WO2003008903A1 - Method and device for seismic surveillance - Google Patents

Method and device for seismic surveillance Download PDF

Info

Publication number
WO2003008903A1
WO2003008903A1 PCT/FR2002/002557 FR0202557W WO03008903A1 WO 2003008903 A1 WO2003008903 A1 WO 2003008903A1 FR 0202557 W FR0202557 W FR 0202557W WO 03008903 A1 WO03008903 A1 WO 03008903A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement lines
crust
lines
earth
Prior art date
Application number
PCT/FR2002/002557
Other languages
French (fr)
Inventor
Bernard Hodac
Original Assignee
Osmos Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osmos Sa filed Critical Osmos Sa
Publication of WO2003008903A1 publication Critical patent/WO2003008903A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01V1/01

Definitions

  • the present invention relates to a seismic monitoring method. It also relates to a device for applying this method.
  • Earth's crust also called Earth's crust
  • Known seismographs are generally devices analogous to accelerometers and they are sensitive to waves whose frequencies are greater than 0.1 Hz. They can react to small releases of energy. It is the analysis of weak tremors which generally makes it possible to predict larger tremors. These seismographs make it possible to detect only restitutions of energy, they cannot give information on the quantity of residual stresses, ie those remaining accumulated in the earth's crust in the vicinity of the place of installation of the seismograph. These stresses, and therefore the corresponding energy, can be significant and suddenly be released. It is desirable to be able to provide these energy returns, in particular to be able to make arrangements which are necessary in anticipation of a sudden and sudden release.
  • a measurement line is a linear device for measuring the distance or the variation of the distance between two ends of the linear device.
  • the measurement line can be a conductive wire whose resistance variation is measured as a function of its elongation, an optical fiber which transmits light differently according to its stretch, or even a light beam whose journey time between the two ends is measured .
  • Patent EP A - 0 264 622 teaches to measure a variation in length along a measurement line by means of a light wave guide, for example an optical fiber. It is also known to compare a constraint in an optical fiber in connection with a geological structure, with reference to an unconstrained optical fiber, using the device described by US patent 5,750,901. However, in seismic matter, a variation in length along a line is impossible to interpret in terms of stress. For example, slippages can cause very significant elongations even if the residual stresses are zero.
  • the object of the invention is to propose a method and a device for seismic monitoring capable of giving relevant indications in terms of seismic risks.
  • a seismic monitoring method analysis of deformation measurement signals emitted by at least one measurement line mechanically coupled to the earth's crust is analyzed, and this method is characterized in that signals are collected.
  • substantially instantaneous measurement signals signals reflecting a value measured over a much shorter duration than a vibratory wave period of the earth's crust, typically of the order of a tenth of a Hertz to a few Hertz .
  • signals produced substantially simultaneously is meant that the instantaneous signals put in correspondence correspond to instants of measurement which are at most offset by a duration much shorter than a vibratory wave period of the Earth's crust, such as defined above.
  • the process makes it possible to observe and model in real time the deformations of a significant sample of the Earth's crust on a sufficiently large scale. We can also assess the constraints in the sample and monitor the evolution of these constraints to predict earthquakes.
  • the process also has a more general scientific scope for the study of the Earth's crust.
  • the deformations of the sample being known, they make it possible, from at least one elastic modulus of this sample, to deduce therefrom the stresses accumulated between two consecutive measurements. It is also possible to detect variations in a displacement of at least part of the sample. Decreasing displacements, in particular if it can be determined that the causes of these displacements remain unchanged, can be significant from the appearance of a blocking prior to the appearance of stresses in the sample.
  • Such a method is therefore particularly useful for understanding the behavior of the earth's crust and, a fortiori, for predicting earthquakes and in this case constituting an alert device.
  • Each of the measurement lines is connected by a transmission line to a signal processing device.
  • a signal processing device To measure elongations in the measurement lines, it is possible, for example, to send with the processing device an adapted source signal in each of the measurement lines concerned, respectively, and the same processing device is received, as a measurement signal, an image signal, originating from the source signal, returned by the measurement line.
  • the measurement signal is analyzed.
  • the respective length variation measurements in the measurement lines are carried out substantially simultaneously and instantaneously.
  • the analysis of the image signal is also done simultaneously for all of the measurements carried out, but can be postponed over time. For example, each instantaneous value received can be associated with a time indication, then the values associated with the same time indication can be matched later.
  • the sample is preferably as large as possible under economically reasonable conditions.
  • the size of the sample is such that the length of a measurement line and / or the distance between two neighboring lines goes from the order of the decameter to the order of the kilometer, as well as in terms of the horizontal dimension (s) only with regard to the vertical dimension.
  • the significant dimensions of the sample are of an order of magnitude comparable.
  • significant dimension is meant the two large dimensions of a two-dimensional sample or the three dimensions of a three-dimensional sample.
  • the difference in length between two transmission lines connecting two measurement lines to the same processing device will have little or no influence.
  • a difference of ten kilometers between two optical fibers each forming a transmission line corresponds to a difference of 1/30000 of a second to be compared to a period of 1/1 0 of a second. If greater precision is required, it is always possible to provide substantially identical transmission line lengths or any other means to equalize transmission times.
  • it relates to a seismic monitoring process in which instantaneous deformations of a sample of the earth's crust are modeled and, preferably, a modeling of the stresses in the sample is deduced therefrom , or even a monitoring of the constraints in relation to thresholds.
  • modeling the deformations is meant “typically describing by digital values a possible deformation” of the sample, taking into account the deformations noted along all the measurement lines.
  • the real deformation is slightly different and more complex than the modeled deformation. For example, a line that has elongated may have remained straight or, on the contrary, may have bent to the point that its two ends have come close to each other. The other measurement lines will partially lift this uncertainty, especially if there are many.
  • the device for implementing the method comprises strain measurement lines and means for processing signals emitted by the measurement lines. It is characterized in that the processing means are means for establishing a correspondence between instantaneous and simultaneous values of the variable signals of at least two measurement lines coupled to the earth's crust at sites spaced apart from one other.
  • the measurement lines are coupled in movement with the earth's crust, for example by a matrix in a borehole or a trench, the matrix being deformable with the earth's crust. It is particularly advantageous to provide at least three non-coplanar measurement lines in order to be able to model the deformations in several directions.
  • three non-coplanar and non-parallel measurement lines define for the sample a frame of reference for deformations in the three dimensions.
  • the measurement lines can be arranged along the vertical edges of a parallelogram or along the edges of a tetrahedron.
  • we obtain a triangulation of the sample which is all the more efficient when we define in the Earth's crust a greater number of tetrahedrons having two by two at least three common edges.
  • the measurement lines can be arranged on converging or parallel edges, if it has any, of the polyhedron.
  • the device can include measurement lines arranged along edges of several polyhedra. Some of these polyhedra can be substantially proportional to each other. A first polyhedron can be contained in a second and / or be homothetic between them. A polyhedron for the device may not be flush with a point or face with the surface of the earth's crust.
  • the device can include lines arranged by other means and particularly surface measurement lines, arranged in trenches or overhead.
  • the measurement lines and / or the transmission lines can advantageously consist of optical fibers.
  • FIG. 1 is a partial and schematic representation of a device according to the invention of which only one measurement line is shown,
  • FIG. 2 is a representation of a device according to the invention, the polyhedron of which is a cube flush with the surface
  • FIG. 3 is a representation of another device according to the invention comprising several adjacent cubes
  • FIG. 4 is a perspective view of a device according to the invention comprising three cubes nested one inside the other
  • FIG. 5 is a top view of the device of FIG. 4,
  • FIG. 6 is a section of the device in FIG. 4 along V-V,
  • FIG. 7 is a perspective view of a device according to the invention comprising two tetrahedrons nested one inside the other.
  • FIG. 8 is a perspective view of a device defined by two parallel planes.
  • Figures 9 and 10 are two illustrations of deformations for a cube.
  • Figures 2 to 8 are mainly represented the measurement lines, in solid lines and assuming the transparent earth crust. Construction lines, for example edges which do not include measurement lines, are drawn in dotted lines. In the examples shown, optical fibers are used as measurement lines and as transmission lines.
  • FIG. 1 schematically represents a device 1 according to the invention of which only one of the measurement lines has been drawn 2.
  • the measurement line 2 is connected by a transmission line 3 to a signal processing device 4.
  • the other measurement lines are connected to it in the same way.
  • the transmission line is subdivided into an input line 6 for a signal emitted by a source 8 and an output line 7 for a signal reflected by the measurement line 1 to a receiver 9.
  • the signal processing device further comprises control means 1 0 for controlling the emission of the signal, and in particular ensuring the simultaneity of the measurements in each of the measurement lines of the device.
  • It also includes analysis means 11 which make it possible to compare the reflected signals with the signals transmitted for each of the measurement lines, then to deduce therefrom the deformation of the lines of measure and then model the strains and / or stresses in the sample studied.
  • the reflected signal is an image of the signal emitted by the source and possibly distorted by the measurement line before being returned by the latter. It is the study of the signal deformations which allow to deduce a variation in length of the measurement line. Methods described in the documents cited in can be used for these operations. In particular, it is advantageous for the measurement line to be provided prelonged when it is put in place. It is thus easy to measure elongations and / or shortenings. We can then use the term elongation to designate a shortening, considered as a negative lengthening.
  • a borehole 1 2 was carried out in the earth's crust 1 3 for the establishment of the measurement line 2.
  • the measurement line is sealed in the borehole using a sealing material 14, forming a matrix.
  • This material must have a low inherent cohesion in order not to oppose any resistance to its deformation jointly with that of the earth's crust in its vicinity.
  • the cohesion of the sealing material will however be sufficient to be able to transmit this deformation to the measurement line which is sealed there.
  • the measurement line may, for example, include on its exterior a corrugated surface or other means of attachment and sealing.
  • the proximal end 1 6 of the measurement line should not be flush with the surface 1 7 instead of drilling.
  • a sheath 18 has therefore been provided to isolate the transmission line 3 from the sealing material 14.
  • the transmission line is not subject to deformations of the earth's crust and only the variation in the length of the fiber. optics corresponding to the measurement line are taken into account.
  • FIG. 2 represents lines of measurements 2 arranged on vertical edges of a polyhedron 1 9, which is a cube.
  • the proximal ends 1 6 of each of the measurement lines are flush with the ground 1 7.
  • Each of the proximal ends is connected by an independent transmission line 3 to a processing device 4.
  • the processing device thus allows simultaneous signal processing to or from each of the measurement lines 2.
  • the device comprises eight cubes arranged in two layers of four cubes each.
  • Each of the cubes of the upper layer has a common lower face with an upper face of a cube of the lower layer.
  • the eight cubes thus arranged define 1 8 vertical edges, some of which are common to 2 or 4 cubes.
  • a measurement line is arranged along each of these 18 edges, so that each of the measurement lines of the upper layer is arranged in the extension of a single measurement line of the lower layer.
  • the device 1 in addition to a cube 1 9, also includes two cubes 1 91, 1 92.
  • the cube 1 91 is inside the cube 1 9 and the cube 1 92 is inside the cube 1 92 so that the three cubes 1 9, 1 91, 1 92 have a common geometric center G (see Figure 6). That is to say that any of the cubes can be deduced from any other of the other cubes by a homothety of center G.
  • the cube 1 9 is larger than the cube 1 91 which is itself larger than the cube 1 92. Measuring lines 2,21, 22 are disposed respectively on the vertical edges of each cube 1 9, 1 91, 1 92.
  • FIG. 5 is a top view of the three nested cubes. Each of the measurement lines is represented by a point. The measurement lines are included in one or the other of the diagonal planes (VI-VI) common to the three cubes.
  • FIG. 6 is a representation of the arrangement of the measurement lines included in one of these plans. As in the example in FIG. 3, this arrangement allows greater precision in the measurement of the deformations of the sample, particularly in the vicinity of point G.
  • the device 1 comprises two polyhedra 1 9, 1 93 which are two tetrahedrons of which the second 1 93 is smaller than the first 1 9, the second is included in the first.
  • the two tetrahedra have a horizontal base 30 and a point 31 opposite the base oriented downwards.
  • the base of the largest tetrahedron 1 9 is close to the surface.
  • a measurement line is arranged on each of the edges of the tetrahedra. Drilling for lines 2, going from a base 30 to a point 31 are made inclined.
  • the measurement lines 23 at the periphery of the base of the first tetrahedron 1 9, therefore close to the surface, are arranged in trenches.
  • the drillings for the measurement lines 24, at the periphery of the base of the second tetrahedron are horizontal in their part comprising the measurement lines, and they are produced by the technique of directed drilling.
  • a first two-dimensional device 1 A comprises two lines of concurrent measurements 2 arranged in a first vertical plane.
  • a second two-dimensional device 1 B is the distant image of the first device 1 A by a substantially horizontal translation. These two two-dimensional devices are associated to form a device 1 capable of simultaneously processing information transmitted by the first and second two-dimensional devices 1 A, 1 B.
  • FIGS. 9 and 10 are illustrations of two possible deformations for a sample initially defined by a cube whose upper face is horizontal. The edges of the cube, that is to say of the sample before deformation, are represented in dotted lines.
  • a first deformation is due to a horizontal sliding in a direction F of the layers of the earth's crust traversed by the sample, one with respect to the other.
  • the lower face considered immobile does not deform.
  • the upper side moves horizontally along D without deforming.
  • the first deformation is perceived as a first elongation.
  • a second deformation shown in Figure 1 0, is due to a progressive horizontal crushing of the sample as one is deeper in the earth's crust.
  • the upper face of the cube remains stationary and does not deform.
  • the underside is deformed in a horizontal plane while its corners approach according to D.
  • the cube takes the form of a regular tetrahedron trunk.
  • the second deformation is perceived as a second elongation.
  • the first deformation is done with little or no energy accumulation, that is to say that the deformed sample is substantially stable.
  • the second deformation is done by accumulating energy within the deformed sample, that is to say that it is unstable and that the accumulated energy tends to give it back its initial cubic shape.
  • the first and second elongations are perceived to be identical for the two deformations. If it is not possible to determine, before installing a device according to the invention, privileged deformations for the sample which one chooses to instrument, it is advisable to have certain measurement lines in order to be able to remove an uncertainty on the type of deformation.
  • polyhedra can be of any type and not just limited to cubes and tetrahedra. All or only some of their edges can be equipped and certain measurements can only be made on part of the equipped edges. Similarly, the measurement lines can be arranged, not according to the surface of the earth's crust but, for example, according to
  • each polyhedron can be assigned to a part of the sample having its own elastic modulus.
  • any means making it possible, such as optical fibers, to measure a length or a variation in length between two ends of a line can be used.
  • a decentralized unit that is to say close to a measurement line, comprising a signal source and receiver and communication means, for example radio means, for communications with a central processing unit.
  • These means can be combined with each other provided that they make it possible to give, within the meaning of the invention, simultaneous measurements.
  • the method and the device according to the invention are particularly suitable for measuring deformations or displacements of infinite wave period, that is to say deformations or continuous displacements, of substantially zero frequency, at least for a certain duration, and are not only suitable for vibration measurements.

Abstract

The invention concerns a method and a device (1) for monitoring deformations of a sample of the earth crust (13), with several measurement lines (2) for instantaneously measuring deformations, coupled in deformation with the crust. The method consists in simultaneously analysing (10) the measured deformations and in deducing therefrom a modelling of the sample deformation and/or a modelling of stresses in the sample. Such a method and such a device enable to measure deformations among others of null frequency or of less than 0.1 Hertz and are particularly adapted to earthquake forecasting.

Description

" Procédé et dispositif de veille sismique " "Seismic monitoring process and device"
La présente invention concerne un procédé de veille sismique. Elle concerne aussi un dispositif pour appliquer ce procédé.The present invention relates to a seismic monitoring method. It also relates to a device for applying this method.
L'ecorce terrestre, aussi appelée croûte terrestre, tend à se déplacer et à se déformer. Si les mouvements ou les déformations sont localement empêchés, l'énergie qui les provoquait s'accumule sous la forme de contraintes dans la portion concernée de l'ecorce terrestre. La libération plus ou moins brutale de ces contraintes est une cause principale des séismes. En se libérant, les contraintes restituent au moins partiellement l'énergie accumulée. Si l'énergie restituée est importante, elle prend la forme de secousses, de vibrations, c'est à dire d'ondes, destructrices. Afin de préserver au mieux les personnes et les biens, il convient de détecter au plus tôt les signes avant-coureurs d'un séisme.Earth's crust, also called Earth's crust, tends to move and distort. If movement or deformation is locally prevented, the energy that caused it accumulates in the form of stresses in the affected portion of the Earth's crust. The more or less brutal release of these constraints is a main cause of earthquakes. When released, the stresses at least partially restore the accumulated energy. If the energy returned is important, it takes the form of tremors, vibrations, that is to say, destructive waves. In order to best protect people and property, the early warning signs of an earthquake should be detected as soon as possible.
Les sismographes connus sont généralement des appareils analogues à des accéléromètres et ils sont sensibles à des ondes dont les fréquences sont supérieures à 0, 1 Hz. Ils peuvent réagir à de faibles libérations d'énergies. C'est l'analyse de faibles secousses qui permet en général de prévoir des secousses plus importantes. Ces sismographes permettent de détecter seulement des restitutions d'énergie, ils ne peuvent donner d'information sur la quantité de contraintes résiduelles, c'est à dire celles restant accumulées dans l'ecorce terrestre au voisinage du lieu d'installation du sismographe. Ces contraintes, et donc l'énergie correspondante, peuvent être importantes et se libérer soudainement. Il est souhaitable de pouvoir prévoir ces restitutions d'énergie, en particulier pour pouvoir prendre des dispositions qui sont nécessaires en prévision d'une libération brutale et soudaine. Il est donc souhaitable de pouvoir évaluer l'énergie accumulée avant qu'elle se libère. D'autre part, certains des mouvements de l'ecorce terrestre de période très longue, par exemple une demi-journée, peuvent être représentatifs de l'accumulation d'une énergie importante. Ces mouvements ne peuvent cependant pas être détectés par des sismographes connus. Une ligne de mesure est un dispositif linéaire de mesure de la distance ou de la variation de la distance entre deux extrémités du dispositif linéaire. La ligne de mesure peut être un fil conducteur dont on mesure la variation de résistance en fonction de son allongement, une fibre optique qui transmet différemment la lumière selon son étirement, ou encore un faisceau lumineux dont on mesure le temps de parcours entre les deux extrémités.Known seismographs are generally devices analogous to accelerometers and they are sensitive to waves whose frequencies are greater than 0.1 Hz. They can react to small releases of energy. It is the analysis of weak tremors which generally makes it possible to predict larger tremors. These seismographs make it possible to detect only restitutions of energy, they cannot give information on the quantity of residual stresses, ie those remaining accumulated in the earth's crust in the vicinity of the place of installation of the seismograph. These stresses, and therefore the corresponding energy, can be significant and suddenly be released. It is desirable to be able to provide these energy returns, in particular to be able to make arrangements which are necessary in anticipation of a sudden and sudden release. It is therefore desirable to be able to evaluate the accumulated energy before it is released. On the other hand, some of the movements of the Earth's crust of very long period, for example half a day, can be representative of the accumulation of a significant energy. These movements cannot however be detected by known seismographs. A measurement line is a linear device for measuring the distance or the variation of the distance between two ends of the linear device. The measurement line can be a conductive wire whose resistance variation is measured as a function of its elongation, an optical fiber which transmits light differently according to its stretch, or even a light beam whose journey time between the two ends is measured .
Le brevet EP A - 0 264 622 enseigne de mesurer une variation de longueur le long d'une ligne de mesure au moyen d'un guide d'onde lumineuse, par exemple une fibre optique. On sait aussi comparer une contrainte dans une fibre optique en liaison avec une structure géologique, en référence à une fibre optique non contrainte, grâce au dispositif décrit par le brevet US 5,750,901 . Cependant, en matière sismique, une variation de longueur le long d'une ligne est impossible à interpréter en termes de contrainte. Par exemple, des glissements peuvent entraîner des allongements très significatifs même si les contraintes résiduelles sont nulles.Patent EP A - 0 264 622 teaches to measure a variation in length along a measurement line by means of a light wave guide, for example an optical fiber. It is also known to compare a constraint in an optical fiber in connection with a geological structure, with reference to an unconstrained optical fiber, using the device described by US patent 5,750,901. However, in seismic matter, a variation in length along a line is impossible to interpret in terms of stress. For example, slippages can cause very significant elongations even if the residual stresses are zero.
Le but de l'invention est de proposer un procédé et un dispositif de veille sismique capables de donner des indications pertinentes en termes de risques sismiques.The object of the invention is to propose a method and a device for seismic monitoring capable of giving relevant indications in terms of seismic risks.
Suivant l'invention, dans un tel procédé de veille sismique on analyse des signaux de mesure de déformation émis par au moins une ligne de mesure couplée mécaniquement à l'ecorce terrestre, et ce procédé est caractérisé en ce qu'on recueille des signaux de mesure de déformation variable, émis par au moins deux lignes de mesure couplées avec l'ecorce terrestre en étant suffisamment espacées l'une de l'autre pour définir un échantillon au moins bidimensionnel de ladite croûte terrestre, et en ce qu'on établit une correspondance entre des signaux de mesure sensiblement instantanés produits sensiblement simultanément par les lignes de mesure.According to the invention, in such a seismic monitoring method, analysis of deformation measurement signals emitted by at least one measurement line mechanically coupled to the earth's crust is analyzed, and this method is characterized in that signals are collected. measurement of variable deformation, emitted by at least two measurement lines coupled with the Earth's crust being sufficiently spaced from each other to define an at least two-dimensional sample of said Earth's crust, and in that a correspondence between substantially instantaneous measurement signals produced substantially simultaneously by the measurement lines.
Par « signaux de mesure sensiblement instantanés » on entend des signaux reflétant une valeur mesurée sur une durée beaucoup plus courte qu'une période d'onde vibratoire de l'ecorce terrestre, typiquement de l'ordre d'un dixième de Hertz à quelques Hertz. Par « signaux produits sensiblement simultanément » on entend que les signaux instantanés mis en correspondance correspondent à des instants de mesure qui sont au maximum décalés d'une durée beaucoup plus courte qu'une période d'onde vibratoire de l'ecorce terrestre, telle que définie ci- dessus.By “substantially instantaneous measurement signals” is meant signals reflecting a value measured over a much shorter duration than a vibratory wave period of the earth's crust, typically of the order of a tenth of a Hertz to a few Hertz . By “signals produced substantially simultaneously” is meant that the instantaneous signals put in correspondence correspond to instants of measurement which are at most offset by a duration much shorter than a vibratory wave period of the Earth's crust, such as defined above.
On obtient ainsi, à chaque instant ou par intermittence, une indication sur les déformations le long de plusieurs lignes de l'échantillon et cela est indicatif des niveaux de contrainte dans l'échantillon. En particulier, des niveaux de déformation très différents le long de deux lignes de mesures en un même instant indiquent a priori un fort niveau de contrainte. On peut se contenter d'analyser visuellement les correspondances entre les mesures instantanées. On peut aussi procéder à un traitement automatique plus poussé.One thus obtains, at each instant or intermittently, an indication on the deformations along several lines of the sample and this is indicative of the stress levels in the sample. In particular, very different levels of deformation along two measurement lines at the same time indicate a priori a high level of stress. We can content ourselves with visually analyzing the correspondences between the instantaneous measurements. It is also possible to carry out further automatic processing.
Le procédé permet d'observer et de modéliser en temps réel les déformations d'un échantillon significatif de l'ecorce terrestre à suffisamment grande échelle. On peut aussi évaluer les contraintes dans l'échantillon et effectuer une surveillance de l'évolution de ces contraintes pour une prévision des séismes. Le procédé a aussi une portée scientifique plus générale pour l'étude de l'ecorce terrestre. Les déformations de l'échantillon étant connues, elles permettent, à partir d'au moins un module d'élasticité de cet échantillon, d'en déduire les contraintes accumulées entre deux mesures consécutives. On peut également détecter des variations dans un déplacement d'une partie au moins de l'échantillon. Des déplacements décroissants, notamment si l'on peut déterminer que les causes de ces déplacements restent inchangées, peuvent être significatifs de l'apparition d'un blocage préalable à l'apparition de contraintes dans l'échantillon. Un tel procédé est donc particulièrement utile à la connaissance du comportement de l'ecorce terrestre et à fortiori à la prévision des séismes et constituer dans ce cas un dispositif d'alerte.The process makes it possible to observe and model in real time the deformations of a significant sample of the Earth's crust on a sufficiently large scale. We can also assess the constraints in the sample and monitor the evolution of these constraints to predict earthquakes. The process also has a more general scientific scope for the study of the Earth's crust. The deformations of the sample being known, they make it possible, from at least one elastic modulus of this sample, to deduce therefrom the stresses accumulated between two consecutive measurements. It is also possible to detect variations in a displacement of at least part of the sample. Decreasing displacements, in particular if it can be determined that the causes of these displacements remain unchanged, can be significant from the appearance of a blocking prior to the appearance of stresses in the sample. Such a method is therefore particularly useful for understanding the behavior of the earth's crust and, a fortiori, for predicting earthquakes and in this case constituting an alert device.
On relie chacune des lignes de mesure, par une ligne de transmission, à un dispositif de traitement du signal. Pour mesurer des allongements dans les lignes de mesures, on peut par exemple envoyer avec le dispositif de traitement un signal source adapté dans chacune des lignes de mesure concernées, respectivement et on reçoit dans le même dispositif de traitement, comme signal de mesure, un signal image, issu du signal source, renvoyé par la ligne de mesure.Each of the measurement lines is connected by a transmission line to a signal processing device. To measure elongations in the measurement lines, it is possible, for example, to send with the processing device an adapted source signal in each of the measurement lines concerned, respectively, and the same processing device is received, as a measurement signal, an image signal, originating from the source signal, returned by the measurement line.
Dans le dispositif de traitement, on analyse le signal de mesure. Les mesures de variation de longueur respectives dans les lignes de mesure sont réalisées sensiblement simultanément et instantanément. L'analyse du signal image se fait aussi simultanément pour l'ensemble des mesures effectuées, mais peut être différée dans le temps. On peut par exemple associer chaque valeur instantanée reçue à une indication de temps, puis effectuer ultérieurement la mise en correspondance des valeurs associées à une même indication de temps.In the processing device, the measurement signal is analyzed. The respective length variation measurements in the measurement lines are carried out substantially simultaneously and instantaneously. The analysis of the image signal is also done simultaneously for all of the measurements carried out, but can be postponed over time. For example, each instantaneous value received can be associated with a time indication, then the values associated with the same time indication can be matched later.
On en déduit une modélisation locale, c'est à dire dans l'échantillon, des déformations instantanées de l'ecorce terrestre. On peut aussi en déduire une évaluation des contraintes et donc l'énergie accumulée au sein de l'échantillon entre deux mesures consécutives ou non. On peut encore extrapoler cette évaluation à l'ensemble d'une zone voisine de l'échantillon.We deduce a local modeling, that is to say in the sample, of instantaneous deformations of the Earth's crust. We can also deduce an evaluation of the constraints and therefore the energy accumulated within the sample between two consecutive or non-consecutive measurements. We can still extrapolate this evaluation to the whole of a neighboring area of the sample.
L'échantillon a de préférence une taille aussi grande que possible dans des conditions économiquement raisonnables. En pratique, la taille de l'échantillon est telle que la longueur d'une ligne de mesure et/ou la distance entre deux lignes voisines va de l'ordre du décamètre à l'ordre du kilomètre, aussi bien pour ce qui est de la ou des dimensions horizontales que pour ce qui est de la dimension verticale. Il est généralement préféré que les dimensions significatives de l'échantillon soient d'un ordre de grandeur comparable. Par « dimension significative » on entend les deux grandes dimension d'un échantillon bidimensionnel ou les trois dimensions d'un échantillon tridimensionnel.The sample is preferably as large as possible under economically reasonable conditions. In practice, the size of the sample is such that the length of a measurement line and / or the distance between two neighboring lines goes from the order of the decameter to the order of the kilometer, as well as in terms of the horizontal dimension (s) only with regard to the vertical dimension. It is generally preferred that the significant dimensions of the sample are of an order of magnitude comparable. By "significant dimension" is meant the two large dimensions of a two-dimensional sample or the three dimensions of a three-dimensional sample.
La différence de longueur entre deux lignes de transmission reliant deux lignes de mesure à un même dispositif de traitement n'aura pas ou peu d'influence. Ainsi, une différence de dix kilomètres entre deux fibres optiques formant chacune une ligne de transmission correspond à une différence de 1 /30000 de seconde à comparer à une période de 1 /1 0 de seconde. Si une plus grande précision est nécessaire, il est toujours possible de prévoir des longueurs de lignes de transmission sensiblement identiques ou tout autre moyen pour égaliser les délais de transmission.The difference in length between two transmission lines connecting two measurement lines to the same processing device will have little or no influence. Thus, a difference of ten kilometers between two optical fibers each forming a transmission line corresponds to a difference of 1/30000 of a second to be compared to a period of 1/1 0 of a second. If greater precision is required, it is always possible to provide substantially identical transmission line lengths or any other means to equalize transmission times.
Selon un autre aspect de l'invention, celle-ci concerne un procédé de veille sismique dans lequel on modélise des déformations instantanées d'un échantillon de l'ecorce terrestre et, de préférence, on en déduit une modélisation des contraintes dans l'échantillon, ou encore une surveillance des contraintes par rapport à des seuils.According to another aspect of the invention, it relates to a seismic monitoring process in which instantaneous deformations of a sample of the earth's crust are modeled and, preferably, a modeling of the stresses in the sample is deduced therefrom , or even a monitoring of the constraints in relation to thresholds.
Par « modéliser les déformations », on entend « décrire typiquement par des valeurs numériques une déformée possible » de l'échantillon, compte tenu des déformations relevées le long des toutes les lignes de mesure. La déformée réelle est légèrement différente et plus complexe que la déformée modélisée. Par exemple, une ligne qui s'est allongée peut être restée rectiligne ou au contraire avoir fléchi au point que ses deux extrémités se sont rapprochées l'une de l'autre. Les autres lignes de mesure vont lever en partie cette indétermination, surtout si elles sont nombreuses. On peut envisager un logiciel qui élabore plusieurs modèles et ne retient que le plus critique en terme de risque sismique.By "modeling the deformations" is meant "typically describing by digital values a possible deformation" of the sample, taking into account the deformations noted along all the measurement lines. The real deformation is slightly different and more complex than the modeled deformation. For example, a line that has elongated may have remained straight or, on the contrary, may have bent to the point that its two ends have come close to each other. The other measurement lines will partially lift this uncertainty, especially if there are many. We can consider software that develops several models and retains only the most critical in terms of seismic risk.
Suivant un troisième aspect de l'invention, le dispositif pour la mise en œuvre du procédé comprend des lignes de mesure de déformation et des moyens pour traiter des signaux émis par les lignes de mesure. Il est caractérisé en ce que les moyens de traitement sont des moyens pour établir une correspondance entre des valeurs instantanées et simultanées des signaux variables d'au moins deux lignes de mesure couplées à l'ecorce terrestre en des sites écartés l'un de l'autre. Les lignes de mesure sont couplées en mouvement avec l'ecorce terrestre par exemple par une matrice dans un forage ou une tranchée, la matrice étant déformable avec l'ecorce terrestre. Il est particulièrement avantageux de prévoir au moins trois lignes de mesure non coplanaires afin de pouvoir modéliser les déformations selon plusieurs directions. Ainsi, trois lignes de mesures non coplanaires et non parallèles définissent pour l'échantillon un repère pour des déformations dans les trois dimensions. A titre d'exemple, les lignes de mesures peuvent être disposées le long des arêtes verticales d'un parallélogramme ou le long des arêtes d'un tétraèdre. Dans ce dernier exemple, on obtient une triangulation de l'échantillon qui est d'autant plus performante que l'on définit dans l'ecorce terrestre un plus grand nombre de tétraèdres ayant deux à deux au moins trois arêtes communes. Les lignes de mesure peuvent être disposées sur des arêtes convergentes ou parallèles, s'il en possède, du polyèdre.According to a third aspect of the invention, the device for implementing the method comprises strain measurement lines and means for processing signals emitted by the measurement lines. It is characterized in that the processing means are means for establishing a correspondence between instantaneous and simultaneous values of the variable signals of at least two measurement lines coupled to the earth's crust at sites spaced apart from one other. The measurement lines are coupled in movement with the earth's crust, for example by a matrix in a borehole or a trench, the matrix being deformable with the earth's crust. It is particularly advantageous to provide at least three non-coplanar measurement lines in order to be able to model the deformations in several directions. Thus, three non-coplanar and non-parallel measurement lines define for the sample a frame of reference for deformations in the three dimensions. As an example, the measurement lines can be arranged along the vertical edges of a parallelogram or along the edges of a tetrahedron. In this last example, we obtain a triangulation of the sample which is all the more efficient when we define in the Earth's crust a greater number of tetrahedrons having two by two at least three common edges. The measurement lines can be arranged on converging or parallel edges, if it has any, of the polyhedron.
Pour disposer des lignes de mesure le long d'arêtes inclinées par rapport à la verticale on peut utiliser la technique des forages dirigés. C'est particulièrement le cas pour disposer des lignes de mesures horizontalement là où une tranchée serait trop profonde. C'est par exemple le cas pour les disposer le long des arêtes d'un tétraèdre dont une base est sensiblement parallèle à la surface du sol et une pointe opposée à cette base est orientée vers le bas. Pour subdiviser un échantillon et augmenter la précision de la détection et de la modélisation, le dispositif peut comprendre des lignes de mesure disposée suivant des arêtes de plusieurs polyèdres. Certains parmi ces polyèdres peuvent être sensiblement proportionnels entre eux. Un premier polyèdre peut être contenu dans un second et/ou être homothétiques entre eux. Un polyèdre pour le dispositif peut ne pas être affleurant par une pointe ou une face avec la surface de l'ecorce terrestre.To have the measurement lines along edges inclined with respect to the vertical one can use the technique of directed drilling. This is particularly the case for placing the measurement lines horizontally where a trench is too deep. This is for example the case for placing them along the edges of a tetrahedron, a base of which is substantially parallel to the surface of the ground and a point opposite this base is oriented downwards. To subdivide a sample and increase the accuracy of detection and modeling, the device can include measurement lines arranged along edges of several polyhedra. Some of these polyhedra can be substantially proportional to each other. A first polyhedron can be contained in a second and / or be homothetic between them. A polyhedron for the device may not be flush with a point or face with the surface of the earth's crust.
Outre des lignes de mesures disposées dans des forages, le dispositif peut comprendre des lignes disposées par d'autres moyens et particulièrement des lignes de mesures de surface, disposées dans des tranchées ou aériennes. Les lignes de mesure et/ou les lignes de transmission peuvent avantageusement être constituées de fibres optiques. Aux dessins annexés :In addition to measurement lines arranged in boreholes, the device can include lines arranged by other means and particularly surface measurement lines, arranged in trenches or overhead. The measurement lines and / or the transmission lines can advantageously consist of optical fibers. In the accompanying drawings:
- la figure 1 est une représentation partielle et schématique d'un dispositif selon l'invention dont seule une ligne de mesure est représentée,FIG. 1 is a partial and schematic representation of a device according to the invention of which only one measurement line is shown,
- la figure 2, est une représentation d'un dispositif selon l'invention dont le polyèdre est un cube affleurant avec la surface, - la figure 3 est une représentation d'un autre dispositif selon l'invention comprenant plusieurs cubes adjacents,FIG. 2 is a representation of a device according to the invention, the polyhedron of which is a cube flush with the surface, FIG. 3 is a representation of another device according to the invention comprising several adjacent cubes,
- la figure 4 est une vue en perspective d'un dispositif selon l'invention comprenant trois cubes emboîtés l'un dans l'autre, - la figure 5 est une vue de dessus du dispositif de la figure 4,FIG. 4 is a perspective view of a device according to the invention comprising three cubes nested one inside the other, FIG. 5 is a top view of the device of FIG. 4,
- la figure 6 est une coupe du dispositif de la figure 4 selon V-V,FIG. 6 is a section of the device in FIG. 4 along V-V,
- la figure 7 est une vue en perspective d'un dispositif selon l'invention comprenant deux tétraèdres emboîtés l'un dans l'autre.- Figure 7 is a perspective view of a device according to the invention comprising two tetrahedrons nested one inside the other.
- la figure 8 est une vue en perspective d'un dispositif défini par deux plans parallèles.- Figure 8 is a perspective view of a device defined by two parallel planes.
- Les figures 9 et 10 sont deux illustrations de déformations pour un cube.- Figures 9 and 10 are two illustrations of deformations for a cube.
Sur les figures 2 à 8 sont principalement représentées les lignes de mesure, en traits pleins et en supposant l'ecorce terrestre transparente. Des lignes de construction, par exemple des arêtes ne comprenant pas de lignes de mesure sont dessinées en traits pointillés. Dans les exemples représentés on utilise comme lignes de mesures et comme lignes de transmissions des fibres optiques.In Figures 2 to 8 are mainly represented the measurement lines, in solid lines and assuming the transparent earth crust. Construction lines, for example edges which do not include measurement lines, are drawn in dotted lines. In the examples shown, optical fibers are used as measurement lines and as transmission lines.
La figure 1 représente schématiquement un dispositif 1 selon l'invention dont on n'a dessiné qu'une seule des lignes de mesure 2. Pour l'étude d'un échantillon de l'ecorce terrestre d'autres lignes non représentées sont utilisées. La ligne de mesure 2 est reliée par une ligne de transmission 3 à un dispositif de traitement de signal 4. Les autres lignes de mesures y sont reliées de la même façon. A l'intérieur du dispositif de traitement, la ligne de transmission se subdivise en une ligne d'entrée 6 pour un signal émis par une source 8 et en une ligne de sortie 7 pour un signal réfléchi par la ligne de mesure 1 vers un récepteur 9. Le dispositif de traitement du signal comprend en outre des moyens de commande 1 0 pour contrôler l'émission du signal, et particulièrement assurer la simultanéité des mesures dans chacune des lignes de mesures du dispositif. Il comprend aussi des moyens d'analyse 1 1 qui permettent de comparer les signaux réfléchis avec les signaux émis pour chacune des lignes de mesure, puis d'en déduire la déformation des lignes de mesure et en ensuite de modéliser les déformations et/ou les contraintes dans l'échantillon étudié.FIG. 1 schematically represents a device 1 according to the invention of which only one of the measurement lines has been drawn 2. For the study of a sample of the earth's crust, other lines not shown are used. The measurement line 2 is connected by a transmission line 3 to a signal processing device 4. The other measurement lines are connected to it in the same way. Inside the processing device, the transmission line is subdivided into an input line 6 for a signal emitted by a source 8 and an output line 7 for a signal reflected by the measurement line 1 to a receiver 9. The signal processing device further comprises control means 1 0 for controlling the emission of the signal, and in particular ensuring the simultaneity of the measurements in each of the measurement lines of the device. It also includes analysis means 11 which make it possible to compare the reflected signals with the signals transmitted for each of the measurement lines, then to deduce therefrom the deformation of the lines of measure and then model the strains and / or stresses in the sample studied.
Le signal réfléchi est une image du signal émis par la source et éventuellement déformé par la ligne de mesure avant d'être renvoyé par cette dernière. C'est l'étude des déformations du signal qui permettent de déduire une variation de longueur de la ligne de mesure. On peut utiliser pour ces opérations des méthodes décrites dans les documents cités en. En particulier, il est avantageux que la ligne de mesure soit prévue pré-allongée lors de sa mise en place. On peut ainsi aisément mesurer des allongements et/ou des raccourcissements. On pourra par la suite utiliser le terme d'allongement pour désigner un raccourcissement, considéré comme un allongement négatif.The reflected signal is an image of the signal emitted by the source and possibly distorted by the measurement line before being returned by the latter. It is the study of the signal deformations which allow to deduce a variation in length of the measurement line. Methods described in the documents cited in can be used for these operations. In particular, it is advantageous for the measurement line to be provided prelonged when it is put in place. It is thus easy to measure elongations and / or shortenings. We can then use the term elongation to designate a shortening, considered as a negative lengthening.
Un forage 1 2 a été réalisé dans l'ecorce terrestre 1 3 pour la mise en place de la ligne de mesure 2. La ligne de mesure est scellée dans le forage à l'aide l'un matériau de scellement 14, formant matrice. Ce matériau doit avoir une cohésion propre faible afin de n'opposer aucune résistance à sa déformation conjointement à celle de l'ecorce terrestre à son voisinage. La cohésion du matériau de scellement sera cependant suffisante pour pouvoir transmettre cette déformation à la ligne de mesure qui y est scellée. On pourra utiliser, par exemple, un coulis avec un faible dosage en ciment. Pour assurer son scellement, la ligne de mesure pourra par exemple, comporter sur son extérieur une surface annelée ou d'autres moyens d'accrochage et de scellement.A borehole 1 2 was carried out in the earth's crust 1 3 for the establishment of the measurement line 2. The measurement line is sealed in the borehole using a sealing material 14, forming a matrix. This material must have a low inherent cohesion in order not to oppose any resistance to its deformation jointly with that of the earth's crust in its vicinity. The cohesion of the sealing material will however be sufficient to be able to transmit this deformation to the measurement line which is sealed there. We can use, for example, a grout with a low dosage of cement. To ensure its sealing, the measurement line may, for example, include on its exterior a corrugated surface or other means of attachment and sealing.
Dans l'exemple de la figure 1 , l'extrémité proximale 1 6 de la ligne de mesure ne doit pas affleurer la surface 1 7 au lieu du forage. Il a donc été prévu une gaine 1 8 pour isoler la ligne de transmission 3 du matériau de scellement 14. Ainsi, la ligne de transmission n'est pas soumise aux déformations de l'ecorce terrestre et seule la variation de la longueur de la fibre optique correspondant à la ligne de mesure est pris en compte.In the example of Figure 1, the proximal end 1 6 of the measurement line should not be flush with the surface 1 7 instead of drilling. A sheath 18 has therefore been provided to isolate the transmission line 3 from the sealing material 14. Thus, the transmission line is not subject to deformations of the earth's crust and only the variation in the length of the fiber. optics corresponding to the measurement line are taken into account.
En référence aux figures 2 à 8 nous allons examiner différentes dispositions possibles pour les lignes de mesure. Aux figures 3 à 8, seules les lignes de mesures sont représentées. La figure 2 représente des lignes de mesures 2 disposées sur des arêtes verticales d'un polyèdre 1 9, qui est un cube. Les extrémités proximales 1 6 de chacune des lignes de mesures sont affleurantes avec le sol 1 7. Chacune des extrémités proximales est reliée par une ligne de transmission 3 indépendante à un dispositif de traitement 4. Le dispositif de traitement permet ainsi un traitement simultané des signaux à destination ou en provenance de chacune des lignes de mesure 2.With reference to Figures 2 to 8 we will examine different possible arrangements for the measurement lines. In Figures 3 to 8, only the measurement lines are shown. FIG. 2 represents lines of measurements 2 arranged on vertical edges of a polyhedron 1 9, which is a cube. The proximal ends 1 6 of each of the measurement lines are flush with the ground 1 7. Each of the proximal ends is connected by an independent transmission line 3 to a processing device 4. The processing device thus allows simultaneous signal processing to or from each of the measurement lines 2.
A la figure 3, le dispositif comprend huit cubes disposés en deux couches de quatre cubes chacune. Chacun des cubes d'une couche à deux faces communes avec des cubes de la même couche. Chacun des cubes de la couche supérieure à une face inférieure commune avec une face supérieure d'un cube de la couche inférieure. Les huit cubes ainsi disposés définissent 1 8 arêtes verticales, dont certaines sont communes à 2 ou 4 cubes. Une ligne de mesure est disposée le long de chacune de ces 1 8 arêtes, de sorte que chacune des lignes de mesure de la couche supérieure est disposée dans le prolongement d'une unique ligne de mesure de la couche inférieure. Cette disposition permet de définir pour un même échantillon d'écorce terrestre huit zones correspondant à chacun des huit cubes 1 9 et de modéliser la déformation globale de l'échantillon avec une plus grande précision tout en conservant la possibilité de modéliser pour chacune des zones sa déformation propre.In Figure 3, the device comprises eight cubes arranged in two layers of four cubes each. Each of the cubes of a layer with two common faces with cubes of the same layer. Each of the cubes of the upper layer has a common lower face with an upper face of a cube of the lower layer. The eight cubes thus arranged define 1 8 vertical edges, some of which are common to 2 or 4 cubes. A measurement line is arranged along each of these 18 edges, so that each of the measurement lines of the upper layer is arranged in the extension of a single measurement line of the lower layer. This arrangement makes it possible to define for the same sample of earth's crust eight zones corresponding to each of the eight cubes 1 9 and to model the overall deformation of the sample with greater precision while retaining the possibility of modeling for each of the zones its own deformation.
Aux figures 4 à 6, outre un cube 1 9, le dispositif 1 comprend aussi deux cubes 1 91 , 1 92. Le cube 1 91 est à l'intérieur du cube 1 9 et le cube 1 92 est à l'intérieur du cube 1 92 de sorte que les trois cubes 1 9, 1 91 , 1 92 ont un centre géométrique commun G (voir figure 6) . C'est à dire que l'un quelconque des cubes peut être déduit d'un autre quelconque des autres cubes par une homothétie de centre G. Le cube 1 9 est plus grand que le cube 1 91 qui est lui- même plus grand que le cube 1 92. Des lignes de mesure 2,21 ,22 sont disposées respectivement sur les arêtes verticales de chacun cubes 1 9, 1 91 , 1 92. La figure 5 est une vue de dessus des trois cubes emboîtés. Chacune des lignes de mesure y est représentée par un point. Les lignes de mesures sont comprises dans l'un ou l'autre des plans diagonaux (VI-VI) communs aux trois cubes. La figure 6 est une représentation de la disposition des lignes de mesures comprises dans l'un de ces plans. Comme dans l'exemple de la figure 3, cette disposition permet une plus grande précision dans la mesure des déformations de l'échantillon, particulièrement au voisinage du point G.In Figures 4 to 6, in addition to a cube 1 9, the device 1 also includes two cubes 1 91, 1 92. The cube 1 91 is inside the cube 1 9 and the cube 1 92 is inside the cube 1 92 so that the three cubes 1 9, 1 91, 1 92 have a common geometric center G (see Figure 6). That is to say that any of the cubes can be deduced from any other of the other cubes by a homothety of center G. The cube 1 9 is larger than the cube 1 91 which is itself larger than the cube 1 92. Measuring lines 2,21, 22 are disposed respectively on the vertical edges of each cube 1 9, 1 91, 1 92. Figure 5 is a top view of the three nested cubes. Each of the measurement lines is represented by a point. The measurement lines are included in one or the other of the diagonal planes (VI-VI) common to the three cubes. FIG. 6 is a representation of the arrangement of the measurement lines included in one of these plans. As in the example in FIG. 3, this arrangement allows greater precision in the measurement of the deformations of the sample, particularly in the vicinity of point G.
A la figure 7, le dispositif 1 comprend deux polyèdres 1 9, 1 93 qui sont deux tétraèdres dont le second 1 93 est plus petit que le premier 1 9, le second est compris dans le premier. Les deux tétraèdres ont une base 30 horizontale et un pointe 31 opposée à la base orientée vers le bas. La base du plus grand tétraèdre 1 9 est proche de la surface. Une ligne de mesure est disposée sur chacune des arêtes des tétraèdres. Des forages pour les lignes 2, allant depuis une base 30 vers une pointe 31 sont réalisés inclinés. Les lignes de mesures 23 à la périphérie de la base du premier tétraèdre 1 9, donc proches de la surface, sont disposées dans des tranchées. Les forages pour les lignes de mesure 24, à la périphérie de la base du second tétraèdre, sont horizontaux dans leur partie comprenant les lignes de mesure, et ils sont réalisés par la technique des forages dirigés.In Figure 7, the device 1 comprises two polyhedra 1 9, 1 93 which are two tetrahedrons of which the second 1 93 is smaller than the first 1 9, the second is included in the first. The two tetrahedra have a horizontal base 30 and a point 31 opposite the base oriented downwards. The base of the largest tetrahedron 1 9 is close to the surface. A measurement line is arranged on each of the edges of the tetrahedra. Drilling for lines 2, going from a base 30 to a point 31 are made inclined. The measurement lines 23 at the periphery of the base of the first tetrahedron 1 9, therefore close to the surface, are arranged in trenches. The drillings for the measurement lines 24, at the periphery of the base of the second tetrahedron, are horizontal in their part comprising the measurement lines, and they are produced by the technique of directed drilling.
A la figure 8, un premier dispositif bidimensionnel 1 A comprend deux lignes de mesures 2 concourantes disposées dans un premier plan vertical. Un deuxième dispositif bidimensionnel 1 B, est l'image distante du premier dispositif 1 A par une translation sensiblement horizontale. Ces deux dispositifs bidimensionnels sont associés pour former un dispositif 1 capable de traiter simultanément des informations transmises par les premiers et deuxièmes dispositifs bidimensionnels 1 A, 1 B. Les figures 9 et 10 sont des illustrations de deux déformations possibles pour un échantillon initialement défini par un cube dont une face supérieure est horizontale. Les arêtes du cube, c'est à dire de l'échantillon avant déformation, sont représentées en traits pointillés.In FIG. 8, a first two-dimensional device 1 A comprises two lines of concurrent measurements 2 arranged in a first vertical plane. A second two-dimensional device 1 B is the distant image of the first device 1 A by a substantially horizontal translation. These two two-dimensional devices are associated to form a device 1 capable of simultaneously processing information transmitted by the first and second two-dimensional devices 1 A, 1 B. FIGS. 9 and 10 are illustrations of two possible deformations for a sample initially defined by a cube whose upper face is horizontal. The edges of the cube, that is to say of the sample before deformation, are represented in dotted lines.
Une première déformation, représentée à la figure 9, est due à un glissement horizontal selon une direction F des couches de l'ecorce terrestre parcourues par l'échantillon, l'une par rapport à l'autre. La face inférieure considérée immobile ne se déforme pas. La face supérieure se déplace horizontalement selon D sans se déformer. Pour une ligne de mesure 2 disposée suivant une arête verticale du cube, la première déformation est perçue comme un premier allongement.A first deformation, represented in FIG. 9, is due to a horizontal sliding in a direction F of the layers of the earth's crust traversed by the sample, one with respect to the other. The lower face considered immobile does not deform. The upper side moves horizontally along D without deforming. For a measurement line 2 arranged along a vertical edge of the cube, the first deformation is perceived as a first elongation.
Une deuxième déformation, représentée à la figure 1 0, est due à un écrasement horizontal progressif de l'échantillon à mesure que l'on est plus profond dans l'ecorce terrestre. La face supérieure du cube reste immobile et ne se déforme pas. La face inférieure se déforme dans un plan horizontal alors que ses coins se rapprochent selon D. Le cube prend la forme d'un tronc de tétraèdre régulier. Pour une ligne de mesure 2 disposée suivant une arête verticale du cube, la deuxième déformation est perçue comme un deuxième allongement.A second deformation, shown in Figure 1 0, is due to a progressive horizontal crushing of the sample as one is deeper in the earth's crust. The upper face of the cube remains stationary and does not deform. The underside is deformed in a horizontal plane while its corners approach according to D. The cube takes the form of a regular tetrahedron trunk. For a measurement line 2 arranged along a vertical edge of the cube, the second deformation is perceived as a second elongation.
La première déformation se fait avec peu ou pas d'accumulation d'énergie, c'est à dire que l'échantillon déformé est sensiblement stable. La deuxième déformation se fait en accumulant de l'énergie au sein de l'échantillon déformé, c'est à dire que celui-ci est instable et que l'énergie accumulée tend à lui redonner sa forme initiale cubique. Cependant, pour une distance parcourue selon D identique pour les deux déformations, les premier et deuxième allongements sont perçus identiques pour les deux déformations. Si l'on ne peut déterminer, avant installation d'un dispositif selon l'invention, des déformations privilégié pour l'échantillon que l'on choisi d'instrumenter, il convient de disposer certaines lignes de mesure afin de pouvoir lever une incertitude sur le type de déformation. Par exemple, on disposera une ligne de mesure suivant une diagonale du cube ou une diagonale de certains côtés du cube. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.The first deformation is done with little or no energy accumulation, that is to say that the deformed sample is substantially stable. The second deformation is done by accumulating energy within the deformed sample, that is to say that it is unstable and that the accumulated energy tends to give it back its initial cubic shape. However, for a distance traveled along D identical for the two deformations, the first and second elongations are perceived to be identical for the two deformations. If it is not possible to determine, before installing a device according to the invention, privileged deformations for the sample which one chooses to instrument, it is advisable to have certain measurement lines in order to be able to remove an uncertainty on the type of deformation. For example, we will have a measurement line along a diagonal of the cube or a diagonal of certain sides of the cube. Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention.
Ainsi, les polyèdres peuvent être de tout type et pas seulement limités aux cubes et aux tétraèdres. Toutes ou seulement certaines de leurs arêtes peuvent être équipées et certaines mesures n'être faites que sur une partie des arêtes équipées. De même on pourra disposer les lignes de mesures, non pas en fonction de la surface de l'ecorce terrestre mais, par exemple, en fonctionThus, polyhedra can be of any type and not just limited to cubes and tetrahedra. All or only some of their edges can be equipped and certain measurements can only be made on part of the equipped edges. Similarly, the measurement lines can be arranged, not according to the surface of the earth's crust but, for example, according to
il de lignes de fracture de cette écorce, connues ou présagées. Une configuration et une utilisation d'un dispositif selon l'invention peuvent donc être très différentes selon le lieu de son implantation, la connaissance que l'on a de ce lieu et selon les résultats recherchés. Ainsi, dans le cas d'un dispositif comportant plusieurs polyèdres, chaque polyèdre peut être affecté à une partie de l'échantillon ayant un module d'élasticité propre.he fracture lines of this bark, known or predicted. A configuration and a use of a device according to the invention can therefore be very different depending on the place of its installation, the knowledge that one has of this place and according to the desired results. Thus, in the case of a device comprising several polyhedra, each polyhedron can be assigned to a part of the sample having its own elastic modulus.
De même on peut aussi utiliser, pour une ligne de mesure, tout moyens permettant, telle les fibres optiques, de mesurer une longueur ou une variation de longueur entre deux extrémités d'une ligne. On peut aussi utiliser une unité décentralisée, c'est à dire proche d'une ligne de mesure, comprenant une source et un récepteur de signal et des moyens de communication, par exemple des moyens radio, pour des communications avec une unité centrale de traitement. Ces moyens peuvent êtres combinés entre eux pourvu qu'ils permettent de donner, au sens de l'invention, des mesures simultanées. Le procédé et le dispositif selon l'invention sont particulièrement adaptés à mesurer des déformations ou des déplacements de période d'onde infinie, c'est à dire des déformations ou des déplacements continus, de fréquence sensiblement nulle, au moins pendant une certaine durée, et ne sont pas seulement adaptés à des mesures vibratoires. Similarly, it is also possible to use, for a measurement line, any means making it possible, such as optical fibers, to measure a length or a variation in length between two ends of a line. It is also possible to use a decentralized unit, that is to say close to a measurement line, comprising a signal source and receiver and communication means, for example radio means, for communications with a central processing unit. . These means can be combined with each other provided that they make it possible to give, within the meaning of the invention, simultaneous measurements. The method and the device according to the invention are particularly suitable for measuring deformations or displacements of infinite wave period, that is to say deformations or continuous displacements, of substantially zero frequency, at least for a certain duration, and are not only suitable for vibration measurements.

Claims

REVENDICATIONS
1 . Procédé de veille sismique dans lequel on analyse des signaux de mesure de déformation émis par au moins une ligne de mesure (2,21 -24) couplée mécaniquement à l'ecorce terrestre (1 3), caractérisé en ce qu'on recueille des signaux de mesure de déformation variable, émis par au moins deux lignes de mesure (2,21 -24) couplées avec l'ecorce terrestre (13) en étant suffisamment espacées l'une de l'autre pour définir un échantillon au moins bidimensionnel de ladite croûte terrestre, et en ce qu'on établit une correspondance entre des signaux de mesure sensiblement instantanés produits sensiblement simultanément par les lignes de mesure.1. Seismic monitoring method in which deformation measurement signals emitted by at least one measurement line (2.21 -24) mechanically coupled to the earth's crust (1 3) are analyzed, characterized in that signals are collected for measuring variable deformation, emitted by at least two measurement lines (2,21 -24) coupled with the earth's crust (13) being sufficiently spaced from one another to define an at least two-dimensional sample of said Earth's crust, and in that a correspondence is established between substantially instantaneous measurement signals produced substantially simultaneously by the measurement lines.
2. Procédé selon la revendication 1 , caractérisé en ce que les lignes de mesure définissent un échantillon tridimensionnel.2. Method according to claim 1, characterized in that the measurement lines define a three-dimensional sample.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'on en déduit une modélisation locale des déformations instantanées de l'ecorce terrestre.3. Method according to claim 1 or 2, characterized in that a local modeling of the instantaneous deformations of the earth's crust is deduced therefrom.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on surveille principalement des déformations de l'ecorce terrestre de fréquence inférieure à 0, 1 Hz.4. Method according to one of claims 1 to 3, characterized in that one mainly monitors deformations of the earth's crust of frequency less than 0.1 Hz.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on déduit de deux mesures effectuées à deux instants différents, la variation, entre ces deux instants, de l'énergie accumulée dans l'échantillon.5. Method according to one of claims 1 to 4, characterized in that one deduces from two measurements made at two different times, the variation, between these two times, of the energy accumulated in the sample.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on collecte les signaux de mesure en un site commun auquel toutes les lignes de mesure sont raccordées par des moyens de transmission sensiblement instantanée 6. Method according to one of claims 1 to 5, characterized in that the measurement signals are collected at a common site to which all the measurement lines are connected by means of substantially instantaneous transmission.
7. Procédé selon l'une des revendications 1 à 6 caractérisé en ce que les lignes de mesure sont disposées selon au moins un contour sensiblement fermé.7. Method according to one of claims 1 to 6 characterized in that the measurement lines are arranged along at least one substantially closed contour.
8. Dispositif (1 ) pour la mise en œuvre d'un procédé selon l'une des revendications 1 à 7, comprenant des lignes de mesure de déformation (2,21 -24) et des moyens (4) pour traiter des signaux émis par les lignes de mesure, caractérisé en ce que les moyens de traitement sont des moyens pour établir une correspondance entre des valeurs instantanées et simultanées des signaux variables d'au moins deux lignes de mesure couplées à l'ecorce terrestre en des sites écartés l'un de l'autre.8. Device (1) for implementing a method according to one of claims 1 to 7, comprising strain measurement lines (2,21 -24) and means (4) for processing transmitted signals by measurement lines, characterized in that the processing means are means for establishing a correspondence between instantaneous and simultaneous values of the variable signals of at least two measurement lines coupled to the Earth's crust at spaced sites one of the other.
9. Dispositif selon la revendication 8, caractérisé en ce que les moyens de traitement sont agencés en un site de traitement auquel les lignes de mesure sont toutes reliées par des moyens de transmission (3) assurant une transmission quasi simultanée entre les déformations subies par chaque ligne de mesure et les signaux correspondants reçus pas les moyens de traitement.9. Device according to claim 8, characterized in that the processing means are arranged in a processing site to which the measurement lines are all connected by transmission means (3) ensuring an almost simultaneous transmission between the deformations undergone by each measurement line and the corresponding signals received by the processing means.
10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que certaines des lignes de mesures sont disposées dans des forages (1 2) pratiqués dans l'ecorce terrestre (1 3).10. Device according to claim 8 or 9, characterized in that some of the measurement lines are arranged in boreholes (1 2) made in the earth's crust (1 3).
1 1 . Dispositif selon l'une des revendications 8 à 9, caractérisé en ce que des lignes de mesure sont couplées en mouvement avec l'ecorce terrestre par une matrice, déformable avec l'ecorce terrestre.1 1. Device according to one of claims 8 to 9, characterized in that measuring lines are coupled in movement with the earth's crust by a matrix, deformable with the earth's crust.
1 2. Dispositif selon l'une des revendications 8 à1 1 , caractérisé en ce qu'il comprend au moins trois lignes de mesures non coplanaires.1 2. Device according to one of claims 8 to 1 1, characterized in that it comprises at least three non-coplanar measurement lines.
1 3. Dispositif selon l'une des revendications 8 à 1 2, caractérisé en ce qu'il comprend au moins trois lignes de mesures convergentes. 1 3. Device according to one of claims 8 to 1 2, characterized in that it comprises at least three lines of convergent measurements.
1 4. Dispositif selon l'une des revendications 8 à 1 3, caractérisé en ce qu'il comprend des lignes de mesures disposées suivant des arêtes parallèles d'un parallélogramme (1 9, 1 91 , 1 92).1 4. Device according to one of claims 8 to 1 3, characterized in that it comprises measurement lines arranged along parallel edges of a parallelogram (1 9, 1 91, 1 92).
1 5. Dispositif selon l'une des revendications 8 à 1 3, caractérisé en ce qu'il comprend des lignes de mesures disposées suivant des arêtes d'un tétraèdre (1 9, 1 93) dont une base (30) est sensiblement parallèle à la surface du sol (1 7) et une pointe (31 ) opposée à ladite base est orientée vers le bas.1 5. Device according to one of claims 8 to 1 3, characterized in that it comprises measurement lines arranged along the edges of a tetrahedron (1 9, 1 93) whose base (30) is substantially parallel on the surface of the ground (1 7) and a point (31) opposite said base is oriented downwards.
1 6. Dispositif selon l'une des revendications 8 à 1 5, caractérisé en ce qu'il comprend des lignes de mesure suivant des arêtes de plusieurs polyèdres ayant une arête commune équipée de l'une des lignes de mesure.1 6. Device according to one of claims 8 to 1 5, characterized in that it comprises measurement lines along edges of several polyhedra having a common edge equipped with one of the measurement lines.
1 7. Dispositif selon l'une des revendications 8 à 1 5, caractérisé en ce qu'il comprend des lignes de mesure suivant des arêtes de plusieurs polyèdres sensiblement proportionnels entre eux.1 7. Device according to one of claims 8 to 1 5, characterized in that it comprises measurement lines along edges of several polyhedra substantially proportional to each other.
1 8. Dispositif selon l'une des revendications 8 à 1 7, caractérisé en ce qu'il comprend des lignes de mesure suivant des arêtes d'au moins deux polyèdres dont l'un est inclus dans l'autre.1 8. Device according to one of claims 8 to 1 7, characterized in that it comprises measurement lines along edges of at least two polyhedra, one of which is included in the other.
1 9. Dispositif selon l'une des revendications 8 à 1 8, caractérisé en ce qu'il comprend des lignes de mesure suivant des arêtes d'au moins deux polyèdres déduits l'un de l'autre par une homothétie.1 9. Device according to one of claims 8 to 1 8, characterized in that it comprises measurement lines along the edges of at least two polyhedrons deduced from each other by a homothety.
20. Dispositif selon l'une des revendications 8 à 1 9, caractérisé en ce qu'il comprend au moins une ligne de mesure (23), proche de la surface et sensiblement parallèle à ladite surface.20. Device according to one of claims 8 to 1 9, characterized in that it comprises at least one measurement line (23), close to the surface and substantially parallel to said surface.
21 . Dispositif selon l'une des revendications 8 à 20, caractérisé en ce qu'au moins une des lignes de mesure est constituée avec une fibre optique. 21. Device according to one of claims 8 to 20, characterized in that at least one of the measurement lines is formed with an optical fiber.
PCT/FR2002/002557 2001-07-18 2002-07-18 Method and device for seismic surveillance WO2003008903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/09587 2001-07-18
FR0109587A FR2827670A1 (en) 2001-07-18 2001-07-18 Seismic monitoring system uses embedded measurement line array

Publications (1)

Publication Number Publication Date
WO2003008903A1 true WO2003008903A1 (en) 2003-01-30

Family

ID=8865651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002557 WO2003008903A1 (en) 2001-07-18 2002-07-18 Method and device for seismic surveillance

Country Status (2)

Country Link
FR (1) FR2827670A1 (en)
WO (1) WO2003008903A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015060A1 (en) 2013-07-29 2015-02-05 Osmos Sa Sensor building
US9389070B2 (en) 2012-02-09 2016-07-12 Osmos Sa Monitoring device, system and method for the monitoring of an area of building or land, using at least one light waveguide
CN112612045A (en) * 2020-11-27 2021-04-06 武汉理工大学 GNSS earthquake earth surface displacement monitoring method considering multipath and homomorphic errors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371576B2 (en) * 2018-06-15 2022-06-28 Ogre Skin Designs, Llc Structures, systems, and methods for energy distribution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750901A (en) * 1995-06-07 1998-05-12 Hughes Aircraft Company Optical fiber apparatus and method for measuring geological strains
US6209640B1 (en) * 1995-02-09 2001-04-03 Baker Hughes Incorporated Method of obtaining improved geophysical information about earth formations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209640B1 (en) * 1995-02-09 2001-04-03 Baker Hughes Incorporated Method of obtaining improved geophysical information about earth formations
US5750901A (en) * 1995-06-07 1998-05-12 Hughes Aircraft Company Optical fiber apparatus and method for measuring geological strains

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389070B2 (en) 2012-02-09 2016-07-12 Osmos Sa Monitoring device, system and method for the monitoring of an area of building or land, using at least one light waveguide
WO2015015060A1 (en) 2013-07-29 2015-02-05 Osmos Sa Sensor building
CN112612045A (en) * 2020-11-27 2021-04-06 武汉理工大学 GNSS earthquake earth surface displacement monitoring method considering multipath and homomorphic errors

Also Published As

Publication number Publication date
FR2827670A1 (en) 2003-01-24

Similar Documents

Publication Publication Date Title
Masciotta et al. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal
US9435902B2 (en) Wide area seismic detection
CN100487386C (en) Multi-parameter detector based on composite optical fiber device
US20130319121A1 (en) Distributed Acoustic Sensing
CN101788352B (en) Composite fiber detection module and device
Lekidis et al. Evaluation of dynamic response and local soil effects of the Evripos cable-stayed bridge using multi-sensor monitoring systems
WO2016020595A1 (en) Method and device for determining the depth of the origin of a soil compaction
FR2815118A1 (en) STRESS MEASUREMENT IN OIL WELLS
FR2855210A1 (en) System for measuring stress applied to lining in bottom of well using fiber optic detectors on outside of lining protected by casing
FR3060743A1 (en) METHOD AND SYSTEM FOR INTEGRATED HEALTH CONTROL OF A MECHANICAL STRUCTURE BY DIFFUSED ELASTIC WAVES
EP2972072B1 (en) Strain measuring device
CN111259483A (en) Method for calculating slope stability coefficient in cold region
CN201028977Y (en) Multi-parameter detecting instrument based on compound optical fiber device
WO2005103606A1 (en) Method for locating and measuring deformations in a work of civil engineering
WO2003008903A1 (en) Method and device for seismic surveillance
Soule et al. A record of eruption and intrusion at a fast spreading ridge axis: Axial summit trough of the East Pacific Rise at 9–10 N
CA2843525A1 (en) Method for increasing broadside sensitivity in seismic sensing system
CA2253625A1 (en) Method and devices for detecting flexure, and structure such as a geotechnical or building structure equipped with such a device
EP0505276A1 (en) Probe for determining particularly the injectivity of an oil well and measuring process making use of this probe
CN201697613U (en) Composite optical fiber detection module and device
WO2015015060A1 (en) Sensor building
FR2844874A1 (en) Building structure deformation locating and measuring method in which a fiber optical grating network within a geosynthetic material layer is applied to or below the building
WO2022192125A2 (en) Devices, systems, and methods providing earthquake information with distributed fiber-optic sensing
Minardo et al. Soil slope monitoring by use of a Brillouin distributed sensor
FR2645270A1 (en) DEVICE FOR ESTABLISHING A DRIVING CONDITION DIAGNOSIS OR GALLERY AND APPARATUS FOR ITS IMPLEMENTATION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP