WO2003022268A1 - A combination and method of treatment of cancer utilizing a cox-2 inhibitor and a 3-hydroxy-3-methylglutaryl-coenzyme-a (hmg-coa) reductase inhibitor - Google Patents
A combination and method of treatment of cancer utilizing a cox-2 inhibitor and a 3-hydroxy-3-methylglutaryl-coenzyme-a (hmg-coa) reductase inhibitor Download PDFInfo
- Publication number
- WO2003022268A1 WO2003022268A1 PCT/US2001/044050 US0144050W WO03022268A1 WO 2003022268 A1 WO2003022268 A1 WO 2003022268A1 US 0144050 W US0144050 W US 0144050W WO 03022268 A1 WO03022268 A1 WO 03022268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- inhibitor
- hmg
- dose
- cox
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 242
- 201000011510 cancer Diseases 0.000 title claims abstract description 205
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 title claims abstract description 157
- 229940111134 coxibs Drugs 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000011282 treatment Methods 0.000 title claims abstract description 28
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 title abstract description 67
- 229940123934 Reductase inhibitor Drugs 0.000 title abstract description 7
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims abstract description 147
- 229960003180 glutathione Drugs 0.000 claims abstract description 72
- 229960003067 cystine Drugs 0.000 claims abstract description 71
- 108010024636 Glutathione Proteins 0.000 claims abstract description 70
- 150000001875 compounds Chemical class 0.000 claims abstract description 63
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims abstract description 62
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims abstract description 57
- 230000037361 pathway Effects 0.000 claims abstract description 54
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 24
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000002708 enhancing effect Effects 0.000 claims abstract description 22
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 17
- 239000011669 selenium Substances 0.000 claims abstract description 17
- 235000011649 selenium Nutrition 0.000 claims abstract description 17
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 claims abstract description 15
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 claims abstract description 13
- 235000019136 lipoic acid Nutrition 0.000 claims abstract description 13
- 229960002663 thioctic acid Drugs 0.000 claims abstract description 13
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229930003268 Vitamin C Natural products 0.000 claims abstract description 12
- 235000019154 vitamin C Nutrition 0.000 claims abstract description 12
- 239000011718 vitamin C Substances 0.000 claims abstract description 12
- 229930003427 Vitamin E Natural products 0.000 claims abstract description 11
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims abstract description 11
- 235000019165 vitamin E Nutrition 0.000 claims abstract description 11
- 229940046009 vitamin E Drugs 0.000 claims abstract description 11
- 239000011709 vitamin E Substances 0.000 claims abstract description 11
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 123
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 claims description 67
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 claims description 67
- 229960004844 lovastatin Drugs 0.000 claims description 60
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 claims description 60
- 235000012000 cholesterol Nutrition 0.000 claims description 59
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 claims description 55
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 claims description 49
- 229960000371 rofecoxib Drugs 0.000 claims description 44
- 230000001225 therapeutic effect Effects 0.000 claims description 42
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 claims description 40
- 230000005764 inhibitory process Effects 0.000 claims description 38
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 claims description 35
- 229960000590 celecoxib Drugs 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 33
- SEBFKMXJBCUCAI-HKTJVKLFSA-N silibinin Chemical class C1=C(O)C(OC)=CC([C@@H]2[C@H](OC3=CC=C(C=C3O2)[C@@H]2[C@H](C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-HKTJVKLFSA-N 0.000 claims description 33
- SEBFKMXJBCUCAI-UHFFFAOYSA-N NSC 227190 Natural products C1=C(O)C(OC)=CC(C2C(OC3=CC=C(C=C3O2)C2C(C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-UHFFFAOYSA-N 0.000 claims description 32
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 claims description 30
- 229960002855 simvastatin Drugs 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- 150000002535 isoprostanes Chemical class 0.000 claims description 24
- 230000003859 lipid peroxidation Effects 0.000 claims description 24
- 230000001093 anti-cancer Effects 0.000 claims description 23
- 239000003937 drug carrier Substances 0.000 claims description 21
- 229960004245 silymarin Drugs 0.000 claims description 20
- 235000017700 silymarin Nutrition 0.000 claims description 20
- 229960004945 etoricoxib Drugs 0.000 claims description 14
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 claims description 14
- 229940096701 plain lipid modifying drug hmg coa reductase inhibitors Drugs 0.000 claims description 14
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 claims description 13
- GPUADMRJQVPIAS-QCVDVZFFSA-M cerivastatin sodium Chemical compound [Na+].COCC1=C(C(C)C)N=C(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 GPUADMRJQVPIAS-QCVDVZFFSA-M 0.000 claims description 13
- 229940067631 phospholipid Drugs 0.000 claims description 13
- 150000003904 phospholipids Chemical class 0.000 claims description 13
- 229960002004 valdecoxib Drugs 0.000 claims description 13
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 claims description 13
- OJRHUICOVVSGSY-RXMQYKEDSA-N (2s)-2-chloro-3-methylbutan-1-ol Chemical compound CC(C)[C@H](Cl)CO OJRHUICOVVSGSY-RXMQYKEDSA-N 0.000 claims description 12
- BVKQRAYKLBRNIK-UHFFFAOYSA-N 2,3-Dehydrosilybin Chemical class C1=C(O)C(OC)=CC(C2C(OC3=CC=C(C=C3O2)C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 BVKQRAYKLBRNIK-UHFFFAOYSA-N 0.000 claims description 12
- VGMFHMLQOYWYHN-UHFFFAOYSA-N Compactin Natural products OCC1OC(OC2C(O)C(O)C(CO)OC2Oc3cc(O)c4C(=O)C(=COc4c3)c5ccc(O)c(O)c5)C(O)C(O)C1O VGMFHMLQOYWYHN-UHFFFAOYSA-N 0.000 claims description 12
- SCPXVNQGJQJUJB-UHFFFAOYSA-N Dehydrosilybin Chemical class COc1cc(ccc1O)C2Oc3ccc(cc3OC2CO)C4=C(O)C(=O)c5c(O)cc(O)cc5O4 SCPXVNQGJQJUJB-UHFFFAOYSA-N 0.000 claims description 12
- CYGIJEJDYJOUAN-UHFFFAOYSA-N Isosilychristin Chemical class C1=C(O)C(OC)=CC(C2C3C=C(C4C(C3=O)(O)OCC42)C2C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 CYGIJEJDYJOUAN-UHFFFAOYSA-N 0.000 claims description 12
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 claims description 12
- AJLFOPYRIVGYMJ-UHFFFAOYSA-N SJ000287055 Natural products C12C(OC(=O)C(C)CC)CCC=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 AJLFOPYRIVGYMJ-UHFFFAOYSA-N 0.000 claims description 12
- 229960001770 atorvastatin calcium Drugs 0.000 claims description 12
- 229940052311 cerivastatin sodium Drugs 0.000 claims description 12
- 229960000868 fluvastatin sodium Drugs 0.000 claims description 12
- AJLFOPYRIVGYMJ-INTXDZFKSA-N mevastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=CCC[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 AJLFOPYRIVGYMJ-INTXDZFKSA-N 0.000 claims description 12
- BOZILQFLQYBIIY-UHFFFAOYSA-N mevastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CCC=C21 BOZILQFLQYBIIY-UHFFFAOYSA-N 0.000 claims description 12
- 229960002965 pravastatin Drugs 0.000 claims description 12
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 claims description 12
- 229950000628 silibinin Drugs 0.000 claims description 12
- 229950004878 silicristin Drugs 0.000 claims description 12
- 229950004304 silidianin Drugs 0.000 claims description 12
- 235000014899 silybin Nutrition 0.000 claims description 12
- BMLIIPOXVWESJG-LMBCONBSSA-N silychristin Chemical class C1=C(O)C(OC)=CC([C@H]2[C@@H](C3=C(C(=CC(=C3)[C@@H]3[C@H](C(=O)C4=C(O)C=C(O)C=C4O3)O)O)O2)CO)=C1 BMLIIPOXVWESJG-LMBCONBSSA-N 0.000 claims description 12
- BMLIIPOXVWESJG-UHFFFAOYSA-N silychristin A Chemical class C1=C(O)C(OC)=CC(C2C(C3=C(C(=CC(=C3)C3C(C(=O)C4=C(O)C=C(O)C=C4O3)O)O)O2)CO)=C1 BMLIIPOXVWESJG-UHFFFAOYSA-N 0.000 claims description 12
- CYGIJEJDYJOUAN-JSGXPVSSSA-N silydianin Chemical class C1=C(O)C(OC)=CC([C@H]2[C@H]3C=C([C@@H]4[C@@](C3=O)(O)OC[C@@H]42)[C@@H]2[C@H](C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 CYGIJEJDYJOUAN-JSGXPVSSSA-N 0.000 claims description 12
- 230000028709 inflammatory response Effects 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 8
- 230000003827 upregulation Effects 0.000 claims description 8
- 235000015872 dietary supplement Nutrition 0.000 claims description 7
- 230000003828 downregulation Effects 0.000 claims description 5
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims 12
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 claims 11
- 230000036737 immune function Effects 0.000 claims 7
- 238000008214 LDL Cholesterol Methods 0.000 claims 6
- 206010061309 Neoplasm progression Diseases 0.000 claims 6
- 230000005751 tumor progression Effects 0.000 claims 6
- 239000012635 anticancer drug combination Substances 0.000 claims 2
- 229940046044 combinations of antineoplastic agent Drugs 0.000 claims 2
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 claims 1
- 239000003112 inhibitor Substances 0.000 abstract description 76
- 206010060862 Prostate cancer Diseases 0.000 abstract description 38
- 208000000236 Prostatic Neoplasms Diseases 0.000 abstract description 36
- 230000010076 replication Effects 0.000 abstract description 27
- -1 cystine Chemical class 0.000 abstract description 25
- 210000000987 immune system Anatomy 0.000 abstract description 23
- 230000002452 interceptive effect Effects 0.000 abstract description 11
- 210000004027 cell Anatomy 0.000 description 240
- 230000000694 effects Effects 0.000 description 61
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 57
- 230000015572 biosynthetic process Effects 0.000 description 54
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 48
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 46
- 239000003814 drug Substances 0.000 description 38
- 229940079593 drug Drugs 0.000 description 35
- 239000012528 membrane Substances 0.000 description 35
- 239000000126 substance Substances 0.000 description 35
- 230000001965 increasing effect Effects 0.000 description 34
- 238000003786 synthesis reaction Methods 0.000 description 33
- 230000006907 apoptotic process Effects 0.000 description 28
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 27
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 26
- 229940114079 arachidonic acid Drugs 0.000 description 24
- 235000021342 arachidonic acid Nutrition 0.000 description 24
- 235000017471 coenzyme Q10 Nutrition 0.000 description 24
- 150000003839 salts Chemical class 0.000 description 22
- 230000008901 benefit Effects 0.000 description 21
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000007246 mechanism Effects 0.000 description 18
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 17
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 17
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 16
- 230000006378 damage Effects 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 239000000543 intermediate Substances 0.000 description 16
- 150000003254 radicals Chemical class 0.000 description 16
- 241000894007 species Species 0.000 description 16
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 15
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 14
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 14
- 108050003243 Prostaglandin G/H synthase 1 Proteins 0.000 description 14
- 230000004060 metabolic process Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 238000011160 research Methods 0.000 description 14
- 229940035936 ubiquinone Drugs 0.000 description 14
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 13
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 13
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 13
- 235000018417 cysteine Nutrition 0.000 description 13
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 229940031439 squalene Drugs 0.000 description 13
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 241000282414 Homo sapiens Species 0.000 description 12
- 150000002632 lipids Chemical class 0.000 description 12
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 11
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 description 11
- 230000002378 acidificating effect Effects 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 229940091258 selenium supplement Drugs 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 239000003963 antioxidant agent Substances 0.000 description 10
- 230000003078 antioxidant effect Effects 0.000 description 10
- 238000002648 combination therapy Methods 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 150000003669 ubiquinones Chemical class 0.000 description 10
- 101710158485 3-hydroxy-3-methylglutaryl-coenzyme A reductase Proteins 0.000 description 9
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 description 8
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 8
- 239000013543 active substance Substances 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 230000009826 neoplastic cell growth Effects 0.000 description 8
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 230000007170 pathology Effects 0.000 description 8
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical class OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 231100000331 toxic Toxicity 0.000 description 8
- 230000002588 toxic effect Effects 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 102000019197 Superoxide Dismutase Human genes 0.000 description 7
- 108010012715 Superoxide dismutase Proteins 0.000 description 7
- 229960004308 acetylcysteine Drugs 0.000 description 7
- 230000002496 gastric effect Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 229940099246 mevacor Drugs 0.000 description 7
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 7
- 230000036542 oxidative stress Effects 0.000 description 7
- 150000003180 prostaglandins Chemical class 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 108010044467 Isoenzymes Proteins 0.000 description 6
- 230000033115 angiogenesis Effects 0.000 description 6
- 230000001640 apoptogenic effect Effects 0.000 description 6
- 230000002860 competitive effect Effects 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000011275 oncology therapy Methods 0.000 description 6
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 6
- 230000003362 replicative effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 5
- 208000024172 Cardiovascular disease Diseases 0.000 description 5
- 206010009944 Colon cancer Diseases 0.000 description 5
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 5
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 5
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 5
- 102100038358 Prostate-specific antigen Human genes 0.000 description 5
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 229960001138 acetylsalicylic acid Drugs 0.000 description 5
- 239000003098 androgen Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 229940047495 celebrex Drugs 0.000 description 5
- 230000032823 cell division Effects 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 230000007850 degeneration Effects 0.000 description 5
- 230000013632 homeostatic process Effects 0.000 description 5
- 230000006882 induction of apoptosis Effects 0.000 description 5
- 230000037427 ion transport Effects 0.000 description 5
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 5
- 230000003204 osmotic effect Effects 0.000 description 5
- 201000002528 pancreatic cancer Diseases 0.000 description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000016914 ras Proteins Human genes 0.000 description 5
- 108010014186 ras Proteins Proteins 0.000 description 5
- 239000003642 reactive oxygen metabolite Substances 0.000 description 5
- 230000029058 respiratory gaseous exchange Effects 0.000 description 5
- 238000011287 therapeutic dose Methods 0.000 description 5
- 229940040064 ubiquinol Drugs 0.000 description 5
- QNTNKSLOFHEFPK-UPTCCGCDSA-N ubiquinol-10 Chemical compound COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC QNTNKSLOFHEFPK-UPTCCGCDSA-N 0.000 description 5
- 229940087652 vioxx Drugs 0.000 description 5
- 229940072168 zocor Drugs 0.000 description 5
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 4
- KGIJOOYOSFUGPC-CABOLEKPSA-N 5-HETE Natural products CCCCC\C=C/C\C=C/C\C=C/C=C/[C@H](O)CCCC(O)=O KGIJOOYOSFUGPC-CABOLEKPSA-N 0.000 description 4
- KGIJOOYOSFUGPC-MSFIICATSA-N 5-Hydroxyeicosatetraenoic acid Chemical compound CCCCCC=CCC=CCC=C\C=C\[C@@H](O)CCCC(O)=O KGIJOOYOSFUGPC-MSFIICATSA-N 0.000 description 4
- JBYXPOFIGCOSSB-GOJKSUSPSA-N 9-cis,11-trans-octadecadienoic acid Chemical compound CCCCCC\C=C\C=C/CCCCCCCC(O)=O JBYXPOFIGCOSSB-GOJKSUSPSA-N 0.000 description 4
- 230000002407 ATP formation Effects 0.000 description 4
- 241001465318 Aspergillus terreus Species 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 229940093444 Cyclooxygenase 2 inhibitor Drugs 0.000 description 4
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 4
- 108700024827 HOC1 Proteins 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 4
- 101100178273 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HOC1 gene Proteins 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 208000026106 cerebrovascular disease Diseases 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229940108924 conjugated linoleic acid Drugs 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 230000002440 hepatic effect Effects 0.000 description 4
- 230000000302 ischemic effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000037353 metabolic pathway Effects 0.000 description 4
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000000825 pharmaceutical preparation Substances 0.000 description 4
- 229940127557 pharmaceutical product Drugs 0.000 description 4
- 230000003244 pro-oxidative effect Effects 0.000 description 4
- 108700042226 ras Genes Proteins 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 235000021119 whey protein Nutrition 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 235000007189 Oryza longistaminata Nutrition 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- GLEVLJDDWXEYCO-UHFFFAOYSA-N Trolox Chemical compound O1C(C)(C(O)=O)CCC2=C1C(C)=C(C)C(O)=C2C GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229960002433 cysteine Drugs 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 230000000254 damaging effect Effects 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002414 glycolytic effect Effects 0.000 description 3
- 230000037456 inflammatory mechanism Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000011278 mitosis Effects 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 208000004804 Adenomatous Polyps Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 102000004041 Caspase 7 Human genes 0.000 description 2
- 108090000567 Caspase 7 Proteins 0.000 description 2
- 102000011727 Caspases Human genes 0.000 description 2
- 108010076667 Caspases Proteins 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 102000018832 Cytochromes Human genes 0.000 description 2
- 108010052832 Cytochromes Proteins 0.000 description 2
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 2
- 229940124602 FDA-approved drug Drugs 0.000 description 2
- 208000035126 Facies Diseases 0.000 description 2
- 201000006107 Familial adenomatous polyposis Diseases 0.000 description 2
- VWFJDQUYCIWHTN-FBXUGWQNSA-N Farnesyl diphosphate Natural products CC(C)=CCC\C(C)=C/CC\C(C)=C/COP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-FBXUGWQNSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 108010002998 NADPH Oxidases Proteins 0.000 description 2
- 102000004722 NADPH Oxidases Human genes 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 239000000524 Thiobarbituric Acid Reactive Substance Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000002622 anti-tumorigenesis Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006701 autoxidation reaction Methods 0.000 description 2
- 229920000080 bile acid sequestrant Polymers 0.000 description 2
- 230000008238 biochemical pathway Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000002113 chemopreventative effect Effects 0.000 description 2
- 208000029664 classic familial adenomatous polyposis Diseases 0.000 description 2
- 230000000112 colonic effect Effects 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 239000000039 congener Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 125000002228 disulfide group Chemical group 0.000 description 2
- 150000002031 dolichols Chemical class 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000003492 excitotoxic effect Effects 0.000 description 2
- 231100000063 excitotoxicity Toxicity 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000009123 feedback regulation Effects 0.000 description 2
- 229930003935 flavonoid Natural products 0.000 description 2
- 150000002215 flavonoids Chemical class 0.000 description 2
- 235000017173 flavonoids Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 229940098330 gamma linoleic acid Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 2
- 230000006122 isoprenylation Effects 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 229940058690 lanosterol Drugs 0.000 description 2
- VNYSSYRCGWBHLG-AMOLWHMGSA-M leukotriene B4(1-) Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC([O-])=O VNYSSYRCGWBHLG-AMOLWHMGSA-M 0.000 description 2
- 125000003473 lipid group Chemical group 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229940049920 malate Drugs 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000006508 oncogene activation Effects 0.000 description 2
- 238000011369 optimal treatment Methods 0.000 description 2
- 238000012261 overproduction Methods 0.000 description 2
- 229960003925 parecoxib sodium Drugs 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000005502 peroxidation Methods 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000008844 regulatory mechanism Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 230000009758 senescence Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- ICJGKYTXBRDUMV-UHFFFAOYSA-N trichloro(6-trichlorosilylhexyl)silane Chemical compound Cl[Si](Cl)(Cl)CCCCCC[Si](Cl)(Cl)Cl ICJGKYTXBRDUMV-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- BQPPJGMMIYJVBR-UHFFFAOYSA-N (10S)-3c-Acetoxy-4.4.10r.13c.14t-pentamethyl-17c-((R)-1.5-dimethyl-hexen-(4)-yl)-(5tH)-Delta8-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products CC12CCC(OC(C)=O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C BQPPJGMMIYJVBR-UHFFFAOYSA-N 0.000 description 1
- VZKJVDOHDWVSIU-YHWJHXOYSA-N (2S)-2-amino-3-hydroxy-3-methylpentanedioic acid [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-(2-sulfanylethylamino)propyl]amino]butyl] hydrogen phosphate Chemical compound OC(=O)CC(O)(C)[C@H](N)C(O)=O.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VZKJVDOHDWVSIU-YHWJHXOYSA-N 0.000 description 1
- CHGIKSSZNBCNDW-UHFFFAOYSA-N (3beta,5alpha)-4,4-Dimethylcholesta-8,24-dien-3-ol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21 CHGIKSSZNBCNDW-UHFFFAOYSA-N 0.000 description 1
- XYTLYKGXLMKYMV-UHFFFAOYSA-N 14alpha-methylzymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C XYTLYKGXLMKYMV-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- FPTJELQXIUUCEY-UHFFFAOYSA-N 3beta-Hydroxy-lanostan Natural products C1CC2C(C)(C)C(O)CCC2(C)C2C1C1(C)CCC(C(C)CCCC(C)C)C1(C)CC2 FPTJELQXIUUCEY-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 208000004611 Abdominal Obesity Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000006770 Ascorbic Acid Deficiency Diseases 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229940124638 COX inhibitor Drugs 0.000 description 1
- 101150071146 COX2 gene Proteins 0.000 description 1
- 101100114534 Caenorhabditis elegans ctc-2 gene Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010065941 Central obesity Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- FNZLKVNUWIIPSJ-UHNVWZDZSA-N D-ribulose 5-phosphate Chemical compound OCC(=O)[C@H](O)[C@H](O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHNVWZDZSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- DYEFUKCXAQOFHX-UHFFFAOYSA-N Ebselen Chemical compound [se]1C2=CC=CC=C2C(=O)N1C1=CC=CC=C1 DYEFUKCXAQOFHX-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000015782 Electron Transport Complex III Human genes 0.000 description 1
- 108010024882 Electron Transport Complex III Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010007508 Farnesyltranstransferase Proteins 0.000 description 1
- 102000007317 Farnesyltranstransferase Human genes 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001427367 Gardena Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- BKLIAINBCQPSOV-UHFFFAOYSA-N Gluanol Natural products CC(C)CC=CC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(O)C(C)(C)C4CC3 BKLIAINBCQPSOV-UHFFFAOYSA-N 0.000 description 1
- 102000017278 Glutaredoxin Human genes 0.000 description 1
- 108050005205 Glutaredoxin Proteins 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 102000004125 Interleukin-1alpha Human genes 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 239000004158 L-cystine Substances 0.000 description 1
- 235000019393 L-cystine Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- LOPKHWOTGJIQLC-UHFFFAOYSA-N Lanosterol Natural products CC(CCC=C(C)C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 LOPKHWOTGJIQLC-UHFFFAOYSA-N 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CAHGCLMLTWQZNJ-UHFFFAOYSA-N Nerifoliol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C CAHGCLMLTWQZNJ-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 101150000187 PTGS2 gene Proteins 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 102100032709 Potassium-transporting ATPase alpha chain 2 Human genes 0.000 description 1
- 108010083204 Proton Pumps Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- VSWDORGPIHIGNW-UHFFFAOYSA-N Pyrrolidine dithiocarbamic acid Chemical compound SC(=S)N1CCCC1 VSWDORGPIHIGNW-UHFFFAOYSA-N 0.000 description 1
- FNZLKVNUWIIPSJ-UHFFFAOYSA-N Rbl5P Natural products OCC(=O)C(O)C(O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHFFFAOYSA-N 0.000 description 1
- 102000005782 Squalene Monooxygenase Human genes 0.000 description 1
- 108020003891 Squalene monooxygenase Proteins 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 206010047623 Vitamin C deficiency Diseases 0.000 description 1
- 206010047631 Vitamin E deficiency Diseases 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 241000289690 Xenarthra Species 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000006538 anaerobic glycolysis Effects 0.000 description 1
- 230000004099 anaerobic respiration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- FQCKMBLVYCEXJB-MNSAWQCASA-L atorvastatin calcium Chemical compound [Ca+2].C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1.C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 FQCKMBLVYCEXJB-MNSAWQCASA-L 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000010072 bone remodeling Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 229960005110 cerivastatin Drugs 0.000 description 1
- 230000016072 chemical homeostasis Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UZBQIPPOMKBLAS-UHFFFAOYSA-N diethylazanide Chemical compound CC[N-]CC UZBQIPPOMKBLAS-UHFFFAOYSA-N 0.000 description 1
- QBSJHOGDIUQWTH-UHFFFAOYSA-N dihydrolanosterol Natural products CC(C)CCCC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 QBSJHOGDIUQWTH-UHFFFAOYSA-N 0.000 description 1
- SPCNPOWOBZQWJK-UHFFFAOYSA-N dimethoxy-(2-propan-2-ylsulfanylethylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound COP(=S)(OC)SCCSC(C)C SPCNPOWOBZQWJK-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 229950010033 ebselen Drugs 0.000 description 1
- 230000000235 effect on cancer Effects 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229950000206 estolate Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 108091005640 farnesylated proteins Proteins 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000002319 fibrinogen receptor antagonist Substances 0.000 description 1
- 125000004387 flavanoid group Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229940050411 fumarate Drugs 0.000 description 1
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 1
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 108091005639 geranylgeranylated proteins Proteins 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000006897 homolysis reaction Methods 0.000 description 1
- 238000010505 homolytic fission reaction Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- CAHGCLMLTWQZNJ-RGEKOYMOSA-N lanosterol Chemical compound C([C@]12C)C[C@@H](O)C(C)(C)[C@H]1CCC1=C2CC[C@]2(C)[C@H]([C@H](CCC=C(C)C)C)CC[C@@]21C CAHGCLMLTWQZNJ-RGEKOYMOSA-N 0.000 description 1
- 229940095570 lescol Drugs 0.000 description 1
- 239000003913 leukotriene B4 receptor antagonist Substances 0.000 description 1
- 229940002661 lipitor Drugs 0.000 description 1
- 230000002248 lipoperoxidative effect Effects 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 231100000682 maximum tolerated dose Toxicity 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- LRMHVVPPGGOAJQ-UHFFFAOYSA-N methyl nitrate Chemical compound CO[N+]([O-])=O LRMHVVPPGGOAJQ-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 230000006540 mitochondrial respiration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- ACTNHJDHMQSOGL-UHFFFAOYSA-N n',n'-dibenzylethane-1,2-diamine Chemical compound C=1C=CC=CC=1CN(CCN)CC1=CC=CC=C1 ACTNHJDHMQSOGL-UHFFFAOYSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960004662 parecoxib Drugs 0.000 description 1
- TZRHLKRLEZJVIJ-UHFFFAOYSA-N parecoxib Chemical compound C1=CC(S(=O)(=O)NC(=O)CC)=CC=C1C1=C(C)ON=C1C1=CC=CC=C1 TZRHLKRLEZJVIJ-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000004108 pentose phosphate pathway Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000004260 plant-type cell wall biogenesis Effects 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- VWBQYTRBTXKKOG-IYNICTALSA-M pravastatin sodium Chemical compound [Na+].C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC([O-])=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 VWBQYTRBTXKKOG-IYNICTALSA-M 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- YIBNHAJFJUQSRA-YNNPMVKQSA-N prostaglandin H2 Chemical group C1[C@@H]2OO[C@H]1[C@H](/C=C/[C@@H](O)CCCCC)[C@H]2C\C=C/CCCC(O)=O YIBNHAJFJUQSRA-YNNPMVKQSA-N 0.000 description 1
- 230000002997 prostaglandinlike Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000007845 reactive nitrogen species Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005656 rearomatization reaction Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 208000010233 scurvy Diseases 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000011654 sencar mouse Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000004059 squalene synthase inhibitor Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229950002757 teoclate Drugs 0.000 description 1
- RLNWRDKVJSXXPP-UHFFFAOYSA-N tert-butyl 2-[(2-bromoanilino)methyl]piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CNC1=CC=CC=C1Br RLNWRDKVJSXXPP-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- ACTIUHUUMQJHFO-NBZSDRGLSA-N ubisemiquinone Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-NBZSDRGLSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/225—Polycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
- A61K31/355—Tocopherols, e.g. vitamin E
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/04—Sulfur, selenium or tellurium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/38—Silver; Compounds thereof
Definitions
- the inventors propose a combination of an HMG-CoA reductase inhibitor (also referred to as "HMG-CoA inhibitor(s)”), and COX-2 inhibitor for the treatment of cancer especially prostate cancer and a method of treatment of cancer by that combination, especially prostate cancer.
- HMG-CoA inhibitor(s) also referred to as "HMG-CoA inhibitor(s)”
- COX-2 inhibitor for the treatment of cancer especially prostate cancer and a method of treatment of cancer by that combination, especially prostate cancer.
- Methods of manufacturing are also claimed.
- the invention is applicable to cancers generally in mammals and the reference to human biochemistry is not intended to be limiting, but illustrative.
- the term patient or body or reference to humans is utilized for convenience, but includes all mammalian patients or bodies.
- the first premise is to recognize the highly adaptable characteristics and durable biochemistry of the cancer cell from a biochemical and genetic viewpoint.
- Many cancer cells are body cells gone awry.
- the literature solidly suggests that cancer cells in a patient's body have a capability to readapt their functions to adjust to ambient conditions.
- a patient's body also has an impressive capability to adapt to changing macro-environmental conditions, as well as the micro-environmental conditions in biological chemistry internal to the cell.
- Cancer cells in a genetic or evolutionary sense, are not "bad" cells. Rather, they are efficient cells; in fact, they are highly efficient cells in a certain way. They use relatively less oxygen for the total amount of activity they undertake, and they divide rapidly, enabling them by normal processes of mutation and evolution to adapt their genetic material more quickly. Were the systems and cells in the rest of our bodies equally efficient, we would be greater evolutionary giants than we stand today.
- the body acts the same way as the earlier described container of salt water. Drops in the form of minute or low concentrations of biologically significant chemicals gradually diffuse throughout our body through links from the membrane bags of sea water in systems of pipes called blood and lymph vessels. Taking advantage of differences in concentration, the blood vessels biochemically "transport" substances either to cells or from cells. Within cells, biochemicals travel by osmosis affected and influenced by biochemical cycles.
- cancer cells need to divide or replicate (since if they are stable they either pose less danger or are gradually eliminated), the invention takes advantage of that tendency of cancer cell's needs which cause chemicals to flow from areas of greater concentration to those of lesser concentration.
- cancer cells need energy in order to do what they do the most and best, which is to divide or replicate. Energy in a cell is provided by the Krebs cycle. Cancer cells, because they divide frequently, are very sensitive to interference with their energy processes.
- the bag around the cell which is the membrane has to split into two bags.
- the cancer cell needs relatively more cholesterol in order to replicate successfully than a normal cell needs for its normal activities.
- the membrane is necessarily weakened somewhat as the dividing process occurs and the cell transforms from one cell into two cells like a sandwich being pulled apart into two halves.
- cancer cells are relatively good at deceiving or confusing the immune system of our body into believing that the cancer cells are not as bad as they really are, or alternatively, because of rapid replication and evolution, developing defenses against the immune system. Further, as cancer progresses, it damages the body's immune system, including by triggering long-term inflammatory mechanisms.
- this invention proposes to use a novel combination to inhibit key biochemical cycles in a way that causes more damage to the cancer cell than to other cells, to decrease long- term inflammation, and to improve and sustain the body's immune system so it can better attack the weakened cancer cells and support the body's remaining essential functions.
- the inventors propose to selectively modify several biochemical pathways so as not to destroy overall body function, but disproportionately harm cancer cells, to enhance the body's immune system in order that the immune system may attack the cancer cells, and by stressing the cancer cell, to inhibit the cancer cell's normal resistance to immune system function, and to protect the body's normal cells.
- the inventors propose a method of treatment of cancer, particularly prostate cancer and pancreatic cancer, by a particular combination of drugs for that purpose which has not been previously proposed for that purpose.
- the inventors propose a method of treatment of cancer involving a novel combination of drugs which simultaneously slows the cancer but also enables the body's immune system to better attack or fend off the cancer.
- the first object of this invention proposes to selectively interfere with the production of cholesterol in two places in a way that impairs the energy cycle of all cells but which normal cells can overcome because they need less energy to survive because they are not dividing, but in a way that has a disproportionate and damaging effect on cancer cells which must replicate, or the cancer will not spread.
- This object takes advantage of the cancer cell's requirement for cholesterol causing biochemical signaling for cholesterol if not adequate to meet the replicating cancer cell's needs.
- a second object is to selectively modify a biochemical cycle that targets inflammatory mechanisms in the body.
- One of the most damaging aspects of cancer cells is that they trigger an extended inflammatory response in the body. Further, as cancer progresses, it damages the body's immune system by a number of mechanisms, including the triggering of an extended inflammatory response in the body, which is less efficient in the removal of cancers.
- Prostaglandins are some of the most important signals to cause inflammatory responses.
- the biochemical cycle that we propose to selectively inhibit is an important cycle that converts arachidonic acid to several forms of prostaglandins. That cycle is the cyclooxygenase or COX cycle.
- COX-1 is known as a housekeeping substance which helps generate substances that protect the stomach. Ding et al, "Blockade of Cyclooxygenase-2 Inhibits Proliferation and Induces Apoptosis in Human Pancreatic Cancer Cells, vol. 20 AntiCancer Research, 2625-2632 (2000). Aspirin inhibits COX-1 and therefore, because it inhibits a substance that protects the stomach, often has gastrointestinal side effects. Recently, substances have become available that selectively inhibit COX-2 enzymes over COX-1 enzymes. COX-2 enzymes regulate pain, inflammation and fever, i.e. inflammatory mechanisms.
- COX-2 inhibitors in this invention interfere with the transformation of a substance called squalene to cholesterol. There are numerous intermediates from squalene to cholesterol.
- HMG-CoA 3- hydroxy-3-methylglutamate-CoA reductase
- a third object of this invention is to utilize the more optimal function of cystine in the pH balance of a normal cell than in the lower pH of a cancer cell.
- the administration of cystine enhances the body's immune system benefitting the total body disproportionately to any benefit cystine administration may have for a cancer cell.
- the premise of this invention is that the cancer cells divide rapidly, that they have significant anaerobic glycolytic processes, and that the body is one large biochemical machine in which we can play to the strength of our body to the detriment of the cancer cell.
- the science behind the combination is based on a triad of attacks on the biochemical pathways contributing to cancer cell replication.
- Cancer cells must necessarily replicate for a "cancer" to thrive. Attacks on biochemical cycles at points where replication are involved are a favored approach. Cancer cells are particularly vulnerable to interference with lipid cell membrane status and ATP synthesis.
- COX-2 inhibitor interferes with the operation of the cyclooxygenase cycle from which are generated prostaglandins critical in cell division chemistry, and inhibits the "long- term" effects of inflammatory effects.
- Fosslien "Biochemistry of Cyclooxygenase (COX)-2 Inhibitors and Molecular Pathology of COX-2 in Neoplasia," Crit. Rev. in Clin. Lab. Sci. 37(5): 431-502 (November 2000).
- Tumors and their malignant cancer cells multiply in an exponential growth pattern relative to other body cells. Any retardation of replication will have an exponential effect in slowing cancer growth. Any apoptosis of a cancer cell has a disproportionately exponential effect in retarding cancer. Current treatments such as chemotherapy and radiation therapy which have severe quality of life effects have relied on this disproportionately exponential effect to achieve what benefits those treatments do achieve for extending the life of patients.
- This invention has the further benefit as distinct from prior art of accomplishing its benefits with substantially less interference with quality of life than chemotherapy and radiation therapy(ies) in particular.
- this invention proposes virtual microadministration. This is a unique aspect of this invention and an important concept behind the invention.
- cystine in addition to its increase in TH1 to Th2 ratio, achieves notable benefit despite literature suggesting to the contrary. See, for example, “Clinical Oncology” (Amer. Cancer Society 2001) at 186 (discourages medical practitioners from glutathione pathway enhancement); Volies and Golomb, "Oncological Therapies” (Springer 1999) at 126 in the selection by Ratain, Ewe, Suede, entitled Cancer Chemotherapy at 36-100.
- COX-1 isoenzymes have what has been characterized as general housekeeping functions generally ameliorative to bodily health.
- Aspirin a classic COX- 2 inhibitor, also inhibits COX-1, thereby achieving anti-inflammatory effect, for which aspirin is well-known, at the cost of beneficial aspects of COX-1 isoenzymes.
- a selective COX-2 inhibitor is important in the invention.
- Lipoic acid can be an adjunct to cystine in the invention. Lipoic acid also has a disulfide bond as does cystine. That disulfide bond can be separated and the sulphur protonated with hydrogen. Thus, lipoic acid can reinforce the benefits of cystine.
- a ras oncogene generates a ras protein.
- the transforming (carcinogenic) activity of the ras oncogene is lost when isoprenylation of the Ras protein is blocked, stimulating interest in identifying inhibitors of this postranslational modification pathway for use in cancer chemotherapy.
- cystine and to a lesser degree, lipoic acid act as competitive inhibitor of isoprenylation of the thiol group on the Ras protein thereby disabling its ability to stabilize in a membrane and blocking its carcinogenic activity.
- a typical dose would be 300 mg oral per day.
- the inventors also note the need for and claim a composition potentially including Selenium, and the method of administration potentially including Selenium, if a therapeutic window of Selenium in a patient is not present. See, Brooks and Nelson, Cancer Prevention and Control, Chemoprevention of Cancer at 369 (Marcel Dekker 1995).
- Selenium can be toxic, but there does need to be an adequate level of Selenium.
- the patient should be monitored and Selenium supplement given to achieve a therapeutic window for Selenium level to achieve the desired effect of allowing normal functioning of the glutathione pathway and maintaining integrity.
- the adequate level is approximately 70 micrograms/70 kg of weight.
- the preferred mode would be a supplement in sequence with cystine administration, but a dose of any part of the invention could include Selenium.
- the method of treatment could include a sequential or simultaneous dose with either the cystine or the COX-2 inhibitor or both. However, toxic levels of selenium must be avoided. Thus, adequate level means only adequate level.
- Vitamin E deficiency may allow oxidative stress and the inventors claim that like Selenium, the level of Vitamin E must be maintained, but normal vitamin E levels per se do not strengthen the immune system sufficiently to deter metastasis.
- Vitamin C also has antioxidative properties, and again the inventors recognize that vitamin C deficiency may allow oxidative stress and the inventors claim that like Selenium and Vitamin E, the level of Vitamin C must be maintained, but normal vitamin C levels per se do not strengthen the immune system sufficiently to deter metastasis. Vitamin C protects and maintains the redox balance of the cell. Adequate levels of Vitamin C and Vitamin E means, in this invention, for a cancer patient, approximately three times the recommended daily allowance as set out by the American Dietetic Association or the U.S. Dept. of Agriculture as published from time to time.
- COX-2 inhibitors may have efficacy toward certain cancers.
- Fosslien Biochemistry of Cyclooxygenase (COX)-2 Inhibitors and Molecular Pathology of COX- 2 in Neoplasia," Grit. Rev. in Clin. Lab. Sci. 37(5): 431-502 (2000).
- COX-2 inhibitors were reported to be inhibiting certain cancers, particularly familial adenomatous polyposis. See, 319 (7218) British Medical Journal 1155 (Oct. 30, 1999).
- COX-2 inhibitors in that instance, celecoxib, a COX-2 inhibitor manufactured by G.D.Searle, and sold under the brand name Celebrex, had caused a reduction in adenomatous polyps which are a virtual guarantor of cancer of the colon if left untreated. Cyclooxygenase-2 had been implicated in colorectal cancer and colonic tumorigenesis. See, "The Relationship Between Cyclooxygenase-2 Expressions and Colorectal Cancer", 282(13) J. Amer. Med.
- simvastatin functions in a similar way to lovastatin, another drug marketed by Merck under the registered trademark of MEVACOR, the pharmaceutical product description for which is adopted herein and attached for reference. Both are derived from aspergillus terreus. Certain literature has suggested that HMG-CoA inhibitors may have efficacy toward certain cancers.
- lipid lowering/modifying drugs such as lovastatin were suggested to be more cancer-free than those using bile acid- binding resins. See, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors and the Risk of Cancer: A Nested Case-Control Study, 160(5) Archives of Internal Med: 2363-2368 (2000). "Therapeutic Approaches to Bone Diseases [Bone Remodeling and Repair: Review]," Science, 289(5484), Sept. 1, 2000:1508-1514. No patent or literature suggests that the substances be combined to treat cancer nor is the synergistic effect set forth in this specification suggested or described.
- a COX-2 inhibitor be combined with an HMG-CoA inhibitor to retard cancer and be further combined with a glutathione-cycle enhancing compound such as cystine, cysteine, or N-acetyl-cysteine, also called NAC, to improve immune system competency to further retard cancer.
- a glutathione-cycle enhancing compound such as cystine, cysteine, or N-acetyl-cysteine, also called NAC.
- NAC N-acetyl-cysteine
- Reduction to practice The combination of a selective COX-2 inhibitor and an HMG-CoA reductase inhibitor exhibits the unexpected property of enabling management of cancer. This has been demonstrated in two specific instances. Both patients were diagnosed with Stage 4 metastatic cancer and were refractory to other treatments.
- the first patient had prostate cancer and showed a PSA (prostate specific antigen-a widely accepted marker of prostate cancer activity) of 71 according to the patient.
- the patient was placed on a regimen of VIOXX and MEVACOR, and has survived with good quality of life such as mowing his lawn, steady weight, and the like while the patient's PSA fell from tests conducted by one of the inventors to less than 2.5 with scan-documented lack of progression.
- a second patient diagnosed with pancreatic cancer which was also refractory to other treatment was placed on a regimen of VIOXX and MEVACOR with a whey supplement containing cystine and survived approximately four months and initially gained some weight since first presenting while sustaining a reasonable quality of life until death.
- Pancreatic cancer is one of the most intractable cancers known and any success with pancreatic cancer is surprising in light of existing literature and art.
- Pharmacological compounds in this invention The science behind the combination is based on a triad of attacks in the biochemical cycles contributing to cancer cell replication. Cancer cells must necessarily replicate for a "cancer" to thrive. Attacks on biochemical cycles at points where replication are involved are a favored approach. Cancer cells are particularly vulnerable to interference with lipid cell membrane status and ATP synthesis.
- This invention proposes not only attack with a COX-2 inhibitor to interfere with the cyclooxygenase pathway, but by combination with an HMG-CoA reductase inhibitor, a statin, including simvastatin or lovastatin, focuses on another cycle, the formation of polyisoprenoids, particularly cholesterol.
- the invention claims the use of selective COX-2 inhibitor, including rofecoxib or celecoxib, but the principles stated are generally applicable to all selective COX-2 inhibitors.
- Cyclooxygenase-2 inhibitor or "selective COX-2 inhibitor” in this invention shall include the following in this paragraph: all of the compounds and substances beginning on page 8 of Winokur WO99/20110 as members of three distinct structural classes of selective COX-2 inhibitor compounds, and the compounds and substances which are selective COX-2 inhibitors in Morrisberger, U.S. Pat.
- COX-2 inhibitor in this invention includes compounds that are selective COX-2 inhibitors, such as NS398 and DFU (see, YERGEY, JAMES A., et al., "In Vitro Metabolism of the COX-2 Inhibitor DFU, Including a Novel Glutathione Adduct Rearomatization," Drug Metabolism and Disposition 29(5): 638-644 (The American Society for Pharmacology and Experimental Therapeutics 2001), also known as 5,5- dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone.
- NS398 and DFU see, YERGEY, JAMES A., et al., "In Vitro Metabolism of the COX-2 Inhibitor DFU, Including a Novel Glutathione Adduct Rearomatization," Drug Metabolism and Disposition 29(5): 638-644 (The American Society for Pharmacology and Experimental Therapeutics 2001), also known
- COX-2 inhibitor in this invention includes compounds that are selective COX-2 inhibitors referenced in Fosslein, "Biochemistry of Cyclooxygenase (COX)-2 Inhibitors and Molecular Pathology of CIX-2 in Neoplasia," Crit. Rev. in Clin. Labor. Sci. 37(5):431-502 (CRC Press LLC 2000).
- the meaning of COX-2 inhibitor in this invention also includes rofecoxib, and celecoxib, marketed as VIOXX and CELEBREX by Merck and Searle/Pfizer respectively. Rofecoxib is discussed in Winokur, WO99/20110 as compound 3, on p.9. Celecoxib is discussed as SC-58635 in the same reference, and in T.
- COX-2 inhibitor in this invention also includes valdecoxib, See, "4-[5-Methyl-3-phenylisoxazol-l-yl]benzenesulfonamide, Valdecoxib: A Potent and Selective Inhibitor of COX-2", J. Med. Chem. 2000, Vol. 43 : 775-777, and parecoxib, sodium salt or parecoxib sodium, See, N-[[(5-methyl-3- phenylixoxazol-4yl)-phenyl]sulfonyl]propanimide, Sodium Salt, Parecoxib Sodium: A Potent and Selective Inhibitor of COX-2 for Parenteral Administration", J. Med. Chem.
- COX-2 inhibitor in this invention also includes the substitution of the sulfonamide moiety as a suitable replacement for the methylsulfonyl moiety. See, J. Carter et al, Synthesis and activity of sulfonamide- substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors", Bioorg. Med. Chem. Lett 1999 Apr. 19: Vol. 9(8): 1171-74, and compounds referenced in the article "Design and synthesis of sulfonyl-substituted 4,5-diarylthiazoles as selective cyclooxygenase-2 inhibitors", Bioorg. Med. Chem.
- COX-2 inhibitor in this invention includes the cyclo-oxygenase-2 selective compounds referenced in Mitchell et al, "Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy", Brit. J. of Pharmacology (1999) vol.128: 1121-1132, see especially p. 1126.
- the meaning of COX-2 inhibitor in this invention includes so-called NO-NSAIDs or nitric oxide-releasing-NSALDs referred to in L. Jackson et al, "COX-2 Selective Nonsteriodal Anti-Inflammatory Drugs: Do They Really Offer Any Advantages?", Drugs, June, 2000 vol. 59(6): 1207-1216 and the articles at footnotes 27, and 28.
- COX-2 inhibitor in this invention includes any substance that selectively inhibits the COX-2 isoenzyme over the COX-1 isoenzyme in a ratio of greater than 10 to 1 and preferably in ratio of at least 40 to 1 as referenced in Winokur WO 99/20110, and has one substituent having both atoms with free electrons under traditional valence-shell-electron-pair-repulsion theory located on a cyclic ring (as in the sulfylamine portion of celecoxib), and a second substituent located on a different ring sufficiently far from said first substituent to have no significant electron interaction with the first substituent.
- the second substituent should have an electronegativity within such substituent greater than 0.5, or the second substituent should be an atom located on the periphery of the compound selected from the group of a halogen F, Cl, Br or I, or A group VI element S or O.
- one portion of the COX-2 inhibitor should be hydrophilic and the other portion lipophilic.
- COX-2 inhibitor is to comprehensively include all selective COX-2 inhibitors, selective in the sense of inhibiting COX-2 over COX-1.
- the package inserts for rofecoxib and celecoxib are attached and adopted herein by reference.
- the inventors add to the class of COX-2 inhibitors useful in the invention the drug bearing the name etoricoxib referenced in the Wall Street Journal, December 13, 2000 manufactured by Merck. See, also, Chauret et al, "In vitro metabolism considerations, including activity testing of metabolites, in the discovery and selection of the COX-2 inhibitor etoricoxib (MK-0663)," Bioorg. Med. Chem. Lett.
- Another selective COX-2 inhibitor is DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4- methylsulphonyl) phenyl-2(5H)-furanone] referenced in Yergey et al, Drug Metab. Dispos. 29(5):638-44 (May 2001).
- the inventors also include as a selective COX-2 inhibitor flavanolignanes (sometimes also called flavonoids) which have selective COX-2 inhibitory activity over COX-1 inhibitory activity, including the flavanoid antioxidant silymarin itself, and an active ingredient in silymarin, silybinin, which demonstrated significant COX-2 inhibition relative to COX-1 inhibition.
- silymarin also showed protection against depletion of glutathione peroxidase.
- Zhao et al "Significant Inhibition by the Flavonoid Antioxidant Silymarin against 12-O-tetracecanoylphorbol 13-acetate- caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1 alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion," Mol. Carcinog. Dec. 1999, Vol 26(4): 321-33 PMID 10569809.
- Silymarin has been used to treat liver diseases in Europe. Bombardelli et al, U.S. Pat. 5,912,265, June 15, 1999, and Bombardelli et al, U.S. Pat.
- COX-2 inhibitor includes all pharmaceutically acceptable salts for the selective COX-2 inhibiting compound selected.
- salt forms of COX-2 inhibitors include but are not limited to salts derived from inorganic bases including aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethylenediamine, diethylamide, 2-diethylaminoethanol, 2- dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N- ethylpiperidine, glutamine, glucosamine, histidine, hydrabarnine, isopropylamine, lysine, methyglucamme, morpholine, piperazine, piperidine, polyamme resins, procaine, purine, theobromine, triethylamine, trimethylamine, tripropylamine, troeth
- basic ion exchange resins such as arginine, betaine,
- HMG-CoA reductase inhibitor claimed in this invention is lovastatin or simvastatin or cholestin which are compounds related to aspergillus terreus.
- the principles of this invention are generally applicable to all statins.
- the meaning and definition of a 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase inhibitor ("HMG- Co A inhibitor") in this invention is any selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts HMG-CoA into mevalonate, generally referred to as cholesterol-lowering statins, and includes 1) lovastatin, marketed under the trademark MEVACOR by Merck, and described, among other places in U.S. Pat.
- HMG-CoA inhibitor (used as shorthand for and also referred to as "HMG-CoA reductase inhibitor") further includes all HMG-CoA reductase inhibitors described in Winokur, PCT Appl. US98/21901, filed 16 Oct. 1998, published as WO99/20110 entitled Combination Therapy for Reducing the Risks Associated with Cardio and Cerebrovascular Disease," and the compounds and substances which are HMG-CoA inhibitors in brinberger, U.S. Pat.
- HMG-CoA inhibitor in this invention shall include the compounds and substances referenced and incorporated into Winokur WO99/20110 by reference to art therein, and the compounds and substances referenced and incorporated into Morrisberger, U.S. Pat. 6,136,804, October 24, 2000, by reference to art therein.
- Compactin is also described as a fungi derived competitive inhibitor of HMG-CoA reductase. Lehninger, Principles of Biochemistry (3 rd ed. 2000) at 811.
- An HMG-CoA reductase inhibitor with the natural structure of lovastatin identical to the synthetic structure of lovastatin, can also be isolated from red rice yeast or the rice in sufficient quantity and is an HMG-CoA reductase inhibitor.
- the red rice yeast is found as cholestin or cholestol and is available on the Internet from a variety places including China Beijing Jingxin Biochemical Products Factor, Linxiao Rd. S., Daxing Count, Beijing, PRC or its U.S. agent PHC Resources, Inc., 77 Milltown Rd., East Brunswick, NJ 08816.
- the red rice yeast is referred to in an FDA warning letter of May 8, 2001 to Maypro Industries available at www.fda.gov/foi/warning_letters/gl249d.pdf.
- simvastatin which description is adopted herein and attached for reference, and which drug is marketed as ZOCOR, a registered trademark of Merck
- simvastatin functions in a similar way to lovastatin, another drug marketed by Merck under the registered trademark of MEVACOR, the pharmaceutical product description for which is adopted herein and attached for reference. Both are derived from aspergillus terreus.
- HMG-CoA inhibitor encompasses the pharmaceutically acceptable salts of HMG-CoA inhibitor selected.
- the invention includes pharmaceutically active salts of an HMG-CoA inhibitor, which may include non-toxic salts of the compounds employed in this invention which are generally prepared by reacting the free acid with a suitable organic or inorganic base.
- salt forms of HMG-CoA reductase inhibitors may include, but are not limited to, acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium, camsylate, carbonate, chloride, citrate, dihydrochloride, edentate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynapthoate, iodide, isothionate, lactate, lactobionate, laureate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mutate, napsylate, mitrate, oleate, oxalate, pamao
- HMG-CoA inhibitors may act as prodrugs which, when absorbed into the bloodstream of a warm- blooded animal, may cleave in such a manner as to release the drug form and permit the drug to afford improved therapeutic efficacy.
- Cystine will be used as included in, and as a generic reference to glutathione ' pathway enhancing and detoxifying compounds in this description. Such compounds include the following in this invention: Cystine is (3,3'-dithiobis [2-aminopropanoic acid]). Cystine is readily reduced to cysteine. Cystine is present in most mammalian hair and keratin. Cysteine is 2-amino-3-mercapto propanoic acid.
- cystine It is readily converted by oxioreduction to cystine. It is a constituent of glutathione and abundantly present in the metallothioneines. Cystine in the body-useful form as L-cystine is available from Spectrum Chemical Mfg. Corp. 14422 S. San Pedro St., Gardena, California 90248, and N-acetyl cysteine is also available there. Cystine, cysteine, and N-Acetyl cysteine and pharmaceutically acceptable salts, including the pharmaceutically active forms described in Kozhemyakin et al, published by WIPO as WO 00/031120, PCT/RU99/00453, filed internationally on 19 Nov.
- cystine in this invention.
- Other glutathione pathway enhancing compounds understandable to one of ordinary skill in the art which are encompassed in the term NAC are stable forms of compounds that enhance the glutathione pathway, the substituents of which are suggested in Kozhemyakin et al, Hexapeptide with the Stabilized Disulfide Bond and Derivatives thereof Regulating Metabolism, Proliferation, Differentiation and Apoptosis published as WO 00/31120, June 2, 2000.
- NAC is also any therapeutically beneficial sulfur donating compound, including ebselen, which interacts with the glutathione pathway.
- the invention contemplates in the term NAC undenatured whey protein products designed to have enhanced cystine concentration as well as protein products which contain cysteine and cystine. They can be in the form of food products. Immunocal (a Registered Trademark of a product manufactured by Immunotec, Montreal Canada). Immunocal ® undenatured whey protein has the added advantage of providing the cysteine in the disulfide form, called cystine. 80% of the circulating cysteine in the body is in the form of cystine.
- Cystine is readily absorbed into cells and has been demonstrated to be preferred by certain cells such as astrocytes (Kranich O et al Glia, 22(1):11-8 1998).
- the addition of cystine, cysteine, N-acetyl cysteine, or the pharmaceutically acceptable salt of those substances yields another effect in this invention not facially evident from the independent properties of the basic components of the invention (hereafter each substance or a pharmaceutically acceptable salt is referred to as a "cystine").
- Administration of a cystine family member, preferably cystine, which has the best and most rapid upload into the glutathione pathway and better storage capability by the body, or N-acetyl cysteine enhances the immune system competency of the patient.
- NAC can be continued for extended periods with oral ingestion of NAC or a cystine source such as undenatured whey protein such as Immunocal (a Registered Trademark of a product manufactured by Immunotec, Montreal Canada).
- Immunocal ® undenatured whey protein has the added advantage of providing the cysteine in the disulfide form, called cystine. 80% of the circulating cysteine in the body is in the form of cystine. Cystine is readily absorbed into cells and has been demonstrated to be preferred by certain cells such as astrocytes (Kranich O et al Glia, 22(1): 11-8 1998). Lipoic acid can be an adjunct to the cystine.
- cystine and cystine-like compounds function as a glutathione pathway enhancing and detoxifying compound. They have the additional benefit of ameliorating the negative renal, hepatic and gastric effects of COX-2 inhibitors and HMG-CoA inhibitors, both as a combination and individually.
- the enhancement of the glutathione level and pathway has a second important and unexpected effect. The avoidance of a glutathione deficiency steers the patient to have a higher Th-1 response to Th-2 response ration that the patient would have with any glutathione deficiency.
- Peterson, J. et al "Glutathione levels in antigen-presenting cells modulate Thl versus Th2 response patterns," Vol 95(6), Proceedings NatT Acad. Sci. USA p. 3071-76 (Mar. 17, 1998). This enhancement is independent of, but corollary to the combination of the COX-2 and HMG-CoA inhibitor.
- the preferred mode of invention without limiting its use or use of pharmaceutical equivalents to those described herein is to administer a therapeutic dose of a cyclooxygenase-2 inhibitor, namely VIOXX (a registered trademark of Merck Co. for a drug formally known as rofecoxib) or CELEBREX (a registered trademark of Searle and Pfizer for a drug formally known as celecoxib) (both referred to as a "COX-2 inhibitor”), in combination with a therapeutic dose of a 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase inhibitor, namely with Mevacor (a registered trademark of Merck Co.
- VIOXX a registered trademark of Merck Co. for a drug formally known as rofecoxib
- CELEBREX a registered trademark of Searle and Pfizer for a drug formally known as celecoxib
- Mevacor a registered trademark of Merck Co.
- HMG-CoA inhibitor for a drug formally known as lovastatin), or ZOCOR (a registered trademark of Merck Co. for a drug formally known as lovastatin) or cholestin (all referred to as "HMG-CoA inhibitor") starting with the minimum initial recommended doses of each drug on the package inserts attached to provisional application 60/245,592.
- This mode is therefore a COX-2 inhibitor beginning with an HMG-CoA inhibitor in the minimum doses for each.
- the dosage should be increased in step wise fashion to the maximum dose in the therapeutic window. The preferred mode of so doing is to monitor the patient each six weeks.
- a person of ordinary skill in the medical arts can apply the regimen described in this specification.
- the inventors suggest measuring at least cholesterol level and isoprostane level. If a patient's cholesterol level is decreasing, then the HMG Co A inhibitor is affecting cholesterol synthesis. If isoprostane levels are rising, then the COX-2 inhibitor should be having an effect. The lack of change in one or the other suggests that the medication to achieve the desired metabolic pathway effect should be adjusted. Another way to test for effectiveness and enable dosage adjustment is to test cytokine levels. Once at least two inflammatory response markers show therapeutic change then the combination should be having an effect.
- the preferred markers include upregulation of IL-12 and downregulation of IL-10. "Specific inhibition of cyclooxygenase restores anti-tumor reactivity by altering balance of IL- 10 and IL- 12 synthesis", J.
- Advanced prostate cancer particularly refers to prostate cancer that has not been successfully treated by surgery, chemotherapy, radiation and/or androgen su ⁇ pressant(s).
- VIOXX a registered trademark of Merck Co. for a drug formally known as rofecoxib
- CELEBREX a registered trademark of Searle and Pfizer for a drug formally known as celecoxib
- COX-2 inhibitor a registered trademark of a 3-hydroxy-3-methylglutaryl- Coenzyme-A reductase inhibitor
- Mevacor a registered trademark of Merck Co. for a drug formally known as lovastatin
- ZOCOR a registered trademark of Merck Co.
- lovastatin a drug formally known as lovastatin
- cholestin all referred to as "HMG-CoA inhibitor”
- the invention retards or drives prostate cancer into remission, best illustrated by lowering the Prostate Specific Antigen, the standard measure of prostate cancer activity in the human body.
- the method of the invention is the step of administering the combination of COX- 2 inhibitor and HMG-CoA inhibitor, including lovastatin or simvastatin and rofecoxib or celecoxib, or the combined sequence of steps of sequentially administering the COX-2 inliibitor and HMG-CoA inhibitor, including lovastatin and rofecoxib.
- An alternative of this method of the invention is the combined sequence of steps of sequentially administering the COX-2 inhibitor and HMG-CoA inhibitor, including lovastatin or simvastatin and rofecoxib or celecoxib.
- Celecoxib may be used in lieu of rofecoxib, and simvastatin in lieu of lovastatin.
- Another preferred method is the step of administering the combination of COX-2 inhibitor, HMG-CoA inhibitor, particularly lovastatin or simvastatin and rofecoxib or celecoxib, along with cystine as a glutathione pathway enhancing and detoxifying compound.
- An alternative of this method of the invention is the combined sequence of steps of sequentially administering the COX-2 inhibitor and HMG-CoA inhibitor, particularly including lovastatin or simvastatin, and rofecoxib or celecoxib, along with cystine as a glutathione pathway enhancing and detoxifying compound.
- Also part of the invention is the method of manufacturing a combination of a COX-2 inhibitor and a 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase inhibitor, that is manufacturing a combination of an HMG-CoA inhibitor, including lovastatin or simvastatin, and a COX-2 inhibitor, including rofecoxib or celecoxib.
- Also part of the invention is the method of manufacturing a combination of a COX-2 inhibitor, a 3- hydroxy-3-methylglutaryl-Coenzyme-A reductase inhibitor, namely manufacturing a combination of lovastatin or simvastatin, and rofecoxib o celecoxib, along with cystine as a glutathione pathway enhancing and detoxifying compound.
- a COX-2 inhibitor and an HMG-CoA inhibitor is another preferred mode of the invention.
- Another mode of the invention includes a COX-2 inhibitor and an HMG-CoA inhibitor, including rofecoxib or celecoxib and lovastatin or simvastatin and cystine or another glutathione pathway enhancing compound.
- cystine is being used to enhance the immune system competency and assist normal cells, through the glutathione pathway, in maintaining their stability.
- the combination of a COX-2 inhibitor and an HMG-CoA inhibitor could also be used as an aborfacient.
- the invention also can utilize one or more of certain additional active agents in combination with the HMG-CoA inhibitor and COX-2 inhibitor, or in combination with the HMG-CoA inhibitor, COX-2 inhibitor, and cystine.
- the additional active agents can be in a single dosage formulation, or may be administered to the patient in a separate dosage formulation, which allows for concurrent or sequential administration.
- additional active agents examples include squalene epoxidase inhibitors, squalene synthase inhibitors, probucal, glycoprotein Hb/IIIa fibrinogen receptor antagonists, and pharmaceutically acceptable salts of those additional active agents which do not interfere with the HMG-CoA inhibitor and COX-2 inhibitor combination and method or with the HMG-CoA inliibitor, COX-2 inhibitor, and cystine.
- additional active agents include squalene epoxidase inhibitors, squalene synthase inhibitors, probucal, glycoprotein Hb/IIIa fibrinogen receptor antagonists, and pharmaceutically acceptable salts of those additional active agents which do not interfere with the HMG-CoA inhibitor and COX-2 inhibitor combination and method or with the HMG-CoA inliibitor, COX-2 inhibitor, and cystine.
- the therapeutically effective amount to use for these additional active agents is referred to in the just-cited art, can be seen in the Physician Desk Reference (PDR) 2001, and may be seen on the package inserts.
- the instant pharmaceutical combination comprising an HMG-CoA inhibitor in combination with a COX-2 inhibitor and cystine includes administration of a single pharmaceutical dosage formulation which contains both the HMG-CoA inhibitor and the COX-2 inhibitor and cystine, as well as administration of each active agent in its own separate pharmaceutical dosage formulation.
- a cystine supplement taken at a different time of day may be a separate dose without the HMG-CoA inhibitor or the COX-2 inhibitor.
- Cystine is the suggested glutathione pathway enhancing and detoxifying compound.
- the amount of cystine to be included in an oral dosage combination is a therapeutically effective amount to reach normal glutathione levels. Such therapeutically effective amount should preferably and initially be 140mg/70 Kg man twice per day.
- the HMG-CoA inhibitor and the COX-2 inhibitor can be administered at essentially the same time, i.e., concurrently, or at staggered intervals, i.e., sequentially.
- the instant pharmaceutical combination comprising an HMG-CoA inhibitor in combination with a COX-2 inhibitor includes administration of a single pharmaceutical dosage formulation which contains both the HMG-CoA inhibitor and the COX-2 inhibitor, as well as administration of each active agent in its own separate pharmaceutical dosage formulation. The instant pharmaceutical combinations are understood to include all these regimens.
- HMG-CoA inhibitor and the COX-2 inhibitor are realized by the patient at substantially the same time.
- beneficial effect is preferably achieved when the target blood level concentrations of each active drug are maintained at substantially the same time.
- the HMG-CoA inhibitor and the COX-2 inhibitor be co-administered concurrently on a once-a-day dosing schedule; however, varying dosing schedules, such as the HMG-CoA once per day and the COX-2 inhibitor once, twice or more times per day, is also encompassed herein.
- the therapeutic doses for cystine can be added, and likely necessitate an additional therapeutic dose early in the administration regimen.
- a single oral dosage formulation is preferred.
- a single dosage formulation will provide convenience for the patient, which is an important consideration especially for patients who may be in need of multiple medications.
- Administration of the HMG-CoA inhibitor or COX-2 inhibitor can be by tablet, liquid suspension, or many other pharmaceutically acceptable carriers known by or used by reasonably skilled practitioners in the art of pharmacology or pharmacological manufacturing including by the combinations and methods in the cited Winokur art, PCT Appl. US98/21901, filed 16 Oct. 1998, published as WO99/20110 entitled "Combination Therapy for Reducing the Risks Associated with Cardio and Cerebrovascular Disease," fostberger, U.S. Pat. No. 6, 136,804, Oct.
- the active drugs can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines. The active drugs may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
- Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxy-propyl- methacrylamide-phenol, polyhydroxy-ethyl-aspartamide-phenol, or polyethyleneoxide- polylysine substituted with palmitoyl residues.
- the active drugs may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. All of these are described in Morrisberger, U.S. Pat. 6,136,804, Oct. 24, 2000.
- terapéuticaally effective amount is intended to mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
- a therapeutic change is a change in a measured biochemical characteristic in a direction expected to alleviate the disease or condition being addressed.
- prophylactically effective amount is intended to mean that amount of a pharmaceutical drug that will prevent or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician. In the preferred mode, the prophylactically effective amount is intended to begin with the minimum recommended dose.
- therapeutic window is intended to mean the range of dose between the minimal amount to achieve any therapeutic change, and the maximum amount which results in a response that is the response immediately before toxicity to the patient.
- minimum recommended dose is that amount either recommended in the package insert for the selected FDA approved drug, or for other substances and compounds, the minimum therapeutically effective amount for a typical patient of the size and weight being treated, meaning that amount sufficient to precipitate a therapeutic change in condition of a patient for the use of the drug or substance alone for conditions it is designed to treat alone.
- Minimum recommended dose in the context of commencing treatment is also referred as the minimum initial recommended dose and is that amount recommended for patients as the starting dose.
- Adjustment of dose upward by 10% or "dose being adjusted upward by at least 10% of the previous dose” means increasing the dose by that approximate amount.
- the pharmaceutical carrier, or pill may have to be divided, but generally an increase to the next highest dose is acceptable within the therapeutic window.
- the references in the claims to specific dosages of specific FDA approved drugs are to tablets having those dosages as referenced in the package inserts adopted herein by reference from Prov. Appl. 60/249,592 dated November 17, 2000.
- the suggested starting dose for cystine is described in this invention as is the suggested starting dose for silymarin and related compounds to silymarin.
- the dosage regimen utilizing an HMG-CoA inhibitor in combination with COX-2 inhibitor is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the cardiac, renal and hepatic function of the patient; and the particular compound or salt or ester thereof employed. Dosages in all events should be limited to the therapeutic window. Since two different active agents are being used together in a combination therapy, the potency of each of the agents and the interactive effects achieved by combining them together must also be taken into account. A consideration of these factors is well within the purview of the ordinarily skilled clinician for the purpose of determining the therapeutically effective or prophylactically effective amount.
- this invention proposes virtual selective-to-cancer microadministration utilizing the body's own metabolic mechanisms and responses. This is a unique aspect of this invention and an important concept behind the invention. The inventors propose that one of the dilemmas of cancer therapy is to deliver the needed dose to the right place and minimize harm when the therapy is not in the right place.
- the invention renders cancer cells vulnerable to poor replication and subject to bodily defenses, thus slowing the cancer activity, and in the instance of prostate cancer, lowering the PSA of the patient while destroying cancer cells.
- the COX-2 inhibitor and the cycloxygenase-prostaglandin pathway The COX-2 inhibitor interferes with the operation of the cyclooxygenase cycle from which are generated prostaglandins critical in cell division chemistry. Direct inhibition occurs of the synthesis of COX-2, a precursor of prostaglandins. Biochemistry, Geigy Scientific Tables, Book 4, ed. by C. Lemtner, published by Ciba-Geigy (1986) ISBN -0-91-4168-53-3, Lib. Cong. Cat. No. 81-70045 pp. 25-27 attached to Prov. Appl. 60/245,592, the text of which attachment is adopted by reference herein). This effect has been discussed in the literature.
- COX-2 inhibitors were reported to be inhibiting certain cancers, particularly familial adenomatous polyposis. See, 319 (7218) British Medical Journal 1155 (Oct. 30, 1999).
- COX-2 inhibitors in that instance, celecoxib, a COX-2 inhibitor manufactured by G.D. Searle, and sold under the brand name Celebrex, had caused a reduction in adenomatous polyps which are a virtual guarantor of cancer of the colon if left untreated.
- Cyclooxygenase-2 had been implicated in colorectal cancer and colonic tumorigenesis. See, "The Relationship Between Cyclooxygenase-2 Expressions and Colorectal Cancer", 282(13) J. Amer. Med. Ass'n:1254-1257 (Oct. 6, 1999). Both celecoxib and rofecoxib are suggested to have similar effects. See Vol. 56(2) Amer. J. of Health-System Pharmacy: 106-107 (Jan. 15, 1999).
- One of the clear benefits of the selective COX-2 inhibitor is that COX-1 isoenzymes have what has been characterized as having general housekeeping functions generally ameliorative to bodily health. .
- COX-2 inhibitor and angiogenesis In mice, a COX-2 inhibitor, NS398, was reported to inhibit angiogenesis of a prostate cancer specimen in vivo. Liu et al, "Inhibition of Cyclooxygenase-2 suppresses Angiogenesis and the Growth of Prostate Cancer in Vivo," 164 J. of Urology 820-825 (September 2000) at 820. Inhibition of cholesterol synthesis by COX-2 inhibitor and HMG-CoA inhibitor: In viewing the biochemical cycle through which the formation of polyisoprenoids occurs, there are a series of intermediates. See, Biochemistry, Geigy Scientific Tables, Book 4, ed. by C.
- a key end product of the biochemical cycle of formation of polyisoprenoids is cholesterol.
- the entire cholesterol cycle must be functioning properly and cholesterol is especially critical to membrane stabilization, a necessary ingredient for successful cancer cell replication.
- the "early" cholesterol pathway Acetyl CoA to mevalonate Examining the intermediates in the polyisoprenoid formation cycle carefully, beginning with Acetyl-CoA, the next intermediate is 3-Hydroxy-3-methylglutaryl-CoA ("HMG-CoA"). There is a feed back regulation mechanism immediately after this intermediate before transition occurs to the next intermediate: Mevalonate. Salway, Metabolism at a Glance, 88-89 (Blackwell Science 2 nd ed. Oxford 1999). The invention proposes to use lovastatin as an HMG-CoA reductase inhibitor.
- An HMG-CoA reductase inhibitor interferes in the polyisoprenoid formation cycle, and particularly interferes with cell wall synthesis, thereby interfering with a necessary construct of cancer replication.
- ATP cycle intermediaries are juxtaposed to the HMG-CoA feedback mechanism, and ATP and ATP cycle intermediaries are apparent in transition steps of biosynthesis of cholesterol subsequent to the Mevalonate intermediate, the effect of a cancer cell starved of necessary cholesterol is to biochemically invite increased production of intermediaries in the transition from mevalonate to cholesterol, and to biochemically invite increased production of HMG-CoA, whose biosynthesis is being inhibited. Such increased production draws on the ATP and ATP cycle intermediaries in the cancer cell.
- the later cycle squalene to cholesterol synthesis
- the cycle continues with the formation of isopentenyl diphosphate, and then farnesyl diphosphate.
- Salway Metabolism at a Glance at 88-89, (Blackwell Science 2nd ed Oxford 1999).
- a second effect cooperates with the HMG-CoA inhibitor to exacerbate the energy drain on a cancer cell. This collateral effect is additional to the effect of a COX-2 inhibitor on the cyclooxygenase cycle.
- the COX-2 inhibitor because of the active electron field substituents, also interferes in a way not discussed in the literature with the normal biochemistry of squalene to cholesterol synthesis. Squalene transitions through a complex series of intermediates to cholesterol. This interference in the biosynthesis pathway subsequent to squalene synthesis further disables the cell division chemistry of a cancer cell and leaves it vulnerable to apoptosis. Notably, the transition states from squalene to cholesterol between intermediaries depend on critical inputs of ATP cycle chemicals, including NADP and NADPH.
- a COX-2 inhibitor interferes with, but does not appear to stop, synthesis of certain of these intermediaries. This either results in insufficient cholesterol for cancer cell replication or results in introduction of further drain on the ATP cycle chemicals to produce the desired cholesterol critical for cell replication. This drain on the ATP cycle is beyond the stresses already imposed by the HMG-CoA inhibitor. As the replicating cell has further need for cholesterol, further energy is diverted from the cell.
- the "middle" of the cholesterol synthesis cycle Farnesyl Pyrophosphate and ubiquinones
- a corollary effect of the partial inhibition of the production of cholesterol from squalene and the triggering of increased production of farnesyl pyrophosphate is that relatively more ubiquinones are produced which are not being inhibited in the same manner as the squalene to cholesterol synthesis is inhibited.
- Ubiquinones are key participants in the Q cycle in mitochondrial respiration. With the relative overproduction of ubiquinone that occurs in order to attempt to produce the requisite cholesterol for cell replication, one of two effects, or both effects, occur on mitochrondrial respiration.
- the replicating cancer cell either comes under osmotic pressure to decrease the concentration of ubiquinone, or the increased ubiquinone concentration changes the electron transport mechanism in the inner membrane of the mitochondria. If the cell admits fluid to stabilize the ubiquinone concentration, the cell must normally change size or shape to do so.
- Ellerby et al Measurement of Cellular Oxidation, Reactive Oxygen Species, and Antioxidant Enzymes during Apoptosis, 322 Method in Enzym. 413 (Academic Press 2000), Bortner, Volume Regulation and Ion Transport during Apoptosis, 322 Method in Enzym. 421 (Academic Press 2000).
- the predicted effect is that there is a change in electron transfer from Complex 1 toward Complex 3. See Metabolism at a Glance, J.G. Salway, p. 12-15 (Blackwell Science Ltd., Oxford and London, 2 nd ed. 1999). Simultaneous to the ubiquinone effect, giving attention to both the COX-2 inhibitor with the hydrophilic and lipophilic substituents referred to earlier in this specification and the chemical potential of the unpaired electrons on the first and second substituents, the electrochemical potential and gradient between the matrix side of the membrane and the opposite side membrane is changed, which affects the proton pump and migration of H + ions and in turn interferes with ATP synthesis.
- the likely reason is one of several, or a combination of several reasons.
- the novel combination for retarding cancer does so in part by producing osmotic stress selectively in cancer cells, and in part by interfering with membrane synthesis in cancer cells. Movement of any osmotically obligated fluid has a corollary effect of also speeding into replicating cells potentially detrimental biochemicals from the body's own immune system. Another corollary of any change in electrochemistry in the area of the matrix or the size of the cell is damage to ion transport channels, the blockage or overexpansion of which ion transport channel is often fatal to the cell. Ellerby, 322 Methods in Enzym. 413-421, Bortner, 322 Methods in Enzym. 421-433.
- the invention takes advantage of the increased ratio of anaerobic to aerobic functionality of a cancer cell compared to that ration in a normal cell.
- the growth rates of cancers parallel their level of differentiation and the relative number of their cells in mitosis. Mitoses are more abundant in the anaplastic rapidly dividing variants, meaning in the cancer cells that are creating "clones" of each other by cell division and replication.
- the increased glycolytic processes particularly the anaerobic processes, generate relative more waste product such as CO2 and lactic acid.
- the COX-2 inhibitor shifts the reaction equilibrium to promote a higher concentration of arachidonic acid. Biochemistry, Geigy Scientific Tables, Book 4, ed. by C. Lemtner, publ. by Ciba-Geigy (1986), p. 25-27; .
- the glutathione functionality is important in reducing reactive oxygen species to relieve subsequent oxidative stress which is deleterious to any cell.
- the effect in the cancer cell of the relatively reduced glutathione functionality and generation of increased wastes from increased and unregulated glycolysis is to either cause a slowing of the processes leading to waste production, thereby slowing replication, or to cause a change in osmolarity of the cell which is normally offset by increased water and a corresponding change in cell size.
- an enhancement in relief of oxidative stress occurs, as well as maintenance of full functionality, thereby strengthening the immune system competency and total body system.
- cystine Another accomplishment of the invention not suggested by the literature is to utilize cystine to ameliorate the negative renal, hepatic and gastric effects of COX-2 inhibitors and HMG-CoA inhibitors, both as a combination and individually.
- NSAIDs non-steroidal anti-inflammatory
- the COX-2 inhibitors are felt to cause a range of gastrointestinal problems.
- This amelioration by the invention of negative renal, gastric and hepatic effects is accomplished by cystine, especially in a glutathione deficient patient.
- the avoidance of a glutathione deficiency steers the patient to have a higher Th-1 response to Th-2 response ratio than the patient would have with any glutathione deficiency.
- Fosslien suggests that antioxidants such as TROLOX also inhibit COX-2 induction: "Inhibitors of COX-2 induction are tumor suppressor protein p53, estrogen, and antioxidants such as Trolox (N-acetylcysteine, 6-hydroxy-2,5,7,8-tetramethylchroman-2- carboxylic acid), PDTC, and U75006" Fosslien, "Biochemistry of Cyclooxygenase (COX)-2 Inhibitors and Molecular Pathology of COX-2 in Neoplasia," Crit. Rev. in Clin. Lab. Sci. 37(5): 431, 433 (November 2000). TROLOX is not practical for combating cancer in mammals because it is an extremely powerful anti-oxidant and potentially toxic.
- Lovastatin its interaction with a selective COX-2 inhibitor and isoprostanes and the lipoxygenase pathway.
- lipid lowering/modifying drugs such as lovastatin were suggested to be more cancer-free than those using bile acid-binding resins. See, 3- Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors and the Risk of Cancer: A Nested Case-Control Study, 160(5) Archives of Internal Med: 2363-2368 (2000).
- Lovastatin can be predicted to have another cooperative effect with rofecoxib with respect to cancer, especially prostate cancer. There is strong evidence that oxidative stress and subsequent free radical damage is very important in prostate cancer. Chung et al, Prostate Cancer: Biology, Genetics and the New Therapeutics, "Chemoprevention of Prostate Cancer" by Brooks and Nelson p.
- COX-2 inhibitor and the lipooxygenase pathway In examining the cyclooxygenase pathway, see Biochemistry, Geigy Scientific Tables, Book 4, ed. by C. Lemtner, publ by Ciba-Geigy (1986), p. 25, by application of Le Chatelier's principle, an inhibition of the cyclooxygenase pathway will cause the concentration of arachidonic acid to increase. Such increased concentration will cause an increase in products produced in the lipooxygenase pathway. One of those products is Leukotriene B4. Leukotriene B4 is implicated in lipoperoxidative stress to cells.
- the lipooxygenase pathway and isoprostanes As a cancer cell signals for increased COX-2 expression which is being inhibited, the signal is directed to creation of further arachidonic acid ("AA"). The differentiation from normal cells is that a normal cell is not signaling for more AA to delivery more COX-2 expression. From both COX-2 inhibition and saturation from products of AA in the lipooxygenase (“LPO") pathway, a significant buildup of AA occurs which can be most easily relieved from a redox viewpoint by creation of isoprostanes. Such excess production has implications for the lipooxygenase metabolic pathway.
- isoprostanes which are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phosphohpids (Neurochem Res 2000 Oct;25(9-10): 1357-64).
- isoprostanes are indicators of damage to membrane phospolipids.
- Arachidonic acid (AA) is sterified in the membrane phosphohpids, and when oxidized, isoprostanes are the end-product. The peroxidation products are monitored by measuring the isoprostanes and lipid peroxides.
- Lipid peroxidation is best characterized as a series of chain breaking reactions in the lipid bi-layer at the membrane which inhibits the proper growth of proteins.
- the membrane is rendered more porous and susceptible to degeneration, or to penetration by other molecules in the body's immune system.
- lipid peroxidation by heat occurs in an egg white when heated. In the body, and as is desired in cancer cells, such lipid peroxidation occurs chemically.
- the HMG-CoA reductase inhibitor simvastatin has been shown to produce positive effects in the endothelial lining of blood vessels even independent of its lipid lowering effects.
- simvastatin is an analog of lovastatin, which are both statins produced from aspergillus terreus.
- the presence of the HMG-CoA reductase inhibitor may contribute to moderating the effects of lipid peroxidation produced in the normal cells moderating production of isoprostanes.
- cancer cells While a protective effective may not seem facially desirable, consideration needs to be made of the selectivity which occurs.
- cancer cells In order to obtain COX-2, cancer cells have a signaling system to stimulate the precursor of COX-2, which is arachidonic acid. Normal cells which do not have a similar need for COX-2 apparently do not have such a signaling system.
- statin for a cancer cell which under normal replication conditions will experience a more rapid genesis of lipid peroxidation products from membrane synthesis, the inventors surmise that the partial protective effect of a statin to slow the rise in isoprostane levels is selectively insufficient to protect the cancer cell from excess arachidonic acid, while acting protectively in normal cells.
- statin may have against the lipooxygenase pathway products is not sufficient to overcome either the toxic effects of excess arachidonic acid, nor to offset the cholesterol synthesis inhibition occurring in the cholesterol synthesis pathway with respect to production of mevalonate and occurring with respect to excess geraniol as a result of interference with squalene conversion to cholesterol.
- CLA Conjugated linoleic acid
- the addition of CLA to the diet of people undergoing metabolic cancer therapy with a Hmg-CoA and a COX-2 inhibitor would result in an enhanced effect by increasing the lipid oxidation effect of the isoprostanes, and shows the creation of excess arachidonic acid has antitumorigenic effect as predicted by the inventors.
- the treatment dose of the COX-2 inhibitor can be maximized to give the maximum tolerated dose for use in cancer therapy without creating excessive systemic toxicity. More lipid oxidation activity indicates increased oxidative stress, usually a characteristic of cancer activity. A long-term falling level of isoprostanes will mean for COX-2 expressing cancers that there is relatively less cancer risk.
- statin can ameliorate the tendency to lipid peroxidation, which is why a lower dose is preferred, it need only be sufficient to impair cholesterol synthesis, and there remain sufficient lipid peroxidants to damage cancer cells while normal cells are slightly protected.
- the presence of ubiquinones in normal cells with adequate glutathione does not materially change their characteristics; however in cancer cells, the excess ubiquinones in combination with the already nascent tendency to express lipid peroxidation sufficiently the weakens the cells to expose them to immune system attack, a tendency not overcome by the presence of glutathione which is less active in the more anaerobic environment of a cancer cell.
- Lovastatin and its inhibition of farnesyl pyrophosphate and generaylgeranylpyrophosphate Lovastatin has another inhibitory effect which has implications for both cholesterol synthesis, ubiquinone concentration, and farnesyl pryrophosphate concentration.
- Lovastatin an HMG-CoA reductase inhibitor that inhibits the biosynthesis of farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GPP) is used routinely as a positive control for inhibition of processing of both geranylgeranylated and farnesylated proteins [citations omitted].
- GPP inhibition likely has the same effect as post-lanosterol cholesterol cycle inhibition in that additional energy must be used to overcome inhibitory effects.
- the Vogt article also notes that cysteine is important in ras oncogene activation. This teaches away from the benefits of glutathione pathway protection, but the inventors suggest that the combination of diversion of glutathione pathway resources to stabilize other adversely affected metabolic pathways of a cancer cell is likely sufficient in combination with FPP and GPP inhibition to interfere with cell replication. What FPP is generated will be diverted to enhance cholesterol synthesis making it less available for ras oncogene activation in conjunction with cysteine.
- Nitric oxide though being a free radical shows a long range of action and rather low toxicity. It inhibits lipid peroxidation and caspases. Interaction of nitric oxide with superoxide anions causes the formation of peroxynitrite, a potent lipid peroxidant and apoptosis inducer.” Id. at 4116. There are a series of reactions, several of which involve glutathione. The positive empirical results from the patients on which this invention was tested indicate that peroxynitrite acts as a strong oxidant when increased there is cytokine production.
- glutathione functions more actively in an anaerobic environment.
- cancer cells having complete angiogenesis will be less affected by these reactions, the inclination to apoptosis and the degeneration of angiogenic species either as a result of the death of a cell, or the waste of energy in the tumor to generate unutilized angiogenesis both inhibit the cancer cell's growth.
- H O 2 has a potential rescuing effect for cells to blunt NO mediated apoptosis at high cell density.
- a primary generator of H 2 O 2 is glutathione reactions which in a normal cell environment remove hydroxyl radicals, and nitric oxide radicals.
- metal ions particularly copper, zinc and magnesium
- glutathione competent cells the H 2 O 2 breaks down into water.
- cells are in a sense rescued from apoptosis in that situation. In cells not so equipped, which would include a number of cancer cells in a tumor, more hydroxyl radicals are generated, and there is not a rescue from apoptosis.
- H O 2 is a far-ranging species that can intercept NO species far from a cell membrane
- intercellular range is less of an issue
- the relatively toxicity and tumorogenicity of those cancers where the range of operation is less of a factor in what self-protective mechanisms the body has to battle the cancer.
- HOC1 cannot be ignored which Bauer believes interacts with H 2 O 2 to generate non reactive molecules such as oxygen, water, chloride anions and protons.
- Bauer 20 AntiCancer Research 4115-4140, generally.
- Glutathione Glutathione
- Glutathione a critical element in immune system function, unquestionably has some positive effects for the cancer cell because it can scavenge free radicals. Yet this is needed in all cells. Glutathione does have a favorable effect on cancer cells through its protection of the disulfide bridges. Protection of disulfide bridges inhibits lipid peroxidation therefore protecting protein structure, particularly tertiary and quaternary structures. "Glutathione probably helps maintain the sulfhydryl groups of proteins in the reduced state and the iron of heme in the ferrous (Fe2+) state, and it serves as a reducing agent for glutaredoxin in deoxyribonucleotide synthesis (see Fig. 2-37 [in source]).
- Glutathione is gamma-Glu-Cys-Gly.
- the COO- ion on the end of the chain will be more present and a more favored species in a less acidic environment.
- the more acidic environment of anaerobic glycolysis in cancer cells causes a shift to moderately lower relative glutathione concentrations, and consequently less protection from apoptotic free radical reactions.
- the competitive consumption of energy to overcome cholesterol synthesis, to overcome interference with mitochrondrial respiration, and the competitive consumption of GSH to thwart lipid peroxidation, and to rescue cancer cells from reactive oxygen and nitrogen species either weakens existing cells, weakens newly generated cells (which may then undergo self-apoptosis) or inhibits membrane and DNA synthesis or all of these.
- the inherent characteristics of replicating cancer cells and the necessary anaerobic enhancement to their energy processes enable the invention to selectively attack cancer cells while normal cells and their homeostatic processes can protect the mammalian organism which the inventors desire to preserve.
- the administration of the compounds in the invention enable the organism to achieve the senescence which cancer cells have attempted to elude through a variety of mechanisms that the body in many instances is helpless to resist.
- the use of HOC1, arid the application of NO*- and OH*- is the usual means to achieve senescence, and the invention enables proper operation of that mechanism.
- NADPH concentration, COX-2 inhibitors and apoptosis A corollary effect of the inhibition of creation of cholesterol relates to the shifting of equilibrium toward to squalene and a higher concentration of NADPH+H+ as a result of the action of the COX-2 inhibitor.
- NADPH +H+ has a series of contradictory effects. Exterior to the mitochrondria, increased levels of NADPH can be seen to slow reactions in the pentose phosphate pathway, namely in the transition from glucose 6-phosphate to ribulose 5-phosphate. Selective shifts in this pathway affect glucose-6-phosphate, though perhaps only mildly. NADPH concentration shifts also slow the conversion of malate to pyruvate, a precursor to acetyl CoA, a precursor to cholesterol, a possible positive in inhibiting cancer cell membrane synthesis.
- Salway Metabolism at a Glance (Blackwell Science Oxford 1999) at p. 60.
- homeostasis is such that an Acetyl CoA imbalance is not toxic on refeeding after starvation because the Acetyl CoA /CoA precursor ratio is not affected.
- Metal complex interactions The interaction of nitrous oxide and reactive oxygen species is one of the most important apoptotic triggers in anti-tumor activity.
- COX-2 has two interactions with mitochrondrial respiration and ATP utilization, one direct and one indirect.
- the direct interaction is the lipophilic/hydrophilic orientation which can inhibit the F0/F1 channel in complex IV. Salway, Metabolism at a Glance at 14-15 (Blackwell Science 2 nd ed. 1999).
- the indirect interaction is the increased relative production of ubiquinone as a result of the inhibition of cholesterol demethylation.
- Metal ions have the capacity to catalyze, in conjunction with superoxide dismutase (SOD), generation of compounds influential in apoptotic process.
- SOD superoxide dismutase
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/249,592 | 2000-11-17 | ||
US26451101P | 2001-01-26 | 2001-01-26 | |
US60/264,511 | 2001-01-26 | ||
US60/307,689 | 2001-07-25 | ||
US09/912,703 | 2001-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003022268A1 true WO2003022268A1 (en) | 2003-03-20 |
Family
ID=23006373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/044050 WO2003022268A1 (en) | 2000-11-17 | 2001-11-17 | A combination and method of treatment of cancer utilizing a cox-2 inhibitor and a 3-hydroxy-3-methylglutaryl-coenzyme-a (hmg-coa) reductase inhibitor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003022268A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005042710A1 (en) * | 2003-10-28 | 2005-05-12 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Use of statin to kill ebv-transformed b cells |
WO2011094431A1 (en) * | 2010-01-28 | 2011-08-04 | Psivida Us, Inc. | Sustained-release nsaid/hmg coa reductase inhibitor compositions |
CN107875121A (en) * | 2017-11-06 | 2018-04-06 | 大连理工大学 | A kind of preparation method of 2,3 dehydro-silibinin phosphatide complexes nano suspension |
CN110237055A (en) * | 2019-07-15 | 2019-09-17 | 江苏中兴药业有限公司 | A kind of silibinin and the pharmaceutical composition of Simvastatin and the preparation method and application thereof |
-
2001
- 2001-11-17 WO PCT/US2001/044050 patent/WO2003022268A1/en not_active Application Discontinuation
Non-Patent Citations (4)
Title |
---|
DATABASE CAPLUS [online] ZHANG ET AL.: "Downregulation of androgen receptor transactivation activity by cholesterol synthesis inhibitor lovastatin in prostate cancer cells", XP002954778, accession no. ACS Database accession no. 2000:15545 * |
DATABASE EMBASE [online] HSU ET AL.: "The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking akt activation in human prostate cancer cells idependently of bcl-2", XP002954779, accession no. ACS Database accession no. 2000141798 * |
J. OF BIOL. CHEM., vol. 275, no. 15, 14 April 2000 (2000-04-14), pages 11397 - 11403 * |
SURGICAL FORUM, vol. 50, 1999, pages 698 - 699 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005042710A1 (en) * | 2003-10-28 | 2005-05-12 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Use of statin to kill ebv-transformed b cells |
WO2011094431A1 (en) * | 2010-01-28 | 2011-08-04 | Psivida Us, Inc. | Sustained-release nsaid/hmg coa reductase inhibitor compositions |
CN107875121A (en) * | 2017-11-06 | 2018-04-06 | 大连理工大学 | A kind of preparation method of 2,3 dehydro-silibinin phosphatide complexes nano suspension |
CN110237055A (en) * | 2019-07-15 | 2019-09-17 | 江苏中兴药业有限公司 | A kind of silibinin and the pharmaceutical composition of Simvastatin and the preparation method and application thereof |
CN110237055B (en) * | 2019-07-15 | 2021-09-07 | 江苏中兴药业有限公司 | Pharmaceutical composition of silybin and simvastatin, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6534540B2 (en) | Combination and method of treatment of cancer utilizing a COX-2 inhibitor and a 3-hydroxy-3-methylglutaryl-coenzyme-a (HMG-CoA) reductase inhibitor | |
Fuentes et al. | Omega-3 fatty acids, membrane remodeling and cancer prevention | |
Pashkow et al. | Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease | |
Siddiqui et al. | Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects | |
Esrefoglu | Experimental and clinical evidence of antioxidant therapy in acute pancreatitis | |
Kumar et al. | Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome | |
Sastre et al. | Mitochondrial function in liver disease | |
Qi et al. | Antioxidants in brain tumors: current therapeutic significance and future prospects | |
Ahmed et al. | Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection | |
WO2002056823A2 (en) | Redox therapy for tumors | |
Zangui et al. | Current evidence and future perspectives for curcumin and its analogues as promising adjuncts to oxaliplatin: state-of-the-art | |
Wu et al. | Mechanisms and applications of the anti-cancer effect of pharmacological ascorbic acid in cervical cancer cells | |
Mani et al. | Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy | |
CA2827585A1 (en) | Statin and omega 3 fatty acids (epa, dha and dpa) for use in cardiovascular diseases | |
Valashedi et al. | Cashing in on ferroptosis against tumor cells: Usher in the next chapter | |
WO2002067853A2 (en) | A combination and method of treatment of hiv and viral diseases, vascular disease and cancer utilizing a cox-2 inhibitor and cystine | |
Gul et al. | Vitamin K: A novel cancer chemosensitizer | |
Breton et al. | Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation | |
US20020169195A1 (en) | Combination and method of treatment of cancer utilizing a COX-2 inhibitor and an HMG-CoA inhibitor and cystine to enhance glutathione | |
Pereira | Selective cyclooxygenase-2 (COX-2) inhibitors used for preventing or regressing cancer | |
Dabbour et al. | Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers | |
US20020132781A1 (en) | Combination and method of treatment of cancer utilizing a COX-2 inhibitor and A 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitor | |
US9642860B2 (en) | Combinations of corroles and statins | |
US20040092565A1 (en) | Composition and method of sustaining chemotherapeutic effect while reducing dose of chemotherapeutic agent using cox-2 inhibitor and statin | |
US20030162829A1 (en) | Combination of treatment of cancer utilizing a COX-2 inhibitor and a 3-hydroxy-3-methylglutaryl-coenzyme-a (HMG-CoA) reductase inhibitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT TZ UA US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTIFICATION OF LOSS OF RIGHTS PERSUANT TO RULE 69(1) EPC (EPO FORM 1205A SENT ON 10.10.03) |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |