WO2003008633A1 - Screening method using fish embryo - Google Patents

Screening method using fish embryo Download PDF

Info

Publication number
WO2003008633A1
WO2003008633A1 PCT/JP2002/007289 JP0207289W WO03008633A1 WO 2003008633 A1 WO2003008633 A1 WO 2003008633A1 JP 0207289 W JP0207289 W JP 0207289W WO 03008633 A1 WO03008633 A1 WO 03008633A1
Authority
WO
WIPO (PCT)
Prior art keywords
embryo
fish
plate
screening method
embryos
Prior art date
Application number
PCT/JP2002/007289
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Tamaru
Toshio Tanaka
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Publication of WO2003008633A1 publication Critical patent/WO2003008633A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/4603Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates from fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish

Definitions

  • the present invention relates to a screening method using a fish embryo and the like.
  • the present invention has been made in view of the above circumstances, and its purpose is to reduce labor. It is an object of the present invention to provide a method for screening chemical substances which can be used in place of a biological test and which can be used instead of a biological test. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that, in the process of turning an animal from a fertilized egg into an adult, the stage of the embryo is most susceptible to chemicals. Furthermore, 2 fish embryos are not only endocrine disruptors, It has been found that it is possible to completely expose any chemical substance by mixing it in a liquid, and that its effects can be detected with high sensitivity. Thus, the present inventors have basically completed the present invention.
  • the first invention for solving the above-mentioned problem is a plate provided with a well for holding a liquid to which a chemical substance can be added while a fish embryo is immersed, and a fish embryo inside the well of the plate can be observed.
  • a screening device using a fish embryo comprising an observation device and a photographing device capable of photographing an image obtained by the observation device.
  • teleosts' cartilaginous fish and jawless fish can be used.However, from the viewpoint of maintenance of test facilities, it is preferable to use fish that are as small and prolific as possible. . It is further preferred that the fish embryos are transparent. In addition, it is preferable to use a fish embryo having a short time (from several hours to several days) from the one-cell stage to becoming an individual. In order to compare the effects of chemicals on fish as individuals and the effects on humans, it is necessary to determine the genomic sequence of the fish or that it will be known in the near future. It is preferred to use Particularly preferred examples of such fish include trough, medaka, and zebrafish.
  • the number of eggs (embryos) obtained in one spawning is several tens or more. If the number of laid eggs is too small, it takes too much time to perform the evaluation test.
  • the sex of fishes fluctuates due to internal factors caused by genes and external factors caused by sex hormones and environmental conditions. So, like this A system for detecting environmental hormones such as endocrine disruptors has been developed using the sex determination process of fish and its mechanism.
  • these detection systems directly quantify sex hormones and their related substances in the blood of fish, the use of adult fish is based on seasonal variation and individual differences in fish due to age. The data varied widely. Also, when using small fish such as medaka, the difficulty of collecting blood was a major problem.
  • fish embryo means an egg in which a fish can develop as an individual, and an egg that is dividing in order to become an individual.
  • embryos should be as early as possible (before starting cleavage (1 cell stage) or immediately after cleavage (eg, 4 cell stage to 8 cell stage). )) Is preferred. This is because if the cleavage progresses to a certain extent, there is a concern that the action will not occur even if a chemical substance is added. It is most preferable to use a fish embryo before the start of cleavage.
  • the egg membrane can be appropriately treated (for example, an enzyme treatment) in order to enhance the penetration of the chemical substance into the fish embryo.
  • a transparent fish embryo By doing so, it becomes possible to observe organs in the embryo such as the spine and internal organs.
  • An example of such a fish embryo is zebrafish.
  • immersion means that a fish embryo is immersed in a liquid in a state where cell division is possible until it becomes an individual. Normally, it is necessary to control the temperature to a constant state, but it is not necessary to control the partial pressure of oxygen, carbon dioxide, etc. in the air. Hassle-free.
  • chemical substance is a general term for a substance which can be chemically synthesized, which can be isolated and purified from a natural product, or a mixture which is obtained naturally but whose components and component ratios are unknown. are doing.
  • “Chemical substances” include, in addition to compounds of inorganic compounds and organic compounds, polypeptides and proteins (including those modified with sugar chains, etc.) that can be produced by genetic engineering.
  • the chemical substance has a property (water solubility) that dissolves in a liquid in which the fish embryo is immersed (in most cases, a liquid mainly composed of water (fresh water or seawater)). Even if it has no properties (or exhibits only a very small amount of water solubility), for example, a small amount of the solvent is added to the liquid in which the fish embryo is immersed, while being dissolved (or dispersed) in an organic solvent. This allows fish embryos and chemical substances to coexist.
  • water solubility water solubility
  • addition means that the chemical substance to be tested is added in a liquid so that it can come into contact with the fish embryo.
  • the chemical substance can be added before the fish embryo is immersed in the liquid, but may be added simultaneously with the fish embryo or after the fish embryo is immersed in the liquid. Is also good.
  • liquid is mainly composed of water in many cases.
  • fresh water or seawater-like one containing salt at an appropriate concentration (including seawater itself) according to the fish used is often used.
  • an appropriate buffer can be used.
  • “well” means a well-shaped depression that holds a liquid. It is preferable to use the minimum size of the wells according to the size of the fish embryo used. For example, when the initial size of the fish embryo is about 0.8 mm, a cylindrical well having a diameter of about 5 mm and a depth of about 5 mm can be used. In many cases, fish embryos sink into the bottom of the liquid in the wells. Therefore, (1) When observing fish embryos by illuminating the plate with transmitted light, it is preferable to have a flat bottom surface. This will make it easier to observe fish embryos by suppressing the reflection and scattering of light.
  • the position where the image is to be captured in the observation device can be determined, and a device with a mortar-shaped bottom can be used for the purpose of automation. This is because the fish embryo is fixed at the top of the mortar (the lowest point of the ⁇ el).
  • the “plate” means a base portion having one or more wells.
  • the material of the plate is not particularly limited, and it can be manufactured using resin (synthetic resin or natural resin) 'glass or metal. ⁇ From the viewpoints of operability and economy, it is preferable to use a synthetic resin. In such a case, it is more preferable that the plate is made of a transparent resin having high transparency. This makes it easier to illuminate one side of the plate and observe the fish embryo from the other side.
  • an “observation device” is a device for observing a state in which a fish embryo divides as an individual. If the division of the fish embryo is large enough to be observed with the naked eye, it is possible to use both the observation device and the imaging device.However, in many cases, the observation device is used to enlarge the fish embryo to be observed. It is preferable to have the ability to observe by observation.
  • An optical microscope can be exemplified as the most suitable device for that purpose. However, if the photographing device has an enlargement capability, it can also be used as an observation device.
  • shooting means capturing an image obtained by an observation device, and in addition to a general photograph (including a black-and-white or a color photograph), analog data, or This includes storing images as digital data.
  • the “photographing device” means a device that can store an image obtained by an observation device.
  • a polaroid camera a camera using a general developing film
  • a digital camera a CCD camera
  • an image recording device Devices including floppy disks, CDs, portable recording media such as MOs, and hard disk-integrated image recording devices, etc.
  • a fish embryo and a chemical substance are added to the liquid in the well. Then, the changes in the fish embryo can be observed using an observation device, and the image can be taken by an imaging device when necessary, and the effect of the chemical substance on the development of the fish embryo can be evaluated through the photograph. .
  • fish embryos take less time to grow as individuals than mammals, so similar results can be obtained in a shorter time than conventional in vivo tests.
  • fish embryos are easier to breed than mammals, and the whole test can be easily performed.
  • a second invention is characterized in that, in the first invention, the plate is formed of a transparent material, and the bottom surface of the well is flat.
  • the second invention when observing a fish embryo in a well, light is illuminated from one side of the plate if necessary (if the surroundings are sufficiently bright, it is not necessary to illuminate the fish). No), observation by the observation device and imaging by the imaging device are performed from the other side.
  • This makes it easier to observe the fish embryo than a reflective plate (a type in which the bottom of the well is configured to reflect), since the image of the fish embryo is not duplicated.
  • the observation by the observation device and the imaging by the imaging device may be performed on either the upper surface or the lower surface of the plate.
  • observation and photographing can be performed from the side of the plate.
  • the third invention is a screening method using a fish embryo, which is characterized by immersing a fish embryo in a liquid containing a chemical substance and observing a change over time of the fish embryo.
  • the chemical substance since the chemical substance is contained in the liquid, it can be in contact with almost the entire fish embryo, so that the effect of the chemical substance can be reliably obtained.
  • fish embryos at the very early stage for example, from the 1-cell stage to the 8-cell stage
  • a mechanical treatment or a chemical treatment can be used, but it is preferable to perform a chemical treatment using an enzyme (for example, protease E can be used). Further, it is preferable that the removal treatment of the egg membrane is performed when the egg membrane has two layers.
  • fish embryos are the first point in time when a chemical substance is contained in a liquid.
  • a point in the phasing stage (1 cell stage to 8 cell stage) is preferred.
  • an appropriate point of addition can be selected.
  • a fourth invention is characterized in that, in the third invention, a time-lapse observation point is at least between a time point when organ formation starts and a time point when individual formation is completed.
  • organ formation the time at which the fish embryo begins to form organs such as the spine, eyes, and internal organs
  • time of completion of individual formation at It is important that these points are between the two points (the point at which each organ can be moved by the caudal fin).
  • organ formation starts at about 26 ° C at a water temperature of about 12 hours after the 1-cell stage, and when the About 24 to about 30 hours after the 1-cell stage. Therefore, in the case of zebrafish, it is possible to confirm the effect of the chemical substance on the fish embryo by performing observations from about 12 hours to about 30 hours after the 1-cell stage. is there.
  • a fifth invention is a pharmaceutical composition characterized by being screened in the third invention or the fourth invention (invention of a method). According to the method of the present invention, the effect of a chemical substance on a fish embryo (living body) can be easily evaluated, so that the method can be applied to a pharmaceutical composition.
  • the “pharmaceutical composition” means a substance applied to a pharmaceutical among the “chemical substances” in the present invention.
  • the action of a chemical substance can be confirmed using a fish embryo.
  • the process of fish embryo development can be imaged over time with an imaging device. Large-scale screening of chemical substances is possible according to the number of spawned fish, thus enabling high-throughput data.
  • the development time of fish embryos is much shorter than that of conventional in vivo tests, so that the time can be shortened.
  • FIG. 1 is a diagram showing a state when a fish embryo is being processed in the present embodiment.
  • FIG. 2 is a photograph of the plate in the present embodiment.
  • FIG. 3 is a view showing a state in which fish embryos and chemical substances are dispensed into the wells of the plate in the present embodiment.
  • FIG. 4 is a photograph showing a state in which a digital camera is mounted on the eyepiece side of the microscope in the present embodiment and the state of the fish embryo in the well is observed.
  • Fig. 5 is a photograph showing the appearance of zebrafish embryos when no chemical substance is added.
  • (A) shows an embryo at 0 hours
  • (B) shows an embryo at 12 hours
  • (C) shows an embryo at 24 hours.
  • FIG. 6 is a photograph showing a state of development of zebrafish embryos when 25 g / m 1 of magnesium sulfate was added.
  • (A) shows an embryo at 0 hours
  • (B) shows an embryo at 12 hours
  • (C) shows an embryo at 24 hours.
  • FIG. 7 is a photographic diagram depicting the appearance of zebrafish embryos when 100 ⁇ g / m 1 of magnesium sulfate was added.
  • Fish containing male and female pairs are kept in cases. Transfer a good pair to a netted case and wait for spawning. After confirming the spawning, take out the net, transfer the contents of the net into a petri dish, and remove food, feces and immature eggs. Preferably, the following activities should be started within the shortest possible time (eg, within one hour) after laying eggs. If the time lapse from the spawning is too long, the cleavage will progress and the sensitivity to chemicals will decrease.
  • the egg membrane is treated to soften the egg membrane and promote the penetration of chemicals into the fish embryo.
  • FIG. 1 shows the situation at that time.
  • reference numeral 1 denotes a petri dish
  • reference numeral 2 denotes a pipette
  • Reference numeral 3 is a fish embryo.
  • FIG. 3 shows a state in which a plurality of plates 4 are stacked and sequentially processed.
  • FIG. 4 shows a state in which the plate 4 is placed on the microscope 6, each gel 5 is observed, and an image is taken by the digital camera 7 as an imaging device.
  • zebrafish embryo becomes an individual approximately 24 hours after the start of the test, and the eyes, notochord, blood vessels along the notochord, and viscera can be identified.
  • zebrafish embryos are small (approximately 0.8 mm in diameter) and highly transparent, making them suitable for microscopic observation.
  • a plate with 384 wells, a microscope capable of observing fish embryos inside the well, and a photographing device capable of taking a microscope image were used. More specifically, the plate is made of transparent plastic so that transmission type observation with a microscope is possible, and the well is a cylindrical one with a diameter of about 5 mm and a depth of about 5 mm. Was. The bottom of the well is flat.
  • the microscope used was an inverted microscope made by NI KON, and the imaging device used was a digital video camera (NI KON COOL PIX Microsystem IV) and a digital camera (NI KON COOL PIX E990).
  • Zebrafish were bred by a small fish breeding system (MS water tank manufactured by Meito Suizou Co., Ltd.).
  • Magnesium sulfate was selected as the chemical. It is said that administration of magnesium sulfate causes hypermagnesemia and may cause magnesium poisoning (low blood pressure, central nervous system depression, cardiac function depression, respiratory paralysis, etc.).
  • HS buffer (CaCl 2 0. lg, NaCl 3.5g , KC1 0.05g, dissolved in purified water NaHCO 3 0.2 g To 1 liter), and prepare magnesium sulfate diluted to a concentration of 0 ⁇ g / 1, 25 ⁇ g / m1, and 100 ⁇ g / m1.
  • the 384-hole plate is provided in 16 columns and 24 rows. Since 10 fish embryos were used for one concentration of one chemical, one horizontal row (24 ⁇ ) was assigned for one concentration of one chemical. The rightmost column (16-well) was used as a negative control (only S buffer without chemicals), and the remaining bottle was used for additional use (fish embryos ruptured in the early stage). Preliminary case).
  • One male and female zebrafish was transferred to a netted case (a minimum of five cases were prepared per thirteen).
  • the processing was performed as in the item of ⁇ Egg laying> in the above embodiment.
  • Zebrafish produce about 200 eggs per egg.
  • the eggs were transferred to a 50 ml beaker, washed 2-3 times with HS buffer, and then poured into about 10 ml of HS buffer.
  • HS buffer containing eggs fish embryos
  • 30 mg / ml Protease E 30 mg / ml Protease E were added and mixed gently. Observe the egg with a microscope until the egg membrane becomes two layers (about 5 to 10 minutes). When the egg membrane becomes two layers, gently add HS buffer to destroy the egg membrane, and remove the HS buffer. The liquid was discarded. The addition and removal of the HS buffer was repeated until the broken egg membrane was removed. In addition, zebrafish is easy to process because the egg membrane is soft.
  • Petri dishes were prepared by adding 1 to the number of test chemicals, and HS buffer was poured appropriately.
  • the zebrafish embryos treated with ProteaseE were dispensed into the petri dishes. The embryos were then transferred one by one into each well of the plate (in which the specified concentration of chemicals and HS buffer were poured).
  • Each plate was placed inside an incubator set at about 26 ° C (this time was set to 0 hour). Embryos were photographed with a digital camera at 0, 3, 6, 12, and 24 hours. The 0, 6, and 12 hours shooting was performed at a magnification of 100x (eyepiece x 10x, objective lens x 10x), and the 24th shooting was 40x (eyepiece). (X 10x, objective lens X 4x).
  • FIG. 5 shows microscopic views of zebrafish embryos at 0, 12, and 24 hours in the control (magnesium sulfate, Og / ml).
  • Fig. 5 (A) the embryo was almost spherical, and a line dividing the embryo into two was observed near the center.
  • Fig. 5 (B) fish embryo development has progressed to a considerable extent, with the individual curving around the entire perimeter of the yolk.
  • the occurrence of eyes, notochord and internal organs was confirmed.
  • Fig. 5 (C) the formation of the individual is almost complete, although the yolk remains. From the head to the front of the abdomen, the zebrafish individuals should be smoothly curved approximately in the shape of a hemisphere along the yolk, and from the center of the abdomen to the tail, they should extend almost linearly along the notochord. Was observed.
  • Figure 6 shows that the sample was immersed in HS buffer containing 25 ⁇ g Zm1 of magnesium sulfate.
  • the appearance of the zebrafish embryos at 0, 12, and 24 hours was shown.
  • time 0 Fig. 6 (A)
  • the morphology of the embryos was similar to the control.
  • Fig. 6 (B) the development of the fish embryo progressed, and although the individual was curved along the outer periphery of the yolk, it was observed only up to about half a circle, By comparison, their size was clearly smaller. In addition, no eye formation was observed and chordal development was insufficient. No viscera was formed.
  • 24th hour (fig.
  • FIG. 7 shows the state of the zebrafish embryos immersed in HS buffer containing 100 ⁇ g / m 1 of magnesium sulfate at 0, 12, and 24 hours.
  • FIG. 7 (A) the morphology of the embryo was almost the same as that of the control (however, no line across the embryo was observed depending on the orientation of the embryo).
  • 12 hours Figure
  • Table 1 shows the above results in numerical form. The same form as that of the control was regarded as normal, and the results were shown in five stages (normal value was set to 5 and death was set to 0). Magnesium sulfate at 25 ⁇ g Zm 1 showed values of 5, 3, and 2 over time (0, 12, and 24 hours). In addition, with respect to magnesium sulfate of 100 / Xg / m1, numerical values 5, 5, and 0 were shown over time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Diabetes (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

It is intended to provide a method of screening a chemical which requires little labor and is usable as a substitute for vivisection and an apparatus therefor. A plate 4 made of a transparent material is provided with a plural number of wells 5. The wells 5 contain a liquid enabling the development of fish embryos and a test chemical. Fish embryos are soaked in the wells 5. After a definite period of time at a definite temperature, each embryo develops into an individual. In case where the test chemical affects the development of the embryo, the embryo is malformed or dies.

Description

明 細 書  Specification
魚類胚を用いるスクリ一ユング方法 技術分野  Screening method using fish embryo
本発明は、 魚類胚を用いるスクリーユング方法などに関するものである。 背景技術  The present invention relates to a screening method using a fish embryo and the like. Background art
化学物質の種類が莫大となった現在において、 ある種の化学物質がホルモン類 似の作用を有するか否か (内分泌攪乱性の有無) の判断を行うことは非常に重要 となっている。 また、 医薬品においては、 その医薬品が主として有する作用に加 えて、 副作用を調べることは、 その医薬品を巿場に提供するための必須の試験項 目である。  Now that the types of chemicals are enormous, it is very important to determine whether or not certain chemicals have hormone-like effects (endocrine disrupting properties). In the case of pharmaceuticals, examining the side effects in addition to the main effects of the pharmaceutical is an essential test item for providing the pharmaceutical to the factory.
上記のように化学物質が生体に対して及ぼす作用、 例えば変異原作用 ·発ガン 作用 ·催奇形性作用 ·内分泌攪乱作用などを調べるためには、 先ず培養細胞を用 いた試験 (in vitro試験) を行った後に、 生体を用いた試験 (in vivo試験) を 行うことが一般的である。  As described above, in order to examine the effects of chemical substances on living organisms, such as mutagenic effects, carcinogenic effects, teratogenic effects, endocrine disrupting effects, etc., first, tests using cultured cells (in vitro tests) It is common to conduct a test using a living body (in vivo test) after conducting the test.
ところが、 in vitro試験を行うためには、 培養細胞の維持や、 作用の検定に関 する特殊な装置が必要であり、 人的 ·経済的に非常な労力を必要としている。 ま た、 in vivo 試験においても、 生体 (ラット ·マウスの小動物に加え、 サル .ブ タ ·ィヌなどの大動物を用いることがある) の維持管理や試験手法などに多くの 労力が必要となっている。 加えて、 動物をそのまま使用することに関しては、 倫 理的な問題が生じることがある。  However, performing in vitro tests requires specialized equipment for maintaining cultured cells and assaying the effects, and requires significant human and economic labor. Also, in the in vivo test, a lot of labor is required for the maintenance of living organisms (some animals such as monkeys, butterflies, etc., in addition to small animals such as rats and mice) and for testing methods. Has become. In addition, ethical issues can arise with the use of animals as is.
このように従来の化学物質の評価方法については、 多くの労力が伴う大がかり なものとなっていた。  As described above, the conventional methods of evaluating chemical substances have been extensive with much effort.
上記のような困難を解消するために、 近年になって、 魚類を用いた評価技術が 開示されている (例えば、 W O 9 9 / 4 2 6 0 6、 WO 0 0 / 3 2 8 2 2など)。 しかしながら、 この技術は、 未だ充分に完成されてものとは言い難く、 多くの改 良すべき点がある。  In order to solve the above-mentioned difficulties, evaluation techniques using fish have recently been disclosed (for example, WO99 / 42606, WO00 / 32882, etc.). ). However, this technology has not yet been fully developed and there are many points to be improved.
本発明は、 上記した事情に鑑みてなされたものであり、 その目的は、 労力が少 なくかつ、 生体試験に代わり得る化学物質のスクリーユング方法、 およびそのた めの装置を提供することにある。 発明の開示 The present invention has been made in view of the above circumstances, and its purpose is to reduce labor. It is an object of the present invention to provide a method for screening chemical substances which can be used in place of a biological test and which can be used instead of a biological test. Disclosure of the invention
本発明者らは、鋭意検討の結果、①動物が受精卵から成体になる過程において、 胚の時期が最も化学物質による影響を受けやすいこと、 更に、 ②魚類胚は内分泌 攪乱物質のみならず、 あらゆる化学物質に対して、 液体中に混合することにより 完全に曝露させることが可能であり、 その影響を高感度に検出できることを見い だし、 基本的には本発明を完成するに至った。  The present inventors have conducted intensive studies and found that, in the process of turning an animal from a fertilized egg into an adult, the stage of the embryo is most susceptible to chemicals. Furthermore, ② fish embryos are not only endocrine disruptors, It has been found that it is possible to completely expose any chemical substance by mixing it in a liquid, and that its effects can be detected with high sensitivity. Thus, the present inventors have basically completed the present invention.
上記の課題を解決するための第 1の発明は、 魚類胚を浸漬した状態で化学物質 を添加可能な液体を保持するゥエルを備えたプレートと、 このプレートのゥエル 内部の魚類胚を観察可能な観察装置と、 この観察装置によって得られる画像を撮 影できる撮影装置とを備えたことを特徴とする魚類胚を用いるスクリ一ユング装 置である。  The first invention for solving the above-mentioned problem is a plate provided with a well for holding a liquid to which a chemical substance can be added while a fish embryo is immersed, and a fish embryo inside the well of the plate can be observed. A screening device using a fish embryo, comprising an observation device and a photographing device capable of photographing an image obtained by the observation device.
なお、 以下の説明において、 「本発明において」 と言うときは、本明細書中に記 載されている全ての発明において、 という意味である。  In the following description, “in the present invention” means “in all the inventions described in this specification”.
本発明において使用可能な魚類としては特に規定されず、硬骨魚類'軟骨魚類 · 無顎類が使用できるが、 試験設備の維持管理の点からは、 できるだけ小型で多産 の魚類を用いることが好ましい。 また、 魚類の胚が透明であることが更に好まし い。 また、 魚類胚が 1細胞期から個体となるまでの時間が短いもの (数時間〜数 日間) を用いることが好ましい。 また、 化学物質が個体としての魚類に及ぼす影 響と、 ヒ トに対する影響とを比較するためには、 その魚類のゲノムシークェンス が判明、 或いは近い将来に判明するであろうことが分かっているものを使用する ことが好ましい。 そのような魚類として、 特に好ましいものとして、 トラフグ、 メダカ、 ゼブラフィ ッシュを例示することができる。 また、 一回の産卵で得られ る卵 (胚) の個数が、 数十個以上の魚類を選択することが好ましい。 あまりに少 ない産卵数であると、 評価試験を行うために、 時間がかかりすぎるからである。 なお、 従来から、 魚類の性は、 遺伝子による内的要因と、 性ホルモンや環境条 件による外的要因とによって変動することが知られている。 そこで、 このような 魚類の性決定過程およびその機構を利用して、 内分泌攪乱物質などの環境ホルモ ンの検出システムが開発されている。 しかしながら、 これらの検出システムは、 魚類の血中に含まれる性ホルモンやその関連物質を直接に定量するものであるこ とから、 成魚を使用するために、 季節変動や年齢による魚体の個体差に基づくデ ータのバラツキが大きかった。 また、 メダカなどの小型魚類を用いた場合には、 血液採取の困難さが大きな問題となっていた。 There are no particular restrictions on the fish that can be used in the present invention, and teleosts' cartilaginous fish and jawless fish can be used.However, from the viewpoint of maintenance of test facilities, it is preferable to use fish that are as small and prolific as possible. . It is further preferred that the fish embryos are transparent. In addition, it is preferable to use a fish embryo having a short time (from several hours to several days) from the one-cell stage to becoming an individual. In order to compare the effects of chemicals on fish as individuals and the effects on humans, it is necessary to determine the genomic sequence of the fish or that it will be known in the near future. It is preferred to use Particularly preferred examples of such fish include trough, medaka, and zebrafish. In addition, it is preferable to select fish in which the number of eggs (embryos) obtained in one spawning is several tens or more. If the number of laid eggs is too small, it takes too much time to perform the evaluation test. It has been known that the sex of fishes fluctuates due to internal factors caused by genes and external factors caused by sex hormones and environmental conditions. So, like this A system for detecting environmental hormones such as endocrine disruptors has been developed using the sex determination process of fish and its mechanism. However, since these detection systems directly quantify sex hormones and their related substances in the blood of fish, the use of adult fish is based on seasonal variation and individual differences in fish due to age. The data varied widely. Also, when using small fish such as medaka, the difficulty of collecting blood was a major problem.
本発明において 「魚類胚」 とは、 魚類が個体として発生しうる卵、 およびその 卵が個体となるために分裂中のものを意味している。 化学物質が魚類胚に与える 影響を確認するためには、 なるべく初期の状態の胚(卵割を始める前 (1細胞期)、 或いは卵割を始めた直後 (例えば、 4細胞期〜 8細胞期まで)) を用いることが好 ましい。 それは、 ある程度まで卵割が進行してしまうと、化学物質を添加しても、 その作用が発生しないことが懸念されるためである。 また、 卵割を始める前の魚 類胚を用いることが最も好ましい。 また、 別の観点からは、 化学物質が魚類胚の 内部に浸入することが容易なように、 卵膜の透過性が高いものを用いることが好 ましい。 なお、魚類胚への化学物質の浸透を高めるために、卵膜を適当に処理(例 えば、 酵素処理) することができる。 また、 魚類胚としては、 透明なものを用い ることが好ましい。 そのようにすれば、 背骨 ·内臓などの胚内の器官についても 観察することが可能となるためである。 そのような魚類胚として、 例えばゼブラ フィッシュを例示することができる。  In the present invention, the term “fish embryo” means an egg in which a fish can develop as an individual, and an egg that is dividing in order to become an individual. In order to confirm the effects of chemicals on fish embryos, embryos should be as early as possible (before starting cleavage (1 cell stage) or immediately after cleavage (eg, 4 cell stage to 8 cell stage). )) Is preferred. This is because if the cleavage progresses to a certain extent, there is a concern that the action will not occur even if a chemical substance is added. It is most preferable to use a fish embryo before the start of cleavage. From another point of view, it is preferable to use one with high permeability of the egg membrane so that the chemical substance can easily enter the inside of the fish embryo. In addition, the egg membrane can be appropriately treated (for example, an enzyme treatment) in order to enhance the penetration of the chemical substance into the fish embryo. It is preferable to use a transparent fish embryo. By doing so, it becomes possible to observe organs in the embryo such as the spine and internal organs. An example of such a fish embryo is zebrafish.
本発明において 「浸漬」 とは、 魚類胚が個体となるまで細胞分裂が可能な状態 で、 液体中に漬けておくことを意味している。 通常には、 温度を一定の状態に管 理しておく必要があるが、 空気中の酸素■二酸化炭素などの分圧を管理する必要 はないので、 培養細胞を用いる場合に比べると、 管理の手間が少なくて済む。 本発明において 「化学物質」 とは、 化学的に合成可能なもの、 天然物から単離 精製可能なもの、 或いは天然に得られるが各成分及び成分比が不明な混合物の総 称のことを意味している。 また、 「化学物質」 には、 無機化合物、 有機化合物の化 合物の他に、 遺伝子工学を用いて作製可能なポリペプチド ·タンパク質 (糖鎖な どによって修飾されたものを含む。) ■複数のタンパク質や核酸分子が会合した会 合体が含まれ、 更に核酸 (D N A、 R N Aの単鎖、 二重鎖、 或いは三重鎖) が含 まれる。 また、化学物質は、魚類胚が浸漬される液体 (ほとんどの場合は、水 (淡 水あるいは海水) を中心とする液体) に溶解する性質 (水溶性) を有することが 好ましいが、 そのような性質を有しない (或いは、 非常に小さな水溶性しか示さ ない) 場合であっても、 例えば有機溶媒に溶解 (或いは分散) させた状態でその 溶媒の少量を魚類胚が浸漬される液体に添加することで、 魚類胚と化学物質とを 共存させることができる。 本発明では、 化学物質は、 魚類胚に対して直接に作用 するので、 比較的薄い濃度でも、 その化学物質の作用を確認することができる。 本発明において 「添加」 とは、 試験される化学物質が液体中において、 魚類胚 と接触可能となるように加えることを意味している。 なお、 化学物質の添加は、 魚類胚が液体中に浸漬される前になされることができるが、 それ以外にも、 魚類 胚と同時に、 或いは魚類胚が液体中に浸漬された後に添加されてもよい。 In the present invention, “immersion” means that a fish embryo is immersed in a liquid in a state where cell division is possible until it becomes an individual. Normally, it is necessary to control the temperature to a constant state, but it is not necessary to control the partial pressure of oxygen, carbon dioxide, etc. in the air. Hassle-free. In the present invention, the term "chemical substance" is a general term for a substance which can be chemically synthesized, which can be isolated and purified from a natural product, or a mixture which is obtained naturally but whose components and component ratios are unknown. are doing. “Chemical substances” include, in addition to compounds of inorganic compounds and organic compounds, polypeptides and proteins (including those modified with sugar chains, etc.) that can be produced by genetic engineering. Of proteins and nucleic acid molecules, as well as nucleic acids (single, double, or triple stranded DNA or RNA). I will. In addition, it is preferable that the chemical substance has a property (water solubility) that dissolves in a liquid in which the fish embryo is immersed (in most cases, a liquid mainly composed of water (fresh water or seawater)). Even if it has no properties (or exhibits only a very small amount of water solubility), for example, a small amount of the solvent is added to the liquid in which the fish embryo is immersed, while being dissolved (or dispersed) in an organic solvent. This allows fish embryos and chemical substances to coexist. In the present invention, since the chemical substance acts directly on the fish embryo, the action of the chemical substance can be confirmed even at a relatively low concentration. In the present invention, "addition" means that the chemical substance to be tested is added in a liquid so that it can come into contact with the fish embryo. The chemical substance can be added before the fish embryo is immersed in the liquid, but may be added simultaneously with the fish embryo or after the fish embryo is immersed in the liquid. Is also good.
本発明において 「液体」 とは、 多くの場合に水を主成分とするものであるが、 用いる魚類に合わせて淡水、 または適当な濃度の塩を含む海水類似のもの (海水 そのものを含む) を用いることができる。 また、 p Hを所定の範囲内に維持する 目的で、 適当な緩衝液を用いることができる。  In the present invention, the term “liquid” is mainly composed of water in many cases. However, fresh water or seawater-like one containing salt at an appropriate concentration (including seawater itself) according to the fish used is often used. Can be used. In order to maintain the pH within a predetermined range, an appropriate buffer can be used.
本発明において 「ゥエル」 とは、 液体を保持する井戸型のくぼみのことを意味 している。 ゥエルは、 使用される魚類胚の大きさに合わせて、 最小限のものを用 いることが好ましい。 例えば、 魚類胚の初期の大きさが約 0 . 8 m m程度である 場合には、 約 5 mm程度の直径と約 5 mm程度の深さとを有する円筒状のゥエル を用いることができる。 なお、 多くの場合に、魚類胚はゥエル中の液体において、 底面に沈んだ状態となる。 このため、 ①プレートに透過光を当てて、 魚類胚を観 察する場合には、 平らな底面を備えていることが好ましい。 そのようにすれば、 光の反射や散乱を押さえて、 魚類胚の観察が容易となるからである。 また、 ②観 察装置において画像を写す位置を確定しておき、 自動化を図る目的のために、 底 面がすり鉢状になったものを用いることができる。 そのようにすれば、 魚類胚が すり鉢の頂点 (ゥエルの最も低い点) に固定されるからである。  In the present invention, “well” means a well-shaped depression that holds a liquid. It is preferable to use the minimum size of the wells according to the size of the fish embryo used. For example, when the initial size of the fish embryo is about 0.8 mm, a cylindrical well having a diameter of about 5 mm and a depth of about 5 mm can be used. In many cases, fish embryos sink into the bottom of the liquid in the wells. Therefore, (1) When observing fish embryos by illuminating the plate with transmitted light, it is preferable to have a flat bottom surface. This will make it easier to observe fish embryos by suppressing the reflection and scattering of light. In addition, (2) the position where the image is to be captured in the observation device can be determined, and a device with a mortar-shaped bottom can be used for the purpose of automation. This is because the fish embryo is fixed at the top of the mortar (the lowest point of the ゥ el).
本発明において 「プレート」 とは、 1または 2以上のゥエルを備えた基台部分 のことを意味している。 プレートの材質としては、 特に制限されず、 樹脂 (合成 樹脂または天然樹脂) 'ガラス ·金属などを用いて作製することができる。 伹し、 操作性及び経済性の観点からは、 合成樹脂で作製することが好ましい。 また、 そ の場合には、透過性の高い透明な樹脂でプレートを作製することが更に好ましい。 そのようにすれば、 プレートを挟んで一方側から光を当てて、 他方側から魚類胚 を観察することが容易となるからである。 In the present invention, the “plate” means a base portion having one or more wells. The material of the plate is not particularly limited, and it can be manufactured using resin (synthetic resin or natural resin) 'glass or metal. 、 From the viewpoints of operability and economy, it is preferable to use a synthetic resin. In such a case, it is more preferable that the plate is made of a transparent resin having high transparency. This makes it easier to illuminate one side of the plate and observe the fish embryo from the other side.
本発明において 「観察装置」 とは、 魚類胚が個体として分裂する様子を観察す るための装置である。 魚類胚の分裂が肉眼で観察できる程度に大きい場合には、 観察装置と撮影装置とを兼用させることも可能であるが、 多くの場合には、 観察 装置として、 観察対象である魚類胚を拡大して観察できる能力を備えていること が好ましい。 そのために最も適した装置として、 光学顕微鏡を例示することがで きる。 伹し、 撮影装置が拡大能力を備えている場合には、 観察装置と兼用させる こともできる。  In the present invention, an “observation device” is a device for observing a state in which a fish embryo divides as an individual. If the division of the fish embryo is large enough to be observed with the naked eye, it is possible to use both the observation device and the imaging device.However, in many cases, the observation device is used to enlarge the fish embryo to be observed. It is preferable to have the ability to observe by observation. An optical microscope can be exemplified as the most suitable device for that purpose. However, if the photographing device has an enlargement capability, it can also be used as an observation device.
本発明において 「撮影」 とは、 観察装置によって得られる画像を写しておくこ とを意味しており、 一般的な写真 (白黒またはカラー写真のいずれをも含む) の 他に、 アナログデータ、 またはデジタルデータとして画像を保存しておくことを も含んでいる。  In the present invention, “shooting” means capturing an image obtained by an observation device, and in addition to a general photograph (including a black-and-white or a color photograph), analog data, or This includes storing images as digital data.
本発明において 「撮影装置」 とは、 観察装置によって得られる画像を保存でき るものを意味しており、 例えば、 ポラロイドカメラ、 一般的な現像用フィルムを 用いるカメラ、 デジタルカメラ、 C C Dカメラと画像記録装置 (フロッピーディ スク · C D ■ M Oなどの可搬性記録媒体、 あるいはハードディスク一体型画像記 録装置などを含む) などが挙げられる。  In the present invention, the “photographing device” means a device that can store an image obtained by an observation device. For example, a polaroid camera, a camera using a general developing film, a digital camera, a CCD camera, and an image recording device Devices (including floppy disks, CDs, portable recording media such as MOs, and hard disk-integrated image recording devices, etc.).
第 1の発明によれば、 ゥエル中の液体に魚類胚と化学物質とを加える。そして、 魚類胚の変化を観察装置を用いて観察し、 必要なときにその画像を撮影装置によ つて写し取り、 その写真を通じて、 化学物質が魚類胚の発生に与える影響を評価 することができる。  According to the first invention, a fish embryo and a chemical substance are added to the liquid in the well. Then, the changes in the fish embryo can be observed using an observation device, and the image can be taken by an imaging device when necessary, and the effect of the chemical substance on the development of the fish embryo can be evaluated through the photograph. .
特に魚類胚では、 個体として成長するまでの時間が、 哺乳類に比べると短くて 済むので、 従来の in vivo試験に比べると短時間で同様の結果を得ることが可能 となる。 また、 飼育の手間などについても、 魚類胚は哺乳動物に比べて簡易とな るので、 全体の試験が容易に行える。  In particular, fish embryos take less time to grow as individuals than mammals, so similar results can be obtained in a shorter time than conventional in vivo tests. In addition, fish embryos are easier to breed than mammals, and the whole test can be easily performed.
また、魚類胚を用いることにより、従来の培養細胞株を用いた場合に比べると、 ①管理の手間が少なくて済む (例えば、 魚類胚の発生では、 大気中の二酸化炭素 などの成分管理が不要。 また、 小型の魚類 (例えば、 メダカ ·ゼブラフィッシュ など) では、 飼育の手間が少なくて済む。)、 ②初期胚から個体になるまでの時間 が短いなどの有利な点がある。 加えて、 ③魚類胚として、 ゲノムシークェンスの データが入手可能なもの (例えば、 トラフグ、 メダカ、 ゼブラフィ ッシュ) を用 いることにより、 哺乳動物 (特にヒ ト) と魚類との間で、 化学物質が遺伝子に与 える影響を関連づけることが可能となる。 Also, by using fish embryos, compared to the case of using conventional cultured cell lines, ① Less labor for management (For example, the development of fish embryos does not require the management of components such as carbon dioxide in the atmosphere. Also, for small fish (for example, medaka and zebrafish, etc.), the labor for breeding is less. ), ② There are advantages such as a short time from the early embryo to the individual. In addition, (3) the use of fish embryos for which genome sequence data is available (eg, troughfish, medaka, zebrafish) allows the use of chemical substances between mammals (especially humans) and fish. It will be possible to correlate the effects on genes.
第 2の発明は、 第 1の発明において、 前記プレートは透明な材質で形成されて いると共に、 前記ゥエルの底面は平板状とされていることを特徴とする。  A second invention is characterized in that, in the first invention, the plate is formed of a transparent material, and the bottom surface of the well is flat.
第 2の発明によれば、 ゥエル中の魚類胚を観察するときに、 必要な場合にはプ レートの一面側から光を当てておき (周囲が十分に明るい場合には、 光を当てる 必要はない)、他面側から観察装置による観察及び撮影装置による撮影を行う。 こ のため、 反射型 (ゥエルの底面が反射するように構成されている型) のプレート— に比べると、 魚類胚の像が二重にならないため、 観察を行いやすい。 なお、 観察 装置による観察及び撮影装置による撮影は、 プレートの上面側または下面側のい ずれでも良い。 更になお、 プレートにおけるゥエル数が少ない場合には、 プレー トの側面側から観察 ·撮影を行うこともできる。  According to the second invention, when observing a fish embryo in a well, light is illuminated from one side of the plate if necessary (if the surroundings are sufficiently bright, it is not necessary to illuminate the fish). No), observation by the observation device and imaging by the imaging device are performed from the other side. This makes it easier to observe the fish embryo than a reflective plate (a type in which the bottom of the well is configured to reflect), since the image of the fish embryo is not duplicated. The observation by the observation device and the imaging by the imaging device may be performed on either the upper surface or the lower surface of the plate. Furthermore, when the number of wells on the plate is small, observation and photographing can be performed from the side of the plate.
第 3の発明は、 化学物質を含む液体中に魚類胚を浸漬し、 その魚類胚の経時的 な変化を観察することを特徴とする魚類胚を用いるスクリ一二ング方法である。 第 3の発明によれば、 化学物質は液体中に含まれているので、 魚類胚のほぼ全 体に接触しうる状態となっているため、 化学物質の影響を確実に得ることが可能 となる。 また、 魚類胚を極めて初期の段階 (例えば、 1細胞期〜 8細胞期の段階) で用いることにより、 化学物質が発生初期段階から個体となるまでの全ての段階 で与え得る影響を確認することができる。 また、 このときには、 魚類胚の卵膜を 除去しておくことが好ましい。 卵膜を除去する方法としては、 機械的処理または 化学的処理を用いることができるが、 酵素 (例えば、 プロテアーゼ Eを用いるこ とができる) を用いた化学的処理を施すことが好ましい。 また、 卵膜の除去処理 は、 卵膜が 2層になった時点で行うことが好ましい。  The third invention is a screening method using a fish embryo, which is characterized by immersing a fish embryo in a liquid containing a chemical substance and observing a change over time of the fish embryo. According to the third aspect, since the chemical substance is contained in the liquid, it can be in contact with almost the entire fish embryo, so that the effect of the chemical substance can be reliably obtained. . In addition, by using fish embryos at the very early stage (for example, from the 1-cell stage to the 8-cell stage), it is necessary to confirm the effects that chemical substances can have at all stages from the initial stage of development to the individual stage Can be. At this time, it is preferable to remove the egg membrane of the fish embryo. As a method for removing the egg membrane, a mechanical treatment or a chemical treatment can be used, but it is preferable to perform a chemical treatment using an enzyme (for example, protease E can be used). Further, it is preferable that the removal treatment of the egg membrane is performed when the egg membrane has two layers.
方法の発明において、 化学物質を液体中に含ませる時点としては、 魚類胚が初 期段階 (1細胞期〜 8細胞期) にある時点が好ましい。 但し、 その化学物質が魚 類胚のいずれの段階において、 最も強いダメージを与えるのかに関する評価を行 いたい場合のように、 化学物質の添加時点を選択する必要がある場合には、 その 目的に応じて、 適当な添加時点を選ぶこともできる。 In the invention of the method, fish embryos are the first point in time when a chemical substance is contained in a liquid. A point in the phasing stage (1 cell stage to 8 cell stage) is preferred. However, if it is necessary to select the point of addition of the chemical, such as when it is desired to evaluate at which stage of the embryo the chemical will cause the most damage, Thus, an appropriate point of addition can be selected.
第 4の発明は、 第 3の発明において、 経時的な観察点は少なくとも、 器官形成 開始時点〜個体形成完了時点の間であることを特徴とする。  A fourth invention is characterized in that, in the third invention, a time-lapse observation point is at least between a time point when organ formation starts and a time point when individual formation is completed.
化学物質が魚類胚に与える影響を観察するためには、 少なくとも器官形成開始 時点 (魚類胚に、 例えば背骨■眼 ·内臓などの器官形成が開始される時点) 〜個 体形成完了時点 (個体が各器官を備え、 尾鰭で移動することが可能となる時点) の二点の間であることが重要となる。 それは、 化学物質の作用が強い場合には、 前者の時点で器官形成が阻害されることがあり得ること、 また化学物質の作用が 弱い場合であっても、 最終的に個体となるときに奇形が表れるためである。 具体 的には、 例えばゼブラフィッシュの場合には、 器官形成開始時点は、 約 2 6 °Cの 水温において、 1細胞期から約 1 2時間後であり、 個体形成完了時点は、 同様の 条件において、 1細胞期から約 2 4〜約 3 0時間後である。 このため、 ゼブラフ ィッシュの場合には、 1細胞期から約 1 2時間後〜約 3 0時間後の間において観 察を行うことにより、 化学物質が魚類胚に与える作用を確認することが可能であ る。  In order to observe the effects of chemicals on fish embryos, it is necessary to start at least the time of organ formation (the time at which the fish embryo begins to form organs such as the spine, eyes, and internal organs)-the time of completion of individual formation (at It is important that these points are between the two points (the point at which each organ can be moved by the caudal fin). The reason is that if the action of chemicals is strong, organ formation may be inhibited at the former time point, and even if the action of chemicals is weak, malformation will eventually occur in an individual Because it appears. Specifically, for example, in the case of zebrafish, organ formation starts at about 26 ° C at a water temperature of about 12 hours after the 1-cell stage, and when the About 24 to about 30 hours after the 1-cell stage. Therefore, in the case of zebrafish, it is possible to confirm the effect of the chemical substance on the fish embryo by performing observations from about 12 hours to about 30 hours after the 1-cell stage. is there.
また、 第 5の発明は、 上記第 3の発明または第 4の発明 (方法の発明) でスク リーニングしたことを特徴とする医薬組成物である。 本発明のうち方法の発明に よれば、 化学物質が魚類胚 (生体) に与える影響を容易に評価することができる ので、 その方法を医薬組成物に応用することが可能である。 なお、 第 5の発明に おいて、 「医薬組成物」 とは、 本発明における 「化学物質」 のうち、 医薬品として 応用される物質のことを意味している。  Further, a fifth invention is a pharmaceutical composition characterized by being screened in the third invention or the fourth invention (invention of a method). According to the method of the present invention, the effect of a chemical substance on a fish embryo (living body) can be easily evaluated, so that the method can be applied to a pharmaceutical composition. In the fifth invention, the “pharmaceutical composition” means a substance applied to a pharmaceutical among the “chemical substances” in the present invention.
本発明によれば、 魚類胚を用いて化学物質の作用を確認することができる。 魚 類胚の発生の過程は、 経時的に撮影装置により撮影しておくことができる。 魚類 の産卵数に応じて、 化学物質の大量スクリーニングが可能となるので、 データの ハイスループット化が可能となる。 また、 魚類胚の発生時間は、 従来の in vivo 試験に比べると、 非常に短いので時間的に短縮できる。 図面の簡単な説明 According to the present invention, the action of a chemical substance can be confirmed using a fish embryo. The process of fish embryo development can be imaged over time with an imaging device. Large-scale screening of chemical substances is possible according to the number of spawned fish, thus enabling high-throughput data. In addition, the development time of fish embryos is much shorter than that of conventional in vivo tests, so that the time can be shortened. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本実施形態において、 魚類胚を処理しているときの様子を示す図で ある。  FIG. 1 is a diagram showing a state when a fish embryo is being processed in the present embodiment.
第 2図は、 本実施形態におけるプレートの写真図である。  FIG. 2 is a photograph of the plate in the present embodiment.
第 3図は、 本実施形態において、 魚類胚及び化学物質をプレートのゥエルに分 注しているときの様子を示す図である。  FIG. 3 is a view showing a state in which fish embryos and chemical substances are dispensed into the wells of the plate in the present embodiment.
第 4図は、 本実施形態において、 顕微鏡の接眼レンズ側にデジタルカメラを装 着して、 ゥエル中の魚類胚の様子を観察しているときの写真図である。  FIG. 4 is a photograph showing a state in which a digital camera is mounted on the eyepiece side of the microscope in the present embodiment and the state of the fish embryo in the well is observed.
第 5図は、 化学物質を添加しないときのゼブラフィ ッシュ胚の発生の様子を写 した写真図である。  Fig. 5 is a photograph showing the appearance of zebrafish embryos when no chemical substance is added.
なお、 (A ) は 0時間目の胚を、 (B ) は 1 2時間目の胚を、 (C ) は 2 4時間目 の胚をそれぞれ示している。  (A) shows an embryo at 0 hours, (B) shows an embryo at 12 hours, and (C) shows an embryo at 24 hours.
第 6図は、 2 5 g /m 1の硫酸マグネシウムを添加したときのゼブラフィッ シュ胚の発生の様子を写した写真図である。  FIG. 6 is a photograph showing a state of development of zebrafish embryos when 25 g / m 1 of magnesium sulfate was added.
なお、 (A ) は 0時間目の胚を、 (B ) は 1 2時間目の胚を、 (C ) は 2 4時間目 の胚をそれぞれ示している。  (A) shows an embryo at 0 hours, (B) shows an embryo at 12 hours, and (C) shows an embryo at 24 hours.
第 7図は、 1 0 0 μ g /m 1の硫酸マグネシウムを添加したときのゼブラフィ ッシュ胚の発生の様子を写した写真図である。  FIG. 7 is a photographic diagram depicting the appearance of zebrafish embryos when 100 μg / m 1 of magnesium sulfate was added.
なお、 (A ) は 0時間目の胚を、 (B ) は 1 2時間目の胚を、 (C ) は 2 4時間目 の胚をそれぞれ示している。 発明を実施するための最良の形態  (A) shows an embryo at 0 hours, (B) shows an embryo at 12 hours, and (C) shows an embryo at 24 hours. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の一実施形態について、 図面を参照しつつ詳細に説明するが、 本 発明の技術的範囲は、 下記の実施形態によって限定されるものではなく、 その要 旨を変更することなく、 様々に改変して実施することができる。 また、 本発明の 技術的範囲は、 均等の範囲にまで及ぶものである。  Next, an embodiment of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiment, and the gist thereof is not changed. However, various modifications can be made. The technical scope of the present invention extends to an equivalent range.
<プレートの処理 >  <Plate processing>
化学物質を適当な倍率に希釈したものを用意し、 プレートの各ゥエルに魚類胚 に応じた液体と共に分注しておく。 Prepare a dilution of the chemical substance at an appropriate magnification, and place a fish embryo in each well of the plate. Dispense with the liquid according to.
<採卵 >  <Egg collection>
雌雄のつがいを含む魚類をケースにて飼育しておく。 状態の良好なつがいをネ ットを張ったケースに移し、産卵を待つ。 産卵を確認したら、 ネットを取り出し、 ネットの内容物をシャーレ内に移し、 餌 ·糞 ·未熟卵を除去する。 好ましくは、 産卵からできるだけ短い時間内 (例えば、 1時間以内) において、 以下の作業を 開始する。 産卵からの時間経過が大きすぎると、 卵割が進行してしまい、 化学物 質に対する感受性が低下してしまう。  Fish containing male and female pairs are kept in cases. Transfer a good pair to a netted case and wait for spawning. After confirming the spawning, take out the net, transfer the contents of the net into a petri dish, and remove food, feces and immature eggs. Preferably, the following activities should be started within the shortest possible time (eg, within one hour) after laying eggs. If the time lapse from the spawning is too long, the cleavage will progress and the sensitivity to chemicals will decrease.
適当なビーカに卵を移し、 所定の液体で 2 ~ 3回洗浄後、 適量の液体を注ぐ。 <卵膜処理 >  Transfer eggs to a suitable beaker, wash 2-3 times with the specified liquid, and pour an appropriate amount of liquid. <Egg membrane treatment>
卵膜を柔らかく して、 化学物質の魚類胚への浸透を促すために、 卵膜処理を行 う。 卵 (魚類胚) を含む液体中に、 適当な蛋白消化酵素を含む溶液を添加し、 穏 やかに混合する。 約 5分〜 1 0分の間、 卵膜が 2層になるまで顕微鏡で卵を観察 する。 卵膜が 2層になったら、 液体を穏やかに加えて卵膜を破壌した後、 液体を 捨てる。 破壊された卵膜を除去するまで、 液体の添加 ·除去を繰り返す。  The egg membrane is treated to soften the egg membrane and promote the penetration of chemicals into the fish embryo. Add a solution containing the appropriate protein-digesting enzyme to the liquid containing the eggs (fish embryos) and mix gently. Observe the eggs under a microscope for about 5 to 10 minutes until the egg membrane has two layers. When the egg membrane has two layers, gently add liquid to break the egg membrane, and then discard the liquid. Repeat the addition and removal of liquid until the broken egg membrane is removed.
<魚類胚の分注 >  <Dispensing of fish embryos>
シャーレに液体を注いだものを適当数だけ用意しておき (被験化学物質の種類 に応じて用意する)、そのシャーレに蛋白消化酵素で処理した魚類胚を分注する。 なお、 図 1には、 その時の様子を示す。 図中、 符号 1はシャーレを、 符号 2はピ ペットを示している。 また、 符号 3は魚類胚である。  Prepare an appropriate number of liquids in a Petri dish (prepared according to the type of test chemical), and dispense fish embryos treated with protein digestive enzymes into the Petri dish. Fig. 1 shows the situation at that time. In the figure, reference numeral 1 denotes a petri dish, and reference numeral 2 denotes a pipette. Reference numeral 3 is a fish embryo.
次に、 図 2に示すようなプレート 4の各ゥエル 5中に魚類胚 3を一個ずつ移し ていく。 このときの様子を図 3に示す。 なお、 図 3は、 複数枚のプレート 4を積 み重ねて、 順次処理している様子を示すものである。  Next, one fish embryo 3 is transferred to each well 5 of the plate 4 as shown in FIG. Figure 3 shows the situation at this time. FIG. 3 shows a state in which a plurality of plates 4 are stacked and sequentially processed.
ぐ魚類胚の観察 >  Observation of fish embryo>
魚類胚を移した直後に、 顕微鏡で魚類胚の状態を観察する。 このとき、 既に魚 類胚が破裂しているものについては、物理的なショックなどによるものとして(化 学物質の影響ではないものとして)、 別の魚類胚を用意する。 なお、一化学物質の 一濃度に対して、 複数の (できれば、 1 0個程度の) 魚類胚を用意することが好 ましい。 各プレートは、 予め魚類胚に応じた温度に合わせて置いた恒温器の内側に入れ る。 所定の観察時点に至ったら、 プレートを取りだして、 ゥエル中の魚類胚の様 子を撮影装置で撮影する。 図 4には、 顕微鏡 6にプレート 4を载置して、 各ゥェ ル 5を観察し、 撮影装置としてのデジタルカメラ 7で撮影しているときの様子を 示すものである。 実施例 Immediately after transferring the fish embryo, observe the state of the fish embryo with a microscope. At this time, if the fish embryo has already ruptured, prepare another fish embryo as a result of physical shock or the like (not as an effect of a chemical substance). It is preferable to prepare multiple (preferably about 10) fish embryos for one concentration of one chemical substance. Each plate is placed inside an incubator that has been previously set to the temperature appropriate for the fish embryo. When the specified observation point has been reached, remove the plate and photograph the fish embryos in the well with an imaging device. FIG. 4 shows a state in which the plate 4 is placed on the microscope 6, each gel 5 is observed, and an image is taken by the digital camera 7 as an imaging device. Example
次に、 ゼブラフィッシュの胚を用いて化学物質の評価を行った実施例を示す。 ゼブラフィ ッシュ胚は、 試験開始から約 24時間で個体となり、 目、 脊索、 脊索 に沿う血管、 及び内臓を確認することができる。 加えて、 ゼブラフィ ッシュの胚 は、 小さく (直径が約 0. 8 mm) かつ、 透明感が高いので、 顕微鏡による観察 には適している。  Next, an example in which chemical substances were evaluated using zebrafish embryos will be described. The zebrafish embryo becomes an individual approximately 24 hours after the start of the test, and the eyes, notochord, blood vessels along the notochord, and viscera can be identified. In addition, zebrafish embryos are small (approximately 0.8 mm in diameter) and highly transparent, making them suitable for microscopic observation.
<評価装置の構成 >  <Configuration of evaluation device>
評価装置には、 3 84個のゥエルを持つプレートと、 ゥエル内部の魚類胚を観 察可能な顕微鏡と、顕微鏡画像を撮影できる撮影装置とを用いた。 より詳細には、 プレートは、 顕微鏡による透過型の観察が可能なように、 透明なプラスチック製 のものであり、 ゥエルは、 直径が約 5mm、 深さが約 5mm程度の円筒状のもの を用いた。 また、 ゥエルの底面は平面状である。 顕微鏡は、 N I KON製の倒立 顕微鏡を使用し、 撮影装置には、 デジタルビデオカメラ (N I KON COOL P I X ミクロシステム IV)、 及びデジタルカメラ (N I KON COOL P I X E 9 90)) を用いた。  For the evaluation device, a plate with 384 wells, a microscope capable of observing fish embryos inside the well, and a photographing device capable of taking a microscope image were used. More specifically, the plate is made of transparent plastic so that transmission type observation with a microscope is possible, and the well is a cylindrical one with a diameter of about 5 mm and a depth of about 5 mm. Was. The bottom of the well is flat. The microscope used was an inverted microscope made by NI KON, and the imaging device used was a digital video camera (NI KON COOL PIX Microsystem IV) and a digital camera (NI KON COOL PIX E990).
<ゼブラフィッシュの飼育〉  <Breeding zebrafish>
ゼブラフィッシュは、 小型魚飼育システム (名東水園社製 MS水槽) により飼 育した。  Zebrafish were bred by a small fish breeding system (MS water tank manufactured by Meito Suizou Co., Ltd.).
くプレートの処理〉  Plate processing>
化学物質として硫酸マグネシウムを選択した。 硫酸マグネシウムは、 その投与 により、 高マグネシウム血症が起こり、 マグネシウム中毒 (血圧低下、 中枢神経 抑制、 心機能抑制、 呼吸麻痺等) が惹起されることがあるとされている。  Magnesium sulfate was selected as the chemical. It is said that administration of magnesium sulfate causes hypermagnesemia and may cause magnesium poisoning (low blood pressure, central nervous system depression, cardiac function depression, respiratory paralysis, etc.).
HS緩衝液 (CaCl2 0. lg, NaCl 3.5g, KC1 0.05g, NaHC03 0.2gを精製水に溶解 して 1 リツトルとしたもの) により、 硫酸マグネシウムを 0 μ g/ 1、 2 5〃 g/m 1、 及び 1 0 0 μ g/m 1の濃度に希釈したものを用意し、 プレートの各 ゥエルに 3 5 μ 1ずつ分注した。 3 8 4穴プレートは、 縦 1 6列と横 24行とに 設けられている。 一化学物質の一濃度について、 1 0個の魚類胚を用いたので、 横一行分 (24ゥエル) を一化学物質の一濃度について割り当てた。 なお、 一番 右の一列分 (1 6ゥエル) は、 ネガティブコントロール (化学物質を含まない Η S緩衝液のみ) として使用し、 残ったゥエルについては、 追加用 (魚類胚が初期 段階で破裂した場合の予備) として用いた。 HS buffer (CaCl 2 0. lg, NaCl 3.5g , KC1 0.05g, dissolved in purified water NaHCO 3 0.2 g To 1 liter), and prepare magnesium sulfate diluted to a concentration of 0 μg / 1, 25 μg / m1, and 100 μg / m1. Was dispensed at 35 μl. The 384-hole plate is provided in 16 columns and 24 rows. Since 10 fish embryos were used for one concentration of one chemical, one horizontal row (24 ゥ) was assigned for one concentration of one chemical. The rightmost column (16-well) was used as a negative control (only S buffer without chemicals), and the remaining bottle was used for additional use (fish embryos ruptured in the early stage). Preliminary case).
<採卵 >  <Egg collection>
雌雄一つがいのゼブラフィ ッシュをネットを張ったケースに移した (一 3当た り、 最低 5ケースを用意した。)。 雌の産卵を確認したら、 上記実施形態中の <産 卵 >の項目通りに処理した。 なお、 ゼブラフィッシュは、 —回の産卵で約 2 0 0 個程度の卵を生む。  One male and female zebrafish was transferred to a netted case (a minimum of five cases were prepared per thirteen). When the female laying eggs was confirmed, the processing was performed as in the item of <Egg laying> in the above embodiment. Zebrafish produce about 200 eggs per egg.
5 0m l ビーカに卵を移し、 HS緩衝液で 2〜3回洗浄後、 約 1 0m 1 の H S 緩衝液を注いだ。  The eggs were transferred to a 50 ml beaker, washed 2-3 times with HS buffer, and then poured into about 10 ml of HS buffer.
<卵膜処理 >  <Egg membrane treatment>
卵 (魚類胚) を含む HS緩衝液中に、 3 0 m g/m lの Protease E を 5〜 1 0滴加え、 穏やかに混合した。 卵膜が 2層になるまで顕微鏡で卵を観察し (約 5 〜 1 0分程度)、卵膜が 2層になったところで、 HS緩衝液を穏やかに加えて卵膜 を破壊し、 HS緩衝液を捨てた。 破壌された卵膜を除去するまで、 HS緩衝液の 添加と除去とを繰り返した。 なお、 ゼブラフィ ッシュは、 卵膜が柔らかいので処 理を行いやすい。  In an HS buffer containing eggs (fish embryos), 5 to 10 drops of 30 mg / ml Protease E were added and mixed gently. Observe the egg with a microscope until the egg membrane becomes two layers (about 5 to 10 minutes). When the egg membrane becomes two layers, gently add HS buffer to destroy the egg membrane, and remove the HS buffer. The liquid was discarded. The addition and removal of the HS buffer was repeated until the broken egg membrane was removed. In addition, zebrafish is easy to process because the egg membrane is soft.
<ゼブラフィッシュ胚の分注 >  <Dispensing of zebrafish embryos>
被験化学物質の種類数に 1を加えた数だけのシャーレを用意し、 HS緩衝液を 適当に注いでおいた。 そのシャーレ中に、 ProteaseEで処理したゼプラフイツシ ュ胚を分注した。 次に、 プレートの各ゥエル (所定濃度の化学物質と HS緩衝液 とが注がれたもの) 中に胚を一個づっ移した。  Petri dishes were prepared by adding 1 to the number of test chemicals, and HS buffer was poured appropriately. The zebrafish embryos treated with ProteaseE were dispensed into the petri dishes. The embryos were then transferred one by one into each well of the plate (in which the specified concentration of chemicals and HS buffer were poured).
くゼブラフィッシュ胚の観察 >  Observation of zebrafish embryos>
ゼブラフィッシュ胚を移した直後に、顕微鏡で胚の状態を観察した。 このとき、 胚が既に破裂しているものについては、 物理的なショックなどによるものとして (化学物質の影響ではないものとして)、 別の胚を用意した。 Immediately after transferring the zebrafish embryo, the state of the embryo was observed under a microscope. At this time, If the embryo was already ruptured, another embryo was prepared, as if it were due to physical shock (not due to the effects of chemicals).
各プレートは、 約 26°Cに合わせて置いた恒温器の内側に入れた (この時点を 0時間とした)。 0、 3、 6、 1 2、 及び 24時間目に、 デジタルカメラにて胚の 撮影を行った。 なお、 0、 6、 及び 1 2時間目の撮影に関しては、 1 00倍 (接 眼レンズ X 10倍、 対物レンズ X 10倍) の倍率で行い、 24時間目の撮影は、 40倍 (接眼レンズ X 10倍、 対物レンズ X 4倍) の倍率で行った。  Each plate was placed inside an incubator set at about 26 ° C (this time was set to 0 hour). Embryos were photographed with a digital camera at 0, 3, 6, 12, and 24 hours. The 0, 6, and 12 hours shooting was performed at a magnification of 100x (eyepiece x 10x, objective lens x 10x), and the 24th shooting was 40x (eyepiece). (X 10x, objective lens X 4x).
<試験結果 >  <Test results>
上記試験の結果を表 1、 及び図 5〜図 7に示した。  The results of the above test are shown in Table 1 and FIGS.
<表 1 >  <Table 1>
Figure imgf000014_0001
評価:異常く- 0 1 2 3 4 5- >正常
Figure imgf000014_0001
Evaluation: abnormal-0 1 2 3 4 5-> normal
図 5には、 コントロール (硫酸マグネシウム O g/m l ) における 0、 1 2、 及び 24時間目のゼブラフィッシュ胚を顕微鏡で見たときの様子を示した。 0時間目 (図 5 (A)) では、 胚はほぼ球形をしており、 中央付近には胚を二つに 分ける線が確認された。 1 2時間目 (図 5 (B)) では、 魚類胚の発生がかなりの 程度まで進行しており、 個体は卵黄の全外周に沿って湾曲している。 また、 目、 脊索及び内臓などの発生が確認された。 また、 24時間目 (図 5 (C)) では、 卵 黄が残っているものの個体の形成がほぼ完了している。 ゼブラフィッシュの個体 は、 頭部から腹部前部にかけては、 卵黄に沿って略半球状に滑らかに湾曲してお り、 腹部中央から尾部にかけては、 脊索に沿ってほぼ直線状に伸びていることが 観察された。  FIG. 5 shows microscopic views of zebrafish embryos at 0, 12, and 24 hours in the control (magnesium sulfate, Og / ml). At 0 hour (Fig. 5 (A)), the embryo was almost spherical, and a line dividing the embryo into two was observed near the center. At 12 hours (Fig. 5 (B)), fish embryo development has progressed to a considerable extent, with the individual curving around the entire perimeter of the yolk. In addition, the occurrence of eyes, notochord and internal organs was confirmed. At 24 hours (Fig. 5 (C)), the formation of the individual is almost complete, although the yolk remains. From the head to the front of the abdomen, the zebrafish individuals should be smoothly curved approximately in the shape of a hemisphere along the yolk, and from the center of the abdomen to the tail, they should extend almost linearly along the notochord. Was observed.
図 6には、 25 μ gZm 1の硫酸マグネシウムを添加した HS緩衝液に浸漬し たゼブラフィ ッシュ胚について、 0、 1 2、 及び 2 4時間目の様子を示した。 0 時間目 (図 6 ( A) ) では、 胚の形態は、 コントロールとほぼ同様であった。 一方、 1 2時間目 (図 6 ( B ) ) では、 魚類胚の発生は進行し、 個体は卵黄の外周に沿つ て湾曲しているものの、 約半周程度までにしか認められず、 コントロールと比べ ると、 明らかにその大きさは小さかった。 また、 目の形成が認められず、 脊索の 発達が不十分であった。 また、 内臓の形成は認められなかった。 2 4時間目 (図Figure 6 shows that the sample was immersed in HS buffer containing 25 μg Zm1 of magnesium sulfate. The appearance of the zebrafish embryos at 0, 12, and 24 hours was shown. At time 0 (Fig. 6 (A)), the morphology of the embryos was similar to the control. On the other hand, at the 12th hour (Fig. 6 (B)), the development of the fish embryo progressed, and although the individual was curved along the outer periphery of the yolk, it was observed only up to about half a circle, By comparison, their size was clearly smaller. In addition, no eye formation was observed and chordal development was insufficient. No viscera was formed. 24th hour (fig.
6 ( C ) ) では、個体の形成はほぼ完了していると考えられるものの、 目および頭 部の発生が認められず、 脊索が屈曲しており、 全体として比較的大きな奇形が生 じていた。 6 (C)), although the formation of the individual was considered to be almost complete, no development of the eyes and head was observed, the notochord was bent, and a relatively large malformation occurred as a whole. .
図 7には、 1 0 0 μ g /m 1 の硫酸マグネシウムを添加した H S緩衝液に浸漬 したゼブラフィ ッシュ胚について、 0、 1 2、 及び 2 4時間目の様子を示した。 0時間目 (図 7 (A ) ) では、 胚の形態は、 コントロールとほぼ同様であった (但 し、胚の向きによって、胚を横切る線は観察されなかった)。また、 1 2時間目 (図 FIG. 7 shows the state of the zebrafish embryos immersed in HS buffer containing 100 μg / m 1 of magnesium sulfate at 0, 12, and 24 hours. At 0 hours (FIG. 7 (A)), the morphology of the embryo was almost the same as that of the control (however, no line across the embryo was observed depending on the orientation of the embryo). In addition, 12 hours (Figure
7 ( B ) ) では、魚類胚の発生はかなりの程度まで進行し、 目、 脊索及び内臓など の発生が確認された。 また、 個体は卵黄のほぼ全周に沿って湾曲しながら、 成長 しており、 コントロールと比べて、 ほぼ同等の成長が認められた。 ところが、 2 4時間目 (図 7 ( C ) ) では、 個体は認められず、 胚全体がヒ ョウタン型となり、 全体に黒ずんでいた。 これは、 胚の発生が途中段階で停止してしまい、 死滅して しまったものである。 In 7 (B)), the development of fish embryos progressed to a considerable extent, and the development of eyes, notochord, and internal organs was confirmed. In addition, the individual grew while bending along almost the entire circumference of the yolk, and the growth was almost equal to that of the control. However, at 24 hours (Fig. 7 (C)), no individual was observed, and the entire embryo became a gourd-shaped and was darkened entirely. This is because embryo development stopped halfway and died.
また、 表 1には、 上記の結果を数値化したものを示した。 コントロールの形態 と同様のものを正常とし、 死滅したものとの間で 5段階に分けて (正常値を 5、 死滅を 0とした。)、 示した。 2 5 μ g Zm 1の硫酸マグネシウムでは、 時間の経 過 (0、 1 2、 及び 2 4時間) と共に、 5、 3、 2という数値を示した。 また、 1 0 0 /X g /m 1の硫酸マグネシウムでは、 時間の経過と共に、 5、 5、 0とい う数値を示した。  Table 1 shows the above results in numerical form. The same form as that of the control was regarded as normal, and the results were shown in five stages (normal value was set to 5 and death was set to 0). Magnesium sulfate at 25 μg Zm 1 showed values of 5, 3, and 2 over time (0, 12, and 24 hours). In addition, with respect to magnesium sulfate of 100 / Xg / m1, numerical values 5, 5, and 0 were shown over time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 魚類胚を浸漬した状態で化学物質を添加可能な液体を保持するゥエルを備 えたプレートと、 このプレートのゥエル内部の魚類胚を観察可能な観察装置と、 この観察装置によって得られる画像を撮影できる撮影装置とを備えたことを特徴 とする魚類胚を用いるスクリーニング装置。  1. A plate equipped with a well for holding a liquid to which a chemical substance can be added while the fish embryo is immersed, an observation device capable of observing the fish embryo inside the well of this plate, and an image obtained by this observation device A screening device using a fish embryo, comprising a photographing device capable of photographing.
2 . 前記プレートは透明な材質で形成されていると共に、 前記ゥエルの底面は 平板状とされていることを特徴とする請求項 1に記載のスク リ一エング装置。 2. The screening device according to claim 1, wherein the plate is formed of a transparent material, and a bottom surface of the well is formed in a flat plate shape.
3 . 化学物質を含む液体中に魚類胚を浸漬し、 その魚類胚の経時的な変化を観 察することを特徴とする魚類胚を用いるスクリーエング方法。 3. A screening method using fish embryos, characterized by immersing fish embryos in a liquid containing chemical substances and observing the changes over time of the fish embryos.
4 . 経時的な観察点は少なくとも、 器官形成開始時点〜個体形成完了時点の間 であることを特徴とする請求項 3に記載のスクリ一ユング方法。 4. The screening method according to claim 3, wherein the time-lapse observation point is at least between a time point at which organ formation starts and a time point at which individual formation is completed.
5 . 前記魚類胚は、 内部の器官が観察可能な程度に透明であることを特徴とす る請求項 3または請求項 4のいずれかに記載のスクリ一エング方法。 5. The screening method according to claim 3, wherein the fish embryo is transparent to the extent that an internal organ is observable.
6 . 前記魚類胚は、 トラフグ ·メダカ ·ゼブラフィッシュから構成される群の うちの一つの胚であることを特徴とする請求項 3〜請求項 5のいずれかに記載の スク リ一ユング方法。 6. The method according to any one of claims 3 to 5, wherein the fish embryo is one of a group consisting of trough, medaka and zebrafish.
7 . 前記魚類胚は、 ゼブラフィッシュの胚であることを特徴とする請求項 3〜 請求項 6のいずれかに記載のスクリ一二ング方法。  7. The screening method according to any one of claims 3 to 6, wherein the fish embryo is a zebrafish embryo.
8 . 経時的な観察点は、 1細胞期から約 1 2時間後〜約 3 0時間後のうちに含 まれることを特徴とする請求項 7に記載のスクリ一ユング方法。  8. The screening method according to claim 7, wherein the time-lapse observation point is included within about 12 hours to about 30 hours after the 1-cell stage.
9 . 請求項 3〜請求項 8のいずれかに記載の方法でスクリーユングしたことを 特徴とする医薬組成物。  9. A pharmaceutical composition which is screened by the method according to any one of claims 3 to 8.
1 0 . ゼブラフィッシュの胚から卵膜を除去し、 透明な材質で形成されたプレ 一トのゥエルに化学物質を含む液体と卵膜を除去した前記胚とを浸漬し、 前記胚 が 1細胞期から約 1 2時間後〜約 3 0時間後の間において、 前記プレートの透過 光により前記胚を観察することを特徴とするスクリーユング方法。  10. The egg membrane is removed from the zebrafish embryo, and a liquid containing a chemical substance and the embryo, from which the egg membrane has been removed, are immersed in a well of a plate made of a transparent material, and the embryo has one cell. A screening method, wherein the embryo is observed by light transmitted through the plate from about 12 hours to about 30 hours after the stage.
1 1 . 胚の卵膜を除去する際には、 プロテアーゼ Eを用いることを特徴とする 請求項 1 0に記載のスクリーニング方法。  11. The screening method according to claim 10, wherein protease E is used to remove the embryonic egg membrane.
1 2 . 胚の卵膜が 2層になった時点で、 卵膜の除去を行うことを特徴とする請 求項 1 0または請求項 1 1のいずれかに記載のスクリーニング方法。 1 2. When the egg membrane of the embryo becomes two layers, the egg membrane is removed. 12. The screening method according to claim 10 or claim 11.
1 3. プレートのゥエルが、 平底状またはすり鉢状とされていることを特徴と する請求項 1 0〜請求項 1 2のいずれかに記載のスクリーニング方法。  13. The screening method according to any one of claims 10 to 12, wherein the well of the plate has a flat bottom shape or a mortar shape.
14. 前記胚の観察時には、 プレートを約 26 °Cに保つことを特徴とする請求 項 1 0〜請求項 1 3のいずれかに記載のスクリーユング方法。  14. The screening method according to any one of claims 10 to 13, wherein the plate is kept at about 26 ° C during the observation of the embryo.
1 5. 前記プレートには、 3 84個のゥエルが設けられていることを特徴とす る請求項 1 0〜請求項 1 4のいずれかに記載のスク リーニング方法。  15. The screening method according to any one of claims 10 to 14, wherein the plate is provided with 384 wells.
PCT/JP2002/007289 2001-07-18 2002-07-17 Screening method using fish embryo WO2003008633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-217556 2001-07-18
JP2001217556A JP2003052354A (en) 2001-07-18 2001-07-18 Method of screening using fish embryo

Publications (1)

Publication Number Publication Date
WO2003008633A1 true WO2003008633A1 (en) 2003-01-30

Family

ID=19051849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007289 WO2003008633A1 (en) 2001-07-18 2002-07-17 Screening method using fish embryo

Country Status (2)

Country Link
JP (1) JP2003052354A (en)
WO (1) WO2003008633A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054735A1 (en) * 2005-11-14 2007-05-18 Summit Corporation Plc. Quantification method for toxic and teratologic compounds in zebrafish embryos
JP2014097487A (en) * 2012-10-09 2014-05-29 Veolia Water Solutions & Technologies Support Processing method and processing facility of water reducing endocrine-disrupting action using existing organisms
US9535057B2 (en) 2007-01-08 2017-01-03 City University Of Hong Kong Method of in vivo screening for cardiac toxic agents using teleost
CN107966581A (en) * 2017-11-03 2018-04-27 同济大学 A kind of zebrafish embryo microwell plate arranges adding set

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501002B2 (en) * 2005-01-21 2010-07-14 国立大学法人静岡大学 Screening method for endocrine disrupting substances
JP4528973B2 (en) * 2005-09-15 2010-08-25 国立大学法人静岡大学 Screening method for endocrine disrupting substances
CN111849772B (en) * 2020-07-31 2022-08-26 中国科学院生态环境研究中心 Device and method for continuous culture and observation of model fish embryos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282947A (en) * 1985-10-08 1987-04-16 日清製粉株式会社 Preparation of mouse cutting two-division frozen embryo
JPH07289210A (en) * 1994-04-26 1995-11-07 Seiwa Kasei Kk Method for softening egg membrane of overripe ikra
WO1999042606A1 (en) * 1998-02-23 1999-08-26 Phylonix Pharmaceuticals, Inc. Methods of screening agents for activity using teleosts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282947A (en) * 1985-10-08 1987-04-16 日清製粉株式会社 Preparation of mouse cutting two-division frozen embryo
JPH07289210A (en) * 1994-04-26 1995-11-07 Seiwa Kasei Kk Method for softening egg membrane of overripe ikra
WO1999042606A1 (en) * 1998-02-23 1999-08-26 Phylonix Pharmaceuticals, Inc. Methods of screening agents for activity using teleosts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054735A1 (en) * 2005-11-14 2007-05-18 Summit Corporation Plc. Quantification method for toxic and teratologic compounds in zebrafish embryos
US9535057B2 (en) 2007-01-08 2017-01-03 City University Of Hong Kong Method of in vivo screening for cardiac toxic agents using teleost
JP2014097487A (en) * 2012-10-09 2014-05-29 Veolia Water Solutions & Technologies Support Processing method and processing facility of water reducing endocrine-disrupting action using existing organisms
CN107966581A (en) * 2017-11-03 2018-04-27 同济大学 A kind of zebrafish embryo microwell plate arranges adding set
CN107966581B (en) * 2017-11-03 2023-08-29 同济大学 Zebra fish embryo microplate arrangement adding device

Also Published As

Publication number Publication date
JP2003052354A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
Cable et al. Gyrodactylid developmental biology: historical review, current status and future trends
Pitnick et al. Sperm biology: an evolutionary perspective
Fritzenwanker et al. Early development and axis specification in the sea anemone Nematostella vectensis
Giudice The sea urchin embryo: a developmental biological system
Buznikov et al. The sea urchins Strongylocentrotus droebachiensis, S. nudus, and S. intermedius
JP6765975B2 (en) Methods for 3D reconstruction and determination of embryo quality
Beer et al. Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris
Alipaz et al. Gametic incompatibilities between races of Drosophila melanogaster
WO2003008633A1 (en) Screening method using fish embryo
Gert et al. Reciprocal zebrafish-medaka hybrids reveal maternal control of zygotic genome activation timing
Vervoort et al. Studying AnnelidaRegeneration Using Platynereis dumerilii
Carvalho et al. Keeping amphioxus in the laboratory: an update on available husbandry methods
Reyer et al. Variation in fertilisation abilities between hemiclonal hybrid and sexual parental males of sympatric water frogs (Rana lessonae, R. esculenta, R. ridibunda)
Freeman Regional specification during embryogenesis in the inarticulate brachiopodGlottidia
Gribble et al. Sexual and asexual processes in Protoperidinium steidingerae Balech (Dinophyceae), with observations on life‐history stages of Protoperidinium depressum (Bailey) Balech (Dinophyceae)
Rusk et al. Investigation of early mussel (Perna canaliculus) development using histology, SEM imaging, immunochemistry and confocal microscopy
Das The physiology of excretion in Molgula (Tunicata, Ascidiacea)
Vickery et al. Morphogenesis and organogenesis in the regenerating planktotrophic larvae of asteroids and echinoids
Yaguchi et al. Development of marine invertebrates
Tomaru et al. Severe fertility effects of sheepish sperm caused by failure to enter female sperm storage organs in Drosophila melanogaster
Pierce Morphology and infraciliature of selected species of Tintinnina with a phylogenetic analysis of the Tintinnina based on infraciliature
Perea-Atienza et al. Immunostaining and in situ hybridization of the developing Acoel nervous system
Henriet et al. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy
JP2014519816A (en) Method and apparatus for removing particles from a liquid and placing them in a holding device
CN117417882B (en) Preparation method and equipment of single cell suspension of zebra fish embryo

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase