WO2003011772A1 - A process for the removal of heavy metals by actinomycete - Google Patents
A process for the removal of heavy metals by actinomycete Download PDFInfo
- Publication number
- WO2003011772A1 WO2003011772A1 PCT/IN2001/000143 IN0100143W WO03011772A1 WO 2003011772 A1 WO2003011772 A1 WO 2003011772A1 IN 0100143 W IN0100143 W IN 0100143W WO 03011772 A1 WO03011772 A1 WO 03011772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biomass
- aqueous solution
- group
- actinomycete
- pta
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/286—Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Definitions
- the present invention relates to a process for the removal of heavy metal ions from aqueous solutions using metal tolerant alkalophilic actinomycete.
- Waste water from many industrial processes such as metal finishing, electroplating, paint and the like contain several heavy metal ions which are toxic in nature and harmful to the environment while a few of such metal ions such as gold or silver or platinum and the like are valuable. It is therefore extremely important to recover metal ions from wastes in order to control pollution and recover valuable metals.
- Heavy metals which commonly occur as pollutants in effluents are Cu, Zn, Cd, Fe, Hg, Pb, Ni, Ag, Au and radionuclides such as U, Th and the like. According to the US Environmental Protection Agency, the acceptable value of heavy metal ion is usually less than 1 mgL (lppm). Although the total amount of metals released by such activities is large, concentrations are typically low rendering most prior art recovery techniques impractical.
- the existing processes for removal of heavy metals include solvent extraction, hydroxide precipitation (lime addition), evaporative concentration, electrowinning, membrane concentration, ion exchange processes, adsorption, reverse osmosis and biological methods. However, all the above methods known in the art suffer from several disadvantages.
- Amoroso et al report the isolation of 25 new strains of Streptomyces from polluted sites which are disclosed as being capable of growth in the presence of 5.9 to 59 ppm of Ni [Amoroso, M. J., Schubert, D., Mitscherlich, P., Schumann, P., Kothe, E, (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces, J. Basic Microbiol, 40, 295 - 301]. However, this reference is silent on the use of theses organisms for the removal of heavy metals including Ni from aqueous solutions.
- Bose and Paul report the screening of 32 isolates of actinomycetes for tolerance to Cr+6 in concentrations ranging from 200 - 1000 ppm in agar medium [Bose, M., and Paul, A. K., (1999), Chromium resistant actinomycetes: their tolerance to other metals and antibiotics, Ada. Microbiol. Immunol. Hung., 46, 25 - 32].
- this reference is silent on the use of any of the disclosed organisms for the removal of metals from aqueous solutions.
- Biosorption of metals is due to the binding of metal ions to various cell constituents, primarily the cell wall. As organisms vary widely in cell wall composition, their capacity to bind metals also varies. Thus different organisms bind metals to different extents.
- the main object of the invention is to provide a process for the removal of heavy metal ions from media/aqueous solutions using alkalophilic or alkalotolerant actinomycetes.
- the present invention relies on the ability of alkalophilic actinomycete to tolerate and adsorb heavy metals during growth. Significant quantities of heavy metals are also taken up from aqueous solutions by pre-grown biomass.
- the term 'biomass' as used herein refers to the cellular mass of the microorganism produced as a result of growth.
- the present invention provides a process for the uptake of heavy metals from aqueous solution comprising using an alkalophilic or alkalotolerant actinomycete to uptake the heavy metals.
- the heavy metal uptake from the aqueous solution is achieved by contacting the said aqueous solution with the alkalophilic or alkalotolerant actinomycete biomass.
- the heavy metal uptake from aqueous solution is achieved by growing the alkalophilic or alkalotolerant actinomycete in aqueous solution.
- the alkalophhilic actinomycete comprises PTA 3422.
- the heavy metal ion is selected from the group comprising of Co, Cu, Cr, Ni, Pb, Zn, Ag, Cd, Pt, Au and any mixture thereof.
- the process comprises growing PTA 3422 in a medium containing carbon and nitrogen sources and metal ions selected from the group consisting of cobalt chloride, cupric chloride, potassium dichromate, nickel nitrate, lead nitrate, zinc sulphate and any mixture thereof, in a temperature ranging between 20 - 45°C and a pH in the range of 7.5 to 11 for a period of 1 - 4 days with constant stirring.
- a medium containing carbon and nitrogen sources and metal ions selected from the group consisting of cobalt chloride, cupric chloride, potassium dichromate, nickel nitrate, lead nitrate, zinc sulphate and any mixture thereof, in a temperature ranging between 20 - 45°C and a pH in the range of 7.5 to 11 for a period of 1 - 4 days with constant stirring.
- the process comprises incubating the said metal solutions singly or in combination with a . pre-grown biomass of PTA 3422 at a temperature in the range of 15 - 50°C at a pH in the range of 3 - 11 for 10 minutes to 24 hours with shaking/stirring.
- the heavy metal is recovered from the biomass by the use of dilute acids or salts or chelating agents.
- the dilute acid is selected from the group consisting of hydrochloric acid, lactic acid, nitric acid and sulphuric acid.
- the salts are selected from the group consisting of sodium chloride, MgSO 4 and Na 2 SO .
- the chelating agent comprises EDTA.
- Figure 1 is a graphical representation of the effect of nickel concentration in the biomass in accordance with example 3.
- Figure 2 is a graphical representation of the effect of pH on biosorption of nickel in accordance with example 4.
- Figure 3 is a graphical representation of the effect of co-ions on the adsorption on Ni in the biomass in accordance with example 5.
- Figure 4 is a graphical representation of the effect of Co-ions on the uptake of Zn in accordance with example 7. Detailed description of the invention
- the invention relates to a process for the removal of heavy metal ions using an alkalophilic actinomycete isolate.
- the isolate PTA 3422 jgrows at alkaline pH and can tolerate and grow in the presence of high levels of heavy metals such as chromium ions and produce alkaline protease (Indian Patent Applications 373/Del 94 and 431/Del/97). This organism can also tolerate other heavy metal ions such as Co, Cu, Ni, Pb and Zn.
- the published reports on heavy metal removal pertain predominantly to studies on bacteria growing at neutral or slightly alkaline pH. There are no reports on tolerance to heavy metals or accumulation by mycelial actinomycetes. Actinomycete designated PTA 3422 is isolated from its natural habitat of Sambhar Lake, Bengal, India.
- the culture grows at alkaline pH in the presence of high concentration of Cr (up to 5000 ppm) supplemented either as Cr 3+ or Cr 6+ to the medium.
- PTA 3422 formed whitish to pale cream coloured aerial mycelium on alkaline mikami agar (g/L: beef extract 5; peptone 5, yeast extract 1.5 and glucose 1.5).
- Cell wall analysis indicated the presence of only m- DAP.
- the culture grows well between pH 7 - 11 and 25 to 45°C and utilises various inorganic sources such as NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , NEU OIJ, (NHU) 2 SO 4 , as well as organic nitrogen sources such as peptone, yeast extract, casein, soyabean meal, sugars such as glucose, galactose, mannose, and sugar alcohols such as glycerol, mannitol, sorbitol and starch as carbon sources.
- various inorganic sources such as NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , NEU OIJ, (NHU) 2 SO 4 , as well as organic nitrogen sources such as peptone, yeast extract, casein, soyabean meal, sugars such as glucose, galactose, mannose, and sugar alcohols such as glycerol, mannitol, sorbitol and starch as carbon sources.
- Table 1 The morphological characteristics of the organism when grown on various agar media are provided in Table 1 below: Table 1: morphological and cultural characteristics of organism grown on different agar cultures
- the heavy metal uptake from the aqueous solution is achieved by contacting the said aqueous solution with the alkalophilic or alkalotolerant actinomycete biomass or by growing the alkalophilic or alkalotolerant actinomycete in said aqueous solution.
- the heavy metal ion can be any of Co, Cu, Cr, Ni, Pb, Zn, Ag, Cd, Pt, Au and any mixture thereof.
- PTA 3422 is .grown in a medium containing carbon and nitrogen sources and metal ions selected from cobalt chloride, cupric chloride, potassium dichromate, nickel nitrate, lead nitrate, zinc sulphate and any mixture thereof, in a temperature ranging between 20 - 45°C and a pH in the range of 7.5 to 11 for a period of 1 - 4 days with constant stirring.
- the metal solutions singly or in combination can also be incubated with a pre-grown biomass of PTA 3422 at a temperature in the range of 15 - 50°C at a pH in the range of 3 - 11 for 10 minutes to 24 hours with shaking/stirring.
- the heavy metal is recovered from the biomass by the use of dilute acids such as hydrochloric acid, lactic acid, nitric acid and sulphuric acid or salts such as sodium chloride, MgSO and Na 2 SO or a chelating agent such as EDTA etc.
- dilute acids such as hydrochloric acid, lactic acid, nitric acid and sulphuric acid or salts such as sodium chloride, MgSO and Na 2 SO or a chelating agent such as EDTA etc.
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours.
- the biomass was filtered, washed thoroughly and suspended in deionized water and adjusted to pH of 6 - 7. It was then mixed with one of the following metal solutions (100 ppm effective concentration) viz. silver, cobalt, copper, nickel, zinc (adjusted to pH 5 - 7) and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and metal content in the biomass was estimated by atomic absorption spectrometer after acid digestion of the biomass. The removal of silver, copper cobalt from the solution ranged from 60 - 82% (see Table 3).
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours. The biomass was filtered, washed thoroughly and suspended in deionised water and adjusted to neutral pH. It was then mixed with nickel solution (to give varying effective concentrations of 10 - 100 ppm) and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and nickel content in the biomass was estimated by atomic absorption spectrometer after acid digestion of the biomass. The metal content in the biomass increases with increasing concentration and 70 - 95% nickel was removed from solution, (figure 1).
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours.
- the biomass was filtered, washed thoroughly and" suspended in deionized water and adjusted to different pH in the range of 3 - 8. It was then mixed with nickel solution of corresponding pH (adjusted previously in the range of 3 - 8) and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and nickel content in the biomass was estimated using atomic absorption spectrometer after acid digestion of the biomass.
- the metal content in the biomass increases with increase in pH up to 7 and decreased with further increase. About 90% of the Ni was removed from the solution within 1 hour. ( Figure 2).
- Example 5 Example 5
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours. The biomass was filtered, washed thoroughly and suspended in deionized water and adjusted to pH 7. It was then mixed with nickel solution containing one or more heavy metals adjusted to pH 7 and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and nickel content in the biomass was estimated using atomic absorption spectrometer after acid digestion of the biomass. The nickel content in the biomass is unaffected by the presence of other metals such as Co, Cr, Pb, and Zn in the solution. ( Figure 3).
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours. The biomass was filtered, washed thoroughly and suspended in deionized water and adjusted to pH 6. It was then mixed with zinc solution adjusted to pH 6 and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and zinc content in the biomass was estimated using atomic absorption spectrometer after acid digestion of the biomass. The zinc content in the biomass and percentage zinc removal from the aqueous solution ranged between 10 - 35 mg/g and 70 to > 90% respectively depending on the initial zinc concentration (25 - 100 ppm).
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours. The biomass was filtered, washed thoroughly and suspended in deionized water and adjusted to pH 7. It was then mixed with a mixture of metal containing zinc (adjusted to pH 7) and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and zinc content in the biomass was estimated using atomic absorption spectrometer after acid digestion of the biomass. The zinc content in the biomass was around 14 mg/g and zinc removal was not affected by the presence of other metals such as Ni, Cd, Cr, Pb and > 90 % zinc was removed from the solution. ( Figure 4).
- PTA 3422 was grown in liquid alkaline Mikami for 24 hours. The biomass was filtered, washed thoroughly and suspended in deionized water and adjusted to pH 7. It was then mixed with 100 ppm of nickel and incubated with shaking at 28°C. After one hour, the biomass was filtered, washed thoroughly and nickel content in the biomass was estimated using atomic absorption spectrometer after acid digestion of the biomass. The nickel in the biomass was recovered by incubating with an eluent for 2 hours with shaking. The recovery of nickel was between 50 - 98% depending on the choice of eluent as given in Table 4.
- the process of the invention results in reduction of pollution due to the absence of toxic metals such as Ni in the effluent stream
- the process also provides an economical route to recover precious metals such as gold, silver or platinum in good yield.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IN2001/000143 WO2003011772A1 (en) | 2001-08-03 | 2001-08-03 | A process for the removal of heavy metals by actinomycete |
EP01956759A EP1412294A1 (en) | 2001-08-03 | 2001-08-03 | A process for the removal of heavy metals by actinomycete |
APAP/P/2003/002776A AP2003002776A0 (en) | 2001-08-03 | 2001-08-03 | A process for the removal of heavy metals by actinomycete |
NO20031459A NO20031459L (en) | 2001-08-03 | 2003-03-31 | A process for the removal of heavy metals by means of actinomyces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IN2001/000143 WO2003011772A1 (en) | 2001-08-03 | 2001-08-03 | A process for the removal of heavy metals by actinomycete |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003011772A1 true WO2003011772A1 (en) | 2003-02-13 |
Family
ID=11076372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2001/000143 WO2003011772A1 (en) | 2001-08-03 | 2001-08-03 | A process for the removal of heavy metals by actinomycete |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1412294A1 (en) |
AP (1) | AP2003002776A0 (en) |
NO (1) | NO20031459L (en) |
WO (1) | WO2003011772A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933541A1 (en) | 2006-12-13 | 2008-06-18 | Vodafone Holding GmbH | Communications unit for receiving information |
CN102814058A (en) * | 2012-09-17 | 2012-12-12 | 工信华鑫科技有限公司 | Method for implementing nickel-magnesium separation, enrichment and purification by using heavy metal adsorbing material |
CN103663663A (en) * | 2013-12-18 | 2014-03-26 | 湘潭大明机电科技有限公司 | Efficient composite heavy metal chelating agent |
CN104404256A (en) * | 2014-12-01 | 2015-03-11 | 湖南科技大学 | Green and environment-friendly method for recycling silver in wastewater |
CN104743655A (en) * | 2015-03-04 | 2015-07-01 | 陕西理工学院 | Processing aid for ammonia nitrogen-containing wastewater and preparation method of processing aid |
CN104941575A (en) * | 2014-03-25 | 2015-09-30 | 南京农业大学 | Multi-amino carbon composite material for selectively fixing mercury, chromium and lead in polluted soil and preparation method |
CN105585064A (en) * | 2015-09-30 | 2016-05-18 | 太仓碧奇新材料研发有限公司 | Preparation method for sulfonated coal composite material capable of enriching lanthanum ions in tailing wastewater |
CN110255769A (en) * | 2019-07-02 | 2019-09-20 | 佰仕邦水处理环保科技(大连)有限公司 | A kind for the treatment of process of the aqueous solution for terephthalic acid production plant |
CN110484263A (en) * | 2019-07-02 | 2019-11-22 | 广东省生态环境技术研究所 | A kind of compound leaching agent and its application |
FR3117105A1 (en) * | 2020-12-09 | 2022-06-10 | Afig'eo | Method and system for treating metals dissolved in a solution |
CN116803931A (en) * | 2023-08-15 | 2023-09-26 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
-
2001
- 2001-08-03 AP APAP/P/2003/002776A patent/AP2003002776A0/en unknown
- 2001-08-03 WO PCT/IN2001/000143 patent/WO2003011772A1/en not_active Application Discontinuation
- 2001-08-03 EP EP01956759A patent/EP1412294A1/en not_active Withdrawn
-
2003
- 2003-03-31 NO NO20031459A patent/NO20031459L/en not_active Application Discontinuation
Non-Patent Citations (4)
Title |
---|
AMOROSO M J ET AL: "SCREENING OF HEAVY METAL-TOLERANT ACTINOMYCETES ISOLATED FROM THE SALI RIVER", JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, vol. 44, no. 2, April 1998 (1998-04-01), pages 129 - 132, XP008000895 * |
KEFALA M. I. ET AL.: "Biosorption of cadmium ions by Actinomycetes and separation by flotation", ENVIRONMENTAL POLLUTION, vol. 104, 1999, pages 283 - 293, XP002191058 * |
MATIS K A ET AL: "Biosorptive Flotation in Metal Ions Recovery", SEPARATION SCIENCE AND TECHNOLOGY, vol. 29, 1994, pages 1055 - 1071, XP008000877 * |
MATIS K A ET AL: "FLOTATION OF CADMIUM-LOADED BIOMASS", BIOTECHNOLOGY AND BIOENGINEERING. INCLUDING: SYMPOSIUM BIOTECHNOLOGY IN ENERGY PRODUCTION AND CONSERVATION, JOHN WILEY & SONS. NEW YORK, US, vol. 44, no. 3, 1 July 1994 (1994-07-01), pages 354 - 360, XP000443857, ISSN: 0006-3592 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933541A1 (en) | 2006-12-13 | 2008-06-18 | Vodafone Holding GmbH | Communications unit for receiving information |
CN102814058A (en) * | 2012-09-17 | 2012-12-12 | 工信华鑫科技有限公司 | Method for implementing nickel-magnesium separation, enrichment and purification by using heavy metal adsorbing material |
CN103663663A (en) * | 2013-12-18 | 2014-03-26 | 湘潭大明机电科技有限公司 | Efficient composite heavy metal chelating agent |
CN104941575A (en) * | 2014-03-25 | 2015-09-30 | 南京农业大学 | Multi-amino carbon composite material for selectively fixing mercury, chromium and lead in polluted soil and preparation method |
CN104404256A (en) * | 2014-12-01 | 2015-03-11 | 湖南科技大学 | Green and environment-friendly method for recycling silver in wastewater |
CN104743655A (en) * | 2015-03-04 | 2015-07-01 | 陕西理工学院 | Processing aid for ammonia nitrogen-containing wastewater and preparation method of processing aid |
CN105585064A (en) * | 2015-09-30 | 2016-05-18 | 太仓碧奇新材料研发有限公司 | Preparation method for sulfonated coal composite material capable of enriching lanthanum ions in tailing wastewater |
CN110255769A (en) * | 2019-07-02 | 2019-09-20 | 佰仕邦水处理环保科技(大连)有限公司 | A kind for the treatment of process of the aqueous solution for terephthalic acid production plant |
CN110484263A (en) * | 2019-07-02 | 2019-11-22 | 广东省生态环境技术研究所 | A kind of compound leaching agent and its application |
FR3117105A1 (en) * | 2020-12-09 | 2022-06-10 | Afig'eo | Method and system for treating metals dissolved in a solution |
WO2022122743A1 (en) * | 2020-12-09 | 2022-06-16 | Afig'eo | Method and system for treating metals dissolved in a solution |
CN116803931A (en) * | 2023-08-15 | 2023-09-26 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
CN116803931B (en) * | 2023-08-15 | 2024-03-08 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
Also Published As
Publication number | Publication date |
---|---|
EP1412294A1 (en) | 2004-04-28 |
NO20031459L (en) | 2003-05-19 |
NO20031459D0 (en) | 2003-03-31 |
AP2003002776A0 (en) | 2003-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ezzouhri et al. | Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco | |
Nourbakhsh et al. | A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters | |
Cheung et al. | Toxic effect of landfill leachate on microalgae | |
Maitra et al. | Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems | |
Saranraj et al. | Microbial bioremediation of chromium in tannery effluent: a review | |
Siddiquee et al. | Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens) | |
Berthelin et al. | Effect of microorganisms on mobility of heavy metals in soils | |
WO2003011772A1 (en) | A process for the removal of heavy metals by actinomycete | |
Daboor et al. | Heavy metal adsorption of Streptomyces chromofuscus K101 | |
Irawati et al. | The potential capability of bacteria and yeast strains isolated from Rungkut Industrial Sewage in Indonesia as a bioaccumulators and biosorbents of copper | |
Sadhukhan et al. | Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta | |
Krauss et al. | Effects of pollution on aquatic hyphomycetes | |
Parameswari et al. | Biosorption of chromium (VI) and nickel (II) by bacterial isolates from an aqueous solution | |
US20220220016A1 (en) | Manganese-oxidizing fungus and uses thereof | |
Baillet et al. | Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass | |
Nanganuru et al. | Studies on biosorption of cadmium by Pseudomonas putida | |
El-Gendy et al. | Multimetal bioremediation from aqueous solution using dead biomass of Mucor sp. NRCC6 derived from detergent manufacturing effluent | |
Essa et al. | Biogenic volatile compounds of activated sludge and their application for metal bioremediation | |
Rehman et al. | Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment | |
Lin et al. | Effects of Cu (II) and Zn (II) on growth and cell morphology of thraustochytrids isolated from fallen mangrove leaves in Taiwan | |
Vesper et al. | Microbial removal of lead from solid media and soil | |
Jackson | Effects of clay minerals, oxyhydroxides, and humic matter on microbial communities of soil, sediment, and water | |
KR100693865B1 (en) | 0210-09 [-11368] Development of the isolate Pseudomonas fluorescens HYK0210-SK09 against the harmful diatom in fresh water growth control method and bio-agent using the isolate | |
Al Turk et al. | Heavy metals removal from raw industrial wastewater by halophilic actinomycetes isolated from Saudi saline soil | |
ZA200302502B (en) | A process for the removal of heavy metals by actinomycetes. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EE ES FI GB GD GE GH GM HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ PL PT RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZW AM AZ BY KG KZ MD TJ TM AT BE CH CY DE DK ES FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001956759 Country of ref document: EP Ref document number: 2003/02502 Country of ref document: ZA Ref document number: AP/P/2003/002776 Country of ref document: AP Ref document number: 200302502 Country of ref document: ZA |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1373/DELNP/2003 Country of ref document: IN |
|
WWP | Wipo information: published in national office |
Ref document number: 2001956759 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001956759 Country of ref document: EP |