a specific position, and a distillation method using the device.
  • the undiluted solution is put into a still pot and heated to evaporate the solution.
  • the steam that reaches the top condenser at the top of the distillation column is condensed by the condenser using cooling water.
  • the distillation is started by refluxing the condensed and liquefied liquid to the distillation column. It is very difficult to recover energy in such a batch distillation. That is, first, starting from heating the undiluted solution, it takes a long time to start the distillation, and a large amount of energy is consumed.
  • the components having the lowest boiling point are taken out from the top of the distillation column in order. Therefore, a mixture of components having a boiling point higher than the lowest boiling point component is called a cut, and is first collected in a separate 1 "1 collection tank, and then distilled twice. In addition, it is usual to carry out distillation, so energy efficiency is low. In addition, the remaining liquid in the evaporator ⁇ As the temperature decreases, the heat transfer area also decreases in proportion to the liquid volume. Therefore, the amount of evaporation decreases accordingly, and it takes time to evaporate.
  • a continuous distillation apparatus for improving the distillation efficiency of a multi-component is described in Japanese Patent Application Laid-Open No. H10-137502.
  • This device is a device in which a reboiler is installed at the bottom of the distillation column to evaporate, and the bottom solution is used as an intermediate kettle liquid receiver while continuously supplying undiluted solution.
  • This device is designed to reduce the number of tanks in that it only has to prepare two intermediate tank liquid receivers.
  • piping and pumps are required for that, and there is a problem that liquid remains in the piping.
  • a heat exchanger is provided between a steam tower and an intermediate kettle liquid receiver, and the intermediate kettle liquid receiver is returned to the steam tower.
  • the liquid is heated by the heat of the liquid flowing to another intermediate pot liquid receiver.
  • the heat exchanger in this unit became necessary due to the introduction of a process to collect the bottom liquid in the intermediate tank liquid receiver. If an intermediate pot liquid receiver is not required, there is no need to provide a heat exchanger. Therefore, equipment that is not required is attached.
  • a pump is required to return the liquid to the distillation column. Also, energy is required to evaporate the supplied undiluted solution, so that the reboiler consumes a large amount of heat. Therefore, a simple distillation apparatus that can efficiently fractionate each component from a stock solution containing multiple components has not been provided yet. Disclosure of the invention
  • the present invention has been made in order to solve the above-mentioned problems, and its main purpose is to perform distillation efficiently in a short time and to efficiently fractionate multiple components with little energy. It is to provide a device.
  • the present invention relates to a continuous [»1 minute steaming apparatus] equipped with an evaporator having a liquid spraying apparatus, a distillation column, a heat exchanger, a condenser and a fraction receiver, wherein the heat exchanger comprises:
  • the heat exchanger is provided between the distillation column and the condenser, and is configured to exchange heat with a stock solution supplied to the distillation column. Liquefied in an exchanger and / or the condenser, a part of the liquefied liquid is collected in the fraction receiver, and the remaining liquid is configured to return to the distillation column, and the distillation is performed.
  • a semi-continuous batch distillation device hereinafter, device configured to return the bottom liquid of the column to the evaporator.
  • the present invention also provides an undiluted solution that is passed through a heat exchanger to collect heat while supplying M to a distillation column in a narrow range, and the bottom liquid of the distillation column is quickly sent to an evaporator having a liquid spraying device.
  • Providing a steaming method (hereinafter referred to as a first method) including a step of continuously supplying and evaporating components from the evaporator to pass through a distillation column, a heat exchanger, and a capacitor in that order to perform fractional distillation. I do.
  • the present invention relates to a distillation method in which the bottom liquid is further distilled to "1 minute".
  • the present invention provides a method for continuously supplying an undiluted solution to a distillation column while recovering heat by passing through a heat exchanger, and continuously supplying a bottom liquid of the distillation column to an evaporating vessel having a liquid spraying device.
  • the evaporating pot is supplied with a power to perform evaporation while controlling the amount of evaporation from the evaporating pot to a constant amount, or the evaporation is performed so that the amount of liquid in the evaporating pot becomes constant.
  • the present invention further relates to a semi-continuous batch distillation apparatus having an evaporator having a liquid spraying device, a heat exchanger, a core and a fraction receiver, wherein the heat exchanger comprises the evaporator and the evaporator.
  • a vapor exchange unit that is provided between the evaporator and the condenser and heat-exchanges with the undiluted liquid supplied to the evaporator; vapor from the evaporator is liquefied by the heat exchanger and / or the condenser and a fraction receiver
  • a semi-continuous batch distillation apparatus hereinafter, referred to as a second apparatus
  • a semi-continuous batch distillation apparatus hereinafter, referred to as a second apparatus
  • the present invention provides a method for continuously feeding a stock solution through a heat exchanger to an evaporating tank having a liquid spraying device, and evaporating components from the evaporating tank to the heat exchanger and the condenser.
  • the present invention provides a distillation method including a step of performing fractional distillation by passing through sequentially (hereinafter, the third method).
  • FIG. 1 is a diagram showing an example of the distillation apparatus of the present invention.
  • FIG. 1 shows the distillation apparatus (first apparatus) of the present invention.
  • it is a combination of an evaporator 2 having a liquid spraying device 1, a distillation column 3, a heat exchanger 4, a condenser 5, and a fraction receiver 6, 7.
  • the heat exchanger 4 is disposed between the distillation column 3 and the condenser 5, is configured to pass the undiluted solution 9 through the heat exchanger 4 and heat it, and to supply the heated liquid 9 to the distillation column 3. I have.
  • the evaporator 2 having the liquid spraying device 1 used in the first device of the present invention is an evaporator that keeps the inner surface of the evaporator 2, particularly a portion corresponding to the heat transfer area, always wet.
  • a method of spraying liquid into the kettle with a pump and circulating it may be used. The method of lifting and spraying the liquid with centrifugal force is
  • Revised ffl paper (Rule 91) When it is lost and when spraying the boiling liquid, it is particularly effective and is preferred.
  • the method of spraying liquid using this centrifugal force is a method invented by the inventor of the present invention. For details, see Japanese Patent No. 32533212 (corresponding to this publication Gazette No. 10333164).
  • the evaporating pot 2 used in the present invention is configured so that the portion corresponding to the heat transfer area is always kept wet, the entire heat transfer area is used effectively, and the heating efficiency and, consequently, the heating efficiency Extremely high evaporation efficiency. Therefore, according to the conventional ["1 minute method", even if the undiluted solution is stored to a certain amount and heated, it takes time for the phase to evaporate. In the present invention, this time is greatly reduced. In addition, since the heating surface is always wet, the device of the present invention is less likely to dry and adhere to non-volatile components, and is easy to clean.
  • the first device of the present invention is particularly effective when distilling a stock solution containing multiple components to fractionate each component.
  • the evaporator 2 having the liquid dispersing device 1 the amount of the liquid containing the last component is very small, and even in such a case, heating can be performed with a heat transfer area of -1-minute. Therefore, as in the case where the evaporator 2 is filled with the liquid, it is possible to supply the distillation column 3 at a substantially maximum speed and a constant amount of vapor. Therefore, the distillation column 3 can be operated with almost the highest efficiency.
  • heat transfer member such as a coil or a plate inside the evaporator 2
  • the heat transfer area can be further increased and the evaporation efficiency can be increased.
  • a heat transfer body may be provided inside the liquid.
  • heat transfer body is
  • a reflector When placed in a reflector, a reflector can be provided, and the liquid lifted by centrifugal force can be applied to the reflector and dropped onto the heat transfer body, so that the surface of the heat transfer body can always be wetted. . Furthermore, the heat transfer area may be increased by inclining the evaporator I body. Further, while monitoring the amount of evaporation, the temperature (heating condition) of the heat transfer body may be adjusted so that evaporation a is constant. By increasing the heat transfer area and adjusting it so that a certain amount of evaporation is obtained, the steam efficiency is further improved. This effect can be obtained because the evaporator has a liquid spraying device, particularly a device for spraying liquid using centrifugal force. (First method)
  • first apparatus A case where the stock solution 9 containing multiple components is distilled using this distillation apparatus (first apparatus) (first method) will be described.
  • first apparatus heat is not supplied to heat exchanger 4 because there is no steam from distillation column 3.
  • stock solution 9 remains cold.
  • the undiluted solution 9 enters the evaporating tank 2 having the liquid spraying device 1 and accumulates to some extent.
  • the evaporating device 2 having the liquid spraying device ⁇ is activated, the temperature of the liquid (undiluted solution 9) in the evaporating tank 2 immediately rises. And start boiling.
  • the generated steam goes up the distillation column 3 and reaches the heat exchanger 4 and / or the condenser 5.
  • the steam is condensed to reflux 8 and distillation is started.
  • the supply of the stock solution 9 to the distillation column 3 is performed at a calculated rate that matches the physical properties.
  • the lowest boiling component (lowest boiling component) passes through the top of the distillation column 3 and is cooled by the condenser 5 directly from the heat exchanger 4 or through the heat exchanger 4. A part is recirculated, and the rest is collected in fraction receiver 6.
  • the bottom liquid of the distillation column 3 from which the lowest boiling components have been distilled off contains the remaining components. ing.
  • the bottom liquid moves to the evaporator 2 having the liquid spraying device 1. Since the bottom liquid is sprayed on the inner wall of the evaporator 2 by the liquid spray device 1, it is evaporated at a substantially constant rate.
  • the distillation column 3 has a maximum efficiency at a certain evaporation rate, and the efficiency falls if it is outside of the maximum value.
  • the heat transfer area is constant irrespective of the amount of liquid in the evaporator, that is, the evaporation rate can be almost always constant. Therefore, the device of the present invention can always be operated at near-maximum efficiency.
  • the supply of the stock solution 9 is performed until the evaporator 2 becomes full, during which time distillation of the lowest boiling component can be performed.
  • the heat exchanger 4 for heat recovery has no effect.
  • it contributes to significant energy saving. are doing.
  • the second method is a method of accumulating and collecting in a reboiler, that is, evaporator 2, in order from high-boiling components. It is. In particular, it is an excellent method for recovering small amounts of high boiling components from stock solution 9.
  • the second method of the present invention will be described based on FIG. First, a certain amount of the stock solution 9 is put into the evaporator 2.
  • the evaporating pot 2 is heated and the liquid spraying device 1 is operated, the entire heat transfer area of the evaporating pot 2 can be used, so that the liquid immediately rises in temperature and starts to boil.
  • the amount of evaporation is maximum irrespective of the liquid level, and the distillation column 3 is immediately stabilized.
  • the stock solution 9 having passed through the heat exchanger 4 is supplied to the evaporator 2 at a constant speed. At this time, the supply of heat is controlled so that the amount of evaporation is constant.
  • the amount of evaporation is increased by raising the heating temperature.
  • the amount of evaporation is increased, and the amount of liquid in the evaporator 2 is kept constant.
  • the supply of the undiluted solution 9 to the distillation tower 3 It is preferable to perform the process from the middle to the top of the distillation tower 3 (the distillation shelf of the distillation tower or the top of the packing). Depending on the substance to be distilled, the most preferable is to supply the stock solution 9 from the top of the distillation column 3. Note that the return flow 8 may or may not be performed.
  • the heat can be directly recovered even if the raw material 9 is supplied from the top of the distillation column 3 without using the heat exchanger 4, which is advantageous in some cases.
  • the supply of the raw material 9 is terminated, and the concentration of the highest boiling component (highest boiling component) contained in the distillate received in the fraction receiver 6 If is less than the specified value, the first distillation is completed. If the concentration of the highest boiling component is higher than the specified value, it is necessary to perform distillation again.
  • the distillate from (6) is passed through the heat exchanger (4), supplied again to the evaporator (2), and collected in the fraction receiver (7) so that the highest boiling point component in the fraction receiver (7) becomes lower than the specified value. Distillation is carried out. By this operation, the highest boiling point component is recovered in the evaporator 2.
  • the distillate in the fraction receiver 6 is a low-boiling component
  • the one recovered in the evaporator 2 is a high-boiling component.
  • the valve of the pipe between the bottom liquid of the distillation tower 3 and the evaporator 2 is closed to prevent the bottom liquid from entering the evaporator 2.
  • the heating of the evaporator 2 is stopped, and the highest boiling point component is extracted from the evaporator 2.
  • the valve is opened, and the bottom liquid is introduced into the evaporator 2.
  • heating of the evaporator 2 (reboiler) is started, and the evaporator 2 is washed, and then, the washed liquid is removed.
  • the liquid in the fraction receiver 7 is supplied to the distillation column 3 through the heat exchanger 4, and the same operation is repeated, whereby the second high-boiling component is recovered in the evaporator 2.
  • this distillation operation By sequentially repeating this distillation operation, various components having different boiling points in the stock solution 9 are separated and recovered.
  • the advantage of the two methods is that the low-boiling substance of the stock solution 9 is not heated for a long time.
  • the entire amount of the raw material is put into the evaporator 2 (reboiler) and distilled, so that the raw material (particularly, low-boiling components) is exposed to the boiling temperature for a long time.
  • the low-boiling components are heated only while passing through the distillation column 3, they are most suitable for distillation of heat-sensitive substances.
  • a second apparatus is a semi-continuous batch distillation apparatus including an evaporator having a liquid spraying device, a heat exchanger, a capacitor and a fraction receiver, wherein steam from the evaporator is used as the heat source.
  • the heat exchanger is provided between the evaporator and the condenser, and the undiluted solution passes through the heat exchanger. Then, it is configured to be supplied to the evaporator. It differs from the first device in that the distillation column 3 is not provided. That is, in the first apparatus, the function of the distillation column is stopped.
  • Each element constituting the second device has the same function as the first invention.
  • the distillation method (third method) using the second apparatus of the present invention will be described with reference to FIG. However, there is no distillation column 3 and the steam from the evaporator 2 is directly supplied to the heat exchanger 4 and there is no reflux 8.
  • a certain amount of the stock solution 9 is put into the evaporator 2.
  • the evaporating pot 2 is heated and the liquid spraying device 1 is operated, the temperature of the liquid (stock solution 9) in the evaporating pot 2 immediately rises and starts boiling. Since the steam from the evaporator 2 is supplied to the heat exchanger 4, the supply stock solution 9 can recover heat when passing through the heat exchanger 4.
  • evaporation can be started at the same time that the stock solution 9 is put into the evaporator 2, so that the operation time is reduced.
  • the liquid is stored in the evaporator 2 and then heated, it takes time to store the liquid.
  • heating can be performed while supplying undiluted solution 9, so undiluted solution 9 is evaporated Less time is needed to store in kettle 2.
  • This apparatus is particularly effective when distilling and recovering low-boiling components from a stock solution 9 which does not require a distillation column or reflux and contains a substance having a large difference in boiling point between high-boiling components and low-boiling components.
  • the stock solution 9 having passed through the heat exchanger 4 is continuously supplied to the evaporator 2. While the stock solution 9 is being supplied, the distillate is received in the fraction receiver 6 and distillation is continued. Even if the supply of the stock solution 9 is completed, the distillation is continued as long as the concentration of the low-boiling components in the fraction receiver 6 is within the specified value.
  • This operation is excellent in that distillation can be performed while recovering heat as compared with the conventional case in which the raw material 9 is entirely put into the evaporator 2 and then evaporated. Further, since the stock solution 9 can be supplied while removing the low-boiling components, the stock solution 9 in an amount corresponding to the amount of the low-boiling components can be further supplied to the evaporator 2. Therefore, it is superior to the above conventional case in that the processing amount of the stock solution 9 can be increased.
  • the heat transfer surface can be maximally used with a small amount of liquid. Therefore, unlike the conventional batch distillation apparatus, it is not necessary to put the whole amount of the stock solution 9 to be distilled into the evaporator 2 in advance. Further, by exchanging heat between the vapor and the stock solution 9, heat can be recovered to the stock solution 9 to be supplied. For example, if the undiluted solution 9 is 25 ° C and 1000 L water, the undiluted solution 9 is evaporated as before by raising the temperature of the undiluted solution supplied by the generated steam to 90 ° C. Compared to the method of starting heating after putting in kettle 2 (batch type), it is possible to recover about 7425 KCa1 of heat. Assuming that all the water evaporates, the required energy is 5390000 Kca1, so the recovered energy is more than 13%.
  • Example 1 and Comparative Example 1 Example 1 and Comparative Example 1
  • Example 1 As Comparative Example 1, an evaporator with the same volume and heat transfer area as in Example 1 but without the liquid spraying device 1 was used. 100 L of the stock solution is put into the evaporator and heated in the same manner as in Example 1. Since the heat transfer area is the same as when a liquid sprayer is used and when the liquid is full, it takes 100 minutes for 100 L of the stock solution to reach 100 ° C. .
  • the apparatus of the present invention when comparing the time until the start of evaporation (heating time), the apparatus of the present invention is earlier by 99 minutes.
  • Comparative Example 1 as the liquid level decreases and the heat transfer area decreases, the evaporation rate decreases, and the distillation time becomes longer than that of the apparatus of the present invention.
  • the device of the present invention since the device of the present invention has the liquid spraying means 1, it is possible to always use the entire heat transfer area regardless of the amount of the liquid. Therefore, the distillation time is shorter than in Comparative Example 1.
  • using the distillation apparatus of the present invention reduces the distillation time by at least 99 minutes + ⁇ compared to the conventional batch method.
  • Example 2 and Comparative Example 2 When 100 L of the stock solution was treated and the A component was distilled off, both Example 2 and Comparative Example 2 weighed 45 wt. Capacity is reduced. Since this remaining liquid contains the B component and the C component, the B component is distilled next.
  • the distillation rate of the component B is theoretically the same between the method of the present invention and the method of the comparative example.
  • the evaporation rate is reduced because the heat transfer area corresponding to the amount is not used because 45% by weight of the A component evaporates. Therefore, a further distillation time is required.
  • the A 000 L stock solution can be continuously processed to separate the A, B and C components. That is, by using the method of the present invention, 900 L of undiluted solution can be further processed while minimizing the time for heating and the energy for raising the temperature (that is, performing heat recovery). In contrast, the method of Comparative Example 2 requires a heating time and energy for heating.
  • distillation in batch distillation, it was necessary to start heating by putting a stock solution into an evaporator, but when using an evaporator with the liquid spraying device of the present invention, distillation can be performed continuously and at a high evaporation rate.
  • the size of the evaporator may be smaller than the volume of the stock solution.
  • the stock solution can be supplied until the liquid (bottom liquid) from which the low-boiling components have been removed becomes full in the evaporator. In other words, it can process twice as much liquid as before, and the equipment has twice the capacity.
  • the conventional external circulation heating method can also distill low boiling components, but only while the liquid can circulate. Furthermore, this conventional method requires a considerable amount of liquid from the beginning, and in the latter half when the amount of liquid decreases, external circulation cannot be performed, and the distillation column cannot be operated.
  • the distillation apparatus of the present invention is provided with a liquid spraying apparatus, even if the amount of liquid is small, the liquid is pumped up by centrifugal force and sprayed on the inner wall of the evaporator to form a vaporizer. All heat transfer areas are available. Therefore, even if the amount becomes small, the amount of steam is constant, and the distillation column can be operated at the highest efficiency.

Abstract

A distillation device that is superior in energy saving and distillation efficiency, comprising an evaporation still having a liquid spraying device, a distillation column, a heat exchanger, a condenser, and a fraction receiver, the distillation device being a semicontinuous batch distillation device. The heat exchanger is disposed between the distillation column and the condenser and adapted to exchange heat with the raw liquid to be fed to the distillation column. The vapor from the distillation kettle passes through the distillation column and liquefied by the heat exchanger and/or said condenser, it being arranged that part of the resulting liquid is recovered by the fraction receiver, the rest of the liquid being refluxed to the distillation column, and that the bottom in the distillation column is returned to the evaporation still.

Description

明 細 書  Specification
蒸留装^および該装^を用レ、る蒸留方法 Distillation apparatus and distillation method using the apparatus
技術分野 Technical field
本発明は、 蒸留装置およびこの装置を用いる蒸 ¾方法に関する。 さらに詳 しくは、 本発明は、 液体散布装置を有する蒸発釜および特定の位置に熱交換 器を設けた蒸留装置、 並びにこの装置を用いる蒸留方法に関する。  The present invention relates to a distillation apparatus and a steaming method using the apparatus. More specifically, the present invention relates to an evaporator having a liquid spraying device, a distillation device having a heat exchanger at a specific position, and a distillation method using the device.
背景技術 Background art
一般に、 回分蒸留は、 蒸留釜に原液を入れ、 加熱して^液を蒸発させる。 蒸留塔の一番上の塔頂コンデンサ一まで到達した蒸気が、 冷却水を使用した コンデンサーで凝縮される。 凝縮され、 液化した液体を蒸留塔に還流するこ とにより、 蒸留が開始される。 このような回分蒸留においてエネルギーの [ 収を図ることは非常に困難である。 すなわち、 まず、 原液を加熱することか ら始めるため、 蒸留開始まで長時間要し、 エネルギーを多く消费する十.、 蒸 ^丁-程自体の時間が長くなる。 さらに少量の原液を蒸 する場合、 原液を蒸 発装置に少量入れても、 伝熱而として液体が入っている部分しか利川できな いために、 熱を液に与えることができず、 なかなか装置が暖まらず、 蒸留を 開始するのに時間が掛かる。  In general, in batch distillation, the undiluted solution is put into a still pot and heated to evaporate the solution. The steam that reaches the top condenser at the top of the distillation column is condensed by the condenser using cooling water. The distillation is started by refluxing the condensed and liquefied liquid to the distillation column. It is very difficult to recover energy in such a batch distillation. That is, first, starting from heating the undiluted solution, it takes a long time to start the distillation, and a large amount of energy is consumed. Furthermore, when a small amount of undiluted solution is steamed, even if a small amount of undiluted solution is put into the evaporator, heat can not be given to the liquid because only the part containing the liquid can be used as heat transfer medium. It does not warm up and takes a long time to start distillation.
さらに、 多成分を含む原液を蒸留する場合、 最も沸点の低い成分 (敁低沸 点成分) から順に蒸留塔の塔頂から取り出される。 そのため、 最低沸点成分 より沸点の高い成分の混合物は、 いわゆるカツ 卜といわれ、 まず、 別の 1"1収 タンクに M収され、 ついで、 ¾度蒸留される。 そして、 W度、 加熱から始め て、 蒸留を行うの通常であるため、 エネルギー効率が悪い。 さらに、 ["1収タ ンクが複数必要となる。 そのうえ、 多成分を分 して、 蒸発装^内の残液 が減少すると、 伝熱面積も液量に比例して減少する。 従って、 その分、 蒸発 量が減少し、 蒸発に時間がかかる。 また、 蒸発量が少ないと、 蒸留塔の効率 の悪い条件下で運転することになり、 還流を増加する必要がある。 すなわち、 蒸発速度が低下する上に、 蒸留効率が悪化するため、 より多くの液を還流で 蒸留塔に戻す必要がある。 そのために、 蒸留時間がさらにかかる。 従って、 多成分の蒸留が進めば進むほど、 蒸留効率 (エネルギー効率) が悪くなると いう問題がある。 Furthermore, when distilling a stock solution containing multiple components, the components having the lowest boiling point (敁 low boiling components) are taken out from the top of the distillation column in order. Therefore, a mixture of components having a boiling point higher than the lowest boiling point component is called a cut, and is first collected in a separate 1 "1 collection tank, and then distilled twice. In addition, it is usual to carry out distillation, so energy efficiency is low. In addition, the remaining liquid in the evaporator ^ As the temperature decreases, the heat transfer area also decreases in proportion to the liquid volume. Therefore, the amount of evaporation decreases accordingly, and it takes time to evaporate. On the other hand, if the amount of evaporation is small, the distillation column is operated under inefficient conditions, and it is necessary to increase the reflux. That is, since the evaporation rate is reduced and the distillation efficiency is reduced, it is necessary to return more liquid to the distillation column by reflux. Therefore, the distillation time is further increased. Therefore, there is a problem that the more the multicomponent distillation proceeds, the lower the distillation efficiency (energy efficiency) becomes.
多成分の蒸留効率を改善するための連続蒸留装置が、 特開平 1 0— 1 3 7 5 0 2号公報に記載されている。 この装置は、 蒸留塔底部にリボイラーを設 けて蒸発を行い、 連続的に原液を供給しながら塔底液を中間釜液受器に す 装置である。 この装置は、 2つの中間釜液受器を準備すれば良い点で、 タン ク数が減少するように工夫されている。 しかし、 中間釜液受器を複数川怠す るため、 その分の配管およびポンプが必要となり、 その上、 配管に液が残る という問題がある。 さらに、 中間釜液受器に別の液を入れるために、 配管お よび釜を十分に洗浄することが必要となる。 従って、 精密な蒸留などには不 向きである。 また、 特開平 1 0— 1 3 7 5 0 2号公報に記載の方法は、 蒸 塔と中間釜液受器との間に熱交換器を設け、 この中間釜液受器から蒸 塔へ 戻す液を、 別の中間釜液受器へ流れる液の熱で暖めている。 この装置におけ る熱交換器は、 塔底液をいつたん中間釜液受器に回収する工程を導入したこ とに伴って、 必要となったものである。 中間釜液受器が必要とされなければ、 熱交換器を設ける必要性はない。 従って、 本来必要とされない装置が付され ている。 さらに、 蒸留塔に液を戻すためのポンプも必要となる。 また、 供給 される原液を蒸発させるためにエネルギーが必要であり、 そのためリボイラ 一が多量の熱を消費する。 従って、 多成分を含有する原液力 ^ら効率的に各成 分を分留し得る、 簡単な蒸留装置は、 いまだ提供されていないのが¾情であ る。 発明の開示 A continuous distillation apparatus for improving the distillation efficiency of a multi-component is described in Japanese Patent Application Laid-Open No. H10-137502. This device is a device in which a reboiler is installed at the bottom of the distillation column to evaporate, and the bottom solution is used as an intermediate kettle liquid receiver while continuously supplying undiluted solution. This device is designed to reduce the number of tanks in that it only has to prepare two intermediate tank liquid receivers. However, since a plurality of intermediate kettle liquid receivers are neglected, piping and pumps are required for that, and there is a problem that liquid remains in the piping. In addition, it is necessary to thoroughly clean the piping and the kettle in order to put another liquid into the intermediate kettle liquid receiver. Therefore, it is not suitable for precise distillation. In addition, in the method described in Japanese Patent Application Laid-Open No. H10-133752, a heat exchanger is provided between a steam tower and an intermediate kettle liquid receiver, and the intermediate kettle liquid receiver is returned to the steam tower. The liquid is heated by the heat of the liquid flowing to another intermediate pot liquid receiver. The heat exchanger in this unit became necessary due to the introduction of a process to collect the bottom liquid in the intermediate tank liquid receiver. If an intermediate pot liquid receiver is not required, there is no need to provide a heat exchanger. Therefore, equipment that is not required is attached. In addition, a pump is required to return the liquid to the distillation column. Also, energy is required to evaporate the supplied undiluted solution, so that the reboiler consumes a large amount of heat. Therefore, a simple distillation apparatus that can efficiently fractionate each component from a stock solution containing multiple components has not been provided yet. Disclosure of the invention
本発明は、 上記課題を解決するためになされたものであり、 その l的とす るところは、 短時間で効率的に蒸留を行い、 少ないエネルギーで多成分を効 率的に分留できる蒸留装置を提供することにある。  The present invention has been made in order to solve the above-mentioned problems, and its main purpose is to perform distillation efficiently in a short time and to efficiently fractionate multiple components with little energy. It is to provide a device.
すなわち、 本発明は、 液体散布装置を有する蒸発釜、 蒸留塔、 熱交換器、 コンデンサーおよび留分受器を備えた^連続式 [»1分蒸^装置であって、 該熱 交換器は、 該蒸留塔と該コンデンサ一との間に設けられ、 該蒸留塔に供給さ れる原液と熱交換するように構成されており、 該蒸発釜からの蒸気は該蒸 / 塔を通過し、 該熱交換器および/または該コンデンサ一で液化され、 該液化 された液体の一部は該留分受器に回収され、 残りの液体は該蒸留塔に還流す るように構成され、 そして、 該蒸留塔の塔底液が該蒸発釜に戻るように構成 された、 半連続式回分蒸留装置 (以下、 第]装置) を提供する。  That is, the present invention relates to a continuous [»1 minute steaming apparatus] equipped with an evaporator having a liquid spraying apparatus, a distillation column, a heat exchanger, a condenser and a fraction receiver, wherein the heat exchanger comprises: The heat exchanger is provided between the distillation column and the condenser, and is configured to exchange heat with a stock solution supplied to the distillation column. Liquefied in an exchanger and / or the condenser, a part of the liquefied liquid is collected in the fraction receiver, and the remaining liquid is configured to return to the distillation column, and the distillation is performed. Provided is a semi-continuous batch distillation device (hereinafter, device) configured to return the bottom liquid of the column to the evaporator.
また、 本発明は、 原液を、 熱交換器を通過させて熱を M収しながら迚:絞的 に蒸留塔に供給し、 該蒸留塔の塔底液を液体散布装置を有する蒸発釜に速続 的に供給し、 該蒸発釜からの蒸発成分を、 蒸留塔、 熱交換器、 およびコンデ ンサ一の順に通過させて分別蒸留する工程を含む、 蒸 方法 (以下、 第 1方 法) を提供する。  In addition, the present invention also provides an undiluted solution that is passed through a heat exchanger to collect heat while supplying M to a distillation column in a narrow range, and the bottom liquid of the distillation column is quickly sent to an evaporator having a liquid spraying device. Providing a steaming method (hereinafter referred to as a first method) including a step of continuously supplying and evaporating components from the evaporator to pass through a distillation column, a heat exchanger, and a capacitor in that order to perform fractional distillation. I do.
好ましい実施態様においては、 前記塔底液を「"1分蒸留する 程をさらに^ む蒸留方法に関する。  In a preferred embodiment, the present invention relates to a distillation method in which the bottom liquid is further distilled to "1 minute".
さらに、 本発明は、 原液を、 熱交換器を通過させて熱を回収しながら連続 的に蒸留塔に供給し、 該蒸留塔の塔底液を、 液体散布装置を有する蒸発釜に 連続的に供給し、 該蒸発釜からの蒸発量を一定量に制御しつつ蒸発を行う力、、 または該蒸発釜の液量が - -定となるように蒸発を行い、 該蒸発釜からの蒸究 成分を、 蒸留塔、 熱交換器、 およびコンデンサーの順に通過させ、 該蒸 ¾塔 に還流するかもしくは還流することなく分別蒸 する工程を含む蒸¾方法 (以下、 第 2方法) を提供する。 Further, the present invention provides a method for continuously supplying an undiluted solution to a distillation column while recovering heat by passing through a heat exchanger, and continuously supplying a bottom liquid of the distillation column to an evaporating vessel having a liquid spraying device. The evaporating pot is supplied with a power to perform evaporation while controlling the amount of evaporation from the evaporating pot to a constant amount, or the evaporation is performed so that the amount of liquid in the evaporating pot becomes constant. Is passed through a distillation column, a heat exchanger, and a condenser in that order, and is refluxed to the distillation column or a fractional distillation without reflux is performed. (Hereinafter referred to as the second method).
本発明は、 さらに、 液体散布装置を有する蒸発釜、 熱交換器、 コ 一および留分受器を備えた半速続式回分蒸留装置であって、 該熱交換器は、 該蒸発釜と該コンデンサーとの間に設けられ、 該蒸発釜に供給される原液と 熱交換するように構成されており、 該蒸発釜からの蒸気は該熱交換器および または該コンデンサーで液化されて留分受器に受け入れられるように構成 された、 半連続式回分蒸留装置 (以下、 第 2装置) を提供する。  The present invention further relates to a semi-continuous batch distillation apparatus having an evaporator having a liquid spraying device, a heat exchanger, a core and a fraction receiver, wherein the heat exchanger comprises the evaporator and the evaporator. A vapor exchange unit that is provided between the evaporator and the condenser and heat-exchanges with the undiluted liquid supplied to the evaporator; vapor from the evaporator is liquefied by the heat exchanger and / or the condenser and a fraction receiver Provided is a semi-continuous batch distillation apparatus (hereinafter, referred to as a second apparatus), which is configured to be accepted by a company.
また、 本発明は、 原液を、 熱交換器を通過させて液体散布装置を有する蒸 発釜に連続的に供給し、 該蒸発釜からの蒸発成分を、 該熱交換器、 およびコ ンデンサ一の順に通過させて分別蒸留する工程を含む蒸留方法 (以下、 第 3 方法) を提供する。  Further, the present invention provides a method for continuously feeding a stock solution through a heat exchanger to an evaporating tank having a liquid spraying device, and evaporating components from the evaporating tank to the heat exchanger and the condenser. The present invention provides a distillation method including a step of performing fractional distillation by passing through sequentially (hereinafter, the third method).
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の蒸留装置の- 例を示す図である。  FIG. 1 is a diagram showing an example of the distillation apparatus of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(第 1装置)  (First device)
本発明の蒸留装置 (第 1装置) を図 1に示す。 基本的には、 液体散布装置 1を有する蒸発釜 2、 蒸留塔 3、 熱交換器 4、 コンデンサー 5および留分受 器 6、 7の組み合わせである。 熱交換器 4は、 蒸留塔 3とコンデンサー 5と の間に配置され、 この熱交換器 4に原液 9を通過させて加熱し、 加熱した 液 9を蒸留塔 3に供給するように構成されている。  FIG. 1 shows the distillation apparatus (first apparatus) of the present invention. Basically, it is a combination of an evaporator 2 having a liquid spraying device 1, a distillation column 3, a heat exchanger 4, a condenser 5, and a fraction receiver 6, 7. The heat exchanger 4 is disposed between the distillation column 3 and the condenser 5, is configured to pass the undiluted solution 9 through the heat exchanger 4 and heat it, and to supply the heated liquid 9 to the distillation column 3. I have.
本発明の第 1装置に用いる、 液体散布装置 1を有する蒸発釜 2は、 蒸発釜 2の内面、 特に伝熱面積にあたる部分を常に濡れた状態に保つ蒸発釜である。 釜内面を常に濡れた状態に保っためには、 ポンプで液体を釜内に散布し、 循 環させる方法でもよい。 遠心力で液を持ち上げ、 散布する方式が、 液量が少  The evaporator 2 having the liquid spraying device 1 used in the first device of the present invention is an evaporator that keeps the inner surface of the evaporator 2, particularly a portion corresponding to the heat transfer area, always wet. In order to keep the inner surface of the kettle wet at all times, a method of spraying liquid into the kettle with a pump and circulating it may be used. The method of lifting and spraying the liquid with centrifugal force is
訂正された ffl紙 (規則 91) なくなつた場合および沸騰液を散布する場合、 特に有効であるため好ましレ、。 この遠心力を用いて液体を散布する方法は、 本願発明者が発明した方法であ り、 詳しくは、 日本国特許第 3 2 5 3 2 1 2号公報 (これに対応するョ一口 ッパ公開公報第 1 0 3 3 1 6 4号など) に記載されている。 Revised ffl paper (Rule 91) When it is lost and when spraying the boiling liquid, it is particularly effective and is preferred. The method of spraying liquid using this centrifugal force is a method invented by the inventor of the present invention. For details, see Japanese Patent No. 32533212 (corresponding to this publication Gazette No. 10333164).
本発明に用いる蒸発釜 2は、 上記のように、 伝熱面積にあたる部分が常に 濡れた状態に保たれるように構成されているため、 すべての伝熱面積が有効 に使用され、 加熱効率ひいては蒸発効率が極めて高い。 従って、 従来の ["1分 法では、 原液を一定量まで溜めて加熱しても、 蒸発に至るまでには相 の時 間を要していたが、 本発明では、 この時間が大幅に短縮される。 しかも、 本 発明の装置は、 加熱面が常に濡れているので、 不揮発成分が乾燥して固着す ることも少なく、 洗浄が楽な装置である。  As described above, since the evaporating pot 2 used in the present invention is configured so that the portion corresponding to the heat transfer area is always kept wet, the entire heat transfer area is used effectively, and the heating efficiency and, consequently, the heating efficiency Extremely high evaporation efficiency. Therefore, according to the conventional ["1 minute method", even if the undiluted solution is stored to a certain amount and heated, it takes time for the phase to evaporate. In the present invention, this time is greatly reduced. In addition, since the heating surface is always wet, the device of the present invention is less likely to dry and adhere to non-volatile components, and is easy to clean.
本発明の第 1装置は、 多成分を含む原液を蒸留して、 各成分を分留する場 合、 特に有効である。 液体散布装置 1を有する蒸発釜 2を用いることにより、 最後の成分を含む液の量が非常に少なレ、場合でも -1 -分な伝熱面積で加熱がで きる。 従って、 蒸発釜 2に液が満たされているときと同様、 ほぼ最大速度で かつ -定の蒸気量を蒸留塔 3に供給することができる。 従って、 蒸留塔 3は、 ほぼ最高の効率で運転できる。 従来の装置の場合、 蒸気量が少なくなると、 蒸留塔 3自体の効率が低下するために、 蒸留塔 3の実効段数が減少し、 還流 量を増加しなければならない。 従って、 留分の回収に時間がかかるという問 題がある。 しカゝし、 本発明の装置を用いると、 蒸留塔にほぼ一定の蒸気量が 提供されるので、 蒸留塔の実効段数が多くなり、 最適、 かつ最高の効率で蒸 留できるうえ、 還流量も少なくてすむ。 つまり、 使用するエネルギー量:が小 さくなる。  The first device of the present invention is particularly effective when distilling a stock solution containing multiple components to fractionate each component. By using the evaporator 2 having the liquid dispersing device 1, the amount of the liquid containing the last component is very small, and even in such a case, heating can be performed with a heat transfer area of -1-minute. Therefore, as in the case where the evaporator 2 is filled with the liquid, it is possible to supply the distillation column 3 at a substantially maximum speed and a constant amount of vapor. Therefore, the distillation column 3 can be operated with almost the highest efficiency. In the case of the conventional apparatus, when the amount of steam decreases, the efficiency of the distillation column 3 itself decreases, so that the number of effective stages of the distillation column 3 decreases and the amount of reflux must be increased. Therefore, there is a problem that it takes time to collect the fraction. However, when the apparatus of the present invention is used, a substantially constant amount of steam is provided to the distillation column, so that the number of effective stages of the distillation column is increased, and distillation can be performed with optimum and highest efficiency. You need less. In other words, the amount of energy used: becomes smaller.
蒸発釜 2の内部に、 例えば、 コイル、 プレートなどの伝熱体を設けること により、 さらに伝熱面積を大きく し、 蒸発効率を大きくすることができる。 このような伝熱体は、 液体内部に設けてもよい。 また、 伝熱体を蒸発釜 2内  By providing a heat transfer member such as a coil or a plate inside the evaporator 2, the heat transfer area can be further increased and the evaporation efficiency can be increased. Such a heat transfer body may be provided inside the liquid. In addition, heat transfer body is
訂正された用紙 (規則 91) に配置する場合、 反射板を設けておき、 遠心力で持ち上げられた液体を、 こ の反射板に当てて伝熱体上に落下させ、 常に伝熱体の表面を濡れ Kとするこ ともできる。 さらに、 蒸発釜 I体を傾斜させることによって、 伝熱面積を大 きく してもよレ、。 また、 蒸発量をモニタ一しながら、 蒸発 aが一定となるよ うに、 伝熱体の温度 (加熱条件) を調整してもよい。 このように伝熱面積を 大きく し、 一定量の蒸発量が得られるように調整することで、 さらに蒸 f 効 率が向上する。 このような効果を奏し得るのは、 蒸発釜が、 液体散布装置、 特に遠心力を用いて液体を散布する装置を有するからである。 (第 1方法) Corrected form (Rule 91) When placed in a reflector, a reflector can be provided, and the liquid lifted by centrifugal force can be applied to the reflector and dropped onto the heat transfer body, so that the surface of the heat transfer body can always be wetted. . Furthermore, the heat transfer area may be increased by inclining the evaporator I body. Further, while monitoring the amount of evaporation, the temperature (heating condition) of the heat transfer body may be adjusted so that evaporation a is constant. By increasing the heat transfer area and adjusting it so that a certain amount of evaporation is obtained, the steam efficiency is further improved. This effect can be obtained because the evaporator has a liquid spraying device, particularly a device for spraying liquid using centrifugal force. (First method)
この蒸留装置 (第〗装置) を用いて、 多成分を含む原液 9を蒸留する場合 (第 1方法) について説明する。 まず、 少量の原液 9を蒸発釜 2に入れる。 スタート時には蒸留塔 3からの蒸気がないので熱交換器 4に熱は供給されな レ、。 従って、 原液 9は低温のままである。 しかし、 原液 9が液体散布装置 1 を有する蒸発釜 2に入り、 ある程度溜まり、 液体散布装置〗を有する蒸発签 2が稼動すると、 蒸発釜 2の液 (原液 9 ) は、 すぐに温度が上昇して沸騰を はじめる。 発生した蒸気は蒸留塔 3を上昇して、 熱交換器 4および/または コンデンサー 5に到達する。 そして、 蒸気は凝縮されて、 還流 8となり、 蒸 留が開始される。 原液 9の蒸留塔 3への供給が、 物性に合致した計算された 速度で行なわれる。 蒸留塔 3が安定すると一番沸点の低い成分 (最低沸点成 分) が蒸留塔 3の塔頂を通過して、 熱交換器 4から直接、 あるいは熱交換器 4を通ってコンデンサー 5で冷却されて、 一部は還流され、 残りは留分受器 6に回収される。  A case where the stock solution 9 containing multiple components is distilled using this distillation apparatus (first apparatus) (first method) will be described. First, a small amount of the stock solution 9 is put into the evaporator 2. At the start, heat is not supplied to heat exchanger 4 because there is no steam from distillation column 3. Thus, stock solution 9 remains cold. However, the undiluted solution 9 enters the evaporating tank 2 having the liquid spraying device 1 and accumulates to some extent. When the evaporating device 2 having the liquid spraying device〗 is activated, the temperature of the liquid (undiluted solution 9) in the evaporating tank 2 immediately rises. And start boiling. The generated steam goes up the distillation column 3 and reaches the heat exchanger 4 and / or the condenser 5. Then, the steam is condensed to reflux 8 and distillation is started. The supply of the stock solution 9 to the distillation column 3 is performed at a calculated rate that matches the physical properties. When the distillation column 3 is stabilized, the lowest boiling component (lowest boiling component) passes through the top of the distillation column 3 and is cooled by the condenser 5 directly from the heat exchanger 4 or through the heat exchanger 4. A part is recirculated, and the rest is collected in fraction receiver 6.
原液 9が供給されている間は、 このように、 熱が回収されながら最低沸点 成分の蒸留が進行する。  While the stock solution 9 is being supplied, the distillation of the lowest boiling component proceeds while the heat is recovered in this way.
最低沸点成分が留去された、 蒸留塔 3の塔底液には、 残りの成分が含まれ ている。 この塔底液は、 液体散布装置 1を有する蒸発釜 2に移動する。 塔底 液は液体散布装置 1で蒸発釜 2の内壁に散布されるので、 ほぼ一定速度で蒸 発される。 蒸留塔 3はある蒸発速度で効率の最大値があり、 それを外れると 効率が下がる。 この蒸発装置では、 伝熱面積が装置内の液量にかかわらず一 定、 つまり、 蒸発速度を常にほぼ一定にできる。 従って、 本発明の装置は、 常に最高に近い効率で運転ができる。 原液 9の供給は、 この蒸発釜 2がー杯 になるまで行われ、 この間、 最低沸点成分の蒸留ができる。 原液 9の供給が 終了すると、 熱回収のための熱交換器 4は、 効果を発揮しないが、 後述のよ うに、 連続蒸留中 (原液 9を供給している間) は大きなエネルギーの節約に 貢献している。 The bottom liquid of the distillation column 3 from which the lowest boiling components have been distilled off contains the remaining components. ing. The bottom liquid moves to the evaporator 2 having the liquid spraying device 1. Since the bottom liquid is sprayed on the inner wall of the evaporator 2 by the liquid spray device 1, it is evaporated at a substantially constant rate. The distillation column 3 has a maximum efficiency at a certain evaporation rate, and the efficiency falls if it is outside of the maximum value. In this evaporator, the heat transfer area is constant irrespective of the amount of liquid in the evaporator, that is, the evaporation rate can be almost always constant. Therefore, the device of the present invention can always be operated at near-maximum efficiency. The supply of the stock solution 9 is performed until the evaporator 2 becomes full, during which time distillation of the lowest boiling component can be performed. When the supply of the stock solution 9 is completed, the heat exchanger 4 for heat recovery has no effect. However, as described later, during continuous distillation (while the stock solution 9 is supplied), it contributes to significant energy saving. are doing.
(第 2方法) (2nd method)
次に、 本発明の第 2方法について、 説明する。 第 1方法が低沸点の成分か ら逐次蒸留していく装置であるのに対して、 第 2の方法は、 高沸点の成分か ら順にリボイラー、 すなわち、 蒸発釜 2に蓄積し、 回収する方法である。 特 に、 少量の高沸点成分を原液 9から回収するのに、 優れた方法である。  Next, the second method of the present invention will be described. Whereas the first method is an apparatus that performs sequential distillation from low-boiling components, the second method is a method of accumulating and collecting in a reboiler, that is, evaporator 2, in order from high-boiling components. It is. In particular, it is an excellent method for recovering small amounts of high boiling components from stock solution 9.
図 1に基づいて、 本発明の第 2方法を説明する。 まず、 一定量の原液 9を 蒸発釜 2に入れる。 蒸発釜 2を加熱し、 液体散布装置 1を稼動させると、 蒸 発釜 2の伝熱面積が全部使用できるので、 液はすぐに温度が上昇して、 沸騰 をはじめる。 本発明の装置では、 蒸発量は液面に関係なく最大であり、 蒸留 塔 3はすぐに安定する。 蒸留塔 3が安定したら、 熱交換器 4を通過させた原 液 9が一定速度で蒸発釜 2に供給される。 このとき、 蒸発量が一定になるよ うに熱の供給が制御される。 すなわち、 原液 9の供給を続けると、 高沸点の 成分が蒸発釜 2に溜まるため、 沸騰温度が上昇する。 そこで、 加熱温度を上 昇させることにより、 蒸発量を増加させる。 この操作により、 蒸発量が増加 され、 蒸発釜 2の液量が一定に保たれる。 蒸留塔 3への原液 9の供給は、 蒸 留塔 3の中段からトップ (蒸留塔の蒸留棚または充填物の一番上部) にかけ ての部位から行うことが好ましレ、。 蒸留する物質により変わるが、 最も好ま しいのは、 蒸留塔 3のトップから原液 9の供給を行うことである。 なお、 還 流 8は行ってもよく、 行わなくてもよい。 特に、 還流 8が不要な場合には、 熱交換器 4を使用せずに原料 9を蒸留塔 3のトップから供給しても熱を直接 回収することができるので、 有利な場合がある。 多成分を含む原液 9をこの操作で分留する場合、 原料 9の供給が終了し、 留分受器 6に受け入れられた蒸留物中に含まれる最も沸点の高い成分 (最高 沸点成分) の濃度が規定値以下であれば、 一回目の蒸留は終了する。 最高沸 点成分の濃度が規定値以上であれば、 再度、 蒸留する必要がある。 留分受器The second method of the present invention will be described based on FIG. First, a certain amount of the stock solution 9 is put into the evaporator 2. When the evaporating pot 2 is heated and the liquid spraying device 1 is operated, the entire heat transfer area of the evaporating pot 2 can be used, so that the liquid immediately rises in temperature and starts to boil. In the apparatus of the present invention, the amount of evaporation is maximum irrespective of the liquid level, and the distillation column 3 is immediately stabilized. When the distillation column 3 is stabilized, the stock solution 9 having passed through the heat exchanger 4 is supplied to the evaporator 2 at a constant speed. At this time, the supply of heat is controlled so that the amount of evaporation is constant. That is, if the supply of the stock solution 9 is continued, the high boiling components are accumulated in the evaporator 2, so that the boiling temperature rises. Therefore, the amount of evaporation is increased by raising the heating temperature. By this operation, the amount of evaporation is increased, and the amount of liquid in the evaporator 2 is kept constant. The supply of the undiluted solution 9 to the distillation tower 3 It is preferable to perform the process from the middle to the top of the distillation tower 3 (the distillation shelf of the distillation tower or the top of the packing). Depending on the substance to be distilled, the most preferable is to supply the stock solution 9 from the top of the distillation column 3. Note that the return flow 8 may or may not be performed. In particular, when the reflux 8 is not necessary, the heat can be directly recovered even if the raw material 9 is supplied from the top of the distillation column 3 without using the heat exchanger 4, which is advantageous in some cases. When the stock solution 9 containing multiple components is fractionated by this operation, the supply of the raw material 9 is terminated, and the concentration of the highest boiling component (highest boiling component) contained in the distillate received in the fraction receiver 6 If is less than the specified value, the first distillation is completed. If the concentration of the highest boiling component is higher than the specified value, it is necessary to perform distillation again. Fraction receiver
6の蒸留物を、 熱交換器 4を通過させて、 再度、 蒸発釜 2に供給し、 留分受 器 7に回収し、 留分受器 7中の最高沸点成分が規定値以下になるように蒸留 を行う。 この操作により、 最高沸点成分が蒸発釜 2に回収される。 なお、 2 成分系であれば、 留分受器 6の蒸留物は低沸点成分であり、 蒸発釜 2中に回 収されたものは、 高沸点成分である。 The distillate from (6) is passed through the heat exchanger (4), supplied again to the evaporator (2), and collected in the fraction receiver (7) so that the highest boiling point component in the fraction receiver (7) becomes lower than the specified value. Distillation is carried out. By this operation, the highest boiling point component is recovered in the evaporator 2. In the case of a two-component system, the distillate in the fraction receiver 6 is a low-boiling component, and the one recovered in the evaporator 2 is a high-boiling component.
蒸留終了後、 塔内温度が安定してから、 蒸留塔 3の塔底液と蒸発釜 2との 間の配管のバルブを閉めて、 塔底液が蒸発釜 2に入らないようにする。 その 後、 蒸発釜 2の加熱を止めて、 最高沸点成分を蒸発釜 2から抜きだす。 最高 沸点成分を蒸発釜 2から抜き出した後に、 前記バルブを開け、 塔底液を蒸発 釜 2に入れる。 次に、 蒸発釜 2 (リボイラー) の加熱を開始して、 蒸発釜 2 を洗浄し、 その後に、 洗浄した液を取り除く。 ついで、 留分受器 7の液を、 熱交換器 4を通過させて蒸留塔 3に供給し、 同じ操作を繰り返すと、 2番目 の高沸点成分が蒸発釜 2に回収される。 この蒸留操作を順次繰り返すことに よって、 原液 9中の沸点の異なる種々の成分が、 分離、 回収される。  After the distillation is completed, after the temperature in the tower is stabilized, the valve of the pipe between the bottom liquid of the distillation tower 3 and the evaporator 2 is closed to prevent the bottom liquid from entering the evaporator 2. After that, the heating of the evaporator 2 is stopped, and the highest boiling point component is extracted from the evaporator 2. After extracting the highest boiling point component from the evaporator 2, the valve is opened, and the bottom liquid is introduced into the evaporator 2. Next, heating of the evaporator 2 (reboiler) is started, and the evaporator 2 is washed, and then, the washed liquid is removed. Next, the liquid in the fraction receiver 7 is supplied to the distillation column 3 through the heat exchanger 4, and the same operation is repeated, whereby the second high-boiling component is recovered in the evaporator 2. By sequentially repeating this distillation operation, various components having different boiling points in the stock solution 9 are separated and recovered.
高沸点成分が最後まで加熱されることになるという問題はあるが、 この第 Although there is a problem that the high boiling point component will be heated to the end,
2方法のメリットは、 原液 9の低沸点物質が長時間加熱されない点である。 従来の方法であれば、 蒸発釜 2 (リボイラー) に原料を全量入れて蒸留する ので、 原料 (特に低沸点成分) が長時間、 沸騰温度に曝されることになる。 しかし、 この方法では、 低沸点成分は、 蒸留塔 3を通過する間しか加熱され ないので、 熱に弱い物質の蒸留に最適である。 The advantage of the two methods is that the low-boiling substance of the stock solution 9 is not heated for a long time. According to the conventional method, the entire amount of the raw material is put into the evaporator 2 (reboiler) and distilled, so that the raw material (particularly, low-boiling components) is exposed to the boiling temperature for a long time. However, in this method, since the low-boiling components are heated only while passing through the distillation column 3, they are most suitable for distillation of heat-sensitive substances.
(第 2装置) (2nd device)
本発明の第 2装置は、 液体散布装置を有する蒸発釜、 熱交換器、 コンデン サ一および留分受器を備えた半連続式回分蒸留装置であって、 該蒸発釜から の蒸気は該熱交換器および/または該コンデンサ一で液化されて留分受器に 受け入れられるように構成され、 該熱交換器は該蒸発釜と該コンデンサーと の間に設けられ、 原液が該熱交換器を通過して該蒸発釜に供給されるように 構成されている。 第 1装置とは、 蒸留塔 3がない点で異なる。 すなわち、 第 1装置において、 蒸留塔の機能を停止させた装置でもある。 第 2装置を構成 するそれぞれの要素は、 第 1発明と同じ機能を有している。  A second apparatus according to the present invention is a semi-continuous batch distillation apparatus including an evaporator having a liquid spraying device, a heat exchanger, a capacitor and a fraction receiver, wherein steam from the evaporator is used as the heat source. The heat exchanger is provided between the evaporator and the condenser, and the undiluted solution passes through the heat exchanger. Then, it is configured to be supplied to the evaporator. It differs from the first device in that the distillation column 3 is not provided. That is, in the first apparatus, the function of the distillation column is stopped. Each element constituting the second device has the same function as the first invention.
(第 3方法) (3rd method)
図 1に基いて、 本発明の第 2装置を用いる蒸留方法 (第 3方法) を説明す る。 ただし、 蒸留塔 3はなく、 蒸発釜 2からの蒸気は、 直接、 熱交換器 4に 供給され、 還流 8はない。 まず、 一定量の原液 9を蒸発釜 2に入れる。 蒸発 釜 2を加熱し、 液体散布装置 1を稼動させると、 蒸発釜 2の液 (原液 9 ) は すぐに温度が上昇して、 沸騰を開始する。 蒸発釜 2からの蒸気が熱交換器 4 に供給されるので、 供給原液 9は、 この熱交換器 4を通過するときに、 熱を 回収することができる。 この方法では、 原液 9を蒸発釜 2に入れると同時に 蒸発が開始できるので、 運転時間の短縮になる。 従来の回分式の蒸発では、 蒸発釜 2に液を溜めた後、 加熱しているため、 液を溜める時間が必要である。 しかし、 この方法では原液 9を供給しながら加熱出来るので、 原液 9を蒸発 釜 2に溜める時間は少なくて済む。 The distillation method (third method) using the second apparatus of the present invention will be described with reference to FIG. However, there is no distillation column 3 and the steam from the evaporator 2 is directly supplied to the heat exchanger 4 and there is no reflux 8. First, a certain amount of the stock solution 9 is put into the evaporator 2. When the evaporating pot 2 is heated and the liquid spraying device 1 is operated, the temperature of the liquid (stock solution 9) in the evaporating pot 2 immediately rises and starts boiling. Since the steam from the evaporator 2 is supplied to the heat exchanger 4, the supply stock solution 9 can recover heat when passing through the heat exchanger 4. In this method, evaporation can be started at the same time that the stock solution 9 is put into the evaporator 2, so that the operation time is reduced. In the conventional batch-type evaporation method, since the liquid is stored in the evaporator 2 and then heated, it takes time to store the liquid. However, in this method, heating can be performed while supplying undiluted solution 9, so undiluted solution 9 is evaporated Less time is needed to store in kettle 2.
この装置は、 蒸留塔あるいは還流が不要な、 高沸点成分と低沸点成分との 沸点差が大きく異なる物質が含まれる原液 9から低沸点成分を蒸留回収する 場合に、 特に有効である。 熱交換器 4を通過させた原液 9は、 蒸発釜 2に連 続的に供給される。 原液 9が供給されている間、 蒸留液は留分受器 6に受け 入れられ、 蒸留が続けられる。 原液 9の供給が終了しても、 留分受器 6の低 沸点成分の濃度が規定値内である限り、 蒸留は継続される。 この操作は、 蒸 発釜 2に原料 9を全部入れてから蒸発させていた従来の場合に比較して、 熱 回収をしながら蒸留できる点で優れている。 さらに、 低沸点成分を除去しな がら原液 9を供給し得るので、 低沸点成分の量に相当する量の原液 9を、 さ らに蒸発釜 2に供給できる。 従って、 原液 9の処理量を増加し得る点でも、 上記従来の場合と比べて、 優れている。  This apparatus is particularly effective when distilling and recovering low-boiling components from a stock solution 9 which does not require a distillation column or reflux and contains a substance having a large difference in boiling point between high-boiling components and low-boiling components. The stock solution 9 having passed through the heat exchanger 4 is continuously supplied to the evaporator 2. While the stock solution 9 is being supplied, the distillate is received in the fraction receiver 6 and distillation is continued. Even if the supply of the stock solution 9 is completed, the distillation is continued as long as the concentration of the low-boiling components in the fraction receiver 6 is within the specified value. This operation is excellent in that distillation can be performed while recovering heat as compared with the conventional case in which the raw material 9 is entirely put into the evaporator 2 and then evaporated. Further, since the stock solution 9 can be supplied while removing the low-boiling components, the stock solution 9 in an amount corresponding to the amount of the low-boiling components can be further supplied to the evaporator 2. Therefore, it is superior to the above conventional case in that the processing amount of the stock solution 9 can be increased.
本発明の蒸発釜 2が液体散布装置 1を備えることにより、 少量の液体で伝 熱面を最大利用できる。 従って、 従来の回分式蒸留装置のように、 蒸留すベ き原液 9の全量を予め蒸発釜 2に入れておく必要がない。 また、 蒸気と原液 9との間で熱交換することにより、 供給する原液 9に熱を回収することがで きる。 例えば、 原液 9力 2 5 °C、 1 0 0 0 Lの水である場合、 発生した蒸 気で供給する原液の温度を 9 0 °Cまで上昇させることにより、 従来のように 原液 9を蒸発釜 2に入れてから加熱を開始する方式 (回分式) と比較して、 約 7 4 2 5 0 K c a 1の熱が回収できる。 全部の水を蒸発するとすれば、 必 要なエネルギーは 5 3 9 0 0 0 K c a 1であるので、 回収エネルギーは 1 3 %以上になる。  By providing the evaporating pot 2 of the present invention with the liquid spraying device 1, the heat transfer surface can be maximally used with a small amount of liquid. Therefore, unlike the conventional batch distillation apparatus, it is not necessary to put the whole amount of the stock solution 9 to be distilled into the evaporator 2 in advance. Further, by exchanging heat between the vapor and the stock solution 9, heat can be recovered to the stock solution 9 to be supplied. For example, if the undiluted solution 9 is 25 ° C and 1000 L water, the undiluted solution 9 is evaporated as before by raising the temperature of the undiluted solution supplied by the generated steam to 90 ° C. Compared to the method of starting heating after putting in kettle 2 (batch type), it is possible to recover about 7425 KCa1 of heat. Assuming that all the water evaporates, the required energy is 5390000 Kca1, so the recovered energy is more than 13%.
原液 9の供給が終われば熱回収は無くなる。 本発明の装置を用いた場合、 原液 9を供給し終わるときには、 蒸発がかなり進行し、 蒸発釜 2の液量が減 少しているため、 従来の回分式と比較すると、 蒸発釜 2の容積が小さくて済 む。 容積が同じか、 より大きい装置であっても、 よいことは言うまでもなレ、。 (実施例) When the supply of the undiluted solution 9 is completed, there is no heat recovery. With the use of the apparatus of the present invention, when the supply of the undiluted solution 9 is completed, the evaporation has progressed considerably and the liquid volume of the evaporator 2 has been reduced. It can be small. It goes without saying that even if the device has the same or larger volume, it is good. (Example)
以下、 実施例を挙げて本発明を説明するが、 本発明はこの実施例に限定さ れない。 実施例 1および比較例 1  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. Example 1 and Comparative Example 1
図 1に示す第 1装置を用いて 2成分系の半連続回分蒸留を行う (実施例 1 ) 。 実用量 1 0 0 0 L、 ジャケットの伝熱面積が 4 m 2の、 液体散布装置 1を備えた蒸発釜 2を用いて、 2成分系の原液 9を蒸留する場合を説明する。 ただし、 説明の都合上、 低沸点成分の沸点を 1 0 0 °Cとして、 説明する。 蒸発釜 2に 1 0 Lの原液 9を供給し、 液体散布装置 1を使用して原液 9を 蒸発釜 2の内壁に散布する。 この蒸発釜 2のジャケットに、 1 5 0 °Cの蒸気 を通して加熱を開始すると、 1 0 Lの原液 9は、 常温 (2 5 °C) から 1分以 内に 1 0 0 °Cまで昇温し、 直ちに、 約 1 0 0 L / h r程度の速度で、 蒸発が 開始される。 蒸留塔 3が暖まり、 還流 8が開始されると、 原液 9を、 熱交換 器 4を通して加熱しながら、 蒸留塔 3に供給する。 熱交換器 4で凝縮した液 およびコンデンサー 5で凝縮された液の一部は、 蒸留塔 3に還流され、 一部 は留分受器 6に回収される。 Semi-continuous batch distillation of a two-component system is performed using the first apparatus shown in FIG. 1 (Example 1). A description will be given of a case where a two-component stock solution 9 is distilled using an evaporator 2 equipped with a liquid spraying device 1 having an actual volume of 1000 L and a heat transfer area of a jacket of 4 m 2 . However, for convenience of explanation, the boiling point of the low-boiling component is assumed to be 100 ° C. Supply 10 L of undiluted solution 9 to evaporator 2, and spray undiluted solution 9 on the inner wall of evaporator 2 using liquid spraying device 1. When heating is started at 150 ° C through the jacket of the evaporator 2, 10 L of the undiluted solution 9 rises from room temperature (25 ° C) to 100 ° C within one minute. Immediately, evaporation starts at a rate of about 100 L / hr. When the distillation column 3 is warmed and the reflux 8 is started, the undiluted solution 9 is supplied to the distillation column 3 while being heated through the heat exchanger 4. A part of the liquid condensed in the heat exchanger 4 and a part of the liquid condensed in the condenser 5 are returned to the distillation column 3, and a part is collected in the fraction receiver 6.
比較例 1として、 実施例 1と同じ容積および伝熱面積の蒸発釜で、 液体散 布装置 1を用いない蒸発釜を用いる。 この蒸発釜に原液を 1 0 0 0 L入れ、 実施例 1と同様に加熱する。 伝熱面積は液体散布装置を使用する場合と液が 一杯に満たされている時とは同じであるので、 1 0 0 0 Lの原液が 1 0 0 °C になるまで、 1 0 0分要する。  As Comparative Example 1, an evaporator with the same volume and heat transfer area as in Example 1 but without the liquid spraying device 1 was used. 100 L of the stock solution is put into the evaporator and heated in the same manner as in Example 1. Since the heat transfer area is the same as when a liquid sprayer is used and when the liquid is full, it takes 100 minutes for 100 L of the stock solution to reach 100 ° C. .
従って、 蒸発が開始するまでの時間 (昇温時間) を比較すると本発明の装 置では、 9 9分早くなる。 他方、 本発明の装置を用いる場合の低沸点成分の 蒸留時間と、 比較例 1のように原液を予め全量仕込んでおく場合の低沸点成 分の蒸留時間は、 理論的には同じ時間である。 しかし、 比較例 1は、 液面が さがり、 伝熱面積が減少するに従い、 蒸発速度が遅くなり、 蒸留時間が本発 明の装置よりも長くなる。 これに対して、 本発明の装置は、 液体散布手段 1 を有しているので、 液量の多少にかかわらず、 常に全ての伝熱面積を使用す ることができる。 従って、 比較例 1よりも、 蒸留時間が短くてすむ。 このよ うに、 本発明の蒸留装置を用いると、 従来の回分法と比べて少なくとも 9 9 分 + αの蒸留時間が短縮される。 Therefore, when comparing the time until the start of evaporation (heating time), the apparatus of the present invention is earlier by 99 minutes. On the other hand, the distillation time of the low-boiling components in the case of using the apparatus of the present invention and the low-boiling components in the case where the entire amount of the stock solution was previously charged as in Comparative Example 1. Minute distillation time is theoretically the same time. However, in Comparative Example 1, as the liquid level decreases and the heat transfer area decreases, the evaporation rate decreases, and the distillation time becomes longer than that of the apparatus of the present invention. On the other hand, since the device of the present invention has the liquid spraying means 1, it is possible to always use the entire heat transfer area regardless of the amount of the liquid. Therefore, the distillation time is shorter than in Comparative Example 1. Thus, using the distillation apparatus of the present invention reduces the distillation time by at least 99 minutes + α compared to the conventional batch method.
本発明の装置を用いた場合、 熱交換器 4において蒸気と原液 9との間で熱 交換されるので、 その分が省エネとなる。 この場合、 省エネ量 (QKcal) は、 原液 (WKg) とその上昇温度 (Δ Τ) から、 式 Q =W X Δ Τで表される。 従 つて、 この実施例における省エネ量は、 約 9 9 0 X 7 5 = 7 4 2 5 O Kcalで ある。 その上、 少なくとも 9 9分の蒸留時間の節約が図られる。  When the apparatus of the present invention is used, heat is exchanged between the steam and the undiluted solution 9 in the heat exchanger 4, which saves energy. In this case, the energy saving (QKcal) is expressed by the formula Q = W X Δ from the stock solution (WKg) and its temperature rise (Δ Τ). Therefore, the amount of energy saving in this embodiment is about 900 X 75 = 7425 Kcal. In addition, a savings of at least 99 minutes in distillation time is achieved.
すなわち、 本発明の装置を用いることにより、 省エネと時間の節約という 二つの効果が生み出される。 本発明の装置を用いると、 2成分のみならず、 多成分の原液を用いた場合には、 さらに時間とエネルギーが大きく節約され ることが理解される。 実施例 2および比較例 2  That is, by using the device of the present invention, two effects of energy saving and time saving are produced. It is understood that when the apparatus of the present invention is used, not only two components but also a multi-component stock solution is used, and time and energy are further greatly saved. Example 2 and Comparative Example 2
A成分を 4 5重量%、 B成分を 4 5重量%、 および C成分を 1 0重量%含 有する原液を蒸留する場合について説明する。 沸点は Aく B < Cである。 こ の場合も、 説明の都合上、 A成分の沸点を 1 0 0 °Cとして説明する。  A case where a stock solution containing 45% by weight of the component A, 45% by weight of the component B, and 10% by weight of the component C will be described. The boiling point is A <B <C. Also in this case, for convenience of explanation, the description will be made assuming that the boiling point of the component A is 100 ° C.
実用量 1 0 0 0 0 L、 伝熱面積が約 2 5 m 2である蒸発釜を用い、 本発明 の液体散布装置 1を有する蒸発釜 2と熱交換器 4とを有する装置を用いて半 連続回分蒸留する場合 (実施例 2の方法) と、 液体散布装置 1および熱交換 器 4を有しない蒸発釜 2に、 当初から 1 0 0 0 0 Lの原液を入れて蒸留した 場合 (比較例 2の方法) との比較を行う。 実施例 2の場合、 原液を 1 0 0 L程度蒸発釜に仕込み、 ジャケットを 1 5 0 °Cの蒸気で加熱し、 液体散布装置 1を回転させると、 温度の上昇が始まり、 常温 (2 5 °C) から 1 0 0 °Cまで、 1分以内に上昇する。 これに対して、 比 較例 2の方法では、 1 0 0 0 0 Lの液が 1 0 0 °Cまで到達する時間は 1 0 0 分かかることになる。 蒸発を開始して、 蒸留塔 3が暖まる時間は、 どちらの 方法でも同じであるので、 実施例 2の方法は、 比較例 2の方法と比較して、 9 9分短縮される。 Using an evaporator with an actual volume of 1000 L and a heat transfer area of about 25 m 2 , a half using an evaporator with a liquid spraying device 1 of the present invention and a device with a heat exchanger 4. Continuous batch distillation (method of Example 2) and a case where 100 L of undiluted solution was put into evaporator 2 without liquid sprayer 1 and heat exchanger 4 from the beginning (Comparative Example) Method 2). In the case of Example 2, the stock solution was charged into an evaporator of about 100 L, the jacket was heated with steam at 150 ° C, and the liquid spraying device 1 was rotated. ° C) to 100 ° C within 1 minute. On the other hand, in the method of Comparative Example 2, it takes 100 minutes for 100 000 L of liquid to reach 100 ° C. Since the time during which evaporation starts and the distillation column 3 warms up is the same in either method, the method of Example 2 is reduced by 99 minutes as compared with the method of Comparative Example 2.
次に、 蒸留を開始し、 原液 9を熱交換器 4を通して供給する本発明の方法 では、 熱回収は 7 4 2 5 0 O Kcalとなる。 4 5重量%の A成分を除去する時 間は、 実施例 2の方法を用いると、 比較例 2の方法を用いるよりも短くなる。 これは、 実施例 2は液体散布装置 1を使用するため、 液量が少なくなつても、 伝熱面積として最大の 2 5 m 2使用できるからである。 液体散布装置 1を使 用しない比較例 2では、 A成分の蒸発に伴って、 液量が減少し、 伝熱面積が 減少するため、 時間は余分にかかり、 エネルギーロスがおこる。 従って、 本 発明の方法の方が、 エネルギーが効率良く回収され、 熱効率が高いことが明 らかである。 Next, distillation is started and in the method of the present invention in which the stock solution 9 is supplied through the heat exchanger 4, the heat recovery is 7425 OOKal. The time required to remove 45% by weight of the A component is shorter when the method of Example 2 is used than when the method of Comparative Example 2 is used. This is because the second embodiment uses the liquid spraying device 1 and therefore can use a maximum of 25 m 2 as the heat transfer area even when the amount of liquid is small. In Comparative Example 2 in which the liquid spraying device 1 was not used, the amount of liquid was reduced and the heat transfer area was reduced due to the evaporation of the A component, so that extra time was required and energy loss occurred. Therefore, it is clear that the method of the present invention recovers energy more efficiently and has higher thermal efficiency.
1 0 0 0 0 Lの原液を処理して、 A成分が留去されると、 実施例 2および 比較例 2ともに、 4 5重量。ん分の容量が減少する。 この残りの液には B成分 と C成分とが含まれているので、 B成分を次に蒸留する。 B成分の蒸留速度 は、 本発明の方法も比較例の方法も理論的には同じである。 しかし、 液体散 布装置を使用しない従来法 (比較例 2 ) では、 4 5重量%の A成分が蒸発す ることによって、 その量に相当する伝熱面積が使用されないので蒸発速度が 減少する。 そのため蒸留時間がさらに必要となる。  When 100 L of the stock solution was treated and the A component was distilled off, both Example 2 and Comparative Example 2 weighed 45 wt. Capacity is reduced. Since this remaining liquid contains the B component and the C component, the B component is distilled next. The distillation rate of the component B is theoretically the same between the method of the present invention and the method of the comparative example. However, in the conventional method (Comparative Example 2) that does not use the liquid spraying device, the evaporation rate is reduced because the heat transfer area corresponding to the amount is not used because 45% by weight of the A component evaporates. Therefore, a further distillation time is required.
B成分が蒸留されると、 最後の C成分は 1 0 0 0 L程度残る。  When the B component is distilled, about 1000 L of the last C component remains.
この B成分の回収が終了するころに、 さらに熱交換器 4を通した、 A成分、 By the end of the recovery of component B, component A passed through heat exchanger 4
B成分および C成分を含む原液を連続的に供給することにより、 さらに、 9 0 0 0 Lの原液を連続的に処理し、 A成分、 B成分および C成分を分離する ことができる。 すなわち、 本発明の方法を用いれば、 昇温の時間と昇温のた めのエネルギーを最小にして (すなわち、 熱回収を行いながら) 、 さらに 9 0 0 0 Lの原液を処理できる。 これに対して比較例 2の方法では、 昇温時間 と昇温のためのエネルギーが必要となる。 産業上の利用可能性 By continuously supplying the stock solution containing B and C components, 9 The A 000 L stock solution can be continuously processed to separate the A, B and C components. That is, by using the method of the present invention, 900 L of undiluted solution can be further processed while minimizing the time for heating and the energy for raising the temperature (that is, performing heat recovery). In contrast, the method of Comparative Example 2 requires a heating time and energy for heating. Industrial applicability
従来、 回分蒸留では原液を蒸発釜に入れて加熱を開始しなければならなか つたが、 本発明の液体散布装置を有する蒸発釜を用いる場合には、 連続的に しかも早い蒸発速度で蒸留できるので、 蒸発釜の大きさは原液の量よりも小 さい容量でよい。 たとえば、 低沸点成分が原液中に 5 0容量%含まれている 場合、 低沸点成分が除去された液 (塔底液) が蒸発釜一杯になるまで原液を 供給できる。 つまり、 従来の 2倍の液量を処理できることになり、 設備が 2 倍の能力となる。  Conventionally, in batch distillation, it was necessary to start heating by putting a stock solution into an evaporator, but when using an evaporator with the liquid spraying device of the present invention, distillation can be performed continuously and at a high evaporation rate. The size of the evaporator may be smaller than the volume of the stock solution. For example, when low-boiling components are contained in the stock solution at 50% by volume, the stock solution can be supplied until the liquid (bottom liquid) from which the low-boiling components have been removed becomes full in the evaporator. In other words, it can process twice as much liquid as before, and the equipment has twice the capacity.
従来の外部循環式の加熱法でも低沸点成分の蒸留はできるが、 それは液が 循環できる間だけである。 さらに、. この従来の方法は、 最初から相当量の液 量が必要であり、 液量が少なくなる後半では外部循環ができなくなり、 蒸留 塔が運転できなくなる。 これに対して、 本発明の蒸留装置には液体散布装置 が備えられているので、 液量が少なくなつても遠心力で液体を汲み上げ、 蒸 発釜の内壁に散布することにより、 蒸発釜の伝熱面積がすべて利用できる。 従って、 たとえ少量になっても蒸気量が一定となり、 蒸留塔は最高の効率で 運転できる。  The conventional external circulation heating method can also distill low boiling components, but only while the liquid can circulate. Furthermore, this conventional method requires a considerable amount of liquid from the beginning, and in the latter half when the amount of liquid decreases, external circulation cannot be performed, and the distillation column cannot be operated. On the other hand, since the distillation apparatus of the present invention is provided with a liquid spraying apparatus, even if the amount of liquid is small, the liquid is pumped up by centrifugal force and sprayed on the inner wall of the evaporator to form a vaporizer. All heat transfer areas are available. Therefore, even if the amount becomes small, the amount of steam is constant, and the distillation column can be operated at the highest efficiency.

Claims

請求の範囲 The scope of the claims
1 . 液体散布装置を有する蒸発釜、 蒸留塔、 熱交換器、 コンデンサ一および 留分受器を備えた半連続式回分蒸留装置であって、 該熱交換器は、 該蒸留塔 と該コンデンサーとの間に設けられ、 該蒸留塔に供給される原液と熱交換す るように構成されており、 該蒸発釜からの蒸気は該蒸留塔を通過し、 該熱交 換器および または該コンデンサ一で液化され、 該液化された液体の一部は 該留分受器に回収され、 残りの液体は該蒸留塔に還流するように構成され、 そして、 該蒸留塔の塔底液が該蒸発釜に戻るように構成された、 半連続式回 1. A semi-continuous batch distillation apparatus equipped with an evaporator, a distillation column, a heat exchanger, a condenser, and a fraction receiver having a liquid spraying device, wherein the heat exchanger includes the distillation column, the condenser, And heat exchange with the undiluted solution supplied to the distillation column. The steam from the evaporator passes through the distillation column, and the heat exchanger and / or the condenser A portion of the liquefied liquid is collected in the fraction receiver, the remaining liquid is refluxed to the distillation column, and the bottom liquid of the distillation column is collected in the evaporator. Semi-continuous turn, configured to return to
2 . 原液を、 熱交換器を通過させて熱を回収しながら連続的に蒸留塔に供給 し、 該蒸留塔の塔底液を、 液体散布装置を有する蒸発釜に連続的に供給し、 該蒸発釜からの蒸発成分を、 蒸留塔、 熱交換器、 およびコンデンサ一の順に 通過させて分別蒸留する工程を含む、 蒸留方法。 2. The undiluted solution is continuously supplied to the distillation column while recovering heat by passing through a heat exchanger, and the bottom liquid of the distillation column is continuously supplied to an evaporator having a liquid spraying device. A distillation method comprising a step of fractionally distilling an evaporating component from an evaporator through a distillation tower, a heat exchanger, and a condenser in this order.
3 . 前記塔底液を回分蒸留する工程をさらに含む、 請求項 2に記載の方法。 3. The method according to claim 2, further comprising a step of subjecting the bottom liquid to batch distillation.
4 . 原液を、 熱交換器を通過させて熱を回収しながら連続的に蒸留塔に供給 し、 該蒸留塔の塔底液を、 液体散布装置を有する蒸発釜に連続的に供給し、 該蒸発釜からの蒸発量を一定量に制御しつつ蒸発を行う力、 または該蒸発釜 の液量が一定となるように蒸発を行い、 該蒸発釜からの蒸発成分を、 蒸留塔、 熱交換器、 およびコンデンサーの順に通過させ、 該蒸留塔に還流するかもし くは還流することなく分別蒸留する工程を含む、 蒸留方法。 4. The undiluted solution is continuously supplied to the distillation column while recovering heat by passing through a heat exchanger, and the bottom liquid of the distillation column is continuously supplied to an evaporator having a liquid spraying device. Evaporation is performed while controlling the amount of evaporation from the evaporator to a constant amount, or evaporating so that the liquid volume in the evaporator becomes constant. , And a condenser, and then a fractional distillation step of refluxing or not refluxing the distillation column.
5 . 液体散布装置を有する蒸発釜、 熱交換器、 コンデンサーおよび留分受器 を備えた半連続式回分蒸留装置であって、 該熱交換器は、 該蒸発釜と該コン デンサ一との に設けられ、 該蒸発釜に供給される原液と熱交換するように 構成されており、 該蒸発釜からの蒸気は該熱交換器および または該コンデ ンサ一で液化されて留分受器に受け入れられるように構成された、 半連続式 回分蒸留装置。 5. Evaporator with heat sprayer, heat exchanger, condenser and fraction receiver Wherein the heat exchanger is provided between the evaporator and the condenser, and is configured to exchange heat with a stock solution supplied to the evaporator. A semi-continuous batch distillation apparatus, wherein the steam from the evaporator is liquefied in the heat exchanger and / or the condenser and received in a fraction receiver.
6 . 原液を、 熱交換器を通過させて液体散布装置を有する蒸発釜に連続的に 供給し、 該蒸発釜からの蒸発成分を、 該熱交換器、 およびコンデンサーの順 に通過させて分別蒸留する工程を含む、 蒸留方法。 6. The undiluted solution is continuously supplied to the evaporator having a liquid spraying device by passing through the heat exchanger, and the evaporating component from the evaporator is passed through the heat exchanger and the condenser in order to perform fractional distillation. A distillation method, comprising the step of:
訂正された用紙 (規則 91) Corrected form (Rule 91)
PCT/JP2002/001705 2001-09-10 2002-02-25 Distillation device and distillation method using this device WO2003022389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003526513A JP4058410B2 (en) 2001-09-10 2002-02-25 Distillation apparatus and distillation method using the apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-274085 2001-09-10
JP2001274085 2001-09-10

Publications (1)

Publication Number Publication Date
WO2003022389A1 true WO2003022389A1 (en) 2003-03-20

Family

ID=19099193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001705 WO2003022389A1 (en) 2001-09-10 2002-02-25 Distillation device and distillation method using this device

Country Status (2)

Country Link
JP (1) JP4058410B2 (en)
WO (1) WO2003022389A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564187A (en) * 2011-07-06 2012-07-11 中国海洋石油总公司 Condenser, distillation device and distillation method for reducing content of light components of kettle liquid
CN103191573A (en) * 2013-03-26 2013-07-10 安徽圣诺贝化学科技有限公司 Rectification device
JP2020515409A (en) * 2017-04-03 2020-05-28 エコディスト, インク.Ecodyst, Inc. Large standalone chiller, all-in-one rotary evaporator and related methods
CN112357883A (en) * 2020-09-29 2021-02-12 中国科学院上海应用物理研究所 Preparation device and preparation method of ultralight water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269603A (en) * 1993-03-19 1994-09-27 Tsukada Fuainesu:Kk Vacuum distillation device
JPH10137502A (en) * 1996-11-11 1998-05-26 英正 ▲鶴▼田 Fractional distillation method of multicomponent mixture
JP2000271404A (en) * 1999-03-25 2000-10-03 Kansai Kagaku Kikai Seisaku Kk Distillation column bottom heating device and heating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269603A (en) * 1993-03-19 1994-09-27 Tsukada Fuainesu:Kk Vacuum distillation device
JPH10137502A (en) * 1996-11-11 1998-05-26 英正 ▲鶴▼田 Fractional distillation method of multicomponent mixture
JP2000271404A (en) * 1999-03-25 2000-10-03 Kansai Kagaku Kikai Seisaku Kk Distillation column bottom heating device and heating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564187A (en) * 2011-07-06 2012-07-11 中国海洋石油总公司 Condenser, distillation device and distillation method for reducing content of light components of kettle liquid
CN103191573A (en) * 2013-03-26 2013-07-10 安徽圣诺贝化学科技有限公司 Rectification device
JP2020515409A (en) * 2017-04-03 2020-05-28 エコディスト, インク.Ecodyst, Inc. Large standalone chiller, all-in-one rotary evaporator and related methods
JP7208970B2 (en) 2017-04-03 2023-01-19 エコディスト,インク. Large scale stand-alone chiller, all-in-one rotary evaporator and related methods
CN112357883A (en) * 2020-09-29 2021-02-12 中国科学院上海应用物理研究所 Preparation device and preparation method of ultralight water

Also Published As

Publication number Publication date
JPWO2003022389A1 (en) 2004-12-24
JP4058410B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US20190352193A1 (en) Device for the Purification of Water Using a Heat Pump
US4350571A (en) Absorption heat pump augmented thermal separation process
RU97114998A (en) METHOD FOR DISCHARGING A MULTICOMPONENT MIXTURE AND INSTALLATION FOR ITS IMPLEMENTATION
JP4694116B2 (en) Method and apparatus for producing purified liquid
EP0631799A1 (en) Vacuum concentrating plant
WO2003022389A1 (en) Distillation device and distillation method using this device
US11192800B2 (en) Vapor compression distillation assembly
US4661208A (en) Method for dehydrating distillation of an aqueous solution of carboxylic acid
CN101028918B (en) Recovery of hydrofluoric acid
JP6426251B1 (en) Energy saving system for distillation equipment
US4745690A (en) Method of replenishing and/or preparing treating liquids
KR101619592B1 (en) Alcohol distillation device
EP0155919B1 (en) Apparatus for the recycling of solvent used in dry-cleaning machines and similar equipment
JP6612936B1 (en) Distillation equipment
JP3577461B2 (en) Vacuum distillation apparatus and its use for concentrating organic aqueous solvent mixtures
EP3894035A1 (en) Separation system and method thereof
EP0049584A1 (en) Distillation system
CN102309865B (en) Refining system for circulating 1, 3-propanediol in continuous production of poly(trimethylene terephthalate)
CN102066264A (en) Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices
US11027215B1 (en) Vacuum distillation apparatus and methods
US3999943A (en) Semi-continuous process for alternately producing a sterilizing vapor and regenerating a dilute process solution in a single apparatus
JPH027601Y2 (en)
CN218106773U (en) Cottonseed postprocessing methanol rectification system
JP2527469B2 (en) Distillation method and device
KR100216412B1 (en) Process for reprocessing the bottom product of an extractive distillation for recovering pure hydrocarbons

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003526513

Country of ref document: JP

122 Ep: pct application non-entry in european phase