WO2003010781A2 - Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique - Google Patents

Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique Download PDF

Info

Publication number
WO2003010781A2
WO2003010781A2 PCT/FR2002/002562 FR0202562W WO03010781A2 WO 2003010781 A2 WO2003010781 A2 WO 2003010781A2 FR 0202562 W FR0202562 W FR 0202562W WO 03010781 A2 WO03010781 A2 WO 03010781A2
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
conductor
heat treatment
coating
precursor
Prior art date
Application number
PCT/FR2002/002562
Other languages
English (en)
Other versions
WO2003010781A3 (fr
Inventor
Jean-Michel Rey
Sandrine Marchant
Arnaud Devred
Eric Prouzet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2003516073A priority Critical patent/JP2004536435A/ja
Priority to EP02790199A priority patent/EP1410405B8/fr
Priority to DE60215506T priority patent/DE60215506D1/de
Publication of WO2003010781A2 publication Critical patent/WO2003010781A2/fr
Publication of WO2003010781A3 publication Critical patent/WO2003010781A3/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Processes peculiar to the manufacture or treatment of filaments or composite wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661After-treatment, e.g. patterning
    • H10N60/0716Passivation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber

Definitions

  • the present invention relates to a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor.
  • the precursor is, according to a variant of the invention, in the form of a flexible impregnated fabric, allowing the shaping of the conductor which one wants to isolate and, in certain cases, ensures the control of the thickness and determines the geometric precision of windings produced by means of the conductor.
  • the precursor is sintered and the electrical insulation thus formed " absorbs the mechanical forces exerted on the conductor during subsequent phases of assembly and
  • the ceramic nature of the insulation produced allows operating temperatures ranging from 1.8 K to 1270 K.
  • materials with superconductive properties and the ability to circulate high current densities require heat treatment at a high temperature (above 600 ° C for Nb 3 Sn and 700 ° C for Nb 3 Al), of long duration (more than 100 hours for Nb 3 Sn and of the order of a few tens of hours for Nb 3 Al) and in the presence of 'an inert or vacuum atmosphere.
  • the temperature conditions mentioned above prohibit the use of conventional electrical insulations, made from organic products, during the heat treatment.
  • the superconductive material obtained at the end of this heat treatment is fragile and any mechanical stresses which are likely to be applied to it can easily deteriorate its superconductive properties.
  • Winding transfer operations are particularly delicate and, to date, have never allowed mass production of complex windings (of the dipole or quadrupole type), of large size (in particular of length greater than 1 meter), using Nb 3 Sn superconductors.
  • the cost of the superconductive materials used (of the order of 750 € / g to 2000 € / kg depending on the production methods used) as well as the processing time and the duration of the winding operations represent more than 30% of the manufacturing cost.
  • superconductive electromagnets The risk associated with transferring the reaction mold (in which the superconductor precursor is transformed into a superconductor) to the impregnation mold is therefore very significant.
  • EP-A-0044144 (invention of G.R. Sutcliffe, S.J. arden and D. Humpherson), corresponding to US-A- 4,407,062.
  • the present invention aims to remedy the drawbacks of known techniques for manufacturing electrically insulating sheaths on electrical conductors, particularly those made of superconductive materials.
  • the subject of the invention is a method of manufacturing an electrical insulator which can be deposited on an electrical conductor or with which one can wrap this conductor, in particular in the case of a conductor intended to be wound, the method allowing to wrap the conductor with the insulation or to deposit the latter, before the conductor is wound.
  • This method also aims to leave a certain flexibility to the conductor thus coated, this flexibility making it possible to bend, in particular to wind, this conductor.
  • this process allows the synthesis of a ceramic material during a heat treatment.
  • the invention leads to the following results, in particular in the case of a superconductive conductor: - the electrical insulation of the conductor is adequate,
  • the winding advantageously has a certain porosity to liquid helium.
  • the ceramic insulation produced in accordance with the invention has no organic phase after the heat treatment and does not require the addition of an organic phase to obtain its electrical insulation properties.
  • this insulator is formed from a ceramic matrix reinforced with short ceramic fibers.
  • the subject of the present invention is a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor, in particular a non-superconductive metal conductor or a superconductor precursor conductor, this method being characterized in that that it includes the steps of:
  • this heat treatment being able to form the ceramic from the ceramic precursor in gelled form.
  • the ceramic precursor is a liquid constituted by a solution comprising water, a mineral component, chosen from boehmite and clays of the kaolin family, and an organic binder and reacting the mineral component with an acid to gel the solution and thus obtain the ceramic precursor in gel form.
  • the acid can be chosen from the group comprising boric acid, citric acid, hydrochloric acid, nitric acid and carboxylic acids, preferably formic acid.
  • the solution may further comprise glass frit and / or at least one additional mineral oxide.
  • the solution comprises, in percentage by mass, 35% to 45% of water, 8% to 30% of the mineral component, 1% to 10% of organic binder, 0% to 15 % of one or a plurality of additional mineral oxides and an optional complement of glass frit, this optional addition of glass frit ranging, of course, from 0% to 56%.
  • the mass percentage of the mineral component ranges from 15% to 30% in this solution, the possible addition of glass frit then going, of course, from 0% to 49%.
  • Each additional mineral oxide can be chosen from the group comprising alumina, zirconia, silica and silico-aluminous clays.
  • this process further comprises a step of removing the organic binder after the step of forming the coating, this removal step starting before the heat treatment step suitable to form the ceramic but ending during this heat treatment step, so that these two steps overlap partially in time.
  • the method further comprises a step of removing the organic binder by reaction with oxygen, after the step of forming the coating.
  • the conductor is a precursor of the superconductor Nb 3 Sn or Nb 3 Al and an overall heat treatment of this conductor provided with the coating is carried out, this heat treatment overall being carried out in a neutral atmosphere and capable of forming the superconductor Nb 3 Sn or Nb 3 Al, remove the organic binder and form the ceramic.
  • the driver is the precursor of a copper oxide superconductor, in particular YBa 2 Cu 3 0 7 , Bi 2 Sr 2 CaCu 2 0 2 or Bi 2 Sr 2 Ca 2 Cu 3 O ⁇ 0 , and the organic binder is removed by heating, in the air, of the conductor provided with the coating then an overall heat treatment is carried out, in the air, of the conductor provided with the coating, this overall heat treatment being able to form the superconductor based on copper oxide and to form the ceramic .
  • a copper oxide superconductor in particular YBa 2 Cu 3 0 7 , Bi 2 Sr 2 CaCu 2 0 2 or Bi 2 Sr 2 Ca 2 Cu 3 O ⁇ 0
  • the organic binder is removed by heating, in the air, of the conductor provided with the coating then an overall heat treatment is carried out, in the air, of the conductor provided with the coating, this overall heat treatment being able to form the superconductor based on copper oxide and to form the ceramic .
  • the conductor is made of a non-superconductive metal and an overall heat treatment of this conductor provided with the coating is carried out, this overall heat treatment being carried out in a neutral atmosphere and capable of removing the organic binder and to form the ceramic.
  • the step of forming the coating may include a step of depositing the ceramic precursor in gelled form on a fabric of ceramic fibers previously desensed (that is to say a fabric of ceramic fibers from which the size has been previously removed). , then a step of placing the fabric provided with the ceramic precursor around the conductor.
  • the ceramic fibers can be made of a material chosen from glass E, glass C, glass R, glass S2, silica, alumina and mullite.
  • the ceramic fiber fabric can be previously desensed thermally or chemically.
  • the conductor provided with the coating is shaped, in particular a coil, before the heat treatment step capable of forming the ceramic.
  • This conductor is for example an electric wire or cable.
  • a glass ribbon impregnated with a ceramic precursor is used.
  • This ceramic precursor is obtained from a liquid solution and it is without sedimentation because the liquid solution contains boehmite or a clay of the family of kaolin, which has been reacted with an acid to obtain a gelation of this liquid solution.
  • This property of homogeneity of the ceramic precursor facilitates its use during its deposition on the conductor, in particular in the case where this deposition is carried out by passage of the conductor in a bath of this precursor of ceramic, this bath serving to form a flexible sheath which allows the subsequent shaping (in particular the winding) of the conductor.
  • the sheath After baking of the conductor thus treated and shaped, the sheath is rigid and the conductor (in particular the superconductor) is electrically isolated and taken in a ceramic matrix.
  • the resistance to mechanical stress is considerably increased compared to the prior art.
  • the electrical insulation is very good and the porosity of the sheath is low due to the vitrification. It should be noted that the invention applies in particular to the manufacture of high-field electromagnets and of windings for electric motors.
  • the ceramic precursor is manufactured in the form of a liquid solution, more or less viscous and without sedimentation.
  • the composition of this solution in percentage by mass is: - 35% to 40% of water, - 1% to 10% of an organic binder (commercially available),
  • boehmite or of a clay of the kaolin family, - 0% to 15% of other mineral oxides such as alumina, zirconia, silica, a silico-aluminous clay (for example mica), which form a mineral filler, and
  • the acid is added to obtain the gelation of the solution in the presence of boehmite or clay of the kaolin family .
  • boehmite or clay of the kaolin family For example, formic acid is used with a mass percentage of 0.3% to 2%. This eliminates sedimentation.
  • the gel is formed by the chemical reaction of the acid on boehmite or clay of the kaolin family and the rest of the solution is taken up in the gel. Gelation makes it possible to use much less organic binder compared to the traditional technique which consists in adding an organic dispersant which must then be eliminated.
  • Formic acid is used in this example because the molecule of this acid contains only one carbon atom and gives advantageous gelling properties but other acids can be used, for example nitric acid, acid boric, hydrochloric acid, citric acid or another acid from the family of carboxylic acids.
  • formic acid is a relatively strong acid among weak acids, but if a weaker acid is used more will be needed.
  • the viscosity of the solution is adjusted as necessary, by dosing the various mineral fillers and water.
  • fibrous fillers can be added to obtain a viscous or even pasty ceramic precursor. Between 5% and 40% of fibrous filler is used to have sufficient viscosity.
  • the wire or cable can be coated directly by circulating the latter in a bath of this ceramic precursor in gelled form.
  • This ribbon of ceramic fibers is first of all desensed.
  • This ribbon is for example made of E glass, C glass, R glass, S2 glass, silica, alumina or mullite (which is a silicate forming an essential constituent of ceramics).
  • This ribbon can be a commercial ribbon, for example E glass from Bourgeois or S2 glass from Hiltex or ceramic marketed under the Nextel brand from 3M. It is also possible to use silica fibers sold under the brand name Quartzel by the company Saint-Gobain, preferably woven with a thickness of 60 ⁇ m by the company Textile Bourguisanne.
  • the desizing can be thermal (according to the prescriptions of the manufacturer of the tape), for example at 700 ° C for 1 minute or 350 ° C for 20 hours.
  • chemical desizing is used with a suitable solvent.
  • the solvent only serves to dissolve the size.
  • the choice of solvent and the residence time in solution depend on the type of ribbon and the products used for its size. The solvent must therefore only dissolve polymers and must not attack the ceramic fiber.
  • the desensed ribbon is then impregnated with the ceramic precursor in gelled form.
  • the ribbon thus impregnated is placed around the conductive wire or cable, this ribbon then forming a flexible sheath, then the conductor is shaped. As an example, this conductor is wound. Then, three cases are to be distinguished.
  • the conductor is made of a superconductor precursor, namely the precursor of Nb 3 Sn or Nb 3 Al (before this material has undergone the heat treatment which gives it its superconductive properties), both by temperature rise: - the reaction heat treatment of Nb 3 Sn or Nb 3 Al,
  • the temperature is increased from ambient temperature (approximately 20 ° C.) to a plateau of the order of 600 ° C. to 700 ° C. (reaction temperature Nb 3 Sn) for a period of 100 hours to 300 hours, which is necessary for the transformation of the precursor of the superconductor into the Nb 3 Sn superconductor.
  • the temperature is increased from ambient temperature to a plateau of the order of 700 ° C to 800 ° C (reaction temperature of Nb 3 Al) for a duration of a few tens of hours, duration which is necessary for the transformation of the precursor of superconductor into Nb 3 Al superconductor.
  • the ceramic binder and precursor also react in the above temperature range. It is necessary to monitor the rise in temperature which must be very slow so that the driver
  • the atmosphere is modified gradually by the introduction of a slightly reducing gaseous mixture (for example a mixture containing less than 5% of hydrogen and more than 95% of nitrogen because, if there were more hydrogen, the mixture would be explosive) at the start of the Nb 3 Sn or Nb 3 Al reaction heat treatment stage.
  • a slightly reducing gaseous mixture for example a mixture containing less than 5% of hydrogen and more than 95% of nitrogen because, if there were more hydrogen, the mixture would be explosive
  • This mixture replaces the atmosphere of argon or nitrogen and makes it possible to be sure that the conductor will not be oxidized by possible residues of oxygen.
  • the reaction must take place at temperatures compatible with the sintering of the ceramic and with the reaction treatment of the superconductor and must also leave no residue of carbon (which is a good electrical conductor).
  • Oxygen is used here with which it is certain to eliminate everything by the formation of gas. In addition, this reaction is very rapid as soon as it exceeds 350 ° C. The generated gas (CO or C0 2 ) must be evacuated. This is why the heat treatment takes place under a gas sweep. In addition, the removal of the binder and the sintering are carried out in the same operation by chaining and overlapping of the binder removal phase and the sintering phase. This is an essential characteristic of the example considered of the invention.
  • the sheath does not crumble thanks to this overlapping, or partial recovery over time, of the step of removing the binder and of the sintering step. Without nesting, there would be a risk of obtaining a very fragile pulverulent sheath and the shaped conductor should not be disturbed. However, in the prior art, these steps are separated and this requires resin impregnation.
  • the conductor is made of a precursor of a copper oxide-based superconductor such as:
  • the step of complete elimination of the organic binder is carried out by air cooking according to the parameters of temperature, duration and rise in temperature which depend on the chosen binder and are indicated by the supplier of the latter.
  • both the reaction heat treatment of the superconductor and the sintering of the ceramic take place.
  • the parameters of this treatment thermal which is carried out in air, are a plateau temperature of the order of 800 ° C to 900 ° C and a plateau time of 10 minutes to 3 hours.
  • the conductor is made of a metal or of a non-superconductive metallic compound
  • the step of thermal elimination of the organic binder takes place in a neutral atmosphere, with the introduction of a controlled amount of oxygen, corresponding to complete carbonization of the binder. Indeed, in air the metal would be completely oxidized, unless this metal is gold.
  • This figure shows a wire 2 on which a coating 3 of ceramic precursor in gel form is formed by passing this wire 2 through this ceramic precursor in gel form 4 contained in a container 6.
  • the wire passes over a succession of pulleys 8, 10, 12 and 14 and also passes through a series of thickness control devices 16 and 18 to remove the excess quantities of the coating 3 formed on the wire.
  • the wire is then dried by passing through a drying oven 20 and then wound on a suitable spool 22.
  • the wire thus wound can then be subjected to the heat treatments mentioned above, which allow the elimination of the organic binder, the formation of ceramic and the formation of the superconductor when the wire 2 is superconductive.
  • the wire 2 is thus provided with an electrically insulating and mechanically structuring sheath.
  • quadrupole electromagnets are manufactured, each comprising four identical windings. Each of these requires approximately 75 m of superconducting cable.
  • the latter of slightly trapezoidal section, consists of 36 strands based on Nb 3 Sn. These strands have a diameter of 0.825 mm and are twisted together and distributed in two layers.
  • the dimensions of the cross section of this cable are: 1.362 mm for the short side, 1.598 mm for the long side and 15.1 mm for the width.
  • Each length (75 m) of cable is wrapped around 400 m with a 15 mm wide ribbon.
  • This ribbon consists of ceramic fibers and impregnated with a solution containing boehmite and mica as mineral fillers, a glass frit sold under the reference VN 821 by the company Cerdec, a dispersant and a binder respectively sold under the references D-3005 and B-1000 by the company Rohm and Haas and water as a solvent.
  • a cable 24 before treatment
  • This cable is a Rutherford type flat cable, with two layers of strands 26.
  • the cable 24 is wrapped: we see a first ribbon 28 of glass fibers, which is impregnated with ceramic precursor and which surrounds the cable 24.
  • Each of these ribbons 28 and 30 is wound around the cable so that the edge of one turn of the ribbon is against the edge of the adjacent turn, but, with a view to ensuring the continuity of the electrical insulation, the second ribbon 30, which is wound over the first, is offset by half a step with respect to this first ribbon 28.
  • glass frits and / or binders can be used.
  • the latter After having formed the windings, the latter are subjected to a heat treatment comprising heating at 6 ° C / hour to 660 ° C. This heating is followed by a 240 hour plateau at 660 ° C and a slow cooling in the enclosure of the oven used for heat treatment.
  • each winding is cooled to the temperature of liquid helium (4.2 K at atmospheric pressure) or to that superfluid helium (less than or equal to 2.1 K at atmospheric pressure).
  • the invention also applies to the manufacture of small compact superconductive solenoids, devoid of metallic structuring elements.
  • the invention can also be used for windings of rotating superconductive electrical machines.
  • the invention can also be used for the windings of non-superconductive rotating electrical machines intended to operate at high temperature (above 300 ° C).
  • the invention can also be used for the manufacture of electrical insulations resistant to high heat, for example that of a flame, or to projections of very hot liquids due to the low porosity of the structuring insulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Insulating Bodies (AREA)

Abstract

Procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique. Selon l'invention, qui s'applique notamment ô la fabrication d'aimants supraconducteurs, on forme un précurseur de céramique (4) sous forme gélifiée puis un revêtement du conducteur (2) avec ce précurseur et l'on traite thermiquement ce revêtement pour former la céramique.

Description

PROCEDE DE FABRICATION D'UNE GAINE ELECTRIQUEMENT
ISOLANTE ET MECANIQUEMENT STRUCTURANTE SUR UN CONDUCTEUR ELECTRIQUE
DESCRIPTION
Domaine technique
La présente invention concerne un procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique .
Elle s'applique notamment à la fabrication d'aimants supraconducteurs ainsi qu'à la fabrication de pièces polaires d'un moteur électrique. La nécessité de disposer d'une isolation électrique structurante, obtenue à partir d'un précurseur céramique flexible, est commune à de nombreuses applications électrotechniques.
Le précurseur se présente, selon une variante de l'invention, sous la forme d'un tissu imprégné souple, permettant la mise en forme du conducteur que 1 ' on veut isoler et, dans certains cas, assure le contrôle de l'épaisseur et détermine la précision géométrique de bobinages réalisés au moyen du conducteur. A l'issue d'un traitement thermique à une température de l'ordre de 700°C, le précurseur est fritte et l'isolation électrique ainsi constituée "absorbe les efforts mécaniques exercés sur le conducteur lors de phases ultérieures d'assemblage et de fonctionnement. La nature céramique de l'isolation réalisée autorise des températures de fonctionnement allant de 1,8 K à 1270 K. Ces propriétés sont capitales lors de la réalisation d'aimants supraconducteurs, capables d'engendrer d'intenses champs magnétiques pour lesquels on se heurte à une difficulté majeure. En effet, les matériaux ayant des propriétés supraconductrices et la capacité de faire circuler des densités de courant élevées, matériaux parmi lesquels on trouve le composé intermétallique défini Nb3Sn ou encore Nb3Al, requièrent un traitement thermique à une température élevée (supérieure à 600°C pour Nb3Sn et à 700°C pour Nb3Al) , de longue durée (supérieure à 100 heures pour Nb3Sn et de l'ordre de quelques dizaines d'heures pour Nb3Al) et en présence d'une atmosphère inerte ou sous vide. Les conditions de température mentionnées ci- dessus interdisent l'utilisation des isolations électriques classiques, réalisées à partir de produits organiques, pendant le traitement thermique. De plus, le matériau supraconducteur obtenu à 1 ' issue de ce traitement thermique est fragile et les éventuelles contraintes mécaniques qui sont susceptibles de lui être appliquées peuvent aisément détériorer ses propriétés supraconductrices.
Il n'est donc plus possible, après le traitement thermique, d'assurer la mise en forme de ce matériau ni les cintrages requis pour son bobinage. Dans ces conditions, la mise en place de l'isolation électrique est particulièrement délicate.
La solution classique pour remédier aux inconvénients précédents consiste à : - enrubanner un câble supraconducteur, avant son bobinage, à l'aide d'un ruban de fibres minérales supportant le traitement thermique,
- effectuer ce traitement thermique, puis - placer le bobinage dans un moule d'imprégnation sous vide, et
- effectuer une imprégnation de résine organique. Les opérations de transfert du bobinage sont particulièrement délicates et n'ont, à ce jour, jamais permis la production en série de bobinages complexes (du type dipolaire ou quadripolaire) , de grande taille (notamment de longueur supérieure à 1 mètre) , utilisant des supraconducteurs de la famille du Nb3Sn.
Le coût des matériaux supraconducteurs utilisés (de l'ordre de 750 €/ g à 2000 €/kg suivant les procédés de réalisation utilisés) ainsi que le temps de traitement et la durée des opérations de bobinage représentent plus de 30% du coût de fabrication des électro-aimants supraconducteurs . Le risque associé au transfert du moule de réaction (dans lequel le précurseur de supraconducteur est transformé en supraconducteur) vers le moule d'imprégnation est donc très important.
La possibilité de disposer d'un bobinage complètement isolé et présentant une intégrité mécanique complète à l'issue du traitement de réaction du supraconducteur permettrait de développer l'industrialisation des électro-aimants supraconducteurs . Etat de la technique antérieure
On connaît déjà des techniques d'isolation électrique d' électro-aimants supraconducteurs en Nb3Sn. Mais toutes ces techniques connues nécessitent une imprégnation à l'aide d'une résine époxy et ne permettent pas d'assurer la tenue mécanique du bobinage d'un électro-aimant supraconducteur pour résister aux efforts magnétiques engendrés par le fonctionnement de 1 ' électro-aimant pour des champs intenses. D'autres techniques connues utilisent une isolation céramique.
On se reportera en particulier au document suivant :
EP-A-0044144 (invention de G.R. Sutcliffe, S.J. arden et D. Humpherson) , correspondant à US-A- 4,407,062.
Cependant, toutes ces autres techniques connues consistent à déposer un isolant autour de brins d'un matériau supraconducteur, soit par passage de ces brins dans une solution d'un précurseur inorganique, soit par extrusion du précurseur autour des brins au travers de dés, et aucune de ces autres techniques connues ne permet de disposer d'un ruban de fibres minérales, ce ruban étant pré-imprégné du précurseur d'une matrice céramique .
Exposé de 1 ' invention La présente invention a pour but de remédier aux inconvénients des techniques connues de fabrication de gaines électriquement isolantes sur des conducteurs électriques, en particulier ceux qui sont faits de matériaux supraconducteurs .
L'invention a pour objet un procédé de fabrication d'un isolant électrique que l'on peut déposer sur un conducteur électrique ou avec lequel on peut enrubanner ce conducteur, en particulier dans le cas d'un conducteur destiné à être bobiné, le procédé permettant d'enrubanner le conducteur avec l'isolant ou de déposer ce dernier, avant le bobinage du conducteur.
Ce procédé vise aussi à laisser une certaine souplesse au conducteur ainsi revêtu, cette souplesse permettant de cintrer, en particulier de bobiner, ce conducteur. De plus, ce procédé permet la synthèse d'un matériau céramique lors d'un traitement thermique.
Dans le cas particulier du bobinage, l'invention conduit aux résultats suivants, notamment dans le cas d'un conducteur supraconducteur : - l'isolation électrique du conducteur est adéquate,
- la cohésion mécanique du bobinage à température ambiante est bonne,
- cette cohésion mécanique est maintenue lors d'un refroidissement par l'hélium liquide du conducteur isolé ainsi que lors de l'alimentation du bobinage en courant,
- la maîtrise des dimensions du bobinage est bonne, en particulier en ce qui concerne l'espacement entre les tours de bobinage, et ce, à toute température, et - le bobinage présente avantageusement une certaine porosité à l'hélium liquide.
De plus, l'isolant céramique fabriqué conformément à 1 ' invention est dépourvu de phase organique à 1 ' issue du traitement thermique et ne requiert pas l'ajout d'une phase organique pour obtenir ses propriétés d'isolation électrique.
En outre, dans un mode de réalisation particulier, cet isolant est formé d'une matrice céramique renforcée de fibres céramiques courtes.
De façon précise, la présente invention a pour objet un procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique, en particulier un conducteur en métal non supraconducteur ou un conducteur en précurseur de supraconducteur, ce procédé étant caractérisé en ce qu'il comprend les étapes de :
- formation d'un précurseur de céramique sous forme gélifiée, - formation d'un revêtement du conducteur avec ce précurseur de céramique sous forme gélifiée et donc sans sédimentation, et
- traitement thermique de ce revêtement, ce traitement thermique étant apte à former la céramique à partir du précurseur de céramique sous forme gélifiée.
Selon un mode de mise en oeuvre préféré du procédé objet de l'invention, le précurseur de céramique est un liquide constitué par une solution comprenant de l'eau, un composant minéral, choisi parmi la boehmite et les argiles de la famille du kaolin, et un liant organique et 1 ' on fait réagir le composant minéral avec un acide pour gélifier la solution et donc obtenir le précurseur de céramique sous forme gélifiée.
L'acide peut être choisi dans le groupe comprenant l'acide borique, l'acide citrique, l'acide chlorhydrique, l'acide nitrique et les acides carboxyliques, préférentiellement l'acide formique.
La solution peut comprendre en outre de la fritte de verre et/ou au moins un oxyde minéral supplémentaire . Selon un mode de réalisation particulier de l'invention, la solution comprend, en pourcentage massique, 35% à 45% d'eau, 8% à 30% du composant minéral, 1% à 10% de liant organique, 0% à 15% d'un ou d'une pluralité d'oxydes minéraux supplémentaires et un complément éventuel de fritte de verre, ce complément éventuel de fritte de verre allant, bien entendu, de 0% à 56%.
Il est à noter que le rôle de l'eau dans cette solution est de rendre le mélange fluide et aussi d'hydrater les oxydes minéraux, notamment la boehmite ou le kaolin. Dans la suite du traitement, l'eau est évaporée au cours d'un séchage et, par conséquent, il serait tout à fait possible d'augmenter quelque peu artificiellement le pourcentage d'eau dans la solution et de diminuer, en proportion, celui des autres constituants, sans sortir du cadre de l'invention car il suffirait alors de prolonger la phase de séchage pour éliminer le surplus d'eau.
Evidemment, il ne faut pas rajouter tellement d'eau que la gélification serait dégradée. Selon un mode de réalisation préféré de l'invention, le pourcentage massique du composant minéral va de 15% à 30% dans cette solution, le complément éventuel de fritte de verre allant alors, bien entendu, de 0% à 49%.
Chaque oxyde minéral supplémentaire peut être choisi dans le groupe comprenant l'alumine, la zircone, la silice et les argiles silico-alumineuses .
Selon un mode de réalisation préféré du procédé objet de l'invention, ce procédé comprend en outre une étape d'élimination du liant organique après l'étape de formation du revêtement, cette étape d'élimination commençant avant 1 ' étape de traitement thermique apte à former la céramique mais se terminant pendant cette étape de traitement thermique, de sorte que ces deux étapes se recouvrent partiellement dans le temps.
De préférence, le procédé comprend en outre une étape d'élimination du liant organique par réaction avec l'oxygène, après l'étape de formation du revêtement.
Selon un premier mode de mise en oeuvre particulier du procédé objet de l'invention, le conducteur est en précurseur du supraconducteur Nb3Sn ou Nb3Al et l'on effectue un traitement thermique global de ce conducteur pourvu du revêtement, ce traitement thermique global étant effectué dans une atmosphère neutre et apte à former le supraconducteur Nb3Sn ou Nb3Al, éliminer le liant organique et former la céramique . Selon un deuxième mode de mise en oeuvre particulier, le conducteur est en précurseur d'un supraconducteur à base d'oxyde de cuivre, en particulier YBa2Cu307, Bi2Sr2CaCu202 ou Bi2Sr2Ca2Cu30, et l'on élimine le liant organique par chauffage, dans l'air, du conducteur pourvu du revêtement puis on effectue un traitement thermique global, dans l'air, du conducteur pourvu du revêtement, ce traitement thermique global étant apte à former le supraconducteur à base d ' oxyde de cuivre et à former la céramique .
Selon un troisième mode de réalisation particulier, le conducteur est en un métal non supraconducteur et l'on effectue un traitement thermique global de ce conducteur pourvu du revêtement, ce traitement thermique global étant effectué dans une atmosphère neutre et apte à éliminer le liant organique et à former la céramique.
L ' étape de formation du revêtement peut comprendre une étape de dépôt du précurseur de céramique sous forme gélifiée sur un tissu de fibres céramiques préalablement désensimé (c'est-à-dire un tissu de fibres céramiques dont l'ensimage a été préalablement enlevé) , puis une étape de disposition du tissu pourvu du précurseur de céramique autour du conducteur.
Les fibres de céramique peuvent être faites d'un matériau choisi parmi le verre E, le verre C, le verre R, le verre S2 , la silice, l'alumine et la mullite.
Le tissu de fibres céramiques peut être préalablement désensimé de façon thermique ou chimique. Selon un mode de réalisation particulier de l'invention, on met en forme, en particulier on bobine, le conducteur pourvu du revêtement, avant l'étape de traitement thermique apte à former la céramique. Brève description des dessins La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : - la figure 1 illustre schématiquement un mode de mise en oeuvre particulier du procédé objet de l'invention et
- la figure 2 illustre schématiquement une application particulière de l'invention.
Exposé détaillé de modes de réalisation particuliers
On donne maintenant des exemples du procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique conformément à l'invention. Ce conducteur est par exemple un fil ou un câble électrique.
Il convient de noter que le procédé s'applique aussi bien à des conducteurs ordinaires, en métaux non supraconducteurs, qu'à des supraconducteurs. De plus, ce procédé est compatible avec la technique appelée
"WAR" (pour "Wind And React") .
Dans un exemple de l'invention, on utilise un ruban de verre imprégné d'un précurseur de céramique.
Ce précurseur de céramique est obtenu à partir d'une solution liquide et il est sans sédimentation car la solution liquide contient de la boehmite ou une argile de la famille du kaolin, que 1 ' on a fait réagir avec un acide pour obtenir une gélification de cette solution liquide.
Cette propriété d'homogénéité du précurseur de céramique, permettant d'obtenir un isolant structurant, facilite son utilisation lors de son dépôt sur le conducteur, en particulier dans le cas où ce dépôt se fait par passage du conducteur dans un bain de ce précurseur de céramique, ce bain servant à former une gaine flexible qui autorise la mise en forme (en particulier le bobinage) ultérieure du conducteur.
Après cuisson du conducteur ainsi traité et mis en forme, la gaine est rigide et le conducteur (en particulier le supraconducteur) se trouve électriquement isolé et pris dans une matrice céramique. La résistance aux contraintes mécaniques est considérablement accrue par rapport à l'art antérieur. L'isolation électrique est très bonne et la porosité de la gaine est faible du fait de la vitrification. On précise que l'invention s'applique en particulier à la fabrication d ' électro-aimants à champs élevés et de bobinages pour moteurs électriques .
Donnons maintenant un exemple du procédé objet de 1 ' invention. Dans une première étape de ce procédé, on fabrique le précurseur de céramique sous la forme d'une solution liquide, plus ou moins visqueuse et sans sédimentation. La composition de cette solution en pourcentage massique est : - 35% à 40% d'eau, - 1% à 10% d'un liant organique (commercialement disponible) ,
- 15% à 30% de boehmite ou d'une argile de la famille du kaolin, - 0% à 15% d'autres oxydes minéraux tels que l'alumine, la zircone, la silice, une argile silico- alumineuse (par exemple le mica) , qui forment un apport de charges minérales, et
- 5% à 49% de fritte de verre. Après agitation de cette solution, par exemple au moyen d'un tourne-jarre lent ou d'un agitateur magnétique, on ajoute l'acide pour obtenir la gélification de la solution en présence de boehmite ou de l'argile de la famille du kaolin. On utilise par exemple l'acide formique avec un pourcentage massique de 0,3% à 2%. On élimine ainsi la sédimentation.
Le gel est formé par la réaction chimique de l'acide sur la boehmite ou l'argile de la famille du kaolin et le reste de la solution se trouve pris dans le gel. La gélification permet d'utiliser beaucoup moins de liant organique par rapport à la technique traditionnelle qui consiste à ajouter un dispersant organique qu'il faut ensuite éliminer.
Au sujet de la gélification en présence de boehmite mais dans un domaine technique totalement différent, on pourra se reporter au document suivant :
Article de F. Ananthakumar et al., Materials Letters 43, pages 174-179, 2000. On utilise dans cet exemple de l'acide formique car la molécule de cet acide ne contient qu'un atome de carbone et donne des propriétés de gélification intéressantes mais d'autres acides peuvent être utilisés, par exemple l'acide nitrique, l'acide borique, l'acide chlorhydrique, l'acide citrique ou un autre acide de la famille des acides carboxyliques . De plus, l'acide formique est un acide relativement fort parmi les acides faibles, mais si l'on utilise un acide plus faible il en faudra davantage.
La viscosité de la solution est réglée selon les besoins, par dosage des diverses charges minérales et de 1 ' eau .
En particulier, on peut ajouter des charges fibreuses pour obtenir un précurseur de céramique visqueux voire pâteux. On utilise entre 5% et 40% de charge fibreuse pour avoir une viscosité suffisante.
Après avoir fabriqué le précurseur de céramique sous forme gélifiée, on peut enduire directement le fil ou le câble en faisant circuler ce dernier dans un bain de ce précurseur de céramique sous forme gélifiée.
Dans une variante de cet exemple, après l'étape de fabrication du précurseur de céramique sous forme gélifiée, on trouve une étape de désensimage et d'imprégnation d'un ruban de fibres céramiques.
Ce ruban de fibres céramiques est tout d'abord désensimé. Ce ruban est par exemple en verre E, en verre C, en verre R, en verre S2 , en silice, en alumine ou en mullite (qui est un silicate formant un constituant essentiel des céramiques) . Ce ruban peut être un ruban du commerce, par exemple en verre E de la société Bourgeois ou en verre S2 de la société Hiltex ou en céramique commercialisée sous la marque Nextel de la société 3M. On peut aussi utiliser des fibres de silice commercialisée sous la marque Quartzel par la société Saint-Gobain, de préférence tissées avec une épaisseur de 60 um par la société de Textile Bourguisanne .
Le désensimage peut être thermique (selon les prescriptions du fabricant du ruban) , par exemple à 700°C pendant 1 minute ou 350°C pendant 20 heures.
En variante, on utilise un désensimage chimique avec un solvant adapté. Dans ce cas, le solvant ne sert qu'à dissoudre l'ensimage. Le choix du solvant et du temps de séjour en solution dépendent du type de ruban et des produits utilisés pour son ensimage. Le solvant ne doit donc dissoudre que des polymères et ne doit pas attaquer la fibre céramique.
Le ruban désensimé est ensuite imprégné avec le précurseur céramique sous forme gélifiée.
Ensuite, on dispose le ruban ainsi imprégné autour du fil ou du câble conducteur, ce ruban formant alors une gaine flexible, puis on met le conducteur en forme. A titre d'exemple, on bobine ce conducteur. Ensuite, trois cas sont à distinguer.
(1) Si le conducteur est fait d'un précurseur de supraconducteur, à savoir le précurseur de Nb3Sn ou de Nb3Al (avant que ce matériau ait subi le traitement thermique qui lui donne ses propriétés supraconductrices) , on réalise alors à la fois par montée en température : - le traitement thermique de réaction du Nb3Sn ou du Nb3Al,
- l'élimination, par cuisson, du liant organique (et des résidus carbonés) sous une atmosphère neutre (par exemple une atmosphère d'argon ou d'azote), avec un apport d'oxygène au moment où la température est suffisante pour démarrer la carbonisation (oxydation) du liant (environ 350°C à 450°C selon le liant) de façon à injecter le minimum d'oxygène (correspondant à la carbonisation complète), ce qui permet d'obtenir la carbonisation complète du liant sans oxydation du conducteur car, entre 350°C et 450°C, la réaction d'oxydation est très préférentiellement active sur le liant, et - le frittage de la céramique.
Pour ce traitement thermique global, dans le cas du Nb3Sn, on fait croître la température depuis la température ambiante (environ 20°C) jusqu'à un palier de l'ordre de 600°C à 700°C (température de réaction du Nb3Sn) pour une durée de 100 heures à 300 heures, durée qui est nécessaire à la transformation du précurseur de supraconducteur en supraconducteur Nb3Sn.
Dans le cas du conducteur avec le précurseur de Nb3Al, on fait croître la température depuis la température ambiante jusqu'à un palier de l'ordre de 700°C à 800°C (température de réaction du Nb3Al) pour une durée de quelques dizaines d'heures, durée qui est nécessaire à la transformation du précurseur de supraconducteur en supraconducteur Nb3Al . Le liant et le précurseur de céramique réagissent aussi dans la gamme de température ci-dessus. Il faut surveiller la montée en température qui doit être très lente de façon à ce que le conducteur
"n'explose" pas par passage de l'étain (ou l'aluminium) à l'état liquide, ce qui entraîne une expansion trop forte.
Dans une variante, on modifie l'atmosphère de façon graduelle par introduction d'un mélange gazeux légèrement réducteur (par exemple un mélange contenant moins de 5% d'hydrogène et plus de 95% d'azote car, s'il y avait plus d'hydrogène, le mélange serait explosif) au début du palier de traitement thermique de réaction du Nb3Sn ou du Nb3Al . Ce mélange remplace l'atmosphère d'argon ou d'azote et permet d'être sûr que le conducteur ne sera pas oxydé par d'éventuels résidus d'oxygène.
Ce qui suit est également valable pour les cas (2) et (3) .
En ce qui concerne l'élimination du liant organique, on précise que la réaction doit avoir lieu à des températures compatibles avec le frittage de la céramique et avec le traitement de réaction du supraconducteur et doit aussi ne laisser aucun résidu de carbone (qui est un bon conducteur électrique) .
On utilise ici de l'oxygène avec lequel on est certain de tout éliminer par formation de gaz. De plus, cette réaction est très rapide dès que l'on dépasse 350°C. Le gaz engendré (CO ou C02) doit être évacué. C'est pourquoi le traitement thermique a lieu sous balayage de gaz . En outre, l'élimination du liant et le frittage se font au cours d'une même opération par enchaînement et imbrication de la phase d'élimination du liant et de de la phase de frittage. Il s'agit d'une caractéristique essentielle de l'exemple considéré de l'invention.
En effet, la gaine ne s'effrite pas grâce à cette imbrication, ou recouvrement partiel dans le temps, de l'étape d'élimination du liant et de l'étape de frittage. Sans imbrication, on risquerait d'obtenir une gaine pulvérulente très fragile et il ne faudrait pas perturber le conducteur mis en forme. Or, dans l'art antérieur, on sépare ces étapes et cela nécessite une imprégnation de résine.
De plus, lorsqu'on veut former un enroulement très précis, ce qui est le cas des aimants supraconducteurs de types dipolaires ou quadripolaires, on le place de préférence dans un moule, par exemple en acier réfractaire, pour l'opération d'élimination du liant et de frittage et le balayage gazeux est effectué dans ce moule .
(2) Si le conducteur est fait d'un précurseur d'un supraconducteur à base d'oxyde de cuivre tel que :
- YBa2Cu30 de température critique 92 K,
- Bi2Sr2CaCu208 de température critique 95 K,
- BiSr2Ca2Cu3Oιo de température critique 110 K, l'étape d'élimination complète du liant organique est réalisée par cuisson à l'air selon les paramètres de température, de durée et de montée en température qui dépendent du liant choisi et sont indiqués par le fournisseur de ce dernier.
Ensuite, ont lieu à la fois le traitement thermique de réaction du supraconducteur et le frittage de la céramique. Les paramètres de ce traitement thermique, qui est effectué à l'air, sont une température de palier de l'ordre de 800°C à 900°C et un temps de palier de 10 minutes à 3 heures .
(3) Si le conducteur est fait d'un métal ou d'un composé métallique non supraconducteur, l'étape d'élimination thermique du liant organique a lieu en atmosphère neutre, avec introduction d'une quantité contrôlée d'oxygène, correspondant à la carbonisation complète du liant. En effet, à l'air le métal serait totalement oxydé, à moins que ce métal soit de l'or.
A titre purement indicatif et nullement limitatif, on donne un exemple de procédé conforme à 1 ' invention en faisant référence à la figure 1.
On voit sur cette figure un fil 2 sur lequel on forme un revêtement 3 de précurseur de céramique sous forme gélifiée en faisant passer ce fil 2 à travers ce précurseur de céramique sous forme gélifiée 4 contenu dans un récipient 6.
On voit également que le fil passe sur une succession de poulies 8, 10, 12 et 14 et passe aussi à travers une série de dispositifs de contrôle d'épaisseur 16 et 18 pour enlever les quantités en excès du revêtement 3 formé sur le fil. Le fil est alors séché en passant à travers un four de séchage 20 et ensuite bobiné sur une bobine appropriée 22.
On peut ensuite faire subir au fil ainsi bobiné les traitements thermiques mentionnés plus haut, qui permettent l'élimination du liant organique, la formation de la céramique et la formation du supraconducteur lorsque le fil 2 est supraconducteur. Le fil 2 est ainsi pourvu d'une gaine électriquement isolante et mécaniquement structurante.
On donne maintenant, à titre d'exemple, une application de l'invention à la fabrication de bobinages d' électro-aimants supraconducteurs en Nb3Sn, aptes à supporter le traitement thermique du conducteur et, en cours de fonctionnement, d'importants efforts mécaniques dus aux forces de Lorenz .
Plus précisément, on fabrique des électro-aimants quadripolaires comprenant chacun quatre bobinages identiques. Chacun de ceux-ci nécessite environ 75 m de câble supraconducteur. Ce dernier, de section légèrement trapézoïdale, est constitué de 36 brins à base de Nb3Sn. Ces brins ont un diamètre de 0,825 mm et sont torsadés entre eux et répartis en deux couches.
Les dimensions de la section droite de ce câble sont : 1,362 mm pour le petit côté, 1,598 mm pour le grand côté et 15,1 mm pour la largeur.
Chacune des longueurs (75 m) de câble est enrubannée d'environ 400 m d'un ruban de 15 mm de largeur .
Ce ruban est constitué de fibres céramiques et imprégné d'une solution contenant de la boehmite et du mica en tant que charges minérales, une fritte de verre commercialisée sous la référence VN 821 par la société Cerdec, un dispersant et un liant respectivement commercialisés sous les références D-3005 et B-1000 par la société Rohm et Haas et de 1 ' eau en tant que solvant . Ceci est schématiquement illustré par l'exemple de la figure 2 où l'on voit un câble 24 (avant traitement) . Ce câble est un câble plat de type Rutherford, à deux couches de brins 26.
Le câble 24 est enrubanné : on voit un premier ruban 28 de fibres de verre, qui est imprégné de précurseur céramique et qui entoure le câble 24.
On voit en outre un deuxième ruban 30 de fibres de verre, qui est identique au premier et donc également imprégné de précurseur céramique .
Chacun de ces rubans 28 et 30 est enroulé autour du câble de façon à ce que le bord d'un tour de ruban se trouve contre le bord du tour adjacent, mais, en 'vue d'assurer la continuité de l'isolation électrique, le deuxième ruban 30, qui est enroulé par dessus le premier, est décalé d'un demi-pas par rapport à ce premier ruban 28.
D'autres sortes de frittes de verre et/ou de liants peuvent être utilisées.
Après avoir formé les bobinages, ces derniers sont soumis à un traitement thermique comprenant un chauffage à 6°C/heure jusqu'à 660°C. Ce chauffage est suivi d'un palier de 240 heures à 660°C et d'un refroidissement lent dans l'enceinte du four servant au traitement thermique .
Avant ce traitement thermique, on évacue l'air contenu dans cette enceinte et l'on remplit cette dernière d'un gaz neutre tel que l'argon. De plus, un balayage continu d'argon a lieu pendant le traitement thermique .
Pour atteindre l'état supraconducteur, chaque bobinage est refroidi à la température de l'hélium liquide (4,2 K à la pression atmosphérique) ou à celle de l'hélium superfluide (inférieure ou égale à 2,1 K à la pression atmosphérique) .
Il convient de noter que, lors de l'excitation de chaque électro-aimant par un courant, des forces de Lorenz considérables sont créées dans les bobinages de celui-ci .
L'invention s'applique aussi à la fabrication de petits solenoïdes supraconducteurs compacts, dépourvus d'éléments métalliques structurants. L'invention peut aussi être utilisée pour les bobinages de machines électriques tournantes supraconductrices .
L'invention peut en outre être utilisée pour les bobinages de machines électriques tournantes non supraconductrices, destinées à fonctionner à haute température (supérieure à 300°C) .
L'invention peut également servir à la fabrication d'isolations électriques résistant à une forte chaleur, par exemple à celle d'une flamme, ou à des projections de liquides très chauds du fait de la faible porosité de l'isolant structurant.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique (2), en particulier un conducteur en métal non supraconducteur ou un conducteur en précurseur de supraconducteur, ce procédé étant caractérisé en ce qu'il comprend les étapes de :
- formation d'un précurseur de céramique (4) sous forme gélifiée,
- formation d'un revêtement du conducteur avec ce précurseur de céramique sous forme gélifiée et donc sans sédimentation, et
- traitement thermique de ce revêtement, ce traitement thermique étant apte à former la céramique à partir du précurseur de céramique sous forme gélifiée.
2. Procédé selon la revendication 1, dans lequel le précurseur de céramique est un liquide constitué par une solution comprenant de l'eau, un composant minéral, choisi parmi la boehmite et les argiles de la famille du kaolin, et un liant organique et l'on fait réagir le composant minéral avec un acide pour gélifier la solution et donc obtenir le précurseur de céramique (4) sous forme gélifiée.
3. Procédé selon la revendication 2, dans lequel l'acide est choisi dans le groupe comprenant l'acide borique, l'acide citrique, l'acide chlorhydrique, l'acide nitrique et les acides carboxyliques, préférentielle ent l'acide formique.
4. Procédé selon l'une quelconque des revendications 2 et 3 , dans lequel la solution comprend en outre de la fritte de verre.
5. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la solution comprend en outre au moins un oxyde minéral supplémentaire.
6. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel la solution comprend, en pourcentage massique, 35% à 45% d'eau, 8% à 30% du composant minéral, 1% à 10% de liant organique, 0% à 15% d'un ou d'une pluralité d'oxydes minéraux supplémentaires et un complément éventuel de fritte de verre .
7. Procédé selon la revendication 6, dans lequel le pourcentage massique du composant minéral va de 15% à 30% dans cette solution.
8. Procédé selon l'une quelconque des revendications 5 à 7, dans lequel chaque oxyde minéral supplémentaire est choisi dans le groupe comprenant l'alumine, la zircone, la silice et les argiles silico- alumineuses.
9. Procédé selon l'une quelconque des revendications 2 à 8, comprenant en outre une étape d'élimination du liant organique après l'étape de formation du revêtement, cette étape d'élimination commençant avant l'étape de traitement thermique apte à former la céramique mais se terminant pendant cette étape de traitement thermique.
10. Procédé selon l'une quelconque des revendications 2 à 9, comprenant en outre une étape d'élimination du liant organique par réaction avec l'oxygène, après l'étape de formation du revêtement.
11. Procédé selon l'une quelconque des revendications 2 à 10, dans lequel le conducteur (2) est en précurseur du supraconducteur Nb3Sn ou Nb3Al et l'on effectue un traitement thermique global de ce conducteur pourvu du revêtement, ce traitement thermique global étant effectué dans une atmosphère neutre et apte à former le supraconducteur Nb3Sn ou Nb3Al, éliminer le liant organique et former la céramique .
12. Procédé selon l'une quelconque des revendications 2 à 10, dans lequel le conducteur (2) est en précurseur d'un supraconducteur à base d'oxyde de cuivre, en particulier YBa2Cu307, Bi2Sr2CaCu202 ou Bi2Sr2Ca2Cu3Oχo, et l'on élimine le liant organique par chauffage, dans l'air, du conducteur pourvu du revêtement puis on effectue un traitement thermique global, dans l'air, du conducteur pourvu du revêtement, ce traitement thermique global étant apte à former le supraconducteur à base d'oxyde de cuivre et à former la céramique.
13. Procédé selon l'une quelconque des revendications 2 à 10, dans lequel le conducteur (2) est en métal non supraconducteur et l'on effectue un traitement thermique global de ce conducteur pourvu du revêtement, ce traitement thermique global étant effectué dans une atmosphère neutre et apte à éliminer le liant organique et à former la céramique.
14. Procédé selon l'une quelconque des revendications 1 à 13 , dans lequel l'étape de formation du revêtement comprend une étape de dépôt du précurseur de céramique sous forme gélifiée sur un tissu de fibres céramiques préalablement désensimé puis une étape de disposition du tissu pourvu du précurseur de céramique autour du conducteur.
15. Procédé selon la revendication 14, dans lequel les fibres céramiques sont faites d'un matériau choisi parmi le verre E, le verre C, le verre R, le verre S2, la silice, l'alumine et la mullite.
16. Procédé selon l'une quelconque des revendications 14 et 15, dans lequel le tissu de fibres céramiques est préalablement désensimé de façon thermique ou chimique.
17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel on met en forme, en particulier on bobine, le conducteur (2) pourvu du revêtement, avant l'étape de traitement thermique apte à former la céramique .
PCT/FR2002/002562 2001-07-20 2002-07-18 Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique WO2003010781A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003516073A JP2004536435A (ja) 2001-07-20 2002-07-18 導体に電気的絶縁性及び機械的特性を備えたシースを製造する方法
EP02790199A EP1410405B8 (fr) 2001-07-20 2002-07-18 Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique
DE60215506T DE60215506D1 (de) 2001-07-20 2002-07-18 Verfahren zur herstellung einer elektrisch isolierenden und mechanisch strukturierenden mantelung auf einem elektrischen leiter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0109741 2001-07-20
FR0109741A FR2827699B1 (fr) 2001-07-20 2001-07-20 Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique

Publications (2)

Publication Number Publication Date
WO2003010781A2 true WO2003010781A2 (fr) 2003-02-06
WO2003010781A3 WO2003010781A3 (fr) 2003-12-24

Family

ID=8865759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002562 WO2003010781A2 (fr) 2001-07-20 2002-07-18 Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique

Country Status (8)

Country Link
US (1) US6746991B2 (fr)
EP (1) EP1410405B8 (fr)
JP (1) JP2004536435A (fr)
AT (1) ATE343211T1 (fr)
DE (1) DE60215506D1 (fr)
ES (1) ES2272797T3 (fr)
FR (1) FR2827699B1 (fr)
WO (1) WO2003010781A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115281A1 (fr) * 2020-10-21 2022-04-22 Safran Ceramics Mèches pré-imprégnées pour matériau composite

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500112A1 (fr) * 2002-04-29 2005-01-26 Pirelli & C. S.p.A. Cable resistant au feu
FR2855313A1 (fr) * 2003-05-19 2004-11-26 Commissariat Energie Atomique Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique.
CN100408233C (zh) * 2006-08-23 2008-08-06 北京科技大学 大尺寸稀土各向异性粘结磁体的磁场凝胶注模成型方法
US7780058B2 (en) * 2008-02-27 2010-08-24 Siuyoung Yao Braided solder
US8522420B2 (en) * 2008-06-26 2013-09-03 Oxford Superconducting Technology, Inc. Manufacture of high temperature superconductor coils
KR100945195B1 (ko) * 2008-08-27 2010-03-03 한국전기연구원 러더퍼드 케이블을 이용한 전류리드
EP2853313B1 (fr) * 2013-09-26 2017-09-20 ABB Schweiz AG Procédé de fabrication d'un conducteur à isolation de polymère
CN110277200A (zh) * 2019-07-26 2019-09-24 扬州利家科技有限公司 一种提升产品性能的电线电缆包覆装置
CN112349451A (zh) * 2020-11-19 2021-02-09 盛珊瑜 一种漆包线及其制造加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0044144A2 (fr) * 1980-07-15 1982-01-20 Imi Kynoch Limited Isolation flexible pour fil filamentaire intermétallique supraconducteur
EP0188370A2 (fr) * 1985-01-14 1986-07-23 Raychem Limited Fil électrique avec enduction réfractaire
US5021401A (en) * 1989-04-03 1991-06-04 Westinghouse Electric Corp. Integrated production of superconductor insulation for chemical vapor deposition of nickel carbonyl
EP0435154A1 (fr) * 1989-12-28 1991-07-03 Sumitomo Electric Industries, Ltd. Procédé de fabrication d'un fil à isolant minéral

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035724A (en) * 1990-05-09 1991-07-30 Norton Company Sol-gel alumina shaped bodies
US6344287B1 (en) * 1997-04-14 2002-02-05 Florida State University High temperature compatible insulation for superconductors and method of applying insulation to superconductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0044144A2 (fr) * 1980-07-15 1982-01-20 Imi Kynoch Limited Isolation flexible pour fil filamentaire intermétallique supraconducteur
EP0188370A2 (fr) * 1985-01-14 1986-07-23 Raychem Limited Fil électrique avec enduction réfractaire
US5021401A (en) * 1989-04-03 1991-06-04 Westinghouse Electric Corp. Integrated production of superconductor insulation for chemical vapor deposition of nickel carbonyl
EP0435154A1 (fr) * 1989-12-28 1991-07-03 Sumitomo Electric Industries, Ltd. Procédé de fabrication d'un fil à isolant minéral

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANANTHAKUMAR S ET AL: "Effect of nanoparticulate boehmite sol as a dispersant for slurry compaction of alumina ceramics" MATERIALS LETTERS, vol. 43, no. 4, avril 2000 (2000-04), pages 174-179, XP004195149 ISSN: 0167-577X cité dans la demande *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115281A1 (fr) * 2020-10-21 2022-04-22 Safran Ceramics Mèches pré-imprégnées pour matériau composite
WO2022084621A1 (fr) * 2020-10-21 2022-04-28 Safran Ceramics Meches pre-impregnees pour materiau composite

Also Published As

Publication number Publication date
JP2004536435A (ja) 2004-12-02
FR2827699A1 (fr) 2003-01-24
US6746991B2 (en) 2004-06-08
EP1410405B8 (fr) 2006-12-13
EP1410405B1 (fr) 2006-10-18
ATE343211T1 (de) 2006-11-15
EP1410405A2 (fr) 2004-04-21
ES2272797T3 (es) 2007-05-01
DE60215506D1 (de) 2006-11-30
WO2003010781A3 (fr) 2003-12-24
FR2827699B1 (fr) 2007-04-13
US20030017950A1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
EP1410405B8 (fr) Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique
US5106825A (en) Fabrication of superconducting wire and product
US5972846A (en) Article comprising textured superconductive cuprate material
EP0054421B1 (fr) Procédé de fabrication de supraconducteurs multibrins d'un composé intermétallique
EP2308061B1 (fr) Procédé de production de bobines supraconductrices haute température
FR2613138A1 (fr) Preparation d'oxydes et de composites oxyde-metal supraconducteurs
EP3050169B1 (fr) Procédé de formation d'une structure de connexion supraconductrice et ladite structure
US5952270A (en) Process for heat treating superconductor wire
EP0318921B1 (fr) Brin composite supraconducteur à haute température critique et procédé de fabrication
US20140364318A1 (en) Methods for forming joints between magnesium diboride conductors
JPH04274115A (ja) 保護クラッド層を有する転移温度の高い超伝導体ワイヤーの熱処理方法および装置
US20030162665A1 (en) Superconductor composite material
EP1625598B1 (fr) Procede de fabrication d'une gaine electriquement isolante et mecaniquement structurante sur un conducteur electrique.
WO2003035575A1 (fr) Procede de fabrication de fils supraconducteurs a base de mgb2 comprenant un traitement thermique
US5814122A (en) Method of making hollow high temperature ceramic superconducting fibers
EP0634378B1 (fr) Procédé pour améliorer la tenue à l'oxydation d'un matériau composite à renfort fibreux et à matrice verre, vitrocéramique ou céramique
US5811376A (en) Method for making superconducting fibers
EP0390016B1 (fr) Procédé de fabrication d'un ruban à base d'oxyde supraconducteur
WO1988008618A2 (fr) Dispositifs supraconducteurs en ceramique et procedes de fabrication
EP0451043B1 (fr) Procédé de réalisation d'un matériau composite thermostructural à interphase carbone entre fibres de renfort et matrice
BE1003160A5 (fr) Incorporation de filaments ceramiques long dans une matrice metallique en vue d'obtenir un fil supraconducteur composite.
FR2783084A1 (fr) Supraconducteur a plusieurs ames en courant alternatif a haut point critique et son procede de fabrication
JPH04362076A (ja) ビスマス系超電導導体の製造方法
JP2525833B2 (ja) 超電導性部材の製造方法
EP0357480B1 (fr) Eléments composites comportant un coeur en matériau supraconducteur et leur procédé de préparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP

Kind code of ref document: A2

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002790199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003516073

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002790199

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002790199

Country of ref document: EP