WO2003004649A1 - Un método para interferir con la infección de virus en plantas - Google Patents

Un método para interferir con la infección de virus en plantas Download PDF

Info

Publication number
WO2003004649A1
WO2003004649A1 PCT/ES2002/000319 ES0200319W WO03004649A1 WO 2003004649 A1 WO2003004649 A1 WO 2003004649A1 ES 0200319 W ES0200319 W ES 0200319W WO 03004649 A1 WO03004649 A1 WO 03004649A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
dsrna
plants
rna
virus
Prior art date
Application number
PCT/ES2002/000319
Other languages
English (en)
French (fr)
Inventor
Francisco Tenllado Peralo
Jose Ramón DIAZ RUIZ
Original Assignee
Consejo Superior De Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas filed Critical Consejo Superior De Investigaciones Cientificas
Priority to EP02743278A priority Critical patent/EP1416049A1/en
Publication of WO2003004649A1 publication Critical patent/WO2003004649A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]

Definitions

  • the present invention relates to the use of double stranded RNA molecules (hereinafter referred to as dsRNA) to specifically interfere with viral infections in plants. More particularly, the invention relates to the preparation of dsRNA molecules of determined sequence and their direct application in any plant to suppress in the treated plant, the multiplication of any virus that has sufficient sequence similarity with the dsRNA.
  • dsRNA double stranded RNA molecules
  • Plant viruses represent one of the most important groups of pathogens, as they cause serious economic losses in many species of agronomic interest throughout the world.
  • Most known viruses that infect plants have genomes consisting of single-stranded RNA (hereinafter referred to as ssRNA) and messenger-based (hereafter referred to as mRNA) as genetic material. These genomes are relatively simple, encoding only between 4 and 10 proteins, depending on the virus group. These proteins are involved in basic aspects of the biological cycle of these pathogens, such as the process of viral RNA replication, the movement of the cell-to-cell virus or the translocation of the viral progeny through the host plant (Matthews, Plant Virology, Third Edition (San Diego, Academic Press, Inc.) (1991).
  • viruses Due to the limited amount of genetic information that these pathogens contain, and the complexity of the infective process, viruses depend on the host's cellular machinery for many stages of its infection cycle. Many of these host factors are usual components of the cell's transcriptional or translational apparatus, exploited by the virus to perform an integral or regulatory function in the replication and diffusion of viral RNA in the plant (Lai, Virology 244, 1 (1993) It can be said that host and parasite are intimately intertwined and compete in the molecular mechanisms that govern their biological cycles. The success or failure of viral infections is the final consequence of how viruses and their interactions interact. hosts, that is, the defensive strategies of the plant and the response of counterattack by viruses (Carrin ton and hitham, Cu / rent Opinion m Pla ⁇ Biology 1, 336 (199S).
  • RNA-mediated defense mechanism has been identified in various viral infections in plants. directed against the pathogen sequences (Baulcombe, Plant Cell 8, 1833 (1996).
  • transgenic resistance derived from the pathogen typically refers to the resistance that is obtained against a particular pathogen, by the introduction, by genetic engineering, of genome sequences of said pathogen into the genome of plants (Sanford and Johnston, J Theoretical Biol. 1.13, 395 (1985) Numerous gene sequences, derived from many different plant viruses, have been introduced into a wide variety of plant species, to produce transgenic plants protected against infection by these viruses.
  • RNA that identifies the sequence of both the viral RNA and the transcribed mRNA of the transgene and specifically degrades them (Lindbo et al., Plant Cell. 5, 1749 (1993); English et ai, Plant Cell 8, 179 (1996), Covey et al, Nature 386,781 (1997); Tenllado and D ⁇ az-Ru ⁇ z, Transgenic Research 8, 83 (1999); Vaucheret et al, Plant J., 16, 651 (1998); Sijen and Kooter BioEssays 22, 520 (2000).
  • the determining signal is very likely to be a nucleic acid, and recently has verified the presence, in the cases studied, of small 25 nucleotide molecules of antisense RNA, which could constitute or be components of the specific systemic signal (Hamilton and Baulcombe, Science 286, 950 (1999). Another important aspect of the latter phase, it seems that it is the absolute necessity of a nuclear component with sequence similarity to the target mRNA, so that the PTGS is perpetuated in time and space (Palauqui and Balzergue, Curr. Biol. 9, 59 (1999); Dalmay et al , Plant Cell, 12, 369 (2000).
  • RNAi RNA interference
  • RNAi phenomena have been described in a wide variety of different organisms (Fire, Trends Genet.
  • PTGS can be caused in transgenic plants very efficiently by the presence of a repeated and inverted sequence in the transcription region of the transgene (Hamilton et al, Plant J, 15,
  • a first aspect of this invention is the cloning of any fragment of the genome of any virus whose multiplication in the plant cells is to be blocked.
  • a second aspect of this invention is the insertion of the cloned fragment into a transcription vector, to synthesize ssRNA fragments of both polarities (sense-antisense) or complementary and mix the products of both transcripts to obtain dsRNA molecules of identical sequence to that of the genome of the virus, or very similar to that of other viruses, whose multiplication is to be prevented.
  • a third aspect of this invention is the application of dsRNA molecules in some plant tissue (eg leaves, root, etc.), to interfere with the infection of the corresponding virus whose genome has sequence similarity to dsRNA.
  • the novelty of this invention lies in the fact that it is the first time that the direct application of dsRNA has been described in plants to specifically interfere with and silence transient expression genes, such as virus genes, with the consequent protection of plants against the corresponding viral diseases, without having to use viral vectors or resort to the procedures of genetic transformation of plant cells.
  • This invention could be used to alleviate the serious economic losses that viruses cause in many species of agronomic interest throughout the world, as well as, indirectly, to prevent the abusive use of pesticides used to control their vector insects, impacting on protection of the environment and avoiding ecological risk
  • the object of this invention is the direct application of exogenous dsRNA molecules in any tissue of any plant, to specifically interfere in the cells of the plant, with the multiplication of the corresponding virus that has sequence similarity with the dsRNA.
  • RNA viruses belonging to different taxonomic groups, which represent extreme examples in the evolution of RNA viruses in plants, such as the attenuated mottled pepper virus (hereinafter referred to as P MoV), the tobacco etching virus (hereinafter referred to as TEV) and the alfalfa mosaic virus (hereinafter referred to as AMV). All three viruses have RNA genomes whose complete sequence is known (Alonso et al, J. Gen. Viro !.
  • P MoV the attenuated mottled pepper virus
  • TEV tobacco etching virus
  • AMV alfalfa mosaic virus
  • Tobamovirus a group of viruses with a genomic organization formed by a single molecule of messenger sense ssRNA AMV (Neeleman et al, Virology, 181, 687 (1991) belongs to the genus Alfamovirus, within the family Bromoviridae, a group of viruses with a genomic organization formed by three messenger sense ssRNA molecules Both viruses are framed within the sydbisvirus superfamily TEV (Dolja et al, Proc. Nati Acad. Sci.
  • cDNA complementary DNA
  • RT-PCR polymerase chain reaction
  • a fragment of 1605 bp corresponding to the complete 54K gene of PMMoV was also inserted in a sense or antisense orientation into a binary vector of expression in plants, between a high expression promoter, such as the 35S promoter of cauliflower mosaic virus (in hereinafter referred to as CaMV), and the transcriptional terminator of gene 7 of TL-DNA, and the corresponding constructs were introduced into strain LBA 4404 of the bacterium Agrobacterium tumefaciens, by known methods of direct transformation (An et al., Binary vectors. A3: 1-19 in: Plant Molecular Biology Manual SB Gelvin and RA Schilperrot, eds.
  • CaMV cauliflower mosaic virus
  • PCR polymerase
  • cDNA molecules corresponding to the same 977 bp region of the 54K gene of PMMoV and, therefore, of the same sequence as the RNA products synthesized in vitro in the transcription reaction.
  • both the sense and added ssRN'A molecules obtained from transcription /; vitro such as the dsRNA molecules obtained from the mixing and hybridization of the sense and antisense transcription products, or the cDN ⁇ molecules obtained by PCR, were applied directly to the host leaves, such as Nicotia to Benthamian plants, preferably by mechanical inoculation, together with the corresponding homologous viral inoculum, in the form of purified virus particles or as an infective RNA.
  • benthamiana plants using the well-known agroinfiltration procedure (Vaucheret) , CR Acad. Sci. III 317, 310 (1994), followed by inoculation into the same infiltrated sheets of the previously mentioned PMMoV viral inoculum.
  • the same result was produced by at least one procedure for applying dsRNA different from that of mechanical inoculation, when the leaves of N. benthamiana plants were treated by agroinfiltration, with the mixture of A. tumefaciens transformed with the sense and antisense constructs, whose transcription products must form // live dsRNA molecules, and subsequently the same leaves were inoculated with the homologous virus, until at least 4 days after the agroinfiltration treatment with the mixture of A. tumefaciens.
  • the systemic leaves of the agroinfiltrated plants did not show viral symptoms, nor were the corresponding viral RNAs detected in the infiltrated leaves.
  • sequence specificity such as the structure of dsRNA molecules
  • dsRNA molecules either directly applied on the surface of a leaf, or by means of agroinfiltration, they can activate the PTGS mechanism, preventing the replication of the virus with which they have sequence similarity, at least in the treated leaves and, therefore, the procedure can be applied to defend the plants against viral infections.
  • non-systemic hosts such as tobacco plants (Nicotiana tabacum cv. "Xanthi nc") or pepper plants (Capsicum ch ⁇ nense), where PMMoV only produces localized infection with symptoms of local injuries
  • tobacco plants Naturala tabacum cv. "Xanthi nc”
  • pepper plants Capsicum ch ⁇ nense
  • PMMoV only produces localized infection with symptoms of local injuries
  • dsRNA, ssRNA of both polarities, cDNA homologous to the region of the 54K gene of PMMoV, as well as dsRNA not homologous to this virus were coinoculated in half sheets of non-systemic hosts, with the virus only inoculated in the Half an opposite leaf, the formation of local lesions on the leaf surface was completely blocked only in the case of coinoculation with dsRNA, where no lesion occurred.
  • RNA as a genetic material or that this originates at any stage of its infective cycle, as will be recognized by those familiar with the art of Virology.
  • the invention described previously can also be used with any plant
  • dsRNA angiosperm or gymnosperm, monocotyledonous or dicotyledonous
  • dsRNA can be applied and in which you want to interfere with the infection of any virus with the aforementioned characteristics and are likely to be infected by these viruses, that is to say in which the virus can replicate in inoculated cells.
  • the invention described previously can be carried out with any available method of direct introduction of dsRNA into plant cells, widely used by persons skilled in the art, such as mechanical inoculation, infiltration or agroinfiltration, injection, electroporation, bombardment with microparticles, in the case of not many plants, or by vaporization or fumigation procedures, in the case of large numbers of plants or crops etc.
  • the place of introduction into the most appropriate dsRNA plant, without excluding another, is the leaf bundle tissue.
  • the invention described above demonstrates that it is possible to specifically interfere with viral infections and that a PTGS of at least transient expression genes (eg viral genes) can be induced in plants, by direct application of sequence dsRNA molecules. Homologous and therefore, the novelty of this invention is the direct application of any molecule of dsRNA exoge ⁇ o in the tissue of any plant to protect plants against viral infections.
  • the invention described previously, of direct application in cells of dsRNA plants, by any method, is different from other strategies based on the expression in tragic plants of RNAs with the ability to form dsRNA molecules, such as the protection thus obtained by PTGS against the Y virus of the potato (PVY) (Waterhouse et al, Proc. Nati Acad. Sc ⁇ .
  • the invention described above can also be used to specifically silence the expression of any endogenous or transgene gene in the plant, which represents an alternative to the processes of genetic transformation of plants with constructs capable of expressing dsRNA, with a view to to specifically interfere with the expression of endogenous genes in plants (Chuang and Meyerowitz, Proc. Nati Acad. Sci. USA, 97, 4985 (2000); Levin et al, Plant Mol. Biol. 44, 759 (2000).
  • chains of sense and antisense ssRNA were synthesized in vitro, from the corresponding cDNA plasmid, using the promoters of the T3 and T7 phage RNA polymerase (T3 / T7 transcription it, Roche), by described procedures (Sambrook et al, Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory (1989).
  • Synthesized ssRNA chains (2.5 ⁇ M) were mixed and hybridized by heating to 95 ° C for 3 minutes in the 25 mM sodium phosphate buffer pH 7 and subsequent cooling to 37 ° C for 30 minutes
  • the formation of dsRNA molecules was confirmed by analyzing the change in their mobility in agarose gel, compared to the mobility of each of the sense and antisense ssRNA molecules, and also for its resistance to RNAse A (Roche) under conditions of high salt concentration.
  • RNAse A RNAse A
  • TEV-HC dsRNA For the production of dsRNA molecules derived from TEV, a fragment corresponding to positions 845-232S in the TEV sequence was subcloned (Dolja et al, Proc. Nati Acad Sci. USA, 89, 10208 (1992) (Fig. 1 ), in the pBluescript SK- (New England Biolabs) vector that resulted, after the corresponding transcription and hybridization, to the 1483-bp dsRNA fragment (hereinafter referred to as TEV-HC dsRNA).
  • dsRNA molecules derived from AMV For the production of dsRNA molecules derived from AMV, a fragment corresponding to positions 369-1493 in the sequence of AMV RNA 3 was subcloned (Neeleman et al, Virology, 181, 687 (1991) (Fig. 1), in the pBluescript SK (New England Biolabs) vector that resulted, after the corresponding transcription and hybridization, to the 1 124-bp dsRNA fragment (hereinafter referred to as AMV-3 dsRNA).
  • RNA 1 pUT 17A
  • RNA 2 pUT27
  • RNA 3 pAJL3
  • Inoculation mixtures were performed by adding 5 ⁇ l of dsRNA from each virus (approximate concentration of 0.8 ⁇ g / ⁇ l, estimated by staining with ethidium bromide with markers of known weight) at an equivalent volume of purified virus (PMMoV), or at 10 ⁇ l of viral transcripts (TEV and AMV).
  • PMMoV purified virus
  • TMV and AMV 10 ⁇ l of viral transcripts
  • the inoculation of the plants was carried out using two fully expanded leaves in at least two plants per test, through a gentle pressure of the leaf surface with the inoculum, using commercial Carborundo as abrasive (Matthews, Plant Virology, Third Edition (San Diego , Academic Press, Inc.) (1991) In the comparisons of the effect on viral infection of the sense and antisense ssRNA, dsRNA and cDNA molecules, equivalent molar concentrations were used.
  • the inoculated plants were kept in culture chambers in standard growth conditions, checking the development of the symptoms of viral infection in systemic hosts during the time that their life cycle lasted In hosts of local lesion, the inoculated leaves were observed for at least 5 dpi.
  • RNA samples were obtained from the inoculated leaves, between 6 and 10 dpi, and from the systemic leaves, between 6 and 21 dpi, according to the method described by Logemann et ai Anal . Biochem 163, 16 (1987).
  • Total RNA samples (between 1 and 5 ⁇ g) were separated by electrophoresis in 1- 1.2% agarose-formaldehyde gels and transferred to Hybo ⁇ d-N membranes (Roche). Ethidium bromide stains were made from agarose gels prior to transfer to Hybond-N membranes, to confirm the integrity of the RNA and ensure the loading of similar amounts in each sample.
  • Hybridization type Northern blot was carried out using digoxigenin-labeled RNA probes (Roche), as described by Neeleman and Bol 1)
  • RNA probes were used to detect the RNAs of the different viruses.
  • PMMoV RNA was detected with a probe complementary to nucleotides 341 1-4388 of PMMoV, which were transcribed from clone pT3T7 / 54-kDa (Tenllado et al, Virology 21 1, 170 (1995)
  • TEV RNA was detected with a probe complementary to nucleotides 845-2328 of TEV, which were transcribed from the pBluescript S-HC clone.
  • RNAs 3 and 4 of AMV were detected with a probe complementary to nucleotides 369-1493 of RNA 3 of AMV, transcribed from clone pBluescript SK- / AMV-3.
  • the PMMoV RNA region encoding the 54-kDa protein and flanking sequences were inserted in a sense or antisense orientation between the CaMV 35S promoter and the transcriptional terminator of the 7-gene of TL-DNA, in the binary vector pGSJ780A (Plant Genetic System), as described in Tenllado et al, Virology 21 1, 170 (1995).
  • pGSJ780A Plant Genetic System
  • PMMoV infection can be specifically blocked with at least the 54-kDa dsRNA molecule and in at least two local hosts belonging to different plant genera
  • hybridization bands corresponding to partially denatured 54-kDa dsRNA molecules were observed, in Northern blot analysis of total RNA preparations, obtained from the leaves of plants inoculated with viruses plus 54 -kDa dsRNA, or inoculated only with 54-kDa dsRNA, as verified by comparing these hybridization bands with the behavior of the preparation of 54-kDa dsRNA used in the inoculum and also analyzed.
  • To determine the origin of these hybridization bands corresponding to 54-kDa dsRNA molecules, numerous experiments were performed. The analysis of the degradation kinetics of these molecules confirmed that the dsRNA used in the inoculum remains relatively stable and persists in the inoculated leaf at detectable levels, at least up to 7 dpi.
  • the interference on PMMoV infection shown by the 54-kDa dsRNA molecule which, as described above, corresponds to the 54-kDa region of the gene encoding PMMoV replicase, could reflect some type of inhibitory effect of this sequence in in particular, about virus infection. Therefore, it was determined if other dsRNA molecules, derived from a different region of the PMMoV genome, could also specifically block PMMoV infection, when introduced simultaneously with the virus in the plant. To carry out this experiment, a dsRNA corresponding to a 596 bp fragment of the 30-kDa gene of the PMMoV movement protein (30-kDa dsRNA) was obtained as described above.
  • the effect on viral infection of this 30-kDa dsRNA was compared with the known effect caused by the 54-kDa dsRNA or, also, with the effect caused by a dsRNA of viral origin but not homologous to PMMoV, such as that obtained from of the 1483 bp fragment corresponding to most of the TEV HC gene (TEV-HC dsRNA), as described above.
  • the presence of 30-kDa dsRNA in inoculum like that of 54-kDa dsRNA, blocked the expression of viral symptoms in N Benthamiana, at times when control plants showed infection symptoms
  • the accumulation of viral RNA in the RNA extracted from these plants was not detected, from the tissue corresponding to upper leaves (Fig. 3B).
  • EXAMPLE 6 Direct application of dsRNA molecules derived from different viruses.
  • dsRNA molecules could be a general application strategy to protect plants against infection by viruses other than PMMoV.
  • viruses not related to the tobamovirus genus such as TEV were used, which belongs to the Potyviridae and AMV family that is part of the Bromoviridae family and the effect of different dsRNA derived from these viruses was studied, in the infection by their corresponding virus in a systemic host
  • N tabacum plants were used, which were inoculated only with SP6 infective transcripts corresponding to a TEV cDNA clone, or with a mixture containing the previous TEV RNA transcripts plus the homologous dsRNA TEV-HC dsRNA.
  • the plants inoculated with the mixture showed neither lesions located in the inoculated leaf nor systemic symptoms in the upper leaves, while the plants inoculated only with VTE showed symptoms of the disease at 6 dpi.
  • Figure 4A shows an analysis by Northern blot of the total RNAs extracted from two plants per treatment, at 6 dpi. TEV RNA accumulated both in the inoculated leaves and in the systemic leaves of the control plants.
  • RNA levels were below the detection limit in the plants inoculated with the mixture of virus and homologous dsRNA As described above, in this case also hybridization bands of varying intensity, corresponding to TEV-HC dsRNA, were observed in the total RNA extracted from the leaves inoculated with virus plus dsRNA. Similarly, N.
  • benthamiana plants were inoculated, on the one hand, with a mixture of T7 transcripts of genomic RNAs 1, 2 and 3 of AMV and the capsid protein of AMV, since one of the distinguishing characteristics of The alfamovirus is that a mixture of the three genomic RNAs of the virus is not infective in plants, unless the virus capsid protein is added to the inoculum (Bol 1999) and, on the other hand, they were inoculated with this previously mentioned mixture plus a homologous dsRNA, which encompasses a 1 124 nucleotide fragment of AMV RNA 3 (AMV-3 dsRNA).
  • AMV-3 dsRNA homologous dsRNA
  • Figure 4B shows a Northern blot analysis of total RNAs extracted from the inoculated or systemic leaves of those plants, using a probe that recognizes genomic RNA 3 and AMV subgenomic RNA 4.
  • the AMV RNAs 3 and 4 transcribed in vitro and the AMV-3 dsRNA used in the inoculum were used as controls.
  • plants inoculated with the mixture of AMV RNAs plus AMV-3 dsRNA showed no symptoms of the disease, while plants inoculated only with AMV RNAs were susceptible to viral infection, showing systemic symptoms .
  • RNAs 3 and 4 of the virus were accumulated both in tissue of inoculated leaves and in leaf tissue of the upper area of the plant. Therefore, it can specifically interfere with the infection of any virus, by applying any dsRNA molecule, as long as it shares sequence similarity with the virus.
  • dsRNA to specifically interfere with viral infection is dependent on the length of the dsRNA molecule employed.
  • benthamiana leaves As a control, plants with only 54-kDa ssRNA sense or antiseptid carrier cultures were agroinfiltrated At 4 days after agroinfiltration, the plants were inoculated with PMMoV directly on the infiltrated leaves. In three independent experiments, all the plants expressing transiently, either 54-kDa RNA sense or 54-kDa RNA antisense, showed symptoms of the disease in the leaves greater than 10 dpi, while the plants agrofiltered with the vectors expressing the mixture of 54-kDa sense and antisense RNA showed no symptoms, or their manifestation was delayed between 1 to 3 weeks, compared to controls.
  • Figure 5 shows a Northern blot analysis of PMMoV RNA accumulation, in total RNA preparations extracted from two individuals by treatment at 15 dpi.
  • the PMMoV RNA did not accumulate, or it did so at very low levels, while PMMoV RNA was never detected in the upper leaves of those plants.
  • neither 54-kDa RNA sense, nor 54-kDa antisense RNA, expressed by Agrobacterium interfered with the accumulation of PMMoV, both in the inoculated leaves and in the systemic leaves of the control plants.
  • Fig. 1 Schematic representation of the location in the PMMoV genome.
  • Fig. 2 Specific interference with PMMoV infection by dsRNA in a local host.
  • Fig. 3 DsRNA-mediated interference with PMMoV infection in a systemic host
  • RNA sample was fractionated by electrophoresis in 1% agarose gel in (A), (B ) and (C), and subsequently, a digoxigenin labeled probe corresponding to 54-kDa RNA was used.
  • the positions of the PMMoV RNA and the partially denatured RNA species derived from dsRNA used in the inoculum are indicated in the margins.
  • the 25S ribosomal RNA bands stained with ethidium bromide are indicated as a control for loading the gels.
  • Fig. 4 Interference mediated by dsRNA with infection of different plant viruses
  • RNA sample Equivalent amounts (5 ⁇ g) of each RNA sample were fractionated by electrophoresis in 1% agarose gel and the filter was hybridized with an RNA probe labeled with specific digoxigenin versus TEV. The positions of TEV RNA and partially denatured RNA species derived from dsRNA used in inoculum are indicated in the margins.
  • M RNA extracted from plant inoculated with buffer. AMV 3 and 4 RNAs (line 2) and AMV-3 dsRNA (line 5) were loaded into the gel for comparative purposes.
  • RNA sample Equivalent amounts ( ⁇ g) of each RNA sample were fractionated by 1.2% agarose gel electrophoresis and the filter was hybridized with an RNA probe labeled with specific digoxigenin against AMV RNA 3.
  • the positions of AMV 3 and 4 RNAs and partially denatured RNA species derived from dsRNA used in inoculum are indicated in the margins.
  • Lower bands of 25S ribosomal RNA stained with ethidium bromide are indicated as a control for loading gels.
  • Fig. 5 The transient expression of Agrobacterium-mediated 54-kDa dsRNA interferes with the infection of PMMoV ' (A) N. benthamiana plants were initially infiltrated, as indicated in the figure, with cultures of A. tumefaciens carrying the vector 54-kDa RNA sense expression
  • RNA sample Equivalent amounts ( ⁇ g) of each RNA sample were fractionated by electrophoresis in 1% agarose gel and the filter was hybridized with an RNA probe labeled with specific digoxigenin against 54-kDa RNA. The position of the PMMoV RNA is indicated in the margin. In the lower part, the 25 S ribosomal RNA bands stained with ethidium bromide are indicated as a load control of the gels.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Se revela un método para interferir o degradar de forma específica (preferiblemente mediante silenciamiento génico) cualquier secuencia nucleotídica de RNA de cadena sencilla (ssRNA) (preferentemente RNA mensajeros de virus, de genes endógenos o de transgenes) en las células de cualquier planta, cuyo método cosiste en la aplicación directa en cualquier tejido de la planta (preferentemente hojas) y por cualquier método de aplicación (preferentemente inoculación o infiltración) de moléculas RNA de doble cadena (dsRNA) producidas por cualquier procedimento natural o sintético (preferentemente mediante transcripción in vitro) cuyas moléculas de ssRNA tienen suficiente similitud de secuencia con cualquier fragmento del ssRNA que se quiere degradar, o cuya expresión se quiere silenciar, en la planta.

Description

Título
Un método para interferir con la infección de virus en plantas
Campo de la invención La presente invención se refiere a la utilización de moléculas de RNA de doble cadena (en lo sucesivo referido como dsRNA) para interferir de forma específica con infecciones virales en plantas. Más particularmente, la invención se refiere a la preparación de moléculas de dsRNA de secuencia determinada y su aplicación directa en cualquier planta para suprimir en la planta tratada, la multiplicación de cualquier virus que tenga suficiente similitud de secuencia con el dsRNA.
Estado de la invención
Los virus de plantas representan uno de los grupos de patógenos más importantes, ya que causan graves pérdidas económicas en muchas especies de interés agronómico en todo el mundo. La mayoría de los virus conocidos que infectan plantas tienen genomas constituidos por RNA de cadena sencilla (en lo sucesivo referido como ssRNA) y de sentido mensajero (en lo sucesivo referido como mRNA) como material genético. Estos genomas son relativamente simples, codificando únicamente entre 4 y 10 proteínas, dependiendo del grupo de virus. Estas proteínas están involucradas en aspectos básicos del ciclo biológico de estos patógenos, como el proceso de repücación del RNA viral, el movimiento del virus célula a célula o la traslocación de la progenie viral a través de la planta huésped (Matthews, Plant Virology, Third Edition (San Diego, Academic Press, Inc.) (1991).
Debido a la cantidad limitada de información genética que estos patógenos contienen, y a la complejidad del proceso infectivo, los virus dependen de la maquinaria celular del huésped para muchas etapas de su ciclo de infección. Muchos de esos factores del huésped son componentes usuales del aparato transcripcional o traduccional de la célula, aprovechados por el virus para realizar una función integral o reguladora en la replicación y difusión del RNA viral en la planta (Lai, Virology 244, 1 (1993). Se puede decir que huésped y parásito están íntimamente entrelazados y compiten en los mecanismos moleculares que rigen sus ciclos biológicos. El éxito o el fracaso de las infecciones virales es la consecuencia final de cómo interaccionan los virus y sus huéspedes, es decir, de las estrategias defensivas de la planta y de la respuesta de contraataque por parte de los virus (Carrin ton y hitham, Cu/rent Opinión m Plañí Biology 1, 336 ( 199S).
El control de las enfermedades virales en los cultivos presenta grandes dificultades, dado que para la mayoría de los virus no se dispone de variedades comerciales del cultivo que porten genes de resistencia frente al patógeno, incorporados mediante procedimientos de mejora genética tradicional. Además, en algunos de los casos en que se han obtenido, las resistencias son sobrepasadas por la aparición de nuevas estirpes de virus (Matthews, Plant Virology, Third Edition (San Diego, Academic Press, Inc.) (1991). Por otro lado, la utilización de insecticidas y/o agentes químicos que han venido usándose para el control de los diferentes vectores, a través de los cuales las infecciones virales se diseminan en la naturaleza, plantea serios problemas de contaminación en el medio ambiente. Por tanto, debido a las pérdidas que los virus de plantas ocasionan en cultivos de importancia económica y a las dificultades que presenta su control, los esfuerzos que se realizan actualmente se centran en el estudio de la interacción virus-planta, especialmente de los procesos que tienen lugar durante el ciclo biológico de estos patógenos, así como de los mecanismos de defensa desplegados por las plantas ante las infecciones virales. El objetivo final de estos estudios, en todos los casos, es el control de las enfermedades virales en plantas mediante el desarrollo de nuevas estrategias para interferir o bloquear los procesos de infección virales, o bien para potenciar la defensa natural de las plantas frente a los virus.
Como en la mayoría de las relaciones huésped-parásito, las plantas han desarrollado unos mecanismos de defensa natural frente a los virus que las infectan, algunos de los cuales están empezando a conocerse (Baulcombe, Current Opinión in Plant Biology 2, 109 (1999); Kooter et ai. Trenas in Plant Science 4, 340 (1999); Waterhouse et ai. Trenas in Plant Science 4, 452 (1999). Recientemente, se ha identificado en diversas infecciones virales en plantas un mecanismo de defensa mediado por RNA y dirigido frente a las secuencias del patógeno (Baulcombe, Plant Cell 8, 1833 ( 1996). Inicialmente, este fenómeno se detectó en plantas transgénicas resistentes constitutivamente a la infección viral, en las que existía una correlación entre resistencia y bajos niveles de expresión en el citoplasma de transgenes homólogos a las secuencias de los virus estudiados (Dougherty y Da n Parks, Current Opinión in Cell Biology 7, 399 ( 1995), Eng sh et af Plant Cell 3 179 ( 1996) Este mecanismo, llamado de silenciamiento genico posttranscπpαon l (en lo sucesi o referido como PTGS), típicamente esta basado en un procedo de degradación de R A especifico de secuencia, y parece ser una manifestación concreta de un fenómeno mas general de defensa natural en plantas frente a determinados irus, que resultarían degradados por efecto de esta estrategia de resistencia (AI-Kaff et al, Science 279, 21 13 ( 1998), Covey et al, Nature 386,781 (1997), Ratcliff et al , Science 276, 1558 ( 1997), Ratc ff et al , Plant Cell 1 1, 1207 (1999) El mecanismo de defensa se induciría al identificar la planta alguna característica estructural propia de los ácidos nucleicos virales, como podría ser la acumulación durante el proceso de infección de RNAs normalmente no presentes y por tanto extraños a la célula vegetal La formación de dsRNAs durante la replicación viral constituye un posible candidato, ya que su estructura de doble cadena bastaría para ser reconocido por la célula como un RNA extraño La planta, entonces, reaccionaría desencadenando un proceso de señalización y degradación a nivel citoplasmático análogo al de PTGS, lo que resultaría en una progresiva disminución de la cantidad de virus en la planta durante el proceso de infección, dando lugar a una resistencia a la infección viral (Covey et al , Nature 386,781 (1997), Fire, Trends in Genetics 15,358 (1999), Kooter et al., Trends in Plant Science 4, 340 (1999), Montgomery y Fire, Trends m Genetics 14, 255 (1998) Aunque no se conoce el mecanismo de actuación del fenómeno de silenciamiento génico, el descubrimiento de que los virus pueden tanto inducirlo como ser sus dianas, ha llevado a la conclusión de que el silenciamiento génico es un mecanismo natural de defensa mediante el cual las plantas reconocen y combaten ácidos nucleicos extraños (Kasschau y Carrington, Cell 95, 461 (1998), Smyth, Current Biology 9, R100 (1999) Como contrapartida, los virus también se defienden de esta respuesta de la planta mediante la expresión de genes supresores de PTGS, que están codificados en sus genomas, siendo esta estrategia de contraataque ampliamente distribuida entre los virus de plantas, tanto RNA como DNA (Voinnet et al . Proc. Nati. Acad. Sa. USA, 96, 14147 (1999)
El término resistencia transgénica derivada del patógeno (en lo sucesivo referido como PDTR), típicamente se refiere a la resistencia que se obtiene frente a un patógeno determinado, mediante la introducción, por ingeniería genética, de secuencias del genoma de dicho patógeno en el genoma de plantas (Sanford y Johnston, J Theoretical Biol. 1.13, 395 ( 1985) Numerosas secuencias de genes, derivadas de muchos virus de plantas diferentes, se han introducido en una gran variedad de especies de plantas, para producir plantas transgénicas protegidas frente a la infección por estos virus Muchos ejemplos de PDTR frente a virus en plantas se atribuyen a un mecanismo de PTGS, un proceso, como se ha dicho antes, mediado por RNA que identifica la secuencia tanto del RNA viral como del mRNA transcrito del transgén y las degrada de forma específica (Lindbo et al., Plant Cell. 5, 1749 (1993); English et ai, Plant Cell 8, 179 (1996), Covey et al, Nature 386,781 (1997); Tenllado y Díaz-Ruíz, Transgenic Research 8, 83 (1999); Vaucheret et al, Plant J., 16, 651(1998); Sijen y Kooter BioEssays 22, 520 (2000). Recientemente, se ha propuesto que en el mecanismo de PTGS intervienen tres fases diferenciadas: iniciación del proceso, propagación sistémica de una señal de silenciamiento y mantenimiento del proceso (Palauqui y Vaucheret, Proc. Nati Acad. Sci. USA 95, 9675(1998); Ruiz et al, Plant Cell. 10, 937 (1998). Un aspecto importante de la segunda fase de este proceso es la capacidad de la planta de enviar señales sistémicas a sus tejidos, de manera que el PTGS se propaga por todo el individuo (Guo et al, Molecular Plant-Microbe Interections 12, 103 (1999); Palauqui et al, EMBO J. 16, 4738 (1997); Voinnet y Baulcombe, Nature 389, 553 (1997). Aunque no se ha demostrado aun, es muy probable que la señal determinante sea un ácido nucleico, y recientemente se ha comprobado la presencia, en los casos estudiados, de pequeñas moléculas de 25 nucleótidos de RNA antisentido, que podrían constituir o ser componentes de la señal sistémica específica (Hamilton y Baulcombe, Science 286, 950 (1999). Otro aspecto importante de la última fase, parece que es la absoluta necesidad de un componente nuclear con similitud de secuencia con el mRNA diana, para que el PTGS se perpetúe en tiempo y espacio (Palauqui y Balzergue, Curr. Biol. 9, 59 (1999); Dalmay et al, Plant Cell, 12, 369 (2000).
El PTGS parece ser una estrategia adaptativa de valor generalizado en biología, ya que es un fenómeno muy similar y relacionado con otros procesos descubiertos recientemente en diferentes grupos taxonómicos de animales y denominados interferencia de RNA (en lo sucesivo referido como RNAi). RNAi se describió por primera vez en el nemátodo Caenorhabditis elegans en el que la inyección directa de dsRNA originó un PTGS específico de secuencia (Fire et al, Nature, 391, 806 (1998). Además, el mismo PTGS se obtiene cuando se alimenta al nemátodo con bacterias que expresan dsRNA (Timmoπs y Fire, Nature, 395, S54 ( ¡ 99S) o cuando éstos se producen por transcripción de un transgén que posee una secuencia invertida y repetida capaz de formar dsRNA (Tavernarakis et al, Nat. Genet. 24, I SO (2000) Asimismo, un fenómeno similar llamado "quelliπg" ha sido descrito en e! hongo Neurospora crassa (Cogoπi y Macino, Curr. Opin. Microbio!., 2, 657 ( 1999). Posteriormente, fenómenos de RNAi han sido descritos en una amplia variedad de organismos diferentes (Fire, Trends Genet.
15, 358 (1999); Bass, Cell, 101, 235 (2000). Teniendo en cuenta que todos estos procesos de interferencia ocurren posttranscripcional mente y producen la degradación específica de mRNA, se ha propuesto que tanto RNAi como "quelling" y PTGS en plantas, son fenómenos relacionados, que podrían jugar una función importante en biología, protegiendo a los genomas de organismos frente a ácidos nucleicos extraños
(Montgomery et al, Proc. Nati Acad. Sci. USA 95, 15502 (1998); Ngo et al, Proc. Nati
Acad. Sci. USA 95, 14687 (1998).
Como ocurre con RNAi en animales, PTGS puede ser provocado en plantas transgénicas de forma muy eficiente por la presencia de una secuencia repetida e invertida en la región de transcripción del transgén (Hamilton et al, Plant J, 15,
737(1998); Chuang y Meyerowitz, Proc. Nati Acad. Sci. USA, 97, 49S5 (2000); Levin et al, Plant Mol. Biol. 44, 759 (2000). Además, se ha visto que plantas de tabaco transformadas con una construcción que transcribe RNA capaz de formar dsRNA, produce inmunidad frente a virus o silenciamiento génico, con casi un 100% de eficacia, dependiente de si la diana es un virus o un gen endógeno (Waterhouse et al, Proc. Nati
Acad. Sci. USA, 95, 13959 (1998); Smith et al, Nature, 407, 3 19 (2000). Por tanto, analizados colectivamente estos fenómenos, existen fuertes evidencias que indican que las moléculas de dsRNA actúan como inductoras de la primera fase del proceso de PTGS, tanto en el reino vegetal como en el animal. Sin embargo, no existe todavía una prueba directa de la formación ¡n vivo de dsRNA en las plantas transgénicas.
Nosotros hemos descubierto que se puede interferir de forma específica con la multiplicación de virus en plantas, mediante la aplicación directa de dsRNA homólogo, lo cual amplia a las plantas los descubrimientos previos sobre RNAi en animales. Mas concretamente, nuestro descubrimiento muestra que la aplicación directa de dsRNA exógeno en plantas no transgénicas, puede actuar como inductor de resistencia frente a virus. Esta interferencia mediada por dsRNA en plantas, tiene características comunes con la RNAi en animales la interferencia es especifica de secuencia, esta inducida por dsRNA y no por ssRNA y requiere un tamaño mínimo de dsRNA
En la literatura científica no se ha descrito hasta la fecha la utilización directa de moléculas de dsRNA exógeno en planta^ para bloquear en las células la multiplicación de virus, lo cual constituye el objeto de la presente invención
Breve descripción de la invención
Un primer aspecto de esta invención es la clonación de cualquier fragmento del genoma de cualquier virus cuya multiplicación en las células de la planta se quiere bloquear.
Un segundo aspecto de esta invención es la inserción del fragmento clonado en un vector de transcripción, para sintetizar fragmentos de ssRNA de ambas polaridades (sentido-antisentido) o complementarios y mezclar los productos de ambas transcripciones para obtener las moléculas de dsRNA de secuencia idéntica a la del genoma del virus, o muy similar a la de otros virus, cuya multiplicación se quiere impedir.
Un tercer aspecto de esta invención es la aplicación de las moléculas de dsRNA en algún tejido de las plantas (p ej. hojas, raíz, etc ), para interferir con la infección del correspondiente virus cuyo genoma tenga similitud de secuencia con el dsRNA. La novedad de esta invención radica en el hecho de ser la primera vez que se describe en plantas la aplicación directa de dsRNA para interferir y silenciar de forma específica genes de expresión transitoria, como genes de virus, con la consiguiente protección de las plantas frente a las correspondientes enfermedades virales, sin tener que emplear vectores virales o acudir a los procedimientos de transformación genética de células de plantas.
Esta invención podría utilizarse para paliar las graves pérdidas económicas que los virus causan en muchas especies de interés agronómico en todo el mundo, asi como, indirectamente, para evitar el uso abusivo de plaguicidas empleados para el control de sus insectos vectores, repercutiendo en la protección del medio ambiente y evitando el riesgo ecológico
Mediante esta invención debería ser posible también silenciar en plantas la expresión tanto de genes endógenos como de transgenes de forma especifica, mediante la aplicación directa de dsRNA que comparta similitud de secuencia con el gen o el transgén diana.
Descripción detallada de la invención El objeto de esta invención es la aplicación directa de moléculas de dsRNA exógeno en cualquier tejido de cualquier planta, para interferir de forma especifica en las células de la planta, con la multiplicación del correspondiente virus que tenga similitud de secuencia con el dsRNA.
Para la descripción de esta invención se parte de al menos 3 virus de plantas pertenecientes a grupos taxonómicos distintos, que representan ejemplos extremos en la evolución de virus RNA en plantas, tales como el virus del moteado atenuado del pimiento (en lo sucesivo referido como P MoV), el virus del grabado del tabaco (en lo sucesivo referido como TEV) y el virus del mosaico de la alfalfa (en lo sucesivo referido como AMV). Los tres virus tienen genomas de RNA de los que se conoce su secuencia completa (Alonso et al, J. Gen. Viro!. 72, 2875 (1991); Allison et al, Virology 154, 9 (1986); Neeleman et al, Virology, 181, 687 (1991) y además poseen distintas estrategias de replicación y expresión genética y han sido empleados aquí como marcadores para confirmar la generalidad del procedimiento. PMMoV (Alonso et al, J. Gen. Virol. 72, 2875 (1991) pertenece al género Tobamovirus, un grupo de virus con una organización genómica formada por una única molécula de ssRNA de sentido mensajero. AMV (Neeleman et al, Virology, 181, 687 (1991) pertenece al género Alfamovirus, dentro de la familia Bromoviridae, un grupo de virus con una organización genómica formada por tres moléculas de ssRNA de sentido mensajero. Ambos virus se encuadran dentro de la superfamilia de los sindbisvirus. TEV (Dolja et al, Proc. Nati Acad. Sci. USA, 89, 10208 (1992) pertenece a! género Potyvirus, dentro de la familia Potyviridae. un grupo de virus con un genoma formado por una única molécula de ssRNA y de sentido mensajero, cuya organización genómica es similar a la de la superfamilia de los picorπavirus.
En primer lugar, se subclonaron en vectores plasmídicos comerciales, al menos 5 fragmentos de distintos tamaños de determinados genes conocidos de estos tres virus, tales como: (1) un fragmento de 977 pares de bases (en lo sucesivo referido como bp) procedente de la región 54 del gen de la polimerasa de PMMoV, (2) un fragmento de 3 1 bp-procedente de la misma región 54K del gen de la polimerasa de PMMoV, (3) un fragmento de 596 bp procedente de la región del gen de movimiento 30K de PMMoV, (4) un fragmento de 1 124 bp de la región de los genes de la proteína de movimiento- proteína de cubierta del RNA 3 de AMV y (5) un fragmento de 1483 bp procedente de la región del gen HC-Pro de TEV. La clonación se realizó a partir de clones completos de DNA complementario (en lo sucesivo referido como cDNA) de estos virus, por procedimientos convencionales (Sambrook et al, Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory ( 1989) que pueden ser fácilmente realizados por aquellas personas expertas en la materia. Se puede realizar también esta clonación mediante la conocida técnica de la transcripción inversa seguida de la reacción en cadena de la polimerasa (en lo sucesivo referido como RT- PCR), a partir de extractos de RNA de planta infectada con los respectivos virus, utilizando oligonucleótidos sintéticos apropiados y vectores comerciales disponibles en el mercado. A continuación, los fragmentos anteriormente clonados se insertaron en vectores comerciales de transcripción y se transcribieron in vitro usando los promotores de la RNA polimerasa de los fagos T3 y T7, por procedimientos convencionales bien conocidos por las personas entendidas en la materia. Un fragmento de 1605 bp correspondiente al gen completo 54K de PMMoV, fue también insertado en orientación sentido o antisentido en un vector binario de expresión en plantas, entre un promotor de alta expresión, como el promotor 35S del virus del mosaico de la coliflor (en lo sucesivo referido como CaMV), y el terminador transcripcional del gen 7 del TL-DNA, y las correspondientes construcciones fueron introducidas en la cepa LBA 4404 de la bacteria Agrobacterium tumefaciens, por procedimientos conocidos de transformación directa (An et al,. Binary vectors. A3: 1-19 in: Plant Molecular Biology Manual. S.B. Gelvin and R.A. Schilperrot, eds. Kluwer Academic Publishers, Dordrecht (1988), ampliamente utilizados por las personas expertas en la materia. También se obtuvieron, mediante la reacción en cadena de la polimerasa (en lo sucesivo referido como PCR), moléculas de cDNA correspondientes a la misma región de 977 bp del gen 54K de PMMoV y, por lo tanto, de la misma secuencia que los productos RNA sintetizados in vitro en la reacción de transcripción. -A continuación, tanto las moléculas de ssRN'A sentido y aπtiseπtido obtenidas de la transcripción /; vitro, como las moléculas de dsRNA obtenidas de la mezcla e hibridación de los productos de transcripción sentido y antisentido, o bien las moléculas de cDNΑ obtenidas por PCR, se aplicaron directamente en las hojas de huéspedes, tales como plantas de Nicotia a benthamiana, preferentemente mediante inoculación mecánica, junto con el correspondiente inoculo viral homólogo, en forma de partículas de virus purificado o como RNA infectivo. También se aplicó en las hojas de plantas de N. benthamiana, en una aproximación experimental distinta, una mezcla de cultivos de A. tumefaciens, transformadas con las construcciones sentido y antisentido del gen completo 54K de PMMoV, mediante el conocido procedimiento de agroinfiltración (Vaucheret, C. R. Acad. Sci. III 317, 310 ( 1994), seguido de la inoculación en las mismas hojas infiltradas del inoculo viral de PMMoV previamente citado.
La inoculación de cada uno de los diferentes virus, en plantas de N. benthamiana, produce una infección sistémica con síntomas preferentemente de mosaico, alrededor de los 7 días después de la inoculación (en lo sucesivo referido como dpi). Cuando las diferentes moléculas de dsRNAs obtenidas, correspondientes a los distintos virus y procedentes de la mezcla e hibridación de los productos de transcripción sentido y antisentido, se inocularon conjuntamente con el inoculo viral infectivo homólogo, en hojas de N. benthamiana, en ningún caso aparecieron los síntomas de la infección viral, ni se detectaron los RNAs virales, en las hojas inoculadas o en las hojas sistémicas, entre los 7-10 dpi. Solamente en algún caso, las plantas sufrieron un retraso de 1-3 semanas en la aparición de los síntomas virales. Por el contrario, en el resto de plantas coinoculadas con ssRNA homólogo de ambas polaridades, cDNA homólogo, o dsRNA de virus no homólogo, junto con el correspondiente inoculo viral, siempre aparecieron los síntomas virales y no se detectó ninguna reducción en la acumulación de virus o RNAs virales, en comparación con las plantas control, inoculadas con sólo el inoculo viral en el tampón de transcripción.
El mismo resultado se produjo por al menos un procedimiento de aplicación de dsRNA diferente al de la inoculación mecánica, cuando las hojas de plantas de N. benthamiana fueron tratadas mediante agroinfiltración, con la mezcla de A. tumefaciens transformadas con las construcciones sentido y antiseπtido, cuyos productos de transcripción deben formar // vivo moléculas de dsRNA, y posteriormente las mismas hojas fueron inoculadas con el virus homólogo, hasta al menos 4 dias después del tratamiento de agroinfiltración con la mezcla de A. tumefaciens Las hojas sistémicas de las plantas agroinfiltradas no presentaron síntomas virales, ni tampoco se detectaron los correspondientes RNAs virales en las hojas infiltradas ni en las sistémicas Por el contrario, en el resto de plantas agroinfiltradas con ssRNA homólogo de una u otra polaridad, junto con el posterior inoculo viral, siempre aparecieron los síntomas virales y no se detectó ninguna reducción en la acumulación de virus o RNAs virales, en comparación con las plantas control agroinfiltradas con A. tumefaciens transformada solamente con el vector sin el inserto. Estos resultados descartan cualquier posible interacción in vitro entre las moléculas de dsRNA y el inoculo viral, en el experimento anterior de coinoculación, como la causa de la interferencia responsable del efecto de protección de las plantas frente a la infección viral. Asimismo, los resultados de especificidad de la secuencia, como de la estructura de las moléculas de dsRNA, descartan cualquier posible artefacto debido al procedimiento de inoculación y demuestran que sólo las moléculas de dsRNA, bien directamente aplicadas sobre la superficie de una hoja, o bien mediante agroinfiltración, pueden activar el mecanismo de PTGS, impidiendo la replicación del virus con el que tienen similitud de secuencia, al menos en las hojas tratadas y que, por tanto, el procedimiento puede ser aplicado para defender a ias plantas frente a infecciones virales.
De la misma forma, se obtuvieron resultados similares empleando al menos 2 huéspedes no sistémicos, tales como plantas de tabaco (Nicotiana tabacum cv. "Xanthi nc") o plantas de pimiento (Capsicum chínense), donde PMMoV sólo produce infección localizada con síntomas de lesiones locales. Cuando las diferentes moléculas de dsRNA, ssRNA de ambas polaridades, cDNA homólogo a la región del gen 54K de PMMoV, así como dsRNA no homólogo a este virus, se coinocularon en medias hojas de los huéspedes no sistémicos, con el virus sólo inoculado en la media hoja opuesta, la formación de lesiones locales en la superficie de las hojas se bloqueó completamente sólo en el caso de la coinoculación con dsRNA, donde no se produjo ninguna lesión. En el resto de las combinaciones citadas y en las mitades opuestas inoculadas con una cantidad equivalente del virus, se produjeron siempre mas de 50 lesiones locales. 'Estos resultados también demuestran que sólo las moléculas de dsRNA pueden activar el mecanismo de PTGS, impidiendo de forma específica la formación de lesiones locales, en al menos dos especies de plantas pertenecientes a distintos géneros y que, por tanto, el procedimiento tiene validez general y podría ser aplicado para defender cualquier planta frente a infecciones virales.
La invención descrita anteriormente es aplicable ampliamente a cualquier otro virus conocido o por conocer, que posea RNA como material genético o que este se origine en cualquier fase de su ciclo infectivo, como será reconocido por aquellos familiarizados con el arte de la Virología. La invención descrita previamente se puede utilizar también con cualquier planta
(angiosperma o gimnosperma, monocotiledónea o dicotiledónea) en la que se pueda aplicar dsRNA y en la que se quiera interferir con la infección de cualquier virus con las características anteriormente citadas y sean susceptibles de ser infectadas por estos virus, es decir en la que el virus pueda replicarse en las células inoculadas. La invención descrita previamente se puede realizar con cualquier método disponible de introducción directa de dsRNA dentro de las células de las plantas, ampliamente utilizados por las personas expertas en la materia, como la inoculación mecánica, la infiltración o agroinfiltración, inyección, electroporación, bombardeo con micropartículas, en el caso de no muchas piantas, o por procedimientos de vaporización o fumigación, en el caso de gran número de plantas o cultivos etc. El lugar de la introducción en la planta de dsRNA mas apropiado, sin excluir otro, es el tejido del haz de la hoja.
La invención descrita anteriormente demuestra que es posible interferir con infecciones virales de forma específica y que se puede inducir un PTGS de al menos genes de expresión transitoria (p.ej. genes virales) en plantas, mediante la aplicación directa de moléculas de dsRNAs de secuencia homologa y por tanto, la novedad de esta invención es la aplicación directa de cualquier molécula de dsRNA exógeπo en el tejido de cualquier planta para proteger a las plantas frente a infecciones virales.
La invención descrita previamente, de aplicación directa en células de plantas de dsRNA, mediante cualquier procedimiento, es diferente de otras estrategias basadas en la expresión en plantas traπsgéπicas de RNAs con la capacidad de formar moléculas de dsRNAs, como por ejemplo la protección obtenida así mediante PTGS frente al virus Y de la patata (PVY) (Waterhouse et al, Proc. Nati Acad. Sc¡. USA, 95, 13959 ( 1993), S ith et al, Nature, 407, 3 19 (2000), y apo>a la idea de otros investigadores sobre la implicación de los dsRNAs intermediarios replicativos virales co o eficientes iniciadores de PTGS en infecciones naturales de virus (Ratcliff erf al, Science, 276, 1558 ( 1997), Ratcüff βí α/, Plant Cell, 1 1, 1207 ( 1999)
Además, es predecible que la invención descrita anteriormente se pueda emplear también para silenciar específicamente la expresión de cualquier gen endógeno o transgen de la planta, lo cual representa una alternativa a los procedimientos de transformación genética de plantas con construcciones capaces de expresar dsRNA, con vistas a interferir de forma específica con la expresión de genes endógenos en plantas (Chuang y Meyerowitz, Proc. Nati Acad. Sci. USA, 97, 4985 (2000); Levin et al, Plant Mol. Biol. 44, 759 (2000).
Los Ejemplos que se describen a continuación sirven para ilustrar con más detalle, pero sin limitación, la presente invención.
EJEMPLO 1
Síntesis de RNAs y aplicación directa, mediante inoculación de las plantas.
Para la producción de moléculas de dsRNA, se sintetizaron in vitro cadenas de ssRNA sentido y antisentido, a partir del correspondiente plásmido de cDNA, usando los promotores de la RNA polimerasa de los fagos T3 y T7 (T3/T7 transcription it, Roche), por procedimientos descritos (Sambrook et al, Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory (1989). Las cadenas de ssRNA sintetizadas (2 5 μM) se mezclaron y se hibridaron mediante calentamiento a 95°C durante 3 minutos en el tampón fosfato sódico 25 mM pH 7 y enfriamiento posterior hasta 37°C durante 30 minutos. La formación de moléculas de dsRNA se confirmó mediante el análisis del cambio de su movilidad en gel de agarosa, en comparación con la movilidad de cada una de las moléculas ssRNA sentido y antisentido, y también por su resistencia a RNAsa A (Roche) en condiciones de alta concentración de sal. Para la producción de moléculas de dsRNA derivadas de PMMoV, se subclonaron tres fragmentos a partir de un clon completo de cDNA de PMMoV, correspondientes a las posiciones 341 1 -4388, 5086-5682 y 3454-3769 en la secuencia de PMMoV (Alonso et al, J. Gen. Vtrol. 72. 2S75 ( 1991 ) (Fig. 1 ), en el vector pT3T7 (Roche), que dieron lugar, después de la correspondiente transcripción e hibridación, a los fragmentos de dsRNA de 977-bp (en lo sucesivo referido como 54-kDa dsF N'A), 596-bp (en lo sucesivo referido como 30-kDa dsRNA) y 3 15-bp (en lo sucesivo referido como 1/3 54-kDa dsRNA), respectivamente.
Para la producción de moléculas de dsRNA derivadas de TEV, se subclonó un fragmento correspondiente a las posiciones 845-232S en la secuencia de TEV (Dolja et al, Proc. Nati Acad Sci. USA, 89, 10208 (1992) (Fig. 1), en el vector pBluescript SK- (New England Biolabs) que dio lugar, después de la correspondiente transcripción e hibridación, al fragmento de dsRNA de 1483-bp (en lo sucesivo referido como TEV- HC dsRNA).
Para la producción de moléculas de dsRNA derivadas de AMV, se subclonó un fragmento correspondiente a las posiciones 369-1493 en la secuencia del RNA 3 de AMV (Neeleman et al, Virology, 181, 687 (1991) (Fig. 1), en el vector pBluescript SK(New England Biolabs) que dio lugar, después de la correspondiente transcripción e hibridación, al fragmento de dsRNA de 1 124-bp (en lo sucesivo referido como AMV-3 dsRNA).
Todos los plásmidos se linearizaron con las correspondientes enzimas de restricción disponibles comercialmente (Roche, New England Biolabs) y se usaron como molde para las reacciones de transcripción in vitro y consiguiente generación de moléculas de ssRNA sentido y antisentido.
Para la producción de moléculas de cDNA de PMMoV, se partió de una copia exacta del gen 54-kDa de PMMoV (posiciones 3499-4908), que dio lugar a las correspondientes moléculas de cDNA (en lo sucesivo referido como 54-kDa cDNA) mediante PCR (termociclador y Taq I DNA polimerasa, Perking-Elmer), usando los cebadores apropiados descritos previamente (Tenllado et ai. Virology 21 1, 170 (1995).
Para los experimentos de interferencia con la infección de PMMoV, se utilizó un inoculo estándar de 10 μg/ml de virus purificado (Alonso et al, J. Gen. Viroi 72, 2875 ( 1991 ). Para los experimentos de interferencia con la infección de TEV, el plásmido pTEV-7D (amablemente cedido por el Dr. J.C. Carrington, Universidad del Estado de Washington), que contiene un clon completo cDNA de TEV, se linearizó y transcribió in vitro con la SP6 RNA polimerasa, según se describe por Dolja et al, Proc. Nati Acad. 'Sci. USA. 89, 10208 ( 1992) Para los experimentos de interferencia con la infección de AMV, la transcripción con la T7 RNA polimerasa de los clones completos del RNA 1 (pUT 17A), RNA 2 (pUT27 ) y RNA 3 (pAJL3) de AMV (amablemente cedidos por el Dr. J.F. Bol, Universidad de Leiden), se realizó según se ha descrito anteriormente (Neeleman y Bol, Virology 254, 324 ( 1999). Las mezclas de inoculación se realizaron mediante la adición de 5 μl de dsRNA de cada virus (concentración aproximada de 0.8 μg/μl, estimada por tinción con bromuro de etidio con marcadores de peso conocido) a un volumen equivalente de virus purificado (PMMoV), o a 10 μl de transcritos virales (TEV y AMV). En el caso de AMV, se añadieron a la mezcla de inoculación 10 μg de proteína de la cápsida de AMV.
La inoculación de las plantas se realizó utilizando dos hojas plenamente expandidas en al menos dos plantas por ensayo, a través de una presión suave de la superficie foliar con el inoculo, usando Carborundo comercial como abrasivo (Matthews, Plant Virology, Third Edition (San Diego, Academic Press, Inc.) (1991). En las comparaciones del efecto sobre la infección viral de las moléculas de ssRNA sentido y antisentido, dsRNA y de cDNA, se utilizaron concentraciones molares equivalentes. Las plantas inoculadas se mantuvieron en cámaras de cultivo en condiciones de crecimiento estándar, comprobándose el desarrollo de los síntomas de la infección viral en huéspedes sistémicos durante el tiempo que duró su ciclo vital. En huéspedes de lesión local, las hojas inoculadas se observaron durante al menos 5 dpi.
EJEMPLO 2
Análisis de RNAs vírales en plantas.
Para el análisis de RNAs virales en plantas, se obtuvieron extractos de RNA total a partir de las hojas inoculadas, entre 6 y 10 dpi, y a partir de las hojas sistémicas, entre 6 y 21 dpi, según el método descrito por Logemann et ai Anal. Biochem. 163, 16 ( 1987). Las muestras de RNA total (entre 1 y 5 μg) se separaron mediante electroforésis en geles de agarosa-formaldehido al 1- 1,2% y se transfirieron a membranas Hyboπd-N (Roche). Se realizaron tinciones con bromuro de etidio de los geles de agarosa con anterioridad a su transferencia a membranas Hybond-N, para confirmar la integridad del RNA y asegurar la carga de cantidades similares en cada muestra. La hibridación tipo Northern blot se llevó a cabo usando sondas de RNA marcadas con digoxigenina (Roche), según se ha descrito por Neeleman y Bol 1 )
Se utilizaron sondas de RNA especificas para detectar los RNAs de los diferentes virus. El RNA de PMMoV se detectó con una sonda complementaria a los nucleótidos 341 1-4388 de PMMoV, los cuales se transcribieron a partir del clon pT3T7/54-kDa (Tenllado et al, Virology 21 1, 170 ( 1995) El RNA de TEV se detectó con una sonda complementaria a los nucleótidos 845-2328 de TEV, que se transcribieron a partir del clon pBluescript S - HC. Los RNAs 3 y 4 de AMV se detectaron con una sonda complementaria a los nucleótidos 369- 1493 del RNA 3 de AMV, transcritos a partir del clon pBluescript SK-/AMV-3.
EJEMPLO 3
Expresión transitoria de dsRNA en plantas mediante Agrobacterium tumefaciens .
Para la expresión transitoria de dsRNA en plantas, la región del RNA de PMMoV que codifica la proteína de 54-kDa y secuencias flanqueantes (nucleótidos 3411-5016), se insertaron en orientación sentido o antisentido entre el promotor 35S de CaMV y el terminador transcripcional del gen 7 del TL-DNA, en el vector binario pGSJ780A (Plant Genetic System), según se describe en Tenllado et al, Virology 21 1, 170 (1995). Estas construcciones se introdujeron en la cepa LBA 4404 de A. tumefaciens mediante transformación directa (An et al,. Binary vectors. A3: 1-19 in: Plant Molecular Biology Manual. S.B. Gelvin and R.A. Schilperrot, eds. Kluwer Academic Publishers, Dordrecht. (1988). Los A. tumefaciens recombinantes crecieron durante 16 horas a 28°C en tubos que contenían 10 mi de medio LB, suplementado con 50 μg/ml de rifampicina y 40 μg/ml de estreptomicina. Las células se precipitaron y se resuspendieron a una concentración final de 0,5 ODcoo en una solución que contenía 10 mM MgCl2, 10 mM Mes (pH 5.6) y 150 μM acetosiriπgona. Los cultivos se incubaron a 28°C durante 2-3 horas, antes de proceder a la infiltración de dos hojas por planta, mediante una jeringa de 1 mi sin aguja, cubriéndose la planta entera a continuación con una bolsa de plástico transparente durante 2 días En los experimentos de coinfiltración de los cultivos de Agrobacterium con las construcciones sentido y antisentido 54-kDa, volúmenes ¡guales de ambos cultivos se mezclaron antes de su infiltración. EJEMPLO 4
Aplicación directa de moléculas de d RNΛ deriv das de PMMoV en dos huéspedes locales.
Se realizaron experimentos para demobtrar que la aplicación directa mediante inoculación mecánica, de una molécula de dsRNA derivada de PMMoV, junto con el inoculo viral, puede interferir de forma especifica con la infección viral en un huésped local Para ello, se transcribieron m vitro y en orientación sentido y antisentido, moléculas de ssRNA correspondientes a la región 54K del gen de la replicasa de PMMoV y se mezclaron e hibπdaron los productos de transcripción para producir 54- kDa dsRNA, como se ha descrito anteriormente Tanto las moléculas de dsRNA, como las de ssRNA sentido y antisentido, se analizaron para determinar su capacidad de interferir con el desarrollo de lesiones locales producidas por PMMoV, en el huésped hipersensible Nicotiana tabacum cv "Xanthi nc" Para ello, se inocularon medias hojas solamente con el virus y en la media hoja opuesta se inoculó el virus con el tampón de transcripción sólo, o con ssRNA sentido, ssRNA antisentido y 54-kDa dsRNA, a concentraciones finales de 0 62 μM
En la Figura 2 se muestra un ejemplo representativo de diferentes experimentos realizados con RNAs producidos en diferentes reacciones de transcripción La infectividad de PMMoV, determinada por la formación de lesiones locales en la superficie de las hojas, se bloqueó completamente en el caso de la coinoculación con 54-kDa dsRNA (Fig 2A), donde no se produjo ninguna lesión, mientras que en la mitad opuesta de las hoja, inoculada con una cantidad equivalente del virus sólo, se produjeron mas de 50 lesiones locales La formación de lesiones tampoco se bloqueó en los casos de coinoculación del virus con cualquiera de los ssRNAs sentido o antisentido (Fig 2B y no mostrado) Además, la coinoculación de PMMoV con un dsRNA de origen viral, pero no relacionado con PMMoV, sino derivado de TEV (TEV-HC dsRNA), tampoco produjo ningún efecto sobre la infección del virus y no bloqueó la formación de lesiones locales (Fig 2C) También se realizaron experimentos similares a los descritos anteriormente, pero utilizando el huésped hiperseπsible Capucum chínense en vez de N. tahacum, con el mismo resultado de bloqueo completo de la infección, sólo en el caso de la coinoculacion con el dsRNA homólogo Por lo tanto, la infección por PMMoV se puede bloquear de forma especifica con al menos la molécula 54-kDa dsRNA y en al menos dos huéspedes locales pertenecientes a distintos géneros de plantas
EJEMPLO 5
Aplicación directa de diferentes moléculas de ds NA derivadas de PMMoV en un huésped sistémico.
Se realizaron también experimentos para demostrar la capacidad de la molécula 54-kDa dsRNA de interferir con la infección de PMMoV en un huésped sistémico. Para ello, se utilizaron plantas de N benthamiana, que fueron inoculadas con las mezclas de PMMoV mas cada uno de los productos de transcripción derivados de PMMoV y descritos anteriormente. Además, se incluyeron en los experimentos moléculas de cDNA obtenidas mediante PCR y correspondientes a la misma región 54K del virus que los productos RNA sintetizados in vitro en la reacción de transcripción (54-kDa cDNA), según se ha descrito anteriormente.
A los 7 dpi, todas las plantas inoculadas con las mezclas de PMMoV mas las moléculas de ssRNA sentido o antisentido, o las moléculas de cDNA, estaban infectadas y mostraban síntomas sistémicos, excepto las plantas coinoculadas con la mezcla de PMMoV mas 54-kDa dsRNA, que quedaron protegidas frente a la infección viral y no mostraron síntomas de la enfermedad. De forma consistente con estos resultados, el análisis mediante Northern blot de los RNAs totales extraídos de las hojas inoculadas y sistémicas a los 7 dpi, mostró que las plantas coinoculadas en presencia de moléculas ssRNAs sentido o antisentido, o en presencia de moléculas cDNA homologas al virus, acumularon el RNA de sentido positivo de PMMoV a niveles comparables a los mostrados por las plantas control (Fig. 3 A). Sin embargo, la multiplicación de PMMoV fue bloqueada en las hojas inoculadas, cuando la molécula usada en la coinoculación fue 54-kDa dsRNA, y el virus tampoco se acumuló a niveles detectables en las hojas superiores de esas plantas. Además, en esas muestras, tampoco se detectó la acumulación de RNA de PMMoV de sentido negativo. Para corroborar la interferencia mediada por 54-kDa dsRNA en la infección de
PMMoV, se realizaron más de 10 ensayos independientes con 22 plantas. En la mayoría de casos, las plantas se mantuvieron libre de síntomas hasta que su ciclo vital se completó, no acumulándose RNA viral a niveles detectables Sin embargo, en algunos casos, el virus sobrepasó la protección conferida por 54-kDa dsRNA y las plantas mostraron síntomas de la enfermedad, aunque siempre con un retraso de entre 1 y 3 semanas, comparado con las plantas control. El RN'A de PMMoV se acumuló en las hojas superiores de estas plantas a niveles moderados
En todos estos experimentos y de forma repetida, se observaron bandas de hibridación correspondientes a moléculas 54-kDa dsRNA parcialmente desnaturalizadas, en el análisis de Northern blot de las preparaciones de RNA total, obtenidas a partir de las hojas de plantas inoculadas con virus más 54-kDa dsRNA, o inoculadas sólo con 54-kDa dsRNA, según se comprobó al compararse estas bandas de hibridación con el comportamiento de la preparación de 54-kDa dsRNA usada en el inoculo e igualmente analizada. Para determinar el origen de esas bandas de hibridación, correspondientes a moléculas 54-kDa dsRNA, se realizaron numerosos experimentos. El análisis de la cinética de degradación de esas moléculas confirmó que el dsRNA usado en el inoculo se mantiene relativamente estable y persiste en la hoja inoculada a niveles detectables, al menos hasta 7 dpi.
La interferencia sobre la infección de PMMoV mostrada por la molécula 54-kDa dsRNA que, como se ha descrito anteriormente, corresponde a la región 54-kDa del gen que codifica la replicasa de PMMoV, pudiera reflejar algún tipo de efecto inhibitorio de esta secuencia en particular, sobre la infección del virus. Por consiguiente, se determinó si otras moléculas de dsRNA, derivadas de una región diferente del genoma de PMMoV, pudieran también bloquear específicamente la infección de PMMoV, al introducirse simultáneamente con el virus en la planta. Para llevar a cabo este experimento, se obtuvo un dsRNA correspondiente a un fragmento de 596 bp del gen 30-kDa de la proteína de movimiento de PMMoV (30-kDa dsRNA) como se ha descrito anteriormente. El efecto sobre la infección viral de este 30-kDa dsRNA se comparó con el efecto conocido ocasionado por el 54-kDa dsRNA o, también, con el efecto ocasionado por un dsRNA de origen viral pero no homólogo a PMMoV, como el obtenido a partir del fragmento de 1483 bp correspondiente a la mayor parte del gen HC de TEV (TEV-HC dsRNA), como se ha descrito anteriormente. La presencia de 30-kDa dsRNA en el inoculo, al igual que la de 54-kDa dsRNA, bloqueó la expresión de síntomas virales en N benthamiana, a tiempos en donde las plantas control mostraron síntomas de infección. De forma paralela, no fue detectada la acumulación de RNA viral en el RNA extraído de esas plantas, a partir del tejido correspondiente a hojas superiores (Fig. 3B) Sin embargo, la inoculación de PMMoV conjuntamente con TEV- HC dsRNA, un dsRNA no homólogo, no tuvo ningún efecto en la expresión de los síntomas virales y el RNA de PMMoV se acumuló en las hojas superiores de esas plantas al mismo nivel que en las plantas control. Este mismo resultado, de incapacidad de la molécula de dsRNA no homologa, de interferir con la infección de PMMoV, se ha observado también empleando diferentes fragmentos de dsRNA de origen no viral y con longitudes variables. Por tanto, la interferencia con la infección de PMMoV se produce al usar cualquier molécula de dsRNA, siempre que comparta similitud de secuencia con el virus.
EJEMPLO 6 Aplicación directa de moléculas de dsRNA derivadas de diferentes virus.
Se realizaron experimentos para determinar si el uso de moléculas de dsRNA, pudiera constituir una estrategia de aplicación general para proteger a las plantas frente a la infección por otros virus distintos a PMMoV. Para ello se utilizaron virus no relacionados con el género tobamovirus como TEV, que pertenece a la familia Potyviridae y AMV que forma parte de la familia Bromoviridae y se estudió el efecto de distintos dsRNA derivados de estos virus, en la infección por su correspondiente virus en un huésped sistémico.
Se utilizaron plantas de N tabacum, que se inocularon únicamente con transcritos infectivos SP6 correspondientes a un clon cDNA de TEV, o con una mezcla que contenía los anteriores transcritos RNA de TEV más la dsRNA homologa TEV-HC dsRNA. A las dos semanas después de la inoculación, las plantas inoculadas con la mezcla no mostraron ni lesiones localizadas en la hoja inoculada ni síntomas sistémicos en las hojas superiores, mientras que las plantas inoculadas únicamente con TEV mostraron síntomas de la enfermedad a los 6 dpi. La Figura 4A muestra un análisis mediante Northern blot, de los RNAs totales extraídos de dos plantas por tratamiento, a los 6 dpi. El RNA de TEV se acumuló tanto en las hojas inoculadas como en las hojas sistémicas de las plantas control. Sin embargo, los niveles de RNA virales estuvieron por debajo del límite de detección en las plantas inoculadas con la mezcla de virus y dsRNA homólogo Como se ha descrito anteriormente, en este caso también se observaron bandas de hibridación de intensidad variable, correspondientes a TEV-HC dsRNA, en el RNA total extraído de las hojas inoculadas con virus más dsRNA. De forma similar, se inocularon plantas de N. benthamiana, por un lado, con una mezcla de transcritos T7 de los RNAs genómicos 1, 2 y 3 de AMV y la proteína de la cápsida de AMV, ya que una de las características distintivas de los alfamovirus es que una mezcla de los tres RNAs genómicos del virus no es infectiva en plantas, al menos que se añada al inoculo la proteína de la cápsida del virus (Bol 1999) y, por otro lado, se inocularon con esta mezcla mencionada anteriormente más un dsRNA homólogo, que abarca un fragmento de 1 124 nucleótidos del RNA 3 de AMV (AMV-3 dsRNA). La Figura 4B muestra un análisis Northern blot de RNAs totales extraídos a partir de las hojas inoculadas o sistémicas de esas plantas, utilizando una sonda que reconoce el RNA 3 genómico y el RNA 4 subgenómico de AMV. Se emplearon como controles en el gel, los RNAs 3 y 4 de AMV transcritos in vitro y el AMV-3 dsRNA usados en el inoculo. A los 6 dpi, las plantas inoculadas con la mezcla de los RNAs de AMV más AMV-3 dsRNA no mostraron síntomas de la enfermedad, mientras que las plantas inoculadas únicamente con los RNAs de AMV .fueron susceptibles a la infección viral, mostrando síntomas sistémicos. En consonancia con los síntomas observados, no se detectó acumulación de los RNAs de AMV en las plantas inoculadas con la mezcla de los RNAs genómicos de AMV más AMV-3 dsRNA, pero, por el contrario, en las plantas inoculadas únicamente con los RNAs de AMV, se acumularon los RNAs 3 y 4 del virus tanto en tejido de hojas inoculadas como en tejido de hojas de la zona superior de la planta. Por tanto, se puede interferir de forma específica con la infección de cualquier virus, mediante la aplicación de cualquier molécula de dsRNA, siempre que comparta similitud de secuencia con el virus. EJEMPLO 7
Interferencia específica mediada por moléculas de dsR.N'A dependiente de tamaño.
Se realizaron experimentos para determinar si ¡a capacidad de interferir con las infecciones virales en plantas de forma especifica, mediante la aplicación de moléculas de dsRNA, es dependiente del tamaño de la molécula de dsRNA ya que, como ha quedado puesto de manifiesto anteriormente, tanto la molécula 54-kDa dsRNA co o la 30-kDa dsRNA (de 977 bp y 596 bp, respectivamente) resultaron eficaces en la protección de las plantas frente a la infección por PMMoV. Para ello, se utilizaron plantas de N. benthamiana, que fueron inoculadas con la mezcla de PMMoV mas un dsRNA más pequeño, de 315 bp, derivado de PMMoV y correspondiente aproximadamente a la tercera parte de la longitud de 54-kDa dsRNA (1/3 54-kDa dsRNA), obtenido como se ha descrito anteriormente. Al contrario que en los casos de 54-kDa dsRNA y 30-kDa dsRNA, descritos anteriormente, la coinoculación de PMMoV mas la molécula 1/3 54-kDa dsRNA, tuvo sólo un efecto marginal sobre la infección por el virus. La aparición de síntomas virales en estas plantas se retrasó en 1-2 días, comparado con la manifestación de los síntomas en plantas inoculadas solamente con virus, y el RNA viral se acumuló a niveles similares a los del control (Fig. 3C).
Por tanto, la capacidad de dsRNA de interferir específicamente con la infección viral es dependiente de la longitud de la molécula de dsRNA empleada.
EJEMPLO 8
Interferencia específica mediada por moléculas de dsRNA en el interior de la planta.
Se realizaron también experimentos para determinar si la coinoculación de moléculas de dsRNA junto con partículas virales o RNA viral infectivo, para prevenir de manera específica la infección de diferentes virus de plantas, se debe a la existencia de algún tipo de interacción inhibitoria que acontece antes de que el virus o el RNA viral penetre en la célula. Para ello, se ha utilizado un ensayo de expresión transitoria mediado por Agrobacterium (agroinfiltración, Vaucheret, C. R- Acad. Sci. III 3 17, 3 10 (1994) con objeto de ensayar si las moléculas de dsRNA inhiben la infección viral al expresarse directamente dentro de la célula vegetal. Primero, se clonó la región 54-kDa completa y secuencias flanqueantes de PMMoV (nucleótidos 341 1-5016), en orientación sentido o antisentido, bajo el control del promotor constitutivo 35S de CaMV en un vector binario, como se ha descrito anteriormente Después, se mezclaron en una proporción 1 1 ios cultivos de A tumefacíais portadores de los vectores que expresan 54-kDa RNA sentido o antisentido y se coinfiltrό la mezcla en hojas de N. benthamiana Como control, se agroinfiltraron por separado plantas con los cultivos portadores sólo de 54-kDa ssRNA sentido o antiseπtido A los 4 días después de la agroinfiltración, las plantas fueron inoculadas con PMMoV directamente sobre la hojas infiltradas. En tres experimentos independientes, las totalidad de las plantas expresando de forma transitoria, bien 54-kDa RNA sentido o bien 54-kDa RNA antisentido, mostraron síntomas de la enfermedad en las hojas superiores a 10 dpi, mientras que las plantas agroinfiltradas con los vectores que expresan la mezcla de 54-kDa RNA sentido y antisentido no mostraron síntomas, o la manifestación de éstos se retrasó entre 1 a 3 semanas, comparado con los controles. La Figura 5 muestra un análisis de Northern blot de la acumulación del RNA de PMMoV, en preparaciones de RNA total extraídas de dos individuos por tratamiento a los 15 dpi. En las hojas inoculadas de las plantas infiltradas con la mezcla de cadenas ssRNA sentido y antisentido, las cuales tiene capacidad para anillar una con la otra y formar una estructura de dsRNA en el interior de la célula, el RNA de PMMoV no se acumuló, o lo hizo a niveles muy reducidos, mientras que nunca se detectó RNA de PMMoV en las hojas superiores de esas plantas. Por el contrario, ni 54-kDa RNA sentido, ni 54-kDa RNA antisentido, expresados por Agrobacterium, interfirió con la acumulación de PMMoV, tanto en las hojas inoculadas como en las hojas sistémicas de las plantas control.
Por tanto, la interferencia específica con la infección viral mediada por moléculas de dsRNA homólogo opera en el interior celular y no es motivada por algún otro efecto inhibitorio que tenga lugar in vitro. Descripción detallada de las figuras
Fig. 1. Representación esquem tica de la localizacioπ en el genoma de PMMoV. TEV y
.AMV de las secuencias virales que, tras su transcripción /// \ ιtιo a partir de los respectivos clones e hibridación de los productos de transcripción ssRNA, dieron lugar a los distintos dsRNAs utilizados en los ejemplos de interferencia con la infección viral mediada por dsRNA
Fig. 2. Interferencia específica con la infección de PMMoV mediante dsRNA en un huésped local.
Respuesta de N. tabacum cv Xaπthi nc a PMMoV inoculado sólo (mitad izquierda de las hojas) o inoculado junto con 54-kDa dsRNA (A), 54-kDa ssRNA antisentido (As)
(B), TEV-HC dsRNA (C) o tampón de transcripción in vitro (D) (mitad derecha de las hojas, respectivamente) Las hojas se fotografiaron a los 5 dpi Se indican algunas lesiones locales (cabeza de flechas) en (B), (C) y (D)
Fig. 3. Interferencia mediada por dsRNA con la infección de PMMoV en un huésped sistémico
(A) La interferencia con la infección de PMMoV es específica de dsRNA. Análisis Northern blot de RNA total extraído de hojas inoculadas (líneas 1-6) u hojas sistémicas superiores (líneas 7-13) de N. benthamiana Las plantas se inocularon bien con tampón sólo (Mock), con PMMoV sólo (-), o con PMMoV más 54-kDa dsRNA, 54-kDa RNA sentido (S), 54-kDa JΛNA antisentido (As) o 54-kDa cDNA, según se indica. Los tejidos foliares se recogieron a los 7 dpi, excepto para las muestras en líneas 12 y 13, que fueron tomadas a los 21 dpi. Las muestras en líneas 2, 8 y 12 se tomaron de la misma planta que no mostró síntomas de enfermedad a lo largo de su ciclo de vida. La muestra en la línea 13 se tomó de otro individuo que mostró síntomas de enfermedad a los 21 dpi El 54-kDa dsRNA empleado en el inoculo se cargó en la línea 14 con propósitos comparativos
(B) La interferencia con la infección de PMMoV se produce mediante diferentes dsRNAs homólogos Se extrajo RNA a partir de tejido de hojas superiores de plantas inoculadas con PMMoV sólo (-), o con PMMoV más 54-kDa dsRNA, 30-kDa dsRNA o TEV HC-dsRNA a los 7 dpi, según se indica
(C) La interferencia con la infección de PMMoV requiere una longitud mínima de dsRNA Se extrajo RNA a partir de tejido de hoja inoculada (líneas l y 4) o a partir de tejido de hojas superiores (lineas 2, 3, 5 y 6) de plantas infectadas con PMMoV sólo, o con PMMoV más 1/3 54-kDa dsRNA a los 7 (líneas I , 2, 4 y 5) o a los 12 dpi (lineas 3 y 6). El 1/3 54-kDa dsRNA utilizado en el inoculo se cargó en la línea 7 con propósitos comparativos Cantidades equivalentes ( 1 μg) de cada muestra de RNA se fraccionaron por electroforésis en gel de agarosa al 1% en (A), (B) y (C), y posteriormente, se utilizó una sonda marcada con digoxigenina correspondiente al 54-kDa RNA. Se indican en los márgenes las posiciones del RNA de PMMoV y las especies de RNA, parcialmente desnaturalizadas, derivadas de dsRNA usado en el inoculo. En la parte inferior se indican las bandas del RNA ribosómico 25S teñidas con bromuro de etidio, como control de carga de los geles. Fig. 4. Interferencia mediada por dsRNA con la infección de diferentes virus de plantas
(A) Interferencia mediada por dsRNA frente a TEV.. Análisis Northern blot de RNA total extraído a partir de hojas inoculadas (líneas 1-4) o sistémicas (líneas 5-8) de plantas de N tabacum inoculadas con TEV sólo o con TEV más TEV-HC dsRNA a los 6 dpi.
Cantidades equivalentes (5 μg) de cada muestra de RNA se fraccionaron por electroforésis en gel de agarosa al 1% y el filtro se híbrido con una sonda de RNA marcada con digoxigenina específica frente a TEV. Se indican en los márgenes las posiciones del RNA de TEV y las especies de RNA, parcialmente desnaturalizadas, derivadas de dsRNA usado en el inoculo.
(B) Interferencia mediada por dsRNA frente a AMV. Análisis Northen blot de RNA total extraído a partir de hoja inoculada (líneas 1, 3, y 4) o de hoja sistémica (líneas 6 y 7) de plantas de N. benthamiana inoculadas con RNAs 1, 2 y 3 de AMV sólo (-) o con esta mezcla más AMV-3 dsRNA. M, RNA extraído a partir de planta inoculada con buffer. Los RNAs 3 y 4 de AMV (linea 2) y AMV-3 dsRNA (línea 5) se cargaron en el gel con propósitos comparativos.
Cantidades equivalentes (l μg) de cada muestra de RNA se fraccionaron por electroforésis en gel de agarosa al 1,2% y el filtro se hibridó con una sonda de RNA marcada con digoxigenina específica frente al RNA 3 de AMV. Se indican en los márgenes las posiciones de los RNAs 3 y 4 de AMV y las especies de RNA, parcialmente desnaturalizadas, derivadas de dsRNA usado en el inoculo. En la parte inferior se indican las bandas del RNA ribosómico 25S teñidas con bromuro de etidio, como control de carga de los geles.
Fig. 5. La expresión transitoria de 54-kDa dsRNA mediada por Agrobacterium interfiere con la infección de PMMoV' (A) Plantas de N. benthamiana se infiltraron inicialmente, según se indica en la figura, con cultivos de A. tumefaciens portadores del vector de expresión 54-kDa RNA sentido
(S) o antisentido (As), o bien con una mezcla de ambos cultivos (S+As 54-kDa RNAs).
Después de 4 días, las hojas agroinfiltradas de estas plantas se inocularon con PMMoV o con tampón (M). (B) Después de otros 15 días, se ensayó mediante análisis Northern blot la acumulación del RNA de PMMoV en hojas inoculadas (líneas 1-7) y en hojas superiores (líneas 8-
14) de dos plantas por tratamiento.
Cantidades equivalentes (lμg) de cada muestra de RNA se fraccionaron por electroforésis en gel de agarosa al 1% y el filtro se hibridó con una sonda de RNA marcada con digoxigenina específica frente al 54-kDa RNA. Se indica en el margen la posición del RNA de PMMoV. En la parte inferior se indican las bandas del RNA ribosómico 25 S teñidas con bromuro de etidio, como control de carga de los geles.

Claims

Reivindicaciones l Un método para degradar de forma específica cualquier secuencia nucleotídica de RNA de cadena sencilla (ssRNA), preferentemente RNA viral, en las células de cualquier planta
2. Un método, de acuerdo con la reivindicación 1, consistente en la aplicación directa de moléculas de RNA de doble cadena (dsRNA), con suficiente similitud de secuencia con cualquier fragmento del ssRNA que se quiere degradar en la planta tratada.
3. La aplicación directa de dsRNA exógeno, de acuerdo con la reivindicación 2, en cualquier tejido de la planta, preferentemente hoja, por cualquier procedimiento, preferentemente inoculación o infiltración.
4. Un dsRNA, de acuerdo con las reivindicaciones 2 y 3, de suficiente tamaño, preferentemente de más de 500 pares de bases, obtenido por cualquier procedimiento natural o sintético, preferentemente mezclando e hibridando transcritos de ssRNA complementarios producidos mediante transcripción in vitro.
5. Un método, de acuerdo con las reivindicaciones 1, 2, 3 y 4, para degradar cualquier ssRNA de virus en cualquier planta, mediante la aplicación directa de dsRNA que posea similitud de secuencia con cualquier fragmento del ssRNA viral.
6. Un método, de acuerdo con las reivindicaciones 1, 2, 3 y 4, para degradar cualquier RNA mensajero (mRNA) de cualquier gen endógeno o transgén de la planta, mediante la aplicación directa de dsRNA, que posea similitud de secuencia con cualquier fragmento del gen o transgéπ dianas.
7. Un método, de acuerdo con las reivindicaciones anteriores, para silenciar la expresión de cualquier gen de virus en las células de una planta, consistente en la aplicación directa de dsRNA en las células de la planta, que posea suficiente similitud de secuencia con cualquier fragmento del gen viral que se quiere silenciar en la planta tratada.
8. Un método, de acuerdo con las reivindicaciones anteriores, para silenciar a nivel posttranscripcional la expresión de cualquier gen endógeno o traπsgéπ en las células de una planta, consistente en la aplicación directa de dsRNA en las células de la planta, que posea suficiente similitud de secuencia con cualquier fragmento del gen endógeno o transgén que se quiere silenciar en la planta tratada.
9. Un método, de acuerdo con las reivindicaciones anteriores, por el cual el silenciamiento de un gen de expresión transitoria, preferentemente un gen de virus, protege la planta de la enfermedad producida por el virus.
10. Un método, de acuerdo con las reivindicaciones anteriores, por el cual el silenciamiento de un gen endógeno de la planta modifica un carácter fenotípico constitutivo y observable de la planta.
11. Un método, de acuerdo con las reivindicaciones anteriores, por el cual el silenciamiento de un transgén introducido por ingeniería genética en la planta, modifica un carácter fenotípico incorporado y observable de la planta
PCT/ES2002/000319 2001-07-06 2002-06-28 Un método para interferir con la infección de virus en plantas WO2003004649A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02743278A EP1416049A1 (en) 2001-07-06 2002-06-28 Method of interfering with a virus infection in plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200101593A ES2192945B1 (es) 2001-07-06 2001-07-06 Un metodo para interferir con la infeccion de virus en plantas.
ESP200101593 2001-07-06

Publications (1)

Publication Number Publication Date
WO2003004649A1 true WO2003004649A1 (es) 2003-01-16

Family

ID=8498334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000319 WO2003004649A1 (es) 2001-07-06 2002-06-28 Un método para interferir con la infección de virus en plantas

Country Status (3)

Country Link
EP (1) EP1416049A1 (es)
ES (1) ES2192945B1 (es)
WO (1) WO2003004649A1 (es)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168471A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 緑色組織特異的発現活性を有するプロモーター
JP2005168472A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 葉特異的発現活性を有するプロモーター
JP2005168470A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 花粉特異的発現活性を有するプロモーター
WO2011021171A1 (en) 2009-08-21 2011-02-24 Beeologics, Llc Preventing and curing beneficial insect diseases via plant transcribed molecules
WO2014106837A2 (en) 2013-01-01 2014-07-10 A. B. Seeds Ltd. ISOLATED dsRNA MOLECULES AND METHODS OF USING SAME FOR SILENCING TARGET MOLECULES OF INTEREST
US10334848B2 (en) 2014-01-15 2019-07-02 Monsanto Technology Llc Methods and compositions for weed control using EPSPS polynucleotides
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10405539B2 (en) 2015-06-19 2019-09-10 The University Of Queensland Composition
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10597676B2 (en) 2013-07-19 2020-03-24 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
EP3231872B1 (en) * 2010-03-08 2020-05-06 Monsanto Technology LLC Polynucleotide molecules for gene regulation in plants
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
US10676743B2 (en) 2013-12-20 2020-06-09 The University Of Queensland Plant-protecting RNAi compositions comprising plant-protecting double-stranded RNA adsorbed onto layered double hydroxide particles
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US10927374B2 (en) 2013-11-04 2021-02-23 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US10934555B2 (en) 2012-05-24 2021-03-02 Monsanto Technology Llc Compositions and methods for silencing gene expression
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
US11879130B2 (en) 2017-09-11 2024-01-23 Altria Client Services Llc Compositions and methods for producing tobacco plants and products having reduced or eliminated suckers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2584960A1 (en) 2004-10-21 2006-05-04 Charles L. Niblett Methods and materials for conferring resistance to pests and pathogens of plants
WO2010128465A1 (en) 2009-05-05 2010-11-11 Beeologics, Llc Prevention and treatment of nosema disease in bees
US9840715B1 (en) 2011-09-13 2017-12-12 Monsanto Technology Llc Methods and compositions for delaying senescence and improving disease tolerance and yield in plants
CA2848680C (en) 2011-09-13 2020-05-19 Monsanto Technology Llc Methods and compositions for weed control
BR112014005979A8 (pt) 2011-09-13 2017-09-12 Monsanto Technology Llc Métodos e composições quimicas agricolas para controle de planta, método de redução de expressão de um gene ppg oxidase em uma planta, cassete de expressão microbiana, método para fazer um polinucleotídeo, método de identificação de polinucleotídeos úteis na modulação de expressão do gene ppg oxidase e mistura herbicida
EP3296402B1 (en) 2011-09-13 2020-04-15 Monsanto Technology LLC Methods and compositions for weed control
US9920326B1 (en) 2011-09-14 2018-03-20 Monsanto Technology Llc Methods and compositions for increasing invertase activity in plants
EP2908620A4 (en) 2012-10-18 2016-07-27 Monsanto Technology Llc METHODS AND COMPOSITIONS FOR CONTROLLING PHYTOPARASITES
US10000767B2 (en) 2013-01-28 2018-06-19 Monsanto Technology Llc Methods and compositions for plant pest control
US10612019B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US20140283211A1 (en) 2013-03-14 2014-09-18 Monsanto Technology Llc Methods and Compositions for Plant Pest Control
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032619A1 (en) * 1997-12-23 1999-07-01 The Carnegie Institution Of Washington Genetic inhibition by double-stranded rna
WO1999061631A1 (en) * 1998-05-26 1999-12-02 Novartis Ag Dsrna-mediated regulation of gene expression in plants
WO2000044914A1 (en) * 1999-01-28 2000-08-03 Medical College Of Georgia Research Institute, Inc. Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2047001A (en) * 1999-11-24 2001-06-04 Dna Plant Technology Corporation Methods of inhibiting plant parasitic nematodes and insect pests by expression of nematode and insect specific double-stranded rna in plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032619A1 (en) * 1997-12-23 1999-07-01 The Carnegie Institution Of Washington Genetic inhibition by double-stranded rna
WO1999061631A1 (en) * 1998-05-26 1999-12-02 Novartis Ag Dsrna-mediated regulation of gene expression in plants
WO2000044914A1 (en) * 1999-01-28 2000-08-03 Medical College Of Georgia Research Institute, Inc. Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATERHOUSE ET AL.: "Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA", PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 13959 - 13964, XP002114472 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168472A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 葉特異的発現活性を有するプロモーター
JP2005168470A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 花粉特異的発現活性を有するプロモーター
JP4505627B2 (ja) * 2003-12-15 2010-07-21 独立行政法人農業生物資源研究所 緑色組織特異的発現活性を有するプロモーター
JP4505626B2 (ja) * 2003-12-15 2010-07-21 独立行政法人農業生物資源研究所 花粉特異的発現活性を有するプロモーター
JP4505628B2 (ja) * 2003-12-15 2010-07-21 独立行政法人農業生物資源研究所 葉特異的発現活性を有するプロモーター
JP2005168471A (ja) * 2003-12-15 2005-06-30 National Institute Of Agrobiological Sciences 緑色組織特異的発現活性を有するプロモーター
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
WO2011021171A1 (en) 2009-08-21 2011-02-24 Beeologics, Llc Preventing and curing beneficial insect diseases via plant transcribed molecules
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US11812738B2 (en) 2010-03-08 2023-11-14 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
EP3231872B1 (en) * 2010-03-08 2020-05-06 Monsanto Technology LLC Polynucleotide molecules for gene regulation in plants
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US10934555B2 (en) 2012-05-24 2021-03-02 Monsanto Technology Llc Compositions and methods for silencing gene expression
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
WO2014106837A2 (en) 2013-01-01 2014-07-10 A. B. Seeds Ltd. ISOLATED dsRNA MOLECULES AND METHODS OF USING SAME FOR SILENCING TARGET MOLECULES OF INTEREST
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10597676B2 (en) 2013-07-19 2020-03-24 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US11377667B2 (en) 2013-07-19 2022-07-05 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10927374B2 (en) 2013-11-04 2021-02-23 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10676743B2 (en) 2013-12-20 2020-06-09 The University Of Queensland Plant-protecting RNAi compositions comprising plant-protecting double-stranded RNA adsorbed onto layered double hydroxide particles
US10334848B2 (en) 2014-01-15 2019-07-02 Monsanto Technology Llc Methods and compositions for weed control using EPSPS polynucleotides
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
US11124792B2 (en) 2014-07-29 2021-09-21 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
US10405539B2 (en) 2015-06-19 2019-09-10 The University Of Queensland Composition
US11879130B2 (en) 2017-09-11 2024-01-23 Altria Client Services Llc Compositions and methods for producing tobacco plants and products having reduced or eliminated suckers

Also Published As

Publication number Publication date
ES2192945A1 (es) 2003-10-16
ES2192945B1 (es) 2005-03-01
EP1416049A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
WO2003004649A1 (es) Un método para interferir con la infección de virus en plantas
ES2624549T3 (es) Métodos y medios para obtener fenotipos modificados
Khalid et al. Small RNA based genetic engineering for plant viral resistance: application in crop protection
Marathe et al. RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing
Qu et al. The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step
Hameed et al. RNAi-mediated simultaneous resistance against three RNA viruses in potato
Agüero et al. Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants
US10781454B2 (en) Citrus tristeza virus based vectors for foreign gene/s expression
Jan et al. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance
Tenllado et al. Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing
Bian et al. Analysis of silencing escape of tomato leaf curl virus: an evaluation of the role of DNA methylation
BRPI0611815B1 (pt) Método para aumentar a resistência da planta ao vírus do mosaico da cana-de-açúcar e plantas resistentes ao vírus do mosaico da cana-de-açúcar
Batuman et al. Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3′ UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in citrus
Carpino et al. RNA2‐encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post‐transcriptional gene silencing
Rizhsky et al. Inducible expression of bacterio-opsin in transgenic tobacco and tomato plants
Germundsson et al. P1-and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance
Gammelgård et al. Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencing suppression
Pignatta et al. Quantitative analysis of efficient endogenous gene silencing in Nicotiana benthamiana plants using tomato bushy stunt virus vectors that retain the capsid protein gene
ES2396248T3 (es) Construcciones de P15 en horquilla y su utilización
Roy et al. Chimeric cDNA sequences from Citrus tristeza virus confer RNA silencing-mediated resistance in transgenic Nicotiana benthamiana plants
ITRM20080396A1 (it) Pianta transgenica che esprime il genoma di cacao swollen shoot virus
Rezk et al. Transgene-mediated RNA silencing of TYLCV genes affecting the accumulation of viral DNA in plants
ES2367073T3 (es) Métodos y medios para obtener fenotipos modificados.
Sonoda et al. Evaluation of virus resistance conferred by the NSs gene sequences from Tomato spotted wilt virus in transgenic plants
Fei Investigating RNA silencing-mediated epigenetic modifications in virus-infected plants

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2003521672

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002743278

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002743278

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP