WO2003007122A2 - Systems and methods for analyzing two-dimensional images - Google Patents
Systems and methods for analyzing two-dimensional images Download PDFInfo
- Publication number
- WO2003007122A2 WO2003007122A2 PCT/US2002/022165 US0222165W WO03007122A2 WO 2003007122 A2 WO2003007122 A2 WO 2003007122A2 US 0222165 W US0222165 W US 0222165W WO 03007122 A2 WO03007122 A2 WO 03007122A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- analysis
- images
- source image
- dimensional
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000004458 analytical method Methods 0.000 claims description 263
- 230000003287 optical effect Effects 0.000 claims description 16
- 238000005259 measurement Methods 0.000 description 44
- 239000000523 sample Substances 0.000 description 34
- 239000011159 matrix material Substances 0.000 description 30
- 210000001508 eye Anatomy 0.000 description 23
- 210000001519 tissue Anatomy 0.000 description 22
- 230000000007 visual effect Effects 0.000 description 21
- 238000013507 mapping Methods 0.000 description 20
- 238000003384 imaging method Methods 0.000 description 19
- 238000005070 sampling Methods 0.000 description 17
- 238000004141 dimensional analysis Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 239000008280 blood Substances 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 14
- 239000003086 colorant Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000009607 mammography Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 210000000481 breast Anatomy 0.000 description 11
- 239000000976 ink Substances 0.000 description 11
- 238000009595 pap smear Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 210000001525 retina Anatomy 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 238000010191 image analysis Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 230000001131 transforming effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 208000004434 Calcinosis Diseases 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 238000007619 statistical method Methods 0.000 description 6
- 206010003246 arthritis Diseases 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 208000001132 Osteoporosis Diseases 0.000 description 4
- 230000002308 calcification Effects 0.000 description 4
- 210000004513 dentition Anatomy 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002996 emotional effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000036346 tooth eruption Effects 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 230000035508 accumulation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000011842 forensic investigation Methods 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000004256 retinal image Effects 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 208000031872 Body Remains Diseases 0.000 description 2
- 206010065687 Bone loss Diseases 0.000 description 2
- 206010020400 Hostility Diseases 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037182 bone density Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 210000001210 retinal vessel Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 238000004374 forensic analysis Methods 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010972 statistical evaluation Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates generally to systems and methods for the analysis of two-dimensional images and, more particularly to systems and methods for analyzing two-dimensional images by using image values such as color or grey scale density of the image to create a multi- dimensional model of the image for further analysis.
- Two-dimensional medical images are created by various methods such as photographic, x-ray, ultrasound, magnetic resonance imaging, and other techniques. Medical images are often used to diagnose the presence or absence of a medical condition. In addition, medical images are often used as an aid to surgical procedures.
- medical images are often difficult to interpret for a variety of reasons.
- the analysis of medical images thus typically requires a person possessing a high level of skill resulting from a combination of aptitude, training, skill, judgment, and experience. Persons with the requisite skill level may be few in number, which can increase the costs and delay the process of interpreting medical images.
- factors such as fatigue and/or interruptions can cause even a person with the requisite skill level to misinterpret or simply miss the features of a medical image indicative of a medical anomaly.
- the present invention provides a method for detailed and accurate analysis of two-dimensional images.
- a source image data set is generated from the source image.
- the source image data set comprises display data and location data.
- the location data indicates the location of the display data with reference to a two-dimensional coordinate system.
- the display data is used to reproduce the source image.
- a surface model is generated based on the source image data set.
- the surface model is defined by location data corresponding to the location data of the source image data set and intensity data generated based on the display data.
- the surface model is analyzed to determine features of the source image.
- the present invention optionally further comprises the step of creating an analysis image depicting the surface model.
- the analysis image may be created by, for example, generating a display matrix that maps an x-y-z coordinate system to display values.
- the display matrix is converted into the analysis image for reproduction of the surface model.
- the surface model may be viewed for image features associated with anomalies.
- the step of analyzing the surface model may further optionally comprise the steps of mathematically analyzing the data defining the surface model.
- the mathematical analysis of the data may be carried out by, for example, predetermining one or more numerical rules associated with image features associated with anomalies and comparing the data defining the surface model with the predetermined numerical rules.
- the step of analyzing the surface model may further optionally comprise the step of predetermining one or more image features or numerical rules associated with true density of the subject of the image.
- the true density of the image subject may be associated with a medical anomaly.
- image features and/or numerical rules indicative of true density may indicate the presence or absence of a medical anomaly.
- certain calcium morphologies are often associated with medical anomalies such as cancer, and the surface model may clarify or highlight image features associated with such calcium morphologies.
- FIGS. 1A, 1B, and 1C are block diagrams showing a system for and method of creating and analyzing a surface model based on a source image in accordance with the present invention
- FIG.2 is a graphical plot in which the vertical axis shows color density/gray scale values that increase and decrease with increasing and decreasing darkness of the two-dimensional image, as measured in a line drawn across the axis of the image;
- FIG. 3 is a 3D analysis image of a two-dimensional source image formed in accordance with the present invention, in this case a sample of handwriting, with areas of higher apparent elevation in the analysis image corresponding to areas of increased gray scale density in the two- dimensional image;
- FIG. 4 is also a 3D analysis image of a two-dimensional source image formed in accordance with the present invention, with the two- dimensional image again being a sample of handwriting, but in this case with the value of the gray scale density being inverted so as to be represented by the depth of a "channel” or “valley” rather than by the height of a raised “mountain range” as in FIG. 3;
- FIG. 5 is a view of a cross-section taken through the virtual 3-D image in FIG. 4, showing the contour of the "valley" which represents increasing and decreasing gray scale darkness/density and which is measured across a stroke of the writing sample, and showing the manner in which the two sides of the image are weighted relative to one another to ascertain the angle in which the writing instrument engaged the paper as the stroke was formed;
- FIG. 6 is a reproduction of a sample of handwriting, marked with lines to show the major elements of the writing and the upstroke slants thereof, as these are employed in accordance with another aspect of the present invention
- FIG. 7 is an angle scale having areas which designate a writer's emotional responsiveness based on the angle of the upstrokes, with the dotted line therein showing the average of the slant angles in the handwriting sample of FIG. 6;
- FIG. 8 is a reproduction of a handwriting sample as displayed on a computer monitor in accordance with another aspect of the present invention, showing exemplary cursor markings on which measurements are based, and also showing a summary of the relative slant frequencies which are categorized by sections of the slant gauge of FIG. 7;
- FIG. 9 is a portion of a comprehensive trait inventory produced for the writing specimen for FIG. 8 in accordance with the present invention
- FIG. 10 is a trait profile comparison produced in accordance with the present invention by summarizing trait inventories in FIG. 9;
- FIGS. 11 A, 11B, and 11C are block diagrams depicting a system for analyzing handwriting using image processing techniques of the present invention.
- FIG. 12 is a screen shot depicting source images formed from mammography X-rays and analysis images of these source images created using the systems and methods of the present invention
- FIG. 13 is a screen shot depicting a source image formed from pap smear images and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 14 is a screen shot depicting a source image formed from retinal blood vessel and structure image and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 15 is a screen shot depicting a source image formed from a sonogram and an analysis image of this source image created using the systems and methods of the present invention
- FIGS. 16 and 17 are screen shots depicting source images formed from dental X-rays and analysis images of these source images created using the systems and methods of the present invention
- FIG. 18 is a screen shot depicting a source image formed from an X-ray of a human joint and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 19 is a screen shot depicting a source image formed from a scan of a handwriting sample showing two intersecting lines and an analysis image of this source image created using the systems and methods of the present invention
- FIGS. 20, 21, and 22 are screen shots depicting analysis images created using the systems and methods of the present invention, where these analysis images highlight the differences in copy generations of the related document images;
- FIG. 23 is a screen shot depicting a source image formed from a scan of pen samples showing and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 24 is a screen shot depicting a source image formed from a scan of a handwriting sample showing line striations of a ballpoint pen and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 25 is a screen shot depicting a source image formed from a scan of a watermarked sheet of paper and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 26 is a screen shot depicting a source image formed from a scan of a paper sample and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 27 is a screen shot depicting a source image formed from blood splatter image and an analysis image of this source image created using the systems and methods of the present invention
- FIG. 28 is a screen shot depicting a source image formed from a fingerprint image and an analysis image of this source image created using the systems and methods of the present invention.
- the present invention provides systems and methods for the analysis of two-dimensional images.
- the present invention will often be described herein in the context of handwriting analysis.
- the invention will also be described below in the context of the analysis of medical and forensic images.
- present invention may have application to the analysis of these and other types of two-dimensional images; the reference to medical-, handwriting-, or forensic-related source images thus does not limit the scope of the present invention to other types of source images.
- image refers to the emission, transmission, or reflection of energy from a thing that may be perceived in some form.
- propagating energy may be perceived by the human senses. In other cases, this energy may not be detectable by human senses and must be detected or measured by other means such as X-ray or MRI image capturing systems.
- the thing associated with the image is subjected to a source of external energy such as light waves.
- This type of energy can create an image by passing through the thing or by being reflected off of the thing.
- the thing itself may emit energy in a detectable form; emitted energy may be created wholly from within the thing but can in some situations be excited by external stimuli.
- image data set is represented as a plurality of image values each associated with a particular location on a two-dimensional coordinate system.
- the image may be reproduced by plotting the image values in the two-dimensional coordinate system.
- image reproduction techniques are commonly used by, for example, computer monitors and computer printers.
- the image values of the points are color and/or gray scale values associated with optical intensity.
- the image values may correspond to other phenomena such as the intensity of X-rays or the like.
- an image formed by a black ink pen on white paper will typically contain variations in gray scale that will form different optical intensities and thus comprise varying image values.
- a two-dimensional image to be processed according to the principles of the present invention will be referred to herein as the "source image”.
- two-dimensional and “three- dimensional”, and “multi-dimensional” are used to refer to mathematical conventions for storing a set of data. While a two-dimensional image may use perspective and other artistic techniques to give the impression of three dimensions, an image having the appearance of three dimensions will be referred to herein as a "3D image” or as an image having a "3D effect”.
- a grayscale or color image typically contains 256 shades or gradations, but the human visual system is capable of discerning only approximately 30 individual shades.
- the unaided human eye is ill-equipped to perceive image details manifested through subtle variations in image intensity values.
- the human visual system processes information received through the eye in a manner that can distort or change the actual underlying image intensity values.
- low-level visual processing adapted for edge detection in quickly discerning field of view shapes and sizes actually alters intensity values on either side of sharp steps in image intensity.
- mid and high-level visual system processing depends on the structure of edge junction points to infer intensity shadings, which can lead to the eye to perceive identical intensity values in various parts of an image as being significantly different.
- the processing system 20 comprises a source image 22 having an associated source image data set 24.
- An intensity conversion system 30 generates a mapping matrix 32 based on the source image data set 24.
- the mapping matrix 32 represents a three-dimensional surface model as will be described in further detail below.
- the mapping matrix 32, or the three-dimensional surface model represented thereby is analyzed using an analysis module 40 as will be described in further detail below.
- the source image data set 24 defines an array of image values associated with points in a two-dimensional reference coordinate system.
- the source image data set 24 will typically include header information and often will be compressed.
- the intensity conversion system 30 will remove any header information and uncompress the source image data set of this data set is in a compressed form.
- the image values represented by the source image data set 24 may take many forms.
- the image values will be include values representative of the colors red, blue, and green and a value alpha indicative of transparency (hereinafter "RGBA System”).
- the image values may include values that represent hue (color), saturation (amount of color), and intensity (brightness) (hereinafter "HSI System”).
- the mapping matrix 32 is thus a two-dimensional matrix that maps from x-y values of the reference coordinate system to intensity values derived from the image values.
- the mapping matrix 32 mathematically defines a three-dimensional surface that models or represents the image as defined by the source image data set 24.
- the term "surface model” will be used herein to refer to the three-dimensional surface defined by the mapping matrix.
- the transformation from image values to intensity values may be accomplished in many different ways.
- the image values of an RGBA System may be converted to an intensity value by averaging the red, blue, and green values.
- the image values of an HSI System may be converted to intensity values by dropping the hue and saturation values and using only the intensity value.
- the three eight-bit color components in an RGBA System may be summed, and the result may be used as an intensity value.
- each eight-bit color component of an RGBA System may be used as an intensity value in a unique imaginary dimensional axis, and these additional imaginary dimensional axes may be stored in an appropriate multi-dimensional matrix.
- the transformation process may also involve scaling or other processing of the image values.
- the surface model may be analyzed in a number of ways.
- the analysis module 40a comprises an image conversion system 50 that converts the mapping matrix 32 into a display matrix 52.
- the display matrix 52 is a three-dimensional matrix that maps from x-y-z values to display values.
- the display matrix 52 allows the three-dimensional surface defined by the surface model to be reproduced as a two- dimensional analysis image 54.
- the display values of the display matrix 52 are or may be similar to the intensity values described above.
- the display values contain information that allows each point on the three-dimensional surface to be reproduced using conventional display systems and methods.
- the use of a three-dimensional display matrix 52 to store the display values allows the reproduction of the three-dimensional surface to be altered to enhance the ability to see details of the three- dimensional surface.
- the three-dimensional matrix allows the reproduction of the three-dimensional surface to be rotated, translated, scaled, and the like as will be described in further detail below.
- the display values may be arbitrarily assigned for different points on the three-dimensional surface to further enhance the reproduction of the three-dimensional surface.
- each intensity value may be assigned a unique color from an arbitrary spectrum of colors to illustrate patterns of intensity values.
- the analysis image 54 may thus be reproduced using artistic techniques that create a 3D effect that represents the x-, y-, and z- axes of three-dimensional surface defined by the mapping matrix. In many situations, viewing a reproduction of the analysis image 54 facilitates the precise measurement and evaluation of various aspects of the source image 22 associated with features of interest.
- the multi-dimensional model may be analyzed by performing a purely mathematical analysis of the data set representing the multi-dimensional model. Referring for a moment to FIG. 1C, depicted therein is yet another exemplary analysis module 40b comprising a numerical analysis system 60, a set of numerical rules 62, and numerical analysis results 64.
- the numerical analysis system 60 is typically formed by a computer capable of comparing the surface model as represented by the mapping matrix 32 with the set of numerical rules 62 associated with features of interest in the source image 22.
- the numerical rules 62 typically correspond to patterns, minimum or maximum thresholds, and/or relationships between intensity values that indicate or are associated with the features of interest. If the data stored by the mapping matrix 32 matches one or more of the rules, the numerical analysis results 64 will indicate the likelihood that the source image 22 contains the feature of interest.
- the present invention may be implemented by using both the analysis module 40a and the analysis module 40b described above.
- the analysis module 40b containing the numerical analysis system 60 may be used first to screen a batch of source images 22, and the analysis module 40a may be used to analyze those source images 22 of the batch contained in the numerical analysis results.
- color density or "gray scale density” generally correspond to the darkness of the source image at any particular point.
- the source image will be lighter (i.e., have a lower color/gray scale density) along its edge, will grow darker (i.e., have a greater color/gray scale density) towards its middle, and will then taper off and become lighter towards its opposite edge.
- the color/gray scale density is initially low, then increases, and then decreases again.
- FIG. 2 shows a two-dimensional plot of intensity value (gray scale) of a portion of a handwriting sample at fourteen separate dot locations.
- the fourteen image values are plotted on a linear reference coordinate system in FIG. 2.
- the increasing and decreasing color/gray scale density values are plotted on a vertical axis relative to dot locations across the two-dimensional source image, i.e., along one of the x- and y -axes.
- the color/gray scale density can thus be used to calculate a third axis (a "z-axis") in the vertical direction, which when combined with the x- and y- axes of the two-dimensional source image, forms the mapping matrix 32 that defines the three-dimensional surface model.
- the surface model so generated can be numerically analyzed and/or converted into an analysis image that can be printed, displayed on a computer monitor or other viewing device, or otherwise reproduced in a visually perceptible form.
- the analysis image itself is represented in two dimensions (e.g., on a sheet of paper or a computer display), as described above the analysis image will often contain artistic "perspective" that will makes the analysis image appear to be a 3D image having three dimensions.
- optical density measurements can be given positive values so that the z-axis extends upwardly from the plane defined by the x- and y- axes.
- the 3D analysis image so produced depicts the three- dimensional surface in the form of a raised "mountain range"; alternatively, the z-axis may be in the negative direction, so that the three-dimensional surface depicted in the analysis image appears as a channel or "canyon" as shown in FIG. 4.
- the analysis image may include different shades of gray or different colors to aid the operator in visualizing and analyzing the "highs” and "lows" of the image.
- the use of color to represent the analysis image is somewhat analogous to the manner in which elevations are indicated by designated colors on a map.
- a "shadow' function may be included to further heighten the 3D effect.
- the analysis image representing the surface model makes it possible for the operator to see and evaluate features of the source image that were not visible or which do not stand out to the unaided eye.
- the analysis of several aspects of the surface model and the analysis image associated therewith will be now described in the context of a handwriting sample.
- the way in which the maximum "height” or “depth” of the image is shifted or “skewed” towards one side or the other can indicate features of the source image.
- these aspects of the analysis image may be associated with the direction in which the pen or other writing tool was held/tilted as the stroke was made. As can be seen in FIG. 5, this can be accomplished by determining the lowermost point or bottom "e” of the valley, and then calculating the areas A1 and A2 on either side of a dividing line "f" which extends upwardly from the bottom of the valley, perpendicular to the plane of the paper surface. That side having the greater area (e.g., A1 in FIG. 5) represents that side of the stroke on which the pressure of the pen/pencil point was greater, and therefore indicates which hand the writer was using to form the stroke or other part of the writing.
- the areas A1 , A2 can be compiled and integrated over a continuous section of the writing.
- the line “f" can be considered as defining a divider plane or "wall” which separates the two sides of the valley, and the relative weights of the two sides can then be determined by calculating their respective volumes, in a manner somewhat analogous to filling the area on either side of the "wall” with water.
- the "water” can be represented graphically during this step by using a contrasting color (e.g., blue) to alternately fill each side of the "valley" in the 3-D display.
- the operator can determine which one line was written atop the other or vice versa. This may allow a person analyzing handwriting to determine, for example, whether a signature was applied before or after a document was printed.
- these and other analytical tools may be used to illuminate features of the source image that are barely visible or not visible to the unaided eye.
- FIG. 11 of the drawing contains a block diagram 120 that illustrates the sequential steps in obtaining and analyzing source images in accordance with one embodiment of the present invention as applied to handwriting analysis.
- FIG. 11 illustrates that the source image data set 24 may be obtained by scanning the two-dimensional handwriting sample 122 using an imaging system 124.
- the analysis of handwriting samples will be referred to extensively herein because handwriting analysis illustrates many of the principles of the present invention.
- the source image may be any two-dimensional image and may be created in a different manner as will be described elsewhere herein.
- the source image 22 is thus derived from a paper document containing handwriting.
- the first step in the process implemented by the exemplary system 120 is to scan the handwriting sample 122 using the imaging system 124 such as a digital camera or scanner to create a digital bit-map file 126, which forms the source image data set 24.
- the imaging system 124 such as a digital camera or scanner
- the scanner have a reasonably high level of resolution, e.g., a scanner having a resolution of 1,000 bpi has been found to provide highly satisfactory results.
- the imaging source 124 may produce a bit map image by reporting a digital gray scale value of 0 to 255.
- the variation in shade or color density from say 100 to 101 on such a gray scale is not detectable by the human eye, making for extremely smooth appearing continuous tone images whether on-screen or printed.
- the scanner reports a digital value of gray scale for each dot per inch at the rated scanner resolution. Typical resolution for consumer level scanners is 600 dpi.
- Laser printer output is nominal 600 dpi and higher, with inexpensive ink jet printers producing near 200 dpi. Nominal 200 dpi is fully sufficient to reproduce the image as viewed on the high-resolution computer monitor. While images are printed as they appear on-screen, type fonts typically print at higher resolution as a result of using font data files (True-Type, Postscript, etc) instead of the on-screen bitmap image. High-resolution printers may use multiple dots of color (dpi) to reproduce a pixel of onscreen bit map image.
- the imaging system 124 is a gray scale scanner used to scan a handwriting sample 122
- the scanning process produces a source data set or "bit map image" 126, with each pixel or location on a two- dimensional coordinate system assigned a gray scale value representing the darkness of the image at that point on the source document.
- the software subsequently uses this image on an expanded scale to view each "dot per inch" more clearly. Due to this scanning method, there is no finer detail available than the "single-dot" level. Artifacts as large as a single dot will cause that dot's gray scale value to be significant of that artifact. Artifacts much smaller than a single dot per inch will not be detected by the scanner.
- gray scale values may be "0" for the white paper background, increasing abruptly to some value, say 200, perhaps hold near 200 for several "dots" or pixels, and then decrease abruptly to "0" again as the edge of the line transitions to background white paper value.
- the bit-map file 126 is next transmitted via a telephone modem, network, serial cable, or other data transmission link to the analysis platform, e.g., a suitable PC or MacintoshTM computer that has been loaded with software for carrying out the steps or functions of the intensity transform system 30 and analysis system 40 and storing the source image data set 24 and mapping matrix 32.
- the first step in the analysis phase is to read in the digital bit-map file 126 which has been transmitted from the imaging system 124.
- the bit map file 126 is then processed to produce the mapping matrix 32 that, as will be described in separate sections below, may in turn be mathematically analyzed and/or converted into a two-dimensional analysis image for direct visual analysis.
- the surface model is analyzed using an analysis system 40 comprising a two-dimensional analysis module 130 and a three-dimensional analysis module 132.
- an analysis system 40 comprising a two-dimensional analysis module 130 and a three-dimensional analysis module 132.
- Each of these modules 130 and 132 comprises separate steps or functions.
- the two-dimensional analysis module 130 an three-dimensional analysis system 132 are used to create, measure, and analyze one or more analysis images that are derived from the surface model. It will be understood that it is easily within the ability of a person having an ordinary level of skill in the art of computer programming to develop software for implementing these and the following modules or method steps, using a PC or other suitable computer platform, given the descriptions and drawings which are provided herein.
- FIG. 11B depicted in further detail therein is a block diagram representing the two-dimensional analysis module 130.
- FIG. 11B illustrates that the two-dimensional analysis module 130 comprises the imaging transform system 50, which generates the display matrix 52.
- tools are provided to enhance the display and analysis of the display matrix 52.
- the two-dimensional analysis module 130 employs a dimensional calibration module 140, an angle measurement module 142, a height measurement module 144, a line proportions measurement module 146, and a display module 148 for displaying 3D images representing density patterns and the like for use with the other modules 142, 144, and 146.
- the dimensional calibration module 140 allows the user to calibrate the analysis module 130 such that measurements and the like are scaled to the actual dimensions of the sample 122.
- angle measurement module 142 The functions of the angle measurement module 142, height measurement module 144, and line proportions measurement module 146 will become apparent from the following discussion. These modules 142, 144, and 146 yield a tally of angles 150, a tally of heights 152, and a tally of proportions 154.
- the three-dimensional analysis module 132 comprises a pattern recognition mathematics module 160, a quantitative measurement analysis module 162, a statistical validation module 164, and a display module 166 for displaying density patterns and the like associated with analysis functions of the modules 160, 162, and 164.
- analysis of known mapping matrices may indicate that a certain type of pen is associated with certain patterns or quantitative measurements within mapping matrices.
- the modules 160, 162, and 164 generate results 170, 172, and 174 that indicate whether a given surface model matches the predetermined patterns or measurements.
- the display values (i.e., gray-scale/color density) of the source data set created by digitizing the source image are used for the third dimension to create the three-dimensional surface that highlights the density patterns of the original source image.
- the system 120 uses an x-y- z coordinate system.
- a set of points represents the image display space in relation to an origin point, 0,0.
- a set of axes x and y represent horizontal and vertical directions, respectively, of a two-dimensional reference coordinate system.
- Point 0,0 is the lower-left corner of the image ("southwest" corner) where the x- and y- axes intersect.
- the x-y-z axes intersect at the origin point, 0,0,0.
- the third dimension adds the elements of elevation, depth, and rotation angle.
- similar plots of gray scale can be constructed 600 times per inch of line length (or more with higher resolution devices). Juxtaposing the 600 plots per inch produces an on-screen display or analysis image in which the original line appears similar to a virtual "mountain range". If the plotted z-axis data is given negative values instead of positive, the mountain range appears to be a virtual "canyon" instead.
- the representation is displayed as a three-dimensional surface in the form of a "mountain range” or “canyon” for visualization convenience; however, it will be understood that the display does not represent a physical gouge, or trench, or, in the context of handwriting analysis, a mound of ink upon the paper.
- the z-axis as shown by a "mountain range” or “canyon” itself does not directly depict a feature of the source image; the z-axis as described herein provides a spatial value to the source image that takes the place of the image values such as color or gray scale.
- the coordinate system is preferably oriented to the screen, instead of "attached" to the 3-D view object.
- movement of the image simulates movement of a camera: as the operator rotates an object, it appears as if the operator is "moving the camera” around the image.
- the positive direction of the x-axis goes to the right; the positive direction of the z-axis goes up; and the positive z- axis goes into the screen, away from the viewer, as shown in FIG. 3.
- This is called a "left-hand" coordinate system.
- the "left-hand rule” may therefore be used to determine the positive axis directions: positive rotations about an axis are in the direction of one's fingers if one grasps the positive part of an axis with the left hand, thumb pointing away from the origin.
- Distinctively colored origin markers may also be included along the bottom edge of an image to indicate the origin point (0,0,0) and the end point of the x-axis, respectively. These markers can be used to help reorient the view to the x- y plane after performing actions on the image such as performing a series of zooms and/or rotations in 3-D space.
- Visual and quantitative analysis of the analysis images obtained from a two-dimensional handwriting sample can be carried out as follows, using a system and software in accordance with a preferred embodiment of the present invention.
- the expression of slope can be measured along the entire scanned line length to arrive at an average value, standard deviation from the mean, and the true angle within a confidence interval, plus many other possible correlations.
- Variations in "mountain range” height also may correspond to features of the source image.
- using the same instrument may reveal changes in pressure applied by the writer, stop/start points, mark-overs, and other artifacts.
- a mountain range may appear to lean to the left or to the right when viewed as described herein.
- the "skewness" of a mountain range can correspond to features of the source image.
- visual examples have displayed a unique angle for a single author, whether free-writing or tracing, while a second author showed visibly different angle while tracing the first author's writing.
- Quantitative measurement of the baseline center and the peak center points can provide an overall angle of skew. A line through the peak perpendicular to the base will divide the range into two sides of unequal contained area, an alternative measure of skew value.
- Wilds or ridges may appear in lines or at intersections of of lines in the source image.
- visual examination has shown “wings” or ridges extending down the “mountainside", following the track of the lighter density crossing line.
- Quantitative measure of these "wings" can be done to reveal a density pattern in a high level of detail.
- the pattern may reveal density pattern effects resulting from the two lines crossing.
- Statistical measures can be applied to identify significant patterns or changes in density.
- Changes or discontinuities in "mountain range” elevation may also correspond to features of the source image.
- visual inspection readily reveals pen lifts, re-trace, and other effects correspond to sudden changes in "mountain range” elevation.
- Quantitative measure of height can be used to note when a change is statistically significant, and identify the measure of the change. Similar and dissimilar changes elsewhere in the source image or document can be evaluated and compared.
- Fill volume of a "mountain range” can also correspond to features of the source image.
- Visual effects such as a flat bottom “canyon” created by felt tip marker, "hot spots” of increased color density (deeper pits in the canyon), and other areas of the canyon which change with fill (peninsulas, islands, etc.) have been recognized in handwriting samples.
- Quantitative calculation of the amount of "water” required to fill the canyon can be done. Relating the amount (in “gallons") to fill one increment ("foot") over the entire depth of the "canyon" will reveal a plot of gallons per foot that will vary with canyon type. For instance, a square vertical wall canyon will require the same gallons per foot from bottom to top. A canyon with even 45° sloped walls will require two times as many gallons to fill each succeeding foot of elevation from bottom to top.
- Isopleths may be formed by connecting similar image values within the analysis image.
- the use of isopleths creates a analysis image having an appearance that is similar to a conventional topographic map.
- Th use of isopleths representing levels on a "mountain range" or within a “canyon” is similar to the water fill analysis technique described above, but does not hide surface features as water level rises.
- Each isopleth on the topographical map is the similar to a beach or high-water mark left by a lake or pond.
- the source image may include image values associated with colors, and these color image values may be used individually or together to generate the z-axis values of the surface model.
- quantitatively identifying the color value can provide valuable information, especially in the area of line intersections. In certain instances it may be possible to identify patterns of change in coloration that reveal line sequence information. Blending of colors, overprinting or obscuration, ink quality and identity, and other artifacts may also be available from this information.
- Additional virtual manipulation and/or refinement of the analysis image can be carried out as follows by implementing one or more of the following techniques.
- an object or solid is typically divided into a series or mesh of geometric primitives (triangles, quadrilaterals, or other polygons) that form the underlying structure of the image.
- geometric primitives triangles, quadrilaterals, or other polygons
- Decimation is the process of decreasing the number of polygons that comprise this mesh. Decimation attempts to simplify the wire frame image. Applying decimation is one way to help speed up and simplify processing and rendering of a particularly large image or one that strains system resources.
- the geometry of the image is retained within a small deviation from the original image shape, and the number of polygons used in the wire frame to draw the image is decreased. The higher the percentage of decimation applied, the larger the polygons are drawn and the fewer shades of gray (in grayscale view) or of color (in color scale view) are used. If the image shape cannot conform to the original image shape within a small deviation, then smaller polygons are retained and the goal of percentage decimation is not achieved. This may occur when a jagged, unsmoothed, image with extreme peaks and valleys is decimated.
- the decimated image does not lose or destroy data, but recalculates the image data from adjacent pixels to reduce the number of polygons needed to visualize the magnified image.
- the original image shape is unchanged within a small deviation limit, but the reduced number of polygons speeds computer processing of the image.
- decimation can be used to advantage for initially examining images. Then, when preparing the actual analysis for presentation, the decimation percentage can be set back to undo the visualization effects of the command.
- the system displays an analysis image by sampling every pixel of the corresponding scan to build the surface model that is transformed into the display matrix that yields the analysis image.
- Sub-sampling is a digital Image-processing technique of sub-sampling every second, or third, or fourth pixel instead of sampling every pixel to form the analysis image.
- the number of pixels not sampled depends on the amount of sub- sampling specified by the user.
- the resulting view results in some simplification of the image.
- Sub- sampling reduces image data file size to optimize processing and rendering time, especially for a large image or an image that strains system resources.
- the operator can use more extreme sub-sampling as a method for greatly simplifying the view to focus on features at a larger-granular level of the image, as shown in this example.
- Super-sampling is a digital image-processing technique of interpolating extra image points between pixels in displaying an image. The resulting view is a greater refinement of the image. It should be borne in mind that super-sampling generally increases both image file size and processing and rendering time.
- Horizontal Cross-Section transformation creates a horizontal, cross- sectional slice (parallel to the x-y plane) across an isopleth.
- Invert transformation inverts the isopleths in the current view, transforming virtual "mountains” into virtual "canyons” and vice versa. For instance, when a written specimen is first viewed in 3-D, the written line may appear as a series of canyons, with the writing surface itself at the highest elevation, as in this example. In many cases, it may be easier to analyze the written line as a series of elevations above the writing surface. Invert transformation can be used to adjust the view accordingly, as in this example. G. Threshold Transformation
- Threshold transformation allows the operator to set an upper and lower threshold for the image, filtering out values above and below certain levels of the elevation.
- the effect is one of filling up the "valley” with water to the lower contour level and “slicing" off the top of the "mountains” at that level. This allows the operator to view part of an isopleth or a section of isopleths more closely without being distracted by isopleths above or below those upper/lower thresholds.
- the method of the present invention also optionally provides for two-dimensional analysis of analysis images.
- features of the analysis image are identified using one- or two-dimension geometric objects such as points, lines, circles, or the like. Often, the spatial or angular relationships between or among these geometric objects can illustrate features of the source image.
- Two-dimensional analysis of analysis images is of particular value to the analysis of certain handwriting samples.
- Two of the principal measurements that can be carried out by the system of the present invention in this context are (a) the slant angles of the strokes in the handwriting, and (b) the relative heights of the major areas of the handwriting. These angles and heights are illustrated in FIG. 6, which shows the handwriting sample 122 in more detail.
- the sample 122 has a base line 180 from which the other measurements are taken; in the example shown in FIG. 6, the base line 180 is drawn beneath the entire phrase in sample 122 for ease of illustration, but it will be understood that in most instances, the base line will be determined separately for each stroke or letter in the sample.
- a first area above the base line, up to line 182 in FIG. 6 defines what is known as the mundane area, which extends from the base line to the upper limit of the lower case letters.
- the mundane area is considered to represent the area of thinking, habitual ideas, instincts, and creature habits, and also the ability to accept new ideas and the desire to communicate them.
- the extender letters continue above the mundane area, to an upper line 184 that defines the limit of what is termed the abstract area, which is generally considered to represent that aspect of the writer's personality which deals with philosophies, theories, and spiritual elements.
- the material area which is considered to represent such qualities as determination, material imagination, and the desire for friends, change, and variety.
- the base line also serves as the reference for measuring the slant angle of the strokes forming the various letters.
- the slant is measured by determining a starting point where a stroke lifts off the base line (see each of the upstrokes) and an ending point where the stroke ceases to rise, and then drawing one or more slant angle lines between these points and determining the angle ⁇ to the base line. Examples of such slant angle lines are identified by reference characters 190a, 190b, 190c, 190d, and 190e in FIG. 6. The angles are summed and divided to determine the average slant angle for the sample.
- FIG. 7 shows one example of a "slant gauge", which in this case has been developed by the International Graphoanalysis Society (IGAS), Chicago, Illinois.
- this is divided into seven areas or zones - i "iF r-- "FA”, "AB”, “BC”, “CD”, “DE” and “E+” - with each of these corresponding on a predetermined basis to some aspect or quality of the writer's personality; for example, the more extreme angles to the right of the gauge tend to indicate increasing emotional responsiveness, whereas more upright slant angles are an indication of a less emotional, more self- possessed personality.
- the slant which is indicated by dotted line 92 lies within the zone "BC", which is an indication that the writer, while tending to respond somewhat emotionally to influences, still tends to be mostly stable and level-headed in his personality.
- the two- dimensional analysis module 130 may be implemented using the following methods. First, the digital bit-map file 126 from the scanner system 124 is displayed on the computer monitor for marking with the cursor. As a preliminary to conducting the measurements, the operator performs a dimensional calibration using the calibration module 140.
- a scale e.g., a ruler
- a line of known length e.g., 1 centimeter, 1 inch, etc.
- the user takes the desired measurements from the sample, using a cursor on the monitor display as shown in FIG. 8.
- the operator moves the cursor across the image which is created from the bit-map, and uses this to mark selected points on the various parts of the strokes or letters in the specimen.
- the angle measurement 142 the operator first establishes the relevant base line; since the letters themselves may be written in a slant across the page, the slant measurement must be taken relative to the base line and not the page.
- the base line is preferably established for each stroke or letter, by pinning the point where each stroke begins to rise from its lowest point.
- the operator is not required to move the cursor to the exact lowest point of each stroke, but instead simply "clicks” a short distance beneath this, and the software generates a "feeler" cursor which moves upwardly from this location to the point where the writing (i.e., the bottom of the upstroke) first appears on the page.
- the software reads the "color" of the bit-map, and assumes that the paper is white and the writing is black: If (moving upwardly) the first pixel is found to be white, the software moves the cursor upwardly to the next pixel, and if this is again found to be white, it goes up another one, until finally a "black” pixel is found which identifies the lowest point of the stroke. When this point is reached, the software applies a marker (e.g., see the "plus” marks in FIG. 8), preferably in a bright color so that the operator is able to clearly see and verify the starting point from which the base line is to be drawn.
- a marker e.g., see the "plus” marks in FIG. 8
- the software After the starting point has been identified, the software generates a line (commonly referred to as a "rubber band") which connects the first marker with the moving cursor.
- a line commonly referred to as a "rubber band" which connects the first marker with the moving cursor.
- the operator positions the cursor beneath the bottom of the adjacent downstroke (i.e., the point where the downstroke stops descending), or beneath next upstroke, and again releases the feeler cursor so that this extends upwardly and generates the next marker.
- the angle at which the "rubber band" extends between the two markers establishes the base line for that stroke or letter.
- the program next generates a second "rubber band" which extends from the first marker (i.e., the marker at the beginning of the upstroke), and the operator uses the moving cursor to pull the line upwardly until it crosses the top of the stroke. Identifying the end of the stroke, i.e., the point at which the writer began his "lift-off in preparation for making the next stroke, can be done visually by the operator, while in other embodiments this determination may be performed by the system itself by determining the point where the density of the stroke begins to taper off, in the manner which will be described below. In those embodiments which rely on visual identification of the end of the stroke, the size of the image may be enlarged (magnified) on the monitor to make this step easier for the operator.
- the cursor is again released so as to mark this point.
- the system determines the slant of the stroke by calculating the included angle between the base line and the line from the first marker to the upper end of the stroke. The angle calculation is performed using standard geometric equations.
- each slant angle is calculated, this is added to the tally 150 of strokes falling in each of the categories, e.g., the seven categories of the "slant gage" shown in FIG. 7. For example, if the calculated slant angle of a particular stroke is 600, then this is added to the tally of strokes falling in the "BC" category. Then, as the measurement of the sample progresses, the number of strokes in each category and their relative frequencies is tabulated for assessment by the operator; for example, in FIG. 8, the number of strokes out of 100 falling into each of the categories FA, FA, AB, BC, CD, DE and E+ are 10, 36, 37, 14, 3, 0 and 0, respectively.
- the relative frequencies of the slant angles (which are principally an indicator of the writer's emotional responsiveness) are combined with other measured indicators to construct a profile of the individual's personality traits, as will be described in greater detail below.
- the next step is to obtain the height measurements of the various areas of the handwriting using the height measurement block 144.
- the height measurements are typically the relative heights of the mundane area, abstract area, and material area. Although for purposes of discussion this measurement is described as being carried out subsequent to the slant angle measurement step, the system of the present invention is preferably configured so that both measurements are carried out simultaneously, thus greatly enhancing the speed and efficiency of the process.
- the "rubber band” not only determines the slant angle of the stroke, but also the height of the top of the stroke above the base line. In making the height measurement, however, the distance is determined vertically (i.e., perpendicularly) from the base line, rather than measuring along the slanting line of the "rubber band".
- the tops of the strokes which form the "ascender letters” define the abstract area, while the heights of the strokes forming the lower letters (e.g., "a”, “e") and the descending (e.g., "g", "p”, “y") below the base line determine the mundane and material areas.
- Differentiation between the strokes measured for each area may be done by the user (as by clicking on only certain categories of letters or by identifying the different categories using the mouse or keyboard, for example), or in some embodiments the differentiation may be performed automatically by the system after the first several measurements have established the approximate limits of the ascender, lower, and descender letters for the particular sample of handwriting which is being examined.
- the height measurements are tallied at 152 for use by the graphoanalyst.
- the heights can be tallied in categories according to their absolute dimensions (e.g., a separate category for each 1/16 inch), or by the proportional relationship between the heights of the different areas.
- the ratio between the height of the mundane area and the top of the ascenders e.g., 2 x the height, 2" x, 3 x, and so on
- the depth measurement phase of the process is indicated at block 146 in FIG.
- 11B differs from the steps described above, in that what is being measured is not a geometric or dimensional aspect of each stroke (e.g., the height or slant angle), but is instead a measure of its intensity, i.e., how hard the writer was pressing against the paper when making that stroke.
- This factor in turn is used to "weight" the character trait which is associated with the stroke; for example, if a particular stroke indicates a degree of hostility on the part of the writer, then a darker, deeper stroke is an indicator of a more intense degree of hostility.
- the system measures the darkness of each pixel along the track across the stroke, and compiles a list of the measurements as the darkness increases generally towards the center of the stroke and then lightens again towards the opposite edge.
- the darkness (absolute or relative) of the pixels and/or the width/length of the darkest portion of the stroke are then compared with a predetermined standard (which preferably takes into account the type of pen/pencil and paper used in the sample), or with darkness measurements taken at other areas or strokes within the sample itself, to provide a quantifiable measure of the intensity of the stroke in question.
- the levels of darkness measured along each cut may be translated to form a two-dimensional representation of the "depth" of the stroke.
- the horizontal axis represents the linear distance across the cut
- the vertical axis represents the darkness which is measured at each point along the horizontal axis, relative to a base line 160 which represents the color of the paper (assumed to be white).
- the two dimensional image forms a valley "v" which extends over the width "w” of the stroke.
- the corresponding point "d” on the valley curve is a comparatively short distance “d1 " below the base line
- the corresponding point "d” is a relatively greater distance “d2” below the base line, and so on across the entire width "w” of the stroke.
- the maximum depth “D” along the curve "v” therefore represents the point of maximum darkness/intensity along the slice through the stroke.
- the depth measurements are tallied in a manner similar to the angle and height measurements described above for use by the graphoanalyst by comparison with predetermined standards. Moreover, the depth measurements for a series of slices taken more-or-less continuously over part or all of the length of the stroke may be compiled to form a three-dimensional display of the depth of the stroke (block 56 in FIG. 3), as which will be described in greater detail below. Referring to blocks 150, 152, and 154 in FIG. 11 B, the system 120 thus assembles a complete tally of the angles, heights, and depths which have been measured from the sample.
- the graphoanalyst can compare these results with a set of predetermined standards so as to prepare a graphoanalytical trait inventory, such as that which is shown in FIG. 5, this being within the skill of a graphoanalyst having ordinary skill in the relevant art.
- the trait inventory can in turn be summarized in the form of the trait profile for the individual (see FIG. 10), which can then be overlaid on or otherwise displayed in comparison with a standardized or idealized trait profile.
- the bar graph 158 in FIG. 10 compares the trait profile which has been determined for the subject individual against an idealized trait profile a "business consultant", this latter having been established by previously analyzing handwriting samples produced by persons who have proven successful in this type of position.
- these steps may be performed by the system itself, with the standards and/or idealized trait profiles having been entered into the computer, so that this produces the trait inventory/profile without requiring intervention of the human operator.
- mapping matrices defining the surface models employ a two-raxis coordinate system and intensity values.
- these mapping matrices are converted into two-dimensional analysis images as described above.
- the two-dimensional analysis images described below use artistic methods such as perspective to depict the third dimension of the mapping matrices.
- the 2D or 3D image analysis and enhancement techniques described in Sections IV, V, and VI above with reference to handwriting analysis may be applied to the source images in other fields of study. Although different source images are associated with different physical things or phenomena, the images themselves tend to contain similar features.
- the 2D and 3D image analysis and enhancement techniques described above in the context of handwriting analysis thus also have application to images outside the field of handwriting analysis.
- the slope of a "canyon wall" of a source image may lead to one conclusion in the context of a handwriting sample and to another conclusion in the context of a mammography image, but similar tools can be used to analyze such slopes in both environments.
- One aspect of the present invention is thus to provide tools and analysis techniques that an expert can use to formulate rules and determine relationships associated with analysis images within that expert's field of expertise.
- the diagnosis and treatment of human medical conditions often utilizes images created from a variety of different sources.
- the sources of medical images include optical instruments with a digital or photographic imaging system, ultrasonic imaging systems, x-ray systems, and magnetic resonance imaging systems.
- the images may be of the human body itself or portions thereof such as blood samples, biopsies, and the like. With some of these image sources, the image is recorded on a medium such as film; with others, the image is directly recorded using a transducer system that converts energy directly into electrical signals that may be stored in digital or analog form.
- Mammography images are created by X-rays passing through breast tissues.
- the major tissues present in the breast structure include the fibroglandular, fibroseptal, and fatty tissues.
- the various breast tissue types have different density characteristics, and the degree of attenuation of the X-rays differs as they pass through different tissue types. The X-rays are thus attenuated as they pass through the tissue, with higher density tissue providing higher attenuation of the X- rays.
- the X-rays are detected and recorded by film or a detector in a digital mammography unit; in either case, the level of X-ray exposure is detected, which results in the X-ray film or digital image typically referred to as a mammogram.
- the image is fully defined by scanning from side to side horizontally and top to bottom vertically.
- a source image data set containing grayscale image values is obtained by scanning the film X-ray images using digital scanning devices.
- the source image data set can be obtained directly as a data stream from the digital mammography unit.
- FIG. 12 depicted therein are two mammogram or source images 220a and 220b and analysis images 222a and 222b generated from source image data sets associated with the source images 220.
- the analysis images 222 the source image data sets, which have intensity or gray scale values plotted with respect to a reference x-y coordinate system, are transformed into mapping matrices as described above.
- mapping matrices have in turn been transformed into display matrices having a third dimensional axis "z" plotted with respect to the reference x-y coordinate system.
- the display matrices have then been converted into analysis image data sets that are reproduced as the analysis images 222.
- a scanned image of a mammogram typically contains 256 shades of grayscale, but the human visual system is capable of discerning only approximately 30 individual grayscale shades.
- the unaided human eye thus cannot perceive image details within a mammogram that are within approximately four to six shades from each other. While the grayscale changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within imperceptibly narrow ranges of grayscale shades.
- the Applicant has recognized that processing mammography images as described herein can highlight changes in calcium morphology within breast tissue; changes in calcium morphology are often associated with medical anomalies such as cancer.
- the increased ability to visualize grayscale shades thus offers the opportunity for early recognition of otherwise non-visible true density features associated with cancer.
- Early recognition of features such as changes in calcium morphology leads to early detection of the cancer, and early detection is often a key to cancer survival.
- breast tissue features can be monitored using X-ray mammography and related over time to normal aging (involutional) changes or to cancerous growth. Changes in breast tissue may include soft tissue changes such as increases in density, architectural distortions of the breast and supporting tissues, changes in mass proportions of the tissues, and skin changes.
- Calcification accumulations have gained attention as a means of early recognition, based on characteristics of the accumulations. These characteristics include density value and patterns as shown in X-ray images, size and number of the accumulations, morphology of the calcifications, and pleiomorphism of the calcifications. Calcification presence and behavior can be classified as benign, indeterminate, or cancerous.
- the exemplary analysis images 222 are displayed showing the z- axis as a third dimension, resulting in images having a 3D appearance. The resulting 3D images allow the examining radiologist to clearly identify and define features associated with all 256 shades of grayscale in the original source images 220.
- the analysis images 222 depict a generally flat reference plane with mountain-like projections extending "upward" from this plane.
- the exemplary analysis images 222 are created by transforming grayscale density values directly into positive distance values that extend from the x-y reference plane defined by the source images 220. Color has been applied to the exemplary analysis images 222 such that each distance value is associated with a unique color from a continuous spectrum of colors.
- the analysis images 222 have been reproduced with perspective such that the analysis images 222 have a 3D effect; that is, the analysis images 222 have been "rotated” to make it appear as if the viewer's viewpoint has moved relative to the x-y reference plane.
- Indicated at 224 in the analysis image 222b is a region where the colors change in a short distance. This color change in the analysis image 222b indicates an "altitude" change that is associated with a similar change in intensity or grayscale values. Comparing the region 224 of the analysis images 222 with a similar region 226 of the source image 220b makes it clear that these changes in intensity or grayscale values are not clear or even visually detectable in the source image 220b.
- true density of breast tissue is an indicator of calcium morphology and possibly other features that in turn may correspond to medical anomalies such as breast cancer.
- the analysis images 222 thus allow the viewer to see changes associated with tissue density, structure, mass proportions, and the like that may be associated with medical anomalies but which are not clearly discernable in the source images 220.
- a given mammography source image may be analyzed on its own using the systems and methods of the present invention, or these systems and methods may be applied to a series of mammography source images taken over time. Comparison of two or more source images taken over time can illustrate changes in tissue density, structure, mass proportions and the like that are also associated with medical anomalies.
- the systems and methods of the present invention may be used in a surgical assist setting.
- the additional density definition provided by the present invention should enable more accurate determination of complete excision of cancerous tissue. Analysis images created using the present invention will be used to examine pathological x-ray of excised tissue and compared to conventional examination methods to identify and verify complete excision.
- Another application of the systems and methods of the present invention to mammography images is to define a set of numerical rules representing image features associated with medical anomalies.
- an oncologist may analyze analysis images of cancerous tissues for numerical relationships among cancerous tissues and features associated with the z-axis intensity values. These numerical relationships may be represented by suspect features such as the structural shapes of 3D "mountains”, “valleys", “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes.
- suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- Such numerical rules would be similar to the quantification of fill volume (3D shapes) as described in Section IV(H) or line angle (2D shapes) as described in Section VI above.
- the surface model represented by the surface model may be numerically scanned for suspect features defined by the numerical rules.
- suspect features in a particular analysis image data set have been identified, these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending physician may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- pap test is a test for uterine cancer that examines cells taken as a smear ("pap smear”) from a cervix.
- the cells of a pap smear are commonly stained to enhance contrast and visual details for observation and diagnoses by the physician.
- Pap smears are examined using an optical microscope, commonly with a digital imaging system operatively connected thereto to record and display the microscope image. The image recorded by the imaging system can be used as a source image with the systems and methods of the present invention.
- the source image data set which has intensity or gray scale values plotted with respect to a reference x-y coordinate system, is transformed into a surface model as described above.
- the surface model has in turn been transformed into a display matrix having a third dimensional axis "z" plotted with respect to the reference x-y coordinate system.
- the surface model is then converted into an analysis image data set that is reproduced as the analysis image 232.
- the Applicant has recognized that certain features indicative of medical anomalies are either invisible or difficult to detect in the original source image 230 because the human visual system is capable of discerning among similar optical intensities.
- the unaided human eye thus cannot perceive image details within a pap smear image that are too close to each other in intensity. While the intensity changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within narrow intensity ranges.
- the analysis image 232 depicts a generally flat reference plane with mountain-like projections extending "upward" from this plane.
- the exemplary analysis image 232 is created by transforming grayscale density values directly into positive distance values that extend from the x-y reference plane defined by the source image 230. Color has been applied to the exemplary analysis image 232 such that each distance value is associated with a unique color from a continuous spectrum of colors.
- analysis image 232 has been reproduced with perspective such that the analysis image 232 has a 3D effect; that is, the analysis image 232 has been "rotated” to make it appear as if the viewer's viewpoint has moved relative to the x-y reference plane.
- Indicated at 234 in the analysis image 232 is a region where
- peaks are indicated in red. These peaks indicate an "altitude” that is associated with a similar change in intensity or grayscale values. Comparing the region 234 of the analysis image 232 with a similar region 236 of the source image 230 makes it clear that these intensity or grayscale value peaks are not clear or even visually detectable in the source image 230.
- the analysis image 232 thus allows the viewer to see changes associated with cellular tissue density, structure, mass proportions, and the like that may be associated with medical anomalies but which are not clearly discernable in the source image 230.
- Another application of the systems and methods of the present invention to pap smear images is to define a set of numerical rules representing image features associated with medical anomalies. For example, an oncologist may analyze analysis images of cells indicating cervical cancer for numerical relationships among cancer-indicating cells and features associated with the z-axis intensity values. These numerical relationships may be represented by suspect features such as the structural shapes of 3D "mountains”, “valleys", “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes. Such suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- the surface model may be numerically scanned for suspect features defined by the numerical rules.
- suspect features in a particular analysis image data set have been identified, these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending physician may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- Images of human eye retina blood vessels are commonly examined using an optical microscope, commonly with a digital imaging system operatively connected thereto to record and display the microscope image.
- the image of the retina is taken after a dye or tracer has been injected into the blood stream of the retina.
- the retina image recorded by the imaging system can be used as a source image with the systems and methods of the present invention.
- the source image data set which has intensity or gray scale values plotted with respect to a reference x-y coordinate system, is transformed into a surface model as described above.
- the surface model has in turn been transformed into a display matrix having a third dimensional axis "z" plotted with respect to the reference x-y coordinate system.
- the surface model is then converted into an analysis image data set that is reproduced as the analysis image 242.
- the Applicant has recognized that certain features indicative of medical anomalies are either invisible or difficult to detect in the original source image 240 because the human visual system is incapable of discerning among similar optical intensities.
- the unaided human eye thus cannot perceive image details within a retinal image that are too close to each other in intensity. While the intensity changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within narrow intensity ranges.
- the analysis image 242 depicts a generally flat reference plane with ridge-like projections extending "upward" from this plane.
- the exemplary analysis image 242 is created by transforming grayscale density values directly into positive distance values that extend from the x-y reference plane defined by the source image 240. Color has been applied to the exemplary analysis image 242 such that each distance value is associated with a unique color from a continuous spectrum of colors.
- analysis image 242 has been reproduced with perspective such that the analysis image 242 has a 3D effect; that is, the analysis image 242 has been "rotated” to make it appear as if the viewer's viewpoint has moved relative to the x-y reference plane.
- Indicated at 244 in the analysis image 242 is a region where overlapping retinal blood vessels are illustrated in light green on a yellow backgroun. Comparing the region 244 of the analysis image 242 with a similar region 246 of the source image 240 makes it clear that these overlapping blood vessels are not clearly visible in the source image 240.
- the analysis image 242 thus allows the viewer to see changes associated with retinal structure and the like that may be associated with medical anomalies but which are not clearly discernable in the retina source image 240.
- suspect features such as the structural shapes of 3D "mountains”, “valleys”, “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes.
- suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- the surface model may be numerically scanned for suspect features defined by the numerical rules.
- suspect features in a particular analysis image data set have been identified, these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending physician may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- Ultrasonic medical imaging systems use ultrasonic waves to form an image of internal body structures and organs. Ultrasound images, or sonograms, are commonly recorded and displayed by a digital imaging system that detects the ultrasonic waves. Sonograms recorded by the imaging system can be used as a source image with the systems and methods of the present invention.
- the source image data set which has intensity or gray scale values plotted with respect to a reference x-y coordinate system, is transformed into a surface model as described above.
- the surface model has in turn been transformed into a display matrix having a third dimensional axis "z" plotted with respect to the reference x-y coordinate system.
- the surface model is then converted into an analysis image data set that is reproduced as the analysis image 252.
- the Applicant has recognized that certain features indicative of medical anomalies are either invisible or difficult to detect in the original source image 250 because the human visual system is incapable of discerning among similar optical intensities.
- the unaided human eye thus cannot perceive image details within a sonogram image that are too close to each other in intensity. While the intensity changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within narrow intensity ranges.
- the analysis image 252 depicts yellow and green to blue mountain-like projections extending "upward" from a variegated white and tan reference plane.
- the exemplary analysis image 252 is created by transforming grayscale density values directly into positive distance values that extend from the x- y reference plane defined by the source image 250. Color has been applied to the exemplary analysis image 252 such that each distance value is associated with a unique color from a continuous spectrum of colors.
- analysis image 252 has been reproduced with perspective such that the analysis image 252 has a 3D effect; that is, the analysis image 252 has been "rotated” to make it appear as if the viewer's viewpoint has moved relative to the x-y reference plane.
- Indicated at 254 in the analysis image 252 is a region where a "peak” is indicated by a change from yellow, to green, to light blue, to dark blue. This peak is associated with a similar peak in intensity or grayscale values. Comparing the region 254 of the analysis image 252 with a similar region 256 of the source images 250 illustrates that the magnitude of these intensity or grayscale peaks is not clear in the source image 250.
- the analysis image 252 thus allows the viewer to see changes associated with retinal structure and the like that may be associated with medical anomalies but which are not clearly discernable in the source image 250.
- Another application of the systems and methods of the present invention to sonogram images is to define a set of numerical rules representing image features associated with medical anomalies. These numerical relationships may be represented by suspect features such as the structural shapes of 3D "mountains”, “valleys”, “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes. Such suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- the surface model may be numerically scanned for suspect features defined by the numerical rules.
- these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending physician may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- Dental X-rays are often taken of teeth for baseline reference, diagnostic, and pathology uses. Like mammograms, dental X-rays are recorded on film or directly using a digital detection system. Dental X-rays can be used as a source image with the systems and methods of the present invention.
- FIGS. 16 and 17 depicted therein are dental X-ray images 260a, 260b, and 260c and analysis images 262a, 262b, and 262c generated from the source image data sets associated with the source images 260.
- the source images 260a and 260b are bite-wing X-ray images representative of the type of image routinely obtained for baseline reference and diagnostic use.
- a bite wing X-ray is of a relatively small portion of the patient's dentition that produces a near life-size X-ray image.
- Source image 260c is a panorama X-ray image; a panorama X-ray image is a wide-field image taken of the patient's entire dentition in a single, continuous X-ray image.
- Panorama X-ray images are similar to bite-wing X-ray images but further maintain correct spatial orientation of all segments of the patient's dentition.
- the use of the systems and methods of the present invention with either bite-wing or panorama X-ray images result in greater than life-size scale and enhanced detail views of the image density.
- the source image data sets are converted into analysis image data sets that are reproduced as the analysis images 262.
- the Applicant has recognized that certain features indicative of dental anomalies are either invisible or difficult to detect in the original source image 260 because the human visual system is incapable of discerning among similar optical intensities.
- the unaided human eye thus cannot perceive image details within a dental X-ray image that are too close to each other in intensity. While the intensity changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within narrow intensity ranges.
- the analysis images 262a and 262b depict separate purple to blue and light green regions.
- the analysis image 262c depicts blue "plateaus” and yellow “valleys” with respect to gray "ridges".
- the exemplary analysis images 262 are created by transforming grayscale density values directly into positive distance values that extend from the x-y reference plane defined by the source image 260. Color has been applied to the exemplary analysis images 262a and 262b such that each distance value is associated with a unique color from a continuous spectrum of colors.
- the analysis image 262c uses both color and gray scale to represent distance values.
- analysis images 262 have been reproduced with perspective such that they have a 3D effect; that is, the analysis images 262 have been "rotated” to make it appear as if the viewer's viewpoint has moved relative to the x-y reference plane.
- Indicated at 264a in the analysis image 262a is a region containing irregularly shaped isopleths. These isopleths have been associated with density changes that are associated with tooth decay. Comparing the region 264a of the analysis image 262a with a similar region 266a of the source image 260a makes it clear that the changes in intensity or grayscale values associated with these isopleths are not visually detectable in the source image 260a.
- Shown at 264c in the analysis image 262c is a region containing light blue lines that are associated with bone loss due to contact of the tooth with the jawbone. Comparing the region 264c of the analysis image 262c with a similar region 266c of the source image 260c makes it clear that the intensity or grayscale values associated with bone loss are not visually detectable in the source image 260a.
- the analysis images 262 thus allow the viewer to see changes associated with tooth density, structure, and the like that may be associated with dental anomalies but which are not clearly discernable in the source images 260.
- Dental features such as dentition and bone density variation patterns are unique to an individual person. These features are captured in dental X-ray images.
- X-ray images in the dental records of a known individual can be compared to similar images taken of human remains for the purpose of identifying the human remains.
- the systems and methods of the present invention can be used to create analysis images to facilitate the comparison of X-ray images from known and unknown sources to determine a match.
- a numerical analysis of an image from an unknown source with a batch of images from known sources may facilitate the process of finding likely candidates for a match.
- Another application of the systems and methods of the present invention to dental X-ray images is to define a set of numerical rules representing image features associated with dental anomalies.
- suspect features such as the structural shapes of 3D "mountains”, “valleys”, “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes.
- suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- the surface model may be numerically scanned for suspect features defined by the numerical rules.
- suspect features in a particular analysis image data set have been identified, these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending dentist may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- X-ray imaging is often used to detect the presence and progression of arthritis and osteoporosis, and such images may also be used as a source image with the systems and methods of the present invention.
- dental X-ray images 270a and 270b and analysis images 272a and 272b generated from the source image data sets associated with the source images 270.
- the Applicant has recognized that certain features indicative of the presence and progression of arthritis and osteoporosis are either invisible or difficult to detect in the original source image 270 because the human visual system is incapable of discerning among similar optical intensities.
- the unaided human eye thus cannot perceive image details within an X- ray image that are too close to each other in intensity. While the intensity changes may contain relevant information, this information simply cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within narrow intensity ranges.
- the analysis images 272a and 272b depict curved blue to purple "mountains" along a green “plateau".
- the exemplary analysis images 272 are created by transforming grayscale density values directly into positive distance values that extend from the x- y reference, plane defined by the source image 270. Color has been applied to the exemplary analysis images 272a and 272b such that each distance value is associated with a unique color from a continuous spectrum of colors.
- analysis images 272 have been reproduced with perspective such that they have a 3D effect; that is, the analysis images 272 have been "rotated" to make it appear as if the viewer's viewpoint has . moved relative to the x-y reference plane.
- Indicated at 274b in the analysis image 272b is a light blue area associated with increased calcium deposits associate with arthritis. Comparing the region 274b of the analysis image 272b with a similar region 276b of the source image 270b makes it clear that calcium deposits are associated with intensity or grayscale values that are not clear in the source image 270b.
- the analysis images 272 thus allow the viewer to see changes associated with bone density, structure, and the like that may be associated with arthritis and osteoporosis but which are not clearly discernable in the source images 270.
- Another application of the systems and methods of the present invention to X-ray images is to define a set of numerical rules representing image features associated with medical anomalies. These numerical relationships may be represented by suspect features such as the structural shapes of 3D "mountains”, “valleys”, “ridges”, or the like or changes in lines or other 2D shapes extending along or around 3D shapes. Such suspect features may be defined by, for example, fill volume, slope, peak height, line radius of curvature, line points of inflection, or the like.
- the surface model may be numerically scanned for suspect features defined by the numerical rules. When the suspect features in a particular analysis image data set have been identified, these features may be tallied and statistically analyzed to reduce the possibility of chance occurrence and thereby increase the reliability of the numerical analysis.
- that particular surface model may be converted into an analysis image data set and reproduced as an analysis image.
- An attending physician may review the analysis image and/or order more tests to confirm the presence or absence of the medical anomaly associated with the suspect image feature.
- Forensic investigation often utilizes images created from a variety of different sources.
- handwriting analysis as discussed above can have significant non-forensic uses, handwriting analysis may be used as a forensic analysis technique.
- the sources of forensic images are primarily scanners or optical instruments with a digital or photographic imaging system, but other imaging systems may be used as well.
- the images may be of a wide variety of types of evidence that must be identified and/or matched. With some of these image sources, the image is recorded on a medium such as film; with others, the image is directly recorded using a transducer system that converts energy directly into electrical signals that may be stored in digital or analog form.
- forensic source images described and depicted below are either created as or converted into a digital data file having a two- dimensional coordinate system and image values associated with points in the coordinate system.
- a number of forensic images processed according to the principles of the present invention will be depicted and discussed below.
- Forensic document images are typically formed by scanning a document of interest using conventional scanning techniques which produce a digital data file that may be used as a source image data set.
- the source image data set typically contains grayscale or color image values.
- FIGS. 19-26 depicted therein are a number of forensic document source images 320a, 320f, 320g, 320h, and 320i and analysis images 322a, 322b, 322c, 322d, 322e, 322f, 322g, 322h, 322i.
- the analysis images 322a, 322f, 322g, 322h, and 322i are generated from source image data sets associated with the source images 320a, 320f, 320g, 320h, and 320i, respectively.
- the source images associated with the analysis images 322b, 322c, 322d, and 322e are not shown.
- a scanned image typically contains 256 shades of grayscale or 256 shades of red, green, and blue in a color image; however, the human visual system is not capable of discerning subtle differences between shades in an image. The unaided human eye thus cannot perceive image details in many documents that are to be analyzed forensically.
- the intensity changes may contain relevant information, this information cannot be detected by the unaided human eye.
- the systems and methods of the present invention significantly enhance the viewer's ability to discern features that are within imperceptibly narrow ranges of intensity shades.
- the exemplary analysis images 322 are displayed showing the z- axis as a third dimension, resulting in images having a 3D appearance.
- the resulting 3D images allow the forensics expert to clearly identify and define features associated with all 256 shades of grayscale in the original source images 320.
- the analysis image 322a in FIG. 19 depicts two intersecting lines for the purpose of visualizing the sequence of line formation.
- the sequence of line formation can often reveal the interaction of the instruments, whether hand operated or machine, that formed the lines of the source image 320a.
- the systems and methods of the present invention generate analysis images, such as the image 322a, that facilitate the examination of the sequence in which lines are formed on printed or handwritten documents.
- Indicated at 324 in the analysis image 322 are isopleths associated with shifts of optical density of ink that correspond to one line being formed over another line later in time. Comparing the region 324 of the analysis image 322 with a similar region 326 of the source image 320 makes it clear that these shifts in optical density are not clear in the source image 320.
- the analysis images 322b and 322c in FIGS. 20 and 21 depict lines or characters that have been reproduced on a photocopy machine using an analog (xerography) reproduction process.
- Such photocopy machines are limited in the precision with which they can reproduce a copy of the original image. These limitations cause the copy to differ from the original in known and predicable ways.
- the photocopy machine has a default threshold level of detection of grayscale levels. If the original is lighter gray than the threshold, then nothing is printed on the copy. If the original is darker gray than the threshold, then black is printed on the copy. Analog photocopy machines thus do not accurately reproduce shades of gray on first and subsequent copy generations. Limitations in detail resolution cause a gradual shape-shifting degradation of image quality in each copy generation.
- the analysis image 322b depicts a first generation copy of a pen and ink drawing
- the analysis image 322c depicts a ninth generation copy of the same pen and ink drawing.
- a comparison of the analysis images 322b and 322c illustrates the differences in copy generations.
- the analysis images 322d and 322e depicted in FIG. 22 are analysis images of an original gray scale image printed on an ink jet printer and a second generation copy of that gray scale image, respectively. A comparison of these images 322d and 322e indicates differences associated with copy generation.
- the analysis images 322f and 322g depicted in FIGS. 23 and 24 illustrate features associated with different types of writing instruments.
- the analysis image 322f is created from the source image 320f, which contains lines 324 formed by pens using different types of ink.
- lines 324a and 324b are formed by ballpoint pens using a paste style ink (e.g., common Bic pen), while lines 324c and 324d are formed by felt-tip markers using free-flowing liquid inks (e.g., Magic Marker).
- the density profiles of all ballpoint pens are similar, as are the density profiles of all felt-tip markers.
- the differences between pen types are illustrated in the analysis image 322f by different levels and colors of the "mountain" heights.
- ballpoint pens commonly produce light streaks or striations in the written line. These like streaks can often be used to determine direction of travel of the pen and retracing, hesitation, and other forensic clues to the creation of the writing.
- the striations in the written line are more visible in the analysis image 322g.
- Watermarks are patterns embedded in paper during manufacture. Watermarks are visualized by light transmitted through a watermarked paper document.
- the source image 320h in FIG. 25 depicts a watermark that has been scanned with a scanner having transmissive light scanning capability.
- the analysis image 322h illustrates that the watermark is more pronounced when processed using the systems and methods of the present invention.
- the source image 320i in FIG. 26 contains gray scale density pattern variations that are rendered more pronounced and clear in the analysi image 322i.
- Blood splatter can indicate the direction of travel of a blood droplet, while blood smear can indicate subsequent wiping or brushing against blood on a surface. Determining the direction of travel of a blood droplet and/or whether blood on a surface was smeared can provide vital clues for crime and accident investigations.
- the source image 330 in FIG. 27 illustrates blood splatter and subsequent smear.
- indicated at 334 in the analysis image 322 are ridges associated with direction of travel of blood droplets. Comparing the region 334 of the analysis image 332 with a similar region 336 of the source image 320 makes it clear that these ridges are not clear in the source image 320.
- Fingerprints are a unique identifying characteristic of individuals. The examination of fingerprints is thus commonly used in forensic investigation to identify persons who were present at a crime or accident scene.
- the source image 340 in FIG. 28 is of a fingerprint
- the analysis image 342 illustrates how the systems and methods of the present invention can be used to illustrate features that are not clear in the source image 330.
- Exhibit A is a training document explaining the use of one exemplary software system implementing at least some of the principles of the present invention described above.
- the training document attached hereto as Exhibit A illustrates the installation and use of a software program sold by the assignee of the present invention under the name MICS, which stands for "Measurement of Internal Consistency Software”.
- the MICS system was originally developed to assist in the analysis of handwriting samples. However, the Applicant quickly discovered that the image processing techniques used by the MICS system have application to a wide variety of images as described above.
- Exhibit A is included as a preferred manner of carrying out the principles of the present invention in one form, but it should be clear that the principles of the present invention may be carried out using systems and methods other than those embodied in the MICS system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Processing Or Creating Images (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Image Processing (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2491970A CA2491970C (en) | 2001-07-12 | 2002-07-12 | Systems and methods for analyzing two-dimensional images |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30537601P | 2001-07-12 | 2001-07-12 | |
US60/305,376 | 2001-07-12 | ||
US09/940,272 | 2001-08-27 | ||
US09/940,272 US6654490B2 (en) | 2000-08-25 | 2001-08-27 | Method for conducting analysis of two-dimensional images |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2003007122A2 true WO2003007122A2 (en) | 2003-01-23 |
WO2003007122A3 WO2003007122A3 (en) | 2003-04-10 |
WO2003007122B1 WO2003007122B1 (en) | 2003-07-03 |
Family
ID=26974563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/022165 WO2003007122A2 (en) | 2001-07-12 | 2002-07-12 | Systems and methods for analyzing two-dimensional images |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2491970C (en) |
WO (1) | WO2003007122A2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5369737A (en) * | 1988-03-21 | 1994-11-29 | Digital Equipment Corporation | Normalization of vectors associated with a display pixels of computer generated images |
US6185444B1 (en) * | 1998-03-13 | 2001-02-06 | Skelscan, Inc. | Solid-state magnetic resonance imaging |
-
2002
- 2002-07-12 WO PCT/US2002/022165 patent/WO2003007122A2/en not_active Application Discontinuation
- 2002-07-12 CA CA2491970A patent/CA2491970C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5369737A (en) * | 1988-03-21 | 1994-11-29 | Digital Equipment Corporation | Normalization of vectors associated with a display pixels of computer generated images |
US6185444B1 (en) * | 1998-03-13 | 2001-02-06 | Skelscan, Inc. | Solid-state magnetic resonance imaging |
Also Published As
Publication number | Publication date |
---|---|
WO2003007122A3 (en) | 2003-04-10 |
CA2491970C (en) | 2013-02-05 |
WO2003007122B1 (en) | 2003-07-03 |
CA2491970A1 (en) | 2003-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040109608A1 (en) | Systems and methods for analyzing two-dimensional images | |
US20020176619A1 (en) | Systems and methods for analyzing two-dimensional images | |
US6757424B2 (en) | Method for conducting analysis of two-dimensional images | |
US8423124B2 (en) | Method and system for spine visualization in 3D medical images | |
EP0968683B1 (en) | Method and apparatus for forming and displaying image from a plurality of sectional images | |
US6445820B1 (en) | Method for conducting analysis of handwriting | |
US7283654B2 (en) | Dynamic contrast visualization (DCV) | |
CA2423114C (en) | Method for conducting analysis of two-dimensional images | |
EP2102789B1 (en) | System and method for feature score mapping and visualization of medical images | |
US20090034684A1 (en) | Method and system for displaying tomosynthesis images | |
JP2013500089A (en) | Three-dimensional (3D) ultrasound imaging system for scoliosis evaluation | |
WO2006058135A2 (en) | Systems and methods relating to enhanced peripheral fields motion detection | |
AU599851B2 (en) | Process and system for digital analysis of images applied to stratigraphic data | |
Martin-de las Heras et al. | Computer-based production of comparison overlays from 3D-scanned dental casts for bite mark analysis | |
CA2585186A1 (en) | Systems and methods relating to afis recognition, extraction, and 3-d analysis strategies | |
CN108399354A (en) | The method and apparatus of Computer Vision Recognition tumour | |
CN106780718A (en) | A kind of three-dimensional rebuilding method of paleontological fossil | |
JP4347860B2 (en) | Ultrasonic diagnostic equipment | |
US8189915B2 (en) | Method for segmentation in an n-dimensional feature space and method for classifying objects in an n-dimensional data space which are segmented on the basis of geometric characteristics | |
US7006685B2 (en) | Method for conducting analysis of two-dimensional images | |
CA2491970C (en) | Systems and methods for analyzing two-dimensional images | |
JP5085344B2 (en) | Evaluation apparatus, evaluation method, evaluation program, and recording medium on which the program is recorded | |
CN116778559A (en) | Face wrinkle three-dimensional evaluation method and system based on Gaussian process and random transformation | |
AU2002322462A1 (en) | Systems and methods for analyzing two-dimensional images | |
Choi et al. | Relief extraction from a rough stele surface using svm-based relief segment selection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
B | Later publication of amended claims |
Free format text: 20030324 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002322462 Country of ref document: AU |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2491970 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |