WO2003019228A1 - Repondeur radar maritime - Google Patents

Repondeur radar maritime Download PDF

Info

Publication number
WO2003019228A1
WO2003019228A1 PCT/FR2002/002921 FR0202921W WO03019228A1 WO 2003019228 A1 WO2003019228 A1 WO 2003019228A1 FR 0202921 W FR0202921 W FR 0202921W WO 03019228 A1 WO03019228 A1 WO 03019228A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radar
circuit
stage
transmitting antenna
Prior art date
Application number
PCT/FR2002/002921
Other languages
English (en)
Inventor
James Audren
Philippe Renaudin
Yannick Trovel
Original Assignee
Societe D'etudes Et De Realisation De Protection Electronique - Informatique Electronique Securite Maritime - S.E.R.P.E.-I.E.S.M (Sa)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe D'etudes Et De Realisation De Protection Electronique - Informatique Electronique Securite Maritime - S.E.R.P.E.-I.E.S.M (Sa) filed Critical Societe D'etudes Et De Realisation De Protection Electronique - Informatique Electronique Securite Maritime - S.E.R.P.E.-I.E.S.M (Sa)
Publication of WO2003019228A1 publication Critical patent/WO2003019228A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2201/00Signalling devices
    • B63B2201/20Antenna or mast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/02Lifeboats, life-rafts or the like, specially adapted for life-saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/08Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like
    • B63C9/20Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like characterised by signalling means, e.g. lights

Definitions

  • the invention relates to a maritime radar transponder, equipping a buoy or a liferaft to enable search and rescue operations by indicating the position to a pulse-modulated search radar.
  • a maritime radar transponder being started during a sinking at the geographical point to be marked, it receives the signals transmitted by a maritime navigation radar operating in a determined frequency band, from 9.2 to 9.5 GHz, and transmits a signal in the same frequency band which will be picked up by the navigation radar and will produce on its panoramic screen coded echoes in the form of T lines and dots starting radially from the location point of the answering machine, the combinations of which allow the identification of the answering machine.
  • the indication on the radar screen E an example of which is given in FIG. 1, gives the direction ⁇ and the distance d between the answering machine and the search radar.
  • FIG. 2 is a perspective view of a transponder 1 maritime radar, comprising a cylindrical antenna 2 omnidirectional, mounted inside a cylindrical housing 3, a first part 31 of which forms a protective rome.
  • This box also contains a receiver of waves emitted by a scanning radar, a transmitter of radar waves and a circuit for controlling the emission of such waves after reception of a radar wave.
  • a second part 32 of the housing 3 contains an electrical supply device intended to supply direct current to the receiver, the transmitter and the antenna control circuit.
  • This supply device is preferably a battery having a long service life, and supporting extreme temperature conditions.
  • the box has a high impact resistance and is provided with a fixing support 4 for installing the radar transponder on board a boat or a life raft 5 for example.
  • the omnidirectional antenna 2 is produced from radiating elements 6 printed on a cylindrical substrate 7 made of dielectric material.
  • a radar responder an electronic diagram of which is shown in FIG. 3, comprises the following elements.
  • An omnidirectional antenna 8 in the horizontal plane used for reception and transmission, captures the waves emitted by a search radar while the beam scans it.
  • This received signal passes through a switch or duplexer 9 which directs it towards the reception channel of the answering machine then is amplified in an amplifier circuit 10 to be detected in a broadband detector circuit 11 which attacks a video amplifier 12.
  • the signal pulses thus amplified After comparison in a circuit 13 with a threshold value, the signal pulses thus amplified, which are greater than the threshold value, are directed to the transmission channel of the answering machine.
  • This comprises a scanning generator device which first comprises an encoder circuit 14 delivering, for each pulse received, a train of pulses, 4 or 5 for example, whose respective offsets correspond to the particular code of the responder, and then a signal modulation circuit 15 for forming the response scanning waves intended to be emitted by a high frequency oscillator 16.
  • This oscillator is set in oscillation at the start of each pulse train and each pulse triggers the scanning of the frequency band from one end to the other, linearly as a function of time.
  • the duration of this scan of the order of 10 ⁇ s, is a lower limit for the intervals of the pulse train.
  • the high frequency signal delivered by the oscillator is amplified in a circuit 17 to be sent to the emission input of the switch 9.
  • the response emitted by the antenna 8 is an ultra-fast signal for scanning all the frequencies of the band 9.2 - 9.5 GHz, with a transmission period of 100 ⁇ s, synchronous with any radar transmission received.
  • the amplification circuits of such a current transponder have a high cost, in particular the two transistors of the amplification circuit of the oscillating response signal.
  • the answering machine no longer works as soon as one of these two transistors breaks down, since they are connected in series.
  • a third drawback comes from the single transmit-receive antenna which requires the use of a switch to switch the receive and transmit channels of the system, causing problems of losses and limitations. in power. Finally, electronic mounting presents production difficulties due to the balancing of the wires between the transmission amplifier and the antenna, resulting in long assembly times which are therefore expensive.
  • the object of the invention is to solve these various drawbacks by proposing a radar transponder provided with a separate reception and transmission antenna, the latter consisting of several active strands, supplied independently of one another. and perfectly balanced in amplitude and in phase due to the very constitution of the transmission channel of the responder.
  • This transmission antenna can in particular be produced on a cylindrical printed circuit as well as the reception antenna, these two circuits being stacked to perform the transmission and reception functions.
  • the feeding device of this antenna is integrated on a single printed circuit, connected directly to the different strands.
  • the object of the invention is a maritime radar transponder comprising an omnidirectional antenna for receiving radar waves associated with a reception channel, an omnidirectional antenna for transmitting radar waves associated with a transmission channel comprising a scanning generator circuit connected to an oscillator circuit, the output of which is connected to an amplification circuit, characterized in that the transmitting antenna consists of an integer n, greater than three, of active strands emitting n signals identical with horizontal rectilinear polarization and in that the amplification circuit of the emission channel is constituted by a first "driver" transistor stage and a second stage in Wilkinson type divider bridge produced by n transistors, all identical to the transistor of the first "driver” stage and each connected on the one hand, by an input impedance adapter circuit, on the first "driver” stage and on the other hand, by an output impedance adapter circuit, to an active strand of the antenna.
  • the channel d. ' emission of a radar signal supplying the active strands of the emission antenna is carried out from a printed circuit on a first face of a dielectric substrate board where the electrical connections between the transistors and the circuits are engraved impedance matching and coupling.
  • the active strands of the transmitting antenna are then preferably electrically connected directly on the second face of the wafer, to the output impedance adapter circuits through holes drilled in said dielectric wafer. They can also be connected to the output impedance adapter circuits via semi-rigid coaxial cables.
  • Such an answering machine is much more efficient than those of the prior art because of its production on a printed circuit, eliminating losses along the electrical connection wires and achieving, thanks to the use of all identical transistors, excellent balancing in amplitude and phase of the radiating strands of the transmitting antenna.
  • FIG. 1 a schematic representation of the image of the answering machine produced on the screen of a radar
  • FIG. 2 a perspective view of a radar responder to ' current omnidirectional cylindrical antenna
  • FIG. 3 an electronic diagram of a responder 0 according to an embodiment of the prior art
  • FIG. 4 is an electronic diagram of a maritime radar transponder according to the invention.
  • FIG. 5 is a diagram of an example of a printed circuit making the transmission part of the responder 5 according to the invention.
  • FIG. 6 is a radiation diagram of an answering machine according to the invention.
  • the maritime radar transponder is provided with two separate antennas 0, one 18 for the reception of the signals emitted by the research radars and the other 19 for the transmission of a response to these same radars.
  • the transmitting antenna 19 consists of at least four active elements or strands 20 intended to transmit at least four identical radar signals of horizontal rectilinear polarization, in order to produce an omnidirectional transmitting antenna.
  • this responder has a reception channel, composed of an amplifier 10, a detector 11, an amplifier 12, a comparator 13 and an encoder 14, and a way transmission, composed of a modulator 15, an oscillator 16 and an amplification circuit 17.
  • the active strands of the antenna must be perfectly balanced in amplitude and in phase, which is made possible both by their realization according to the technique of printed circuits and by their supply by identical signals.
  • This arrangement has the advantage of ensuring perfect balance of the signals supplying the active strands of the transmitting antenna, essential for obtaining an omnidirectional radiation diagram without ripple of gain and has the advantage of allowing the responder to operate even in the event of a failure of one of the amplifier transistors.
  • the oscillator 16 and the two amplification stages are produced according to the technique of printed circuits on one side of a plate 25 of dielectric substrate where the connections are etched between the transistors 21 and 22 as well as the various adaptation and coupling circuits 23 and 24, as shown in Figure 5.
  • the precision of the etching, the shape of the drawing and the length of the coupling lines, the doses of automated welding limit the parameters and contribute to the balancing of the signals emitted by the strands of the transmitting antenna.
  • the active strands of the transmitting antenna are located on the other side of the dielectric plate, serving as a ground plane for the circuit. printed, and each is connected directly to its own transistor amplifier by holes 26 drilled in the thickness of the wafer.
  • the strands of the transmitting antenna are made up of radiating elements such as squares printed on one face of a cylindrical dielectric substrate and connected together by conductive lines so as to form radiating dipoles, the base of which is located at a distance equal to half the wavelength of radiation from the ground plane of the antenna.
  • the omnidirectional receiving antenna 17 can be made up of radiating elements inserted between the active strands, arranged for example in a crown above the transmitting antenna 18, or else radiating slots made between the active strands.
  • FIG. 6 shows gain diagrams of an answering machine according to the invention, comprising an omnidirectional transmitting antenna with four active strands perpendicular to each other, as a function of the azimuth angle at different operating frequencies ranging from 9.2 to 9.5 GHz. Note that the responder's antenna emits a horizontally polarized wave whose gain is almost constant, its variations being less than 2dB.
  • the cost and the power losses are reduced and thanks to the production of a transmitting antenna with several independent active strands, the desired radiation diagram is obtained and the maximum gain for each strand is improved, which makes it possible to associate a transistor amplifier with each strand while reducing the power therefore the cost of these transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un répondeur radar maritime comprenant une antenne omnidirectionnelle de réception (18) , distincte d'une antenne omnidirectionnelle d'émission (19) composée de n brins actifs (20), indépendants émettant le même signal radar, et dont la voie d'émission comporte un premier étage amplificateur "driver" à transistor (21) et un second étage amplificateur à pont diviseur de Wilkinson à n transistors (22), tous identiques au transistor du premier étage, adaptes en entrée et en sortie aux brins de l'antenne, cette voie d'émission étant réalisée par un circuit imprimé connecté directement aux brins de l'antenne.

Description

REPONDEUR RADAR MARITIME
L'invention concerne un répondeur radar maritime, équipant une bouée ou un radeau de sauvetage pour permettre les opérations de recherche et de secours par 1 ' indication de la position à un radar de recherche à modulation d'impulsions.
Il doit assurer une détection des naufragés jusqu'à 10 milles nautiques, rapide et précise, même par vent fort et mer agitée qui rendent difficilement repérable la position d'un radeau de sauvetage bien petit sur la mer. Un tel répondeur doit résister à la corrosion par l'eau de mer, être étanche à l'air, et aisément fixé à bord du radeau.
Un répondeur radar maritime étant mis en route lors d'un naufrage au point géographique à baliser, il reçoit les signaux émis par un radar de navigation maritime fonctionnant dans une bande de fréquences déterminée, de 9,2 à 9,5 GHz, et émet un signal dans la même bande de fréquences qui sera capté par le radar de navigation et produira sur son écran panoramique des échos codés sous forme de traits T et de points partant radialement du point de localisation du répondeur, dont les combinaisons permettent l'identification du répondeur. L'indication sur l'écran radar E, dont un exemple est donné par la figure 1, donne la direction È et la distance d entre le répondeur et le radar de recherche. Le signal émis par le répondeur radar est ultra-rapide, avec un balayage sur la bande de fréquences 9,2 à 9,5 GHz et avec une période d'émission de 100 μs , synchrone avec toute émission radar reçue. La figure 2 est une vue en perspective d'un répondeur 1 radar maritime, comprenant une antenne cylindrique 2 omnidirectionnelle, montée à l'intérieur d'un boîtier cylindrique 3, dont une première partie 31 forme un râdome de protection. Ce boîtier renferme également un récepteur d'ondes émises par un radar à balayage, un émetteur d'ondes radar et un circuit de commande de l'émission de telles ondes après réception d'une onde radar. Une seconde partie 32 du boîtier 3 renferme un dispositif d'alimentation électrique destiné à alimenter en courant continu le récepteur, l'émetteur et le circuit de commande de l'antenne. Ce dispositif d'alimentation est préférentiellement une pile ayant une grande durée de vie, et supportant des conditions extrêmes de température. Le boîtier possède une résistance élevée aux chocs et est doté d'un support de fixation 4 pour l'installation du répondeur radar à bord d'un bateau ou d'un radeau de sauvetage 5 par exemple. Dans le cas de la figure 2, l'antenne omnidirectionnelle 2 est réalisée à partir d'éléments rayonnants 6 imprimés sur un substrat cylindrique 7 en matériau diélectrique.
Selon un mode de réalisation de l'art antérieur, un répondeur radar, dont un schéma électronique est représenté par la figure 3 , comporte les éléments suivants. Une antenne 8 omnidirectionnelle dans le plan horizontal, servant à la réception et à l'émission, capte les ondes émises par un radar de recherche pendant que le faisceau la balaye . Ce signal reçu passe dans un commutateur ou duplexeur 9 qui 1 ' oriente vers la voie réception du répondeur puis est amplifié dans un circuit amplificateur 10 pour être détecté dans un circuit détecteur 11 à large bande qui attaque un amplificateur 12 vidéo. Après comparaison dans un circuit 13 avec une valeur seuil, les impulsions du signal ainsi amplifiées, qui sont supérieures à la valeur seuil, sont dirigées vers la voie émission du répondeur. Celle-ci comporte un dispositif générateur de balayage qui comprend d'abord un circuit codeur 14 délivrant, pour chaque impulsion reçue, un train d'impulsions, 4 ou 5 par exemple, dont les décalages respectifs correspondent au code particulier du répondeur, et ensuite un circuit de modulation 15 du signal pour former les ondes de balayage de réponse destinées à être émises par un oscillateur 16 haute fréquence. Cet oscillateur est mis en oscillation au début de chaque train d'impulsions et chaque impulsion déclenche le balayage de la bande de fréquences d'une extrémité à l'autre, linéairement en fonction du temps. La durée de ce balayage, de l'ordre de 10 μs est une limite inférieure pour les intervalles du train d' impulsions .
Le signal haute fréquence délivré par l'oscillateur est amplifié dans un circuit 17 pour être envoyé vers l'entrée émission du commutateur 9. La réponse émise par 1 ' antenne 8 est un signal ultra-rapide de balayage de toutes les fréquences de la bande 9,2 - 9,5 GHz, avec une période d'émission de 100 μs, synchrone avec toute émission radar reçue. Etant relativement puissants, les circuits d'amplification d'un tel répondeur actuel ont un coût élevé, en particulier les deux transistors du circuit d'amplification du signal de réponse oscillant. En plus de cet inconvénient, il y a le fait que le répondeur ne fonctionne plus dès qu'un de ces deux transistors tombe en panne, puisqu'ils sont montés en série. Un troisième inconvénient vient de l'antenne unique d'émission- réception qui oblige à utiliser un commutateur pour commuter les voies réception et émission du système, occasionnant des problèmes de pertes et de limitations en puissance. Enfin, le montage électronique présente des difficultés de réalisation en raison de l'équilibrage des fils entre l'amplificateur d'émission et l'antenne, entraînant des durées d'assemblage longues donc coûteuses .
Le but de l'invention est de résoudre ces différents inconvénients en proposant un répondeur radar doté d'une antenne de réception et d'une antenne d'émission distinctes, celle-ci étant constituée de plusieurs brins actifs, alimentés indépendamment les uns des autres et parfaitement équilibrés en amplitude et en phase en raison de la constitution même de la voie d'émission du répondeur. Cette antenne d'émission peut notamment être réalisée sur un circuit imprimé cylindrique ainsi que l'antenne de réception, ces deux circuits étant empilés pour réaliser les fonctions émission et réception. Pour alimenter de façon indépendante et équilibrée les différents brins actifs de l'antenne d'émission, le dispositif d'alimentation de cette antenne est intégré sur un seul circuit imprimé, connecté directement aux différents brins.
Pour cela, l'objet de l'invention est un répondeur radar maritime comprenant une antenne omnidirectionnelle de réception d'ondes radar associée à une voie de réception, une antenne omnidirectionnelle d'émission d'ondes radar associée à une voie d'émission comprenant un circuit générateur de balayage relié à un circuit oscillateur dont la sortie est connectée à un circuit d'amplification, caractérisé en ce que l'antenne d'émission est constituée par un nombre entier n, supérieur à trois, de brins actifs émettant n signaux identiques de polarisation rectiligne horizontale et en ce que le circuit d'amplification de la voie d'émission est constitué par un premier étage "driver" à transistor et un second étage en pont diviseur de type Wilkinson réalisé par n transistors, tous identiques au transistor du premier étage "driver" et relié chacun d'une part, par un circuit adaptateur d'impédance d'entrée, au premier étage "driver" et d'autre part, par un circuit adaptateur d'impédance de sortie, à un brin actif de l'antenne. Selon une autre caractéristique du répondeur radar selon l'invention, la voie d.' émission d'un signal radar alimentant les brins actifs de l'antenne d'émission est réalisée à partir d'un circuit imprimé sur une première face d'une plaquette de substrat diélectrique où sont gravées les connections électriques entre les transistors ainsi que les circuits d'adaptation d'impédance et de couplage. Les brins actifs de l'antenne d'émission sont alors de préférence connectés électriquement directement sur la seconde face de la plaquette, aux circuits adaptateurs d'impédance de sortie à travers des trous percés dans ladite plaquette diélectrique. Ils peuvent être également connectés aux circuits adaptateurs d'impédance de sortie par l'intermédiaire de câbles coaxiaux semi-rigides. Un tel répondeur est beaucoup plus performant que ceux de l'art antérieur en raison de sa réalisation sur circuit imprimé, supprimant les pertes le long des fils de connexion électrique et réalisant, grâce à l'utilisation de transistors tous identiques, un excellent équilibrage en amplitude et en phase des brins rayonnants de l'antenne d'émission.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un exemple de réalisation, cette description étant faite en relation avec les dessins joints dans lesquels, outre les trois premières figures déjà décrites qui sont :
- la figure 1 : une représentation schématique de l'image du répondeur produite sur l'écran d'un radar
5. de recherche ;
- la figure 2 : une vue en perspective d'un répondeur radar à ' antenne cylindrique omnidirectionnelle actuelle ;
- la figure 3 : un schéma électronique d'un répondeur 0 selon un mode de réalisation de l'art antérieur ;
- la figure 4 est un schéma électronique d'un répondeur radar maritime selon 1 ' invention ;
- la figure 5 est un schéma d'un exemple de circuit imprimé réalisant la partie émission du répondeur 5 selon 1 ' invention ;
- la figure 6 est un diagramme de rayonnement d'un répondeur selon l'invention.
Comme le montre la figure 4, le répondeur radar maritime selon 1 ' invention est doté de deux antennes 0 distinctes, l'une 18 pour la réception des signaux émis par les radars de recherche et l'autre 19 pour l'émission d'une réponse à destination de ces mêmes radars. L'utilisation de deux antennes distinctes élimine le commutateur des voies réception et émission. 5 L'antenne 19 d'émission est constituée d'au moins quatre éléments ou brins actifs 20 destinés à émettre au moins quatre signaux radar identiques de polarisation rectiligne horizontale, afin de réaliser une antenne émettrice omnidirectionnelle. 0 Comme les répondeurs de l'art antérieur, ce répondeur possède une voie réception, composée d'un amplificateur 10, d'un détecteur 11, d'un amplificateur 12, d'un comparateur 13 et d'un codeur 14, et une voie d'émission, composée d'un modulateur 15, d'un oscillateur 16 et d'un circuit d'amplification 17. Pour que les n = quatre signaux émis soient identiques, il faut que les brins actifs de l'antenne soient parfaitement équilibrés en amplitude et en phase, ce qui est rendu possible à la fois par leur réalisation selon la technique des circuits imprimés et par leur alimentation par des signaux identiques. Pour cela, le circuit d'amplification 17 de la voie émettrice du répondeur comprend un premier étage "driver" , recevant un signal oscillant modulé, réalisé par un transistor 21 et un second étage en pont diviseur de type Wilkinson, réalisé par n = quatre transistors tous identiques au transistor 21 du premier étage et relié chacun d'une part, au premier étage "driver" par un circuit adaptateur d'impédance d'entrée 23, et d'autre part à un des brins de l'antenne par un circuit adaptateur d'impédance de sortie 24. Ce montage présente l'avantage d'assurer un parfait équilibrage des signaux alimentant les brins actifs de l'antenne d'émission, indispensable pour l'obtention d'un diagramme de rayonnement omnidirectionnel sans ondulation de gain et a pour intérêt de permettre le fonctionnement du répondeur même en cas de panne d'un des transistors amplificateurs.
Ces transistors d'amplification tous identiques seront avantageusement identiques aussi au transistor utilisé dans l'amplificateur 10 de la voie de réception du répondeur . Selon un mode de réalisation préférentielle, l'oscillateur 16 et les deux étages d'amplification sont réalisés selon la technique des circuits imprimés sur une face d'une plaquette 25 de substrat diélectrique où sont gravées les connections électriques entre les transistors 21 et 22 ainsi que les différents circuits d'adaptation et de couplage 23 et 24, comme le montre la figure 5. La précision de la gravure, la forme du dessin et la longueur des lignes de couplage, les doses de soudure automatisées limitent les paramètres et contribuent à l'équilibrage des signaux émis par les brins de l'antenne d'émission. Un autre facteur d'équilibre, notamment de l'amplitude des signaux émis, est la réalisation des transistors du circuit d'amplification à partir d'une même tranche de silicium - "wafer" en vocable anglo-saxon -. Enfin, pour minimiser la longueur des connections et éviter l'utilisation de câbles coaxiaux toujours sources de pertes, les brins actifs de l'antenne d'émission sont situés de l'autre côté de la plaquette diélectrique, servant de plan de masse au circuit imprimé, et chacun est relié directement à son propre amplificateur à transistor par des trous 26 percés dans l'épaisseur de la plaquette. En variante, on peut envisager d'alimenter les brins actifs de l'antenne d'émission par l'intermédiaire de câbles coaxiaux semi-rigides afin de déporter l'antenne d'émission par rapport à la plaquette 25 de substrat diélectrique. Préférentiellement, les brins de l'antenne d'émission sont constitués d'éléments rayonnants tels que des carrés imprimés sur une face d'un substrat diélectrique cylindrique et reliés entre eux par des lignes conductrices de façon à former des dipôles rayonnants, dont la base est située à une distance égale à la demi- longueur d'onde de rayonnement du plan de masse de 1 ' antenne .
L'antenne de réception 17 omnidirectionnelle peut être constituée d'éléments rayonnants intercalés entre les brins actifs, disposés par exemple en couronne au- dessus de l'antenne émettrice 18, ou bien de fentes rayonnantes réalisées entre les brins actifs. La figure 6 montre des diagrammes de gain d'un répondeur selon l'invention, comportant une antenne d'émission omnidirectionnelle à quatre brins actifs perpendiculaires les uns aux autres, en fonction de l'angle d'azimuth à différentes fréquences de fonctionnement allant de 9,2 à 9,5 GHz. On remarque que 1 ' antenne du répondeur émet une onde polarisée horizontalement dont le gain est quasi constant, ses variations étant inférieures à 2dB.
Ainsi, grâce à ses deux antennes de réception et d'émission différentes, on réduit le coût et les pertes en puissance et grâce à la réalisation d'une antenne d'émission à plusieurs brins actifs indépendants, on obtient le diagramme de rayonnement désiré et on améliore le gain maximum pour chaque brin, ce qui permet d'associer un amplificateur à transistor à chaque brin tout en réduisant la puissance donc le coût de ces transistors.

Claims

REVENDICATIONS
1. Répondeur radar maritime comprenant une antenne omnidirectionnelle de réception d'ondes radar associée à une voie de réception, une antenne omnidirectionnelle d'émission d'ondes radar associée à une voie d'émission comprenant un circuit générateur de balayage relié à un circuit oscillateur dont la sortie est connectée à un circuit d'amplification, caractérisé en ce que l'antenne d'émission (19) est constituée par un nombre entier n, supérieur à trois, de brins actifs (20) émettant n signaux identiques de polarisation rectiligne horizontale et en ce que le circuit d'amplification (17) de la voie d'émission est constitué par un premier étage "driver" à transistor (21) et un second étage en pont diviseur de type
Wilkinson réalisé par n transistors (22) , tous identiques au transistor (21) du premier étage et relié chacun d'une part, par un circuit adaptateur (23) d'impédance d'entrée, au premier étage "driver" et d'autre part, par un circuit adaptateur (24) d'impédance de sortie, à un brin actif de l'antenne.
2. Répondeur radar selon la revendication 1, caractérisé en ce que les circuits de la voie d'émission d'un signal radar alimentant les brins actifs (20) de l'antenne d'émission (19) sont réalisés à partir d'un circuit imprimé sur une première face d'une plaquette de substrat diélectrique (25) où sont gravées les connections électriques entre les transistors (21, 22) ainsi que les circuits d'adaptation d'impédance (23, 24).
3. Répondeur radar selon la revendication 2 , caractérisé en ce que les brins actifs (20) de ladite antenne d'émission sont électriquement connectés, directement sur la seconde face de la plaquette (25) , aux circuits adaptateurs d'impédance (24) de sortie à travers des trous (26) percés dans ladite plaquette diélectrique .
4. Répondeur radar selon la revendication 2 , caractérisé en ce que les brins actifs (20) de ladite antenne d'émission sont électriquement connectés aux circuits adaptateurs d'impédance (24) de sortie par l'intermédiaire de câbles coaxiaux semi-rigides.
5. Répondeur radar selon l'une des revendications 1 à 4, caractérisé en ce que, dans le circuit d'amplification (17) de la voie d'émission, les n transistors (22) du second étage en pont diviseur de type Wilkinson sont tous identiques au transistor (21) du premier étage "driver", et obtenus à partir de la même tranche de silicium.
6. Répondeur radar selon la revendication 5 , caractérisé en ce que la voie de réception associée à l'antenne de réception (18) comporte un circuit amplificateur (10) du signal radar reçu réalisé à partir d'au moins un transistor identique aux transistors (21, 22) du circuit d'amplification de la voie d'émission.
7. Répondeur radar selon l'une des revendications 1 à 6, caractérisé en ce que les brins (20) actifs de l'antenne d'émission (19) sont constitués d'éléments rayonnants imprimés sur une face d'un substrat diélectrique cylindrique et reliés entre eux par des lignes conductrices imprimées de façon à former des dipôles rayonnants, dont la base est située à une distance égale à la demi-longueur d'onde de rayonnement du plan de masse de 1 ' antenne .
8. Répondeur radar selon la revendication 7 , caractérisé en ce que 1 ' antenne omnidirectionnelle de réception (17) est constituée d'éléments rayonnants intercalés entre les brins actifs, disposés en couronne au-dessus de l'antenne d'émission (19).
9. Répondeur radar selon la revendication 7 , caractérisé en ce que l'antenne omnidirectionnelle de réception (17) est constituée de fentes rayonnantes réalisées entre les brins actifs de l'antenne d' émission (19) .
PCT/FR2002/002921 2001-08-21 2002-08-20 Repondeur radar maritime WO2003019228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/10939 2001-08-21
FR0110939A FR2828935B1 (fr) 2001-08-21 2001-08-21 Repondeur radar maritime

Publications (1)

Publication Number Publication Date
WO2003019228A1 true WO2003019228A1 (fr) 2003-03-06

Family

ID=8866618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002921 WO2003019228A1 (fr) 2001-08-21 2002-08-20 Repondeur radar maritime

Country Status (2)

Country Link
FR (1) FR2828935B1 (fr)
WO (1) WO2003019228A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578733B2 (en) * 2016-02-05 2020-03-03 Honeywell International Inc. Low-power X band beacon transponder
US10684365B2 (en) 2017-08-22 2020-06-16 Honeywell International Inc. Determining a location of a runway based on radar signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360813A (en) * 1980-03-19 1982-11-23 The Boeing Company Power combining antenna structure
FR2674689A1 (fr) * 1991-03-29 1992-10-02 Ct Reg Innovat Transfert Tech Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes.
US5911454A (en) * 1996-07-23 1999-06-15 Trimble Navigation Limited Microstrip manufacturing method
EP1049195A2 (fr) * 1999-04-26 2000-11-02 Andrew AG Structure d' antenne et leur installation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360813A (en) * 1980-03-19 1982-11-23 The Boeing Company Power combining antenna structure
FR2674689A1 (fr) * 1991-03-29 1992-10-02 Ct Reg Innovat Transfert Tech Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes.
US5911454A (en) * 1996-07-23 1999-06-15 Trimble Navigation Limited Microstrip manufacturing method
EP1049195A2 (fr) * 1999-04-26 2000-11-02 Andrew AG Structure d' antenne et leur installation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BILLETTER D R: "Multifunction Array Radar", MULTIFUNCTION ARRAY RADAR, BOSTON, MA: ARTECH HOUSE, US, PAGE(S) 147-149, ISBN: 0-89006-359-1, XP002198357 *

Also Published As

Publication number Publication date
FR2828935A1 (fr) 2003-02-28
FR2828935B1 (fr) 2003-11-07

Similar Documents

Publication Publication Date Title
WO1991009435A1 (fr) Antenne iff aeroportee a diagrammes multiples commutables
EP3329550B1 (fr) Dispositif d'emission/reception et antenne associee
CA1247216A (fr) Radioaltimetre a modulation de frequence
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
BE1019955A3 (fr) Systeme de surveillance pour un emetteur-recepteur doppler.
WO1998039666A1 (fr) Antenne pour l'emission et/ou la reception de signaux a polarisation rectiligne
EP1074064B1 (fr) Appareil de poursuite de satellites a defilement
WO2003019228A1 (fr) Repondeur radar maritime
EP1152258B1 (fr) Radar bas coût, notamment à imagerie à haute résolution
EP0585250B1 (fr) Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes
ES2929823T3 (es) Sistema y método para transmitir información desde un satélite radar de apertura sintética a un receptor cliente
EP0638956B1 (fr) Antenne active à balayage électronique en azimut et en élévation, en particulier pour l'imagerie hyperfréquence par satellite
EP2446507B1 (fr) Procédé d'aide au pointage d'une antenne, antenne à pointage assisté mettant en oeuvre ce procédé et terminal nomade comportant une telle antenne
FR3049397B1 (fr) Antenne bi-boucle pour engin immerge
EP3321711A1 (fr) Dispositif de reception pour antenne a balayage electronique apte a fonctionner en mode radar et resm, et radar equipe d'un tel dispositif
WO1991011061A1 (fr) Systeme de communication haut-debit dans un milieu aquatique entre deux stations
EP3521851B1 (fr) Dispositif et procédé d'émission/réception de signaux radioélectriques
CA2002465A1 (fr) Procede pour echanger discretement des signaux electromagnetiques entre un premier et un second poste emetteur-recepteur, et systeme pour la mise en oeuvre de ce procede
EP0429349A1 (fr) Procédé et installation de transmission de signal à large bande à partir d'un équipement mobile
CH292111A (fr) Installation radio-électrique indicatrice de direction.
FR3011394A1 (fr) Radar integre a une mature de navire et dispositif de focalisation utilise dans un tel radar
FR2773269A1 (fr) Dispositif large bande de detection, notamment de radars
FR2934100A1 (fr) Dispositif d'emission et de reception emettant en polarisation inclinee et recevant selon deux polarisations orthogonales
FR2931949A1 (fr) Balise de detresse compacte
FR2690585A1 (fr) Dispositif de communication par satellite, satellite comprenant un tel dispositif et un procédé de communication entre de tels dispositifs.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP