WO2003004508A1 - Process for production of saccharide oxazoline derivatives - Google Patents

Process for production of saccharide oxazoline derivatives Download PDF

Info

Publication number
WO2003004508A1
WO2003004508A1 PCT/JP2002/006575 JP0206575W WO03004508A1 WO 2003004508 A1 WO2003004508 A1 WO 2003004508A1 JP 0206575 W JP0206575 W JP 0206575W WO 03004508 A1 WO03004508 A1 WO 03004508A1
Authority
WO
WIPO (PCT)
Prior art keywords
protected
sugar
group
protecting group
residue
Prior art date
Application number
PCT/JP2002/006575
Other languages
French (fr)
Japanese (ja)
Inventor
Shin-Ichiro Shoda
Masaya Fujita
Masako Suenaga
Kenji Saito
Original Assignee
Seikagaku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corporation filed Critical Seikagaku Corporation
Priority to EP02738865.1A priority Critical patent/EP1405857B1/en
Priority to US10/482,678 priority patent/US20040176588A1/en
Publication of WO2003004508A1 publication Critical patent/WO2003004508A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H9/00Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
    • C07H9/06Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing nitrogen as ring hetero atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a sugar oxazoline derivative.
  • sugar oxazoline derivatives have attracted attention as substrates for sugar chain synthesis using sugar chain-related enzymes, and methods for obtaining sugar oxazoline derivatives are being studied.
  • tetraethylammonium chloride was used as a nucleophile and sodium bicarbonate was used as an acid scavenger in an acetonitrile solution of N-acetyl-3,4,6-tri-0-acetyl-hydarcosaminyl chloride.
  • JP-A-9-30888 a method of producing a bicyclic sugar oxazoline derivative by reacting is used (JP-A-9-30888).
  • JP-A-9-30888 a method of producing a bicyclic sugar oxazoline derivative by reacting is used (JP-A-9-30888).
  • JP-A-9-30888 a method of producing a bicyclic sugar oxazoline derivative by reacting is used (JP-A-9-30888).
  • JP-A-9-30888
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using metal fluoride as a reaction reagent, the fluoride exhibits both nucleophilicity and acid-capturing action, and the sugar oxazoline derivative It was found that the synthesis of the compound progressed, and that the removal of the fluoride was easy, and the present invention was completed.
  • the present invention provides a method for producing a sugar oxazoline derivative represented by the following general formula (2), which comprises reacting an acylamino sugar represented by the following general formula (1) with a metal fluoride.
  • at least one of R 2 and R 3 and at least one of R 4 and R 5 are H.
  • R 1 R 2 , RRR 5 and R 6 are the same as described above.
  • the present invention comprises reacting an acylamino sugar represented by the following general formula (1) with a metal fluoride, and then removing at least a part of the protecting group of the obtained sugar oxazoline derivative.
  • This is a method for producing the sugar oxazoline derivative represented by the formula (3).
  • R 2 , R 3 , 4 15 and 16 are each independently H, N 3 , OH protected by a protecting group, NH 2 protected by a protecting group, and Y—R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or C ⁇ OH is present, a monosaccharide or a group in which those groups are protected by a protecting group. Which are the residues of oligosaccharides). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
  • R 2, R ⁇ R 4, 11 5 and 1 6 are each independently, H, N 3, which may be protected by a protective group OH, and good NH 2, be protected by a protecting group, Y—R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when ⁇ H, NH 2 or CO OH is present, those groups are protected by a protecting group. A monosaccharide or oligosaccharide residue which may be protected). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
  • the metal fluoride is preferably an alkali metal fluoride.
  • the method for producing the sugar oxazoline derivative represented by the general formula (2) of the present invention is characterized by reacting the acylamino sugar represented by the general formula (1) with a metal fluoride.
  • the acylamino sugar represented by the general formula (1) is not particularly limited depending on the origin and origin of the substance, and is necessary for those obtained from nature, those synthesized by genetic engineering using animal cells, microorganisms, etc. And the introduction of protecting groups in the usual way Can be used.
  • X can be selected from fluorine, chlorine, bromine and iodine classified as the same halogen, and chlorine is particularly preferable.
  • R 2, R 3, R 4 , R 5 and R 6 are each defined above in H, N 3, OH was protected by a protective group, NH 2 protected by a protecting group, YR Y (Y is 0 or NH 7 or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or COOH is present, a group of the monosaccharide or the oligosaccharide whose group is protected by a protecting group. Residue). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H.
  • Residues of monosaccharide or oligosaccharide of R 7 are usually those that have a residue at the 1-position of the original end instead of 1-position or oligosaccharide monosaccharide.
  • the constituent sugar of the monosaccharide and the oligosaccharide may be an amino sugar or a sugar acid or a derivative thereof.
  • the monosaccharide D-glucosamine, D-galactosamine, D-mannosamine, D-galactose, D-darucose, D-mannose, D-glucuronic acid, L-iduronic acid and derivatives thereof are preferable.
  • Glycosaminoglycans having a repeating structure of disaccharide units as a basic skeleton and derivatives thereof are preferred. That is, a disaccharide or glycosaminodalican in which the sugar residue at the reducing end has the structure of a monosaccharide described as the above general formula (1) can also be used in the production method of the present invention.
  • the above-mentioned derivatives include those obtained by acetylating NH 2 of the constituent sugars of monosaccharides or oligosaccharides and those obtained by sulfating OH.
  • an oligosaccharide is an oligosaccharide in the ordinary sense composed of two or more monosaccharides, and is usually 2 to 20 or more sugars or 2 to 20 sugars.
  • Substituents selected for R 2 , R 3 , RR 5 and R 6 are actually involved in the oxazoline formation reaction of the present invention. If the functional groups are not qualitatively involved and are presumed to be highly reactive during the oxazoline formation reaction of the present invention as in the ordinary synthesis reaction, it is necessary to prevent these from reacting. For example, a method may be considered in which the target substance is obtained by protecting with a protecting group used in a usual manner before subjecting to the above reaction of the present invention, and removing the protecting group after completion of the reaction. Therefore, in the acylamino sugar represented by the general formula (1), the group presumed to have high reactivity needs to be protected.
  • the protective group is not particularly limited as long as it does not hinder the reaction in the presence of the metal fluoride of the acylamino sugar represented by the general formula (1), but specific examples include an acetyl group, a benzoyl group, Methyl benzoyl group, bivaloyl group, levulinyl group, t-butyloxycarbonyl group, etc., lower alkyl group such as methyl group, ethyl group (usually about 1 to 5 carbon atoms), benzyl group, phenethyl group, etc.
  • Alkylidene groups such as aralkyl groups and isopropylidene groups, and aralkylidene groups such as benzylidene groups, and aryl groups are preferably used.
  • the protective group a lower alkyl group or an aralkyl group is preferably used.
  • the protecting group is appropriately selected according to the type of the group to be protected.A plurality of types of groups may be protected by the same type of protecting group, or a plurality of the same type of group may be protected by a plurality of types. It may be protected by any kind of protecting group.
  • acylamino sugar used in the present invention include the following Examples 1 to 9.
  • Example 1 X: C 1, R 1: CH 3, R 2: 0 CO CH 3, R 3: H, R 4: H, R 5: ⁇ CO CH 3, R 6: 0 CO CH generally a 3
  • An acylamino sugar represented by the formula (1) X: C 1, R 1: CH 3 R 2: OCOCHss R 3: H, R 4: 0 CO CH 3, R 5: H, R 6: ⁇ CO CH 3 a is general formula (1) Asilamino sugar indicated.
  • Example 3) X: C 1, R 1: CH 3, R 2: 0C_ ⁇ _CH 3, R 3: H, R 4: H, R 5:? 0- / - D- galacto Ichisu (0H is Asechiru group ), An acylamino sugar represented by the general formula (1), wherein R 6 : 0 C ⁇ CH 3 .
  • Example 4 X: C 1, R 1: CH 3, R 2: 0- D- glucuronic acid (OH is protected by Asechiru group, and those protected with C00H Gabe Njiru group), R 3: H , R 4 : H, R 5 : OCOCH 3 and R 6 : OCOCH3, an acylamino sugar represented by the general formula (1).
  • Example 5 X: C 1, R 1: CH 3, R 2: ⁇ one D- glucuronic acid (0H are protected by Asechi group, and those protected with C00H Gabe Njiru group),: R 3 : H, R 4 : OCOCH 3 , R 5 : H, 6 : 0 COCH 3 , an acylamino sugar represented by the general formula (1).
  • Example 6 X: C 1, R 1: CH 3, R 2: 0- Fei _L- Izuron acid (0H is protected by Asechiru group, and those protected with C00H Gabe Njiru group), R 3: H, R 4: 0C0CH 3, R 5: H, R 6: ⁇ sheet Ruamino sugar represented by 0C0CH 3 a is formula (1).
  • Example 8 X: C 1, R 1: CH 3, R 2: OCOCH 3, R 3: H, R 4: H, R 5: 0- 5-N- Asechiru -D - Darukosamin (OH is at Asechiru group Protected), R 6 : ⁇ An acylamino sugar represented by the general formula (1), which is CO CH 3 .
  • the acylamino sugar shown in Example 1 above protects 0H at positions 3, 4, and 6 of N-acetyl-D-glucosamine, which is a constituent sugar of chitin, with an acetyl group, and converts ⁇ H at position 1 to a chlorine atom. It has been replaced.
  • the acylamino sugars shown in Example 4 above were synthesized from 0H (positions 4 and 6 of hexosamine, positions 2, 3 and 4 of peronic acid) in the disaccharide unit composed of hyaluronic acid peronic acid and hexosamine.
  • the acylamino sugar shown in Example 5 above has the ⁇ H (positions 4 and 6 of hexosamine and the positions 2, 3 and 4 of hexonic acid) in the disaccharide unit composed of peronic acid and hexosamine of chondroitin. It is protected with a cetyl group, the carboxyl group of a peronic acid residue is protected with a benzyl group, and the OH at position 1 of the hexosamine residue is replaced with a chlorine atom.
  • the acylaminosugar shown in Example 6 above is the OH in the disaccharide unit composed of peronic acid and hexosamine of dermatan sulfate (positions 4 and 6 of hexosamine, positions 2, 3, and 4 of peronic acid) Is protected with an acetyl group, the carboxyl group of the peronic acid residue is protected with a benzyl group, and the OH at the 1-position of the hexosamine residue is substituted with a chlorine atom.
  • the metal fluoride used in the production method of the present invention is not particularly limited, but is preferably an alkali metal fluoride, more preferably sodium fluoride, lithium fluoride, rubidium fluoride, or cesium fluoride. And the like.
  • sodium fluoride fluoride is particularly preferred in consideration of handling as a reagent and price.
  • metal fluoride may be used by being held on an inorganic solid carrier.
  • the inorganic solid carrier include alumina, silica gel, magnesium oxide, molecular sieves (for example, Linde 4A (trade name)), clay (for example, montmorillonite), and diatomaceous earth (for example, celite (trade name)).
  • alumina is particularly preferred.
  • the conditions for the reaction between the acylamino bran represented by the general formula (1) and the metal fluoride are as long as the acylamino sugar used in the present invention reacts with the metal fluoride to produce a bicyclic sugar oxazoline derivative.
  • the metal fluoride There is no particular limitation, and those skilled in the art can appropriately set the parameters.
  • the solvent for the reaction is not particularly limited as long as it does not react with the used acylamino sugar and metal fluoride and can dissolve the used amino amino sugar, but it is not limited to acetonitril (CH 3 CN), dimethyl sulfoxide (DMSO), dimethylform Amide (DMF), tetrahydrofuran, xylene and the like are preferred, CH 3 CN, DMSO, and DMF are more preferred, and CH 3 CN is particularly preferred.
  • the reaction conditions such as the amount of the metal fluoride used, the reaction temperature and the reaction time are appropriately set depending on the amount of the acylamino sugar used and the like.
  • the molar ratio of the acylamino sugar to the metal fluoride is preferably 1:
  • the reaction temperature is preferably from room temperature to the boiling point of the solvent, more preferably from 30 to 60 ° C. When the reaction is carried out at the boiling point of the solvent used, a reflux condenser or the like can be used.
  • the reaction time is preferably 0.5 hours to 3 days.
  • a specific example of a method for confirming the completion of the reaction is thin-layer chromatography.
  • the reaction between the acylamino sugar represented by the general formula (1) and the metal fluoride is preferably performed in an atmosphere such as argon or nitrogen in order to avoid a reaction with water.
  • a soxazoline derivative As a method for purifying the target substance, a soxazoline derivative, from the reaction-terminated liquid, it is possible to appropriately select and use a conventional purification method.For example, insoluble substances are removed from the reaction-terminated liquid, and then After removing the water-soluble substance dissolved in the reaction-completed solution by a liquid separation operation, purification by silica gel chromatography, recrystallization or the like can be mentioned.
  • the method of removing the insoluble matter from the reaction-terminated liquid may be any method as long as the insoluble matter (solid) and the solution (liquid) are separated, and a commonly used filtration method using a glass filter, ceramic, or the like can be used.
  • the sugar oxazoline derivative represented by the general formula (2) is obtained by the above method, and at least a part of the protecting group of the obtained sugar oxazoline derivative is removed. It is characterized by being removed.
  • a saccharide-containing oxazoline derivative represented by the general formula (3) can be obtained in which at least a part of the protecting group of the saccharide-containing oxazoline derivative is removed. Removal of the protecting group can be performed according to a conventional method.
  • the sugar oxazoline derivative obtained by the production method of the present invention is considered to be used as a substrate for polymer synthesis utilizing ring-opening polymerization of an oxazoline ring.
  • R 2 to R A sugar oxazoline derivative obtained by using a compound in which at least one of 6 is a monosaccharide or an oligosaccharide (a disaccharide or glycosaminoglycan having a specific structure at the reducing end) utilizes an enzyme-catalyzed polyaddition reaction It is thought that it can be used as a synthetic substrate for glycosaminoglycans.
  • a bicyclic sugar oxazoline derivative having an oxazoline ring at the reducing end of a lactosamine chain containing at least one basic skeleton composed of lactosamine disaccharide is obtained by the production method of the present invention, and the obtained derivative is used as a substrate.
  • Lactosamine chain can be extended by allowing keratanase to act.
  • Hyaluronic acid chains can be extended by the action of the enzyme.
  • chitin or chitosan is obtained by reacting chitinase with dalcosamine having an oxazoline ring obtained by the production method of the present invention or a disaccharide having N-acetylglucosamine or dalcosamine bound to its non-reducing terminal as a substrate. It seems that it is also possible.
  • the filtrate was concentrated in an evaporator, diluted with an excess amount of black-mouthed form, and separated with a saturated solution of sodium hydrogencarbonate and then with cold water until the pH of the solution became neutral. After the collected organic layer was dried over anhydrous sodium sulfate, sodium sulfate was removed by filtration, and the filtrate was concentrated by evaporation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

A process for production of saccharide oxazoline derivatives represented by the general formula (2), characterized by reacting an acylamino sugar represented by the general formula (1) with a metal fluoride: (1) (2) wherein X is F, Cl, Br, or I; R1 is H or (CH2)n-CH3 (wherein n is 0 to 5); and R2, R3, R4, R5 and R6 are each independently H, N3, protected hydroxyl, protected amino, or Y-R7 (wherein Y is O, NH, or S; and R7 is a mono- or oligo-saccharide residue, with the proviso that when the residue bears OH, NH2 or COOH, the group(s) is protected), provided that at least one of R2 and R3 and at least one of R4 and R5 are each hydrogen.

Description

明細書 糖ォキサゾリン誘導体の製造方法 技術分野  Description Method for producing sugar oxazoline derivative
本発明は、 糖ォキサゾリン誘導体の製造方法に関する。 背景技術  The present invention relates to a method for producing a sugar oxazoline derivative. Background art
近年、 糖ォキサゾリン誘導体は糖鎖関連酵素を用いた糖鎖合成の基質として注 目されており、 糖ォキサゾリン誘導体を得る方法が検討されている。 従来より、 塩化 N -ァセチル- 3, 4 , 6 -トリ- 0 -ァセチル-ひ-ダルコサミニルのァセトニト リル溶液に、 求核剤として塩化テトラエチルアンモニゥムを用い、 酸捕獲剤とし て炭酸水素ナトリゥムを加えて反応させることにより、 双環状糖ォキサゾリン誘 導体を製造する方法が用いられている (特開平 9— 3 0 8 8 ) 。 しかし、 当該方 法は、 反応終了溶液中に残存する過剰な反応試薬の除去が難しく、 純度の高い糖 ォキサゾリン誘導体を得るには、 煩雑な精製手技が必要である。 発明の開示  In recent years, sugar oxazoline derivatives have attracted attention as substrates for sugar chain synthesis using sugar chain-related enzymes, and methods for obtaining sugar oxazoline derivatives are being studied. Conventionally, tetraethylammonium chloride was used as a nucleophile and sodium bicarbonate was used as an acid scavenger in an acetonitrile solution of N-acetyl-3,4,6-tri-0-acetyl-hydarcosaminyl chloride. In addition, a method of producing a bicyclic sugar oxazoline derivative by reacting is used (JP-A-9-30888). However, in this method, it is difficult to remove the excess reaction reagent remaining in the reaction-finished solution, and a complicated purification technique is required to obtain a high-purity glycosoxazoline derivative. Disclosure of the invention
近年、 生体内物質であるオリゴ糖類ゃグリコサミノグリカン等の作用が医療分 野において注目されており、 当該ォリゴ糖類ゃグリコサミノグリカンの酵素合成 の基質となりうる糖ォキサゾリン誘導体の、 工業化可能で、 且つ、 安価で、 より 簡便な製造方法が求められている。  In recent years, the effects of oligosaccharides and glycosaminoglycans, which are biological substances, have been attracting attention in the medical field, and a sugar oxazoline derivative that can be a substrate for enzyme synthesis of the oligosaccharides and glycosaminoglycans can be industrialized. There is a need for an inexpensive and simpler manufacturing method.
本発明者は上記課題を解決すべく鋭意検討を重ねた結果、 反応試薬として金属 フッ化物を用いる事により、 当該フッ化物が、 求核性および酸捕獲性の両作用を 発揮し、 糖ォキサゾリン誘導体の合成が進行すること、 また、 当該フッ化物の除 去も容易であることを見いだし、 本発明の完成に至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using metal fluoride as a reaction reagent, the fluoride exhibits both nucleophilicity and acid-capturing action, and the sugar oxazoline derivative It was found that the synthesis of the compound progressed, and that the removal of the fluoride was easy, and the present invention was completed.
本発明は、 下記一般式 ( 1 ) で示されるァシルァミノ糖と金属フッ化物とを反 応させることを特徴とする下記一般式 (2 ) で示される糖ォキサゾリン誘導体の 製造方法を提供する。 -
Figure imgf000004_0001
The present invention provides a method for producing a sugar oxazoline derivative represented by the following general formula (2), which comprises reacting an acylamino sugar represented by the following general formula (1) with a metal fluoride. -
Figure imgf000004_0001
(式中、 Xは、 F、 C l、 B r及び Iから選択され、 (Where X is selected from F, Cl, Br and I;
R1は、 H及び(CH2)n— CH3 (n= 0〜5) から選択され、 R 1 is selected from H and (CH 2 ) n — CH 3 (n = 0-5);
R\ R\ R\ R5及び R6は、 それそれ独立に、 H、 N3、 保護基により保護さ れた OH、 保護基により保護された NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R 7は単糖又はオリゴ糖の残基であって、 OH、 NH 2又は CO OHを 有する場合にはそれらの基が保護基により保護されている単糖又はオリゴ糖の残 基である) から選択される。 但し、 R2と R3の少なくとも一方及び R4と R5の なくとも一方は Hである。 ) R \ R \ R \ R 5 and R 6, which it independently, H, N 3, OH was protected by a protective group, NH 2 protected by a protecting group and,, Y- R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or CO OH is present, those groups are protected by a protecting group. Which are sugar residues). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 R1 R2、 R R R5及び R6は、 前記と同様である。 ) (In the formula, R 1 R 2 , RRR 5 and R 6 are the same as described above.)
また、 本発明は、 下記一般式 ( 1) で示されるァシルァミノ糖と金属フッ化物 とを反応させ、 次いで、 得られた糖ォキサゾリン誘導体の保護基の少なくとも一 部を除去することを含む、 下記一般式 (3) で示される糖ォキサゾリン誘導体の 製造方法である。  In addition, the present invention comprises reacting an acylamino sugar represented by the following general formula (1) with a metal fluoride, and then removing at least a part of the protecting group of the obtained sugar oxazoline derivative. This is a method for producing the sugar oxazoline derivative represented by the formula (3).
Figure imgf000004_0003
Figure imgf000004_0003
(式中、 Xは、 F、 C l、 B r及び Iから選択され、 R1は、 H及び(CH2)n— CH3 (n=0〜5) から選択され、 (Where X is selected from F, Cl, Br and I; R 1 is selected from H and (CH 2 ) n — CH 3 (n = 0-5);
R2、 R34 1 5及び1 6は、 それぞれ独立に、 H、 N3、 保護基により保護さ れた OH、 保護基により保護された NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R7は単糖又はオリゴ糖の残基であって、 OH、 NH2又は C〇OHを 有する場合にはそれらの基が保護基により保護されている単糖又はオリゴ糖の残 基である) から選択される。 但し、 R2と R3の少なくとも一方及び R4と R5の少 なくとも一方は Hである。 ) R 2 , R 3 , 4 15 and 16 are each independently H, N 3 , OH protected by a protecting group, NH 2 protected by a protecting group, and Y—R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or C〇OH is present, a monosaccharide or a group in which those groups are protected by a protecting group. Which are the residues of oligosaccharides). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 : R1は前記と同様であり、 (Wherein, R 1 is as defined above,
R2、 R\ R4、 115及び1 6は、 それぞれ独立に、 H、 N3、 保護基により保護さ れていてもよい OH、 保護基により保護されていてもよい NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R7は単糖又はオリゴ糖の残基であって、 〇H、 NH2又は CO OHを有する場合にはそれらの基が保護基により保護されていて もよい単糖又はオリゴ糖の残基である) から選択される。 但し、 R2と R3の少な くとも一方及び R4と R5の少なくとも一方は Hである。 ) R 2, R \ R 4, 11 5 and 1 6 are each independently, H, N 3, which may be protected by a protective group OH, and good NH 2, be protected by a protecting group, Y—R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when 〇H, NH 2 or CO OH is present, those groups are protected by a protecting group. A monosaccharide or oligosaccharide residue which may be protected). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
上記の両製造法において、 金属フッ化物は、 好ましくはアルカリ金属フッ化物 である。 発明を実施するための最良の形態  In both of the above production methods, the metal fluoride is preferably an alkali metal fluoride. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一般式 (2) で示される糖ォキサゾリン誘導体の製造方法は、 上記一 般式 (1) で示されるァシルァミノ糖と金属フッ化物とを反応させることを特徴 とする。  The method for producing the sugar oxazoline derivative represented by the general formula (2) of the present invention is characterized by reacting the acylamino sugar represented by the general formula (1) with a metal fluoride.
上記一般式 ( 1) で示されるァシルァミノ糖は、 当該物質の起源、 由来によつ て特に限定されず、 天然から得られるもの、 遺伝子工学的に動物細胞、 微生物な どにより合成したものに必要により通常の方法で保護基を導入したものや人工的 に化学合成したものを用いることが可能である。 The acylamino sugar represented by the general formula (1) is not particularly limited depending on the origin and origin of the substance, and is necessary for those obtained from nature, those synthesized by genetic engineering using animal cells, microorganisms, etc. And the introduction of protecting groups in the usual way Can be used.
Xは、 同じハロゲンに分類されるフッ素、 塩素、 臭素又はヨウ素から選択可能 であり、 特に塩素が好ましい。  X can be selected from fluorine, chlorine, bromine and iodine classified as the same halogen, and chlorine is particularly preferable.
R1は、 H及び(CH2)n— CH3 (n= 0〜5) から選択する事ができ、 中でも、 H、 CH3、 CH2CH3が好ましく、 特に CH3が好ましい。 これらの基であれば、 隣接するアミ ド (一 NHCO—) の電子状態にあまり影響を与えない。 R 1 can be selected from H and (CH 2 ) n —CH 3 (n = 0 to 5), among which H, CH 3 and CH 2 CH 3 are preferable, and CH 3 is particularly preferable. These groups have little effect on the electronic state of the adjacent amide (one NHCO—).
R2、 R3、 R4、 R5及び R6は、 各々上記規定の H、 N3、 保護基により保護さ れた OH、 保護基により保護された NH2、 Y-RY (Yは 0又は NH又は Sであ り、 R7は単糖又はオリゴ糖の残基であって、 OH、 NH2又は COOHを有する 場合にはそれらの基が保護基により保護されている単糖又はオリゴ糖の残基であ る) から選択可能である。 但し、 R2と R3の少なくとも一方及び R4と R5の少な くとも一方は Hである。 R 2, R 3, R 4 , R 5 and R 6 are each defined above in H, N 3, OH was protected by a protective group, NH 2 protected by a protecting group, YR Y (Y is 0 or NH 7 or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or COOH is present, a group of the monosaccharide or the oligosaccharide whose group is protected by a protecting group. Residue). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H.
R7の単糖又はオリゴ糖の残基は、 通常には、 単糖の 1位またはオリゴ糖の還 元末端の 1位で残基となっているものである。 単糖及びオリゴ糖の構成糖は、 ァ ミノ糖若しくは糖酸又はそれらの誘導体であってもよい。 単糖としては、 D -グ ルコサミン、 D-ガラクトサミン、 D-マンノサミン、 D-ガラクトース、 D-ダル コース、 D-マンノース、 D-グルクロン酸、 L-ィズロン酸及びそれらの誘導体 が好ましく、 オリゴ糖としては、 同じ単糖が重合しているオリゴ糖や、 L-ィズ ロン酸及び D -グルクロン酸から選択されるゥロン酸と、 D -グルコサミン及び D -ガラク トサミンから選択されるへキソサミンとからなる二糖単位の繰り返し構 造を基本骨格とするグリコサミノグリカン及びそれらの誘導体が好ましい。 つま り、 還元末端の糖残基が上記一般式 ( 1 ) として記載されている単糖の構造であ る二糖またはグリコサミノダリカンも本発明の製造方法に用いることができる。 尚、 上記の誘導体とは、 単糖又はオリゴ糖の構成糖の NH2をァセチル化した ものや、 OHを硫酸化したものが挙げられる。 Residues of monosaccharide or oligosaccharide of R 7 are usually those that have a residue at the 1-position of the original end instead of 1-position or oligosaccharide monosaccharide. The constituent sugar of the monosaccharide and the oligosaccharide may be an amino sugar or a sugar acid or a derivative thereof. As the monosaccharide, D-glucosamine, D-galactosamine, D-mannosamine, D-galactose, D-darucose, D-mannose, D-glucuronic acid, L-iduronic acid and derivatives thereof are preferable. Consists of oligosaccharides in which the same monosaccharide is polymerized, and peronic acid selected from L-iduronic acid and D-glucuronic acid, and hexosamine selected from D-glucosamine and D-galactosamine. Glycosaminoglycans having a repeating structure of disaccharide units as a basic skeleton and derivatives thereof are preferred. That is, a disaccharide or glycosaminodalican in which the sugar residue at the reducing end has the structure of a monosaccharide described as the above general formula (1) can also be used in the production method of the present invention. The above-mentioned derivatives include those obtained by acetylating NH 2 of the constituent sugars of monosaccharides or oligosaccharides and those obtained by sulfating OH.
本発明において、 オリゴ糖とは 2個以上の単糖から構成される通常の意味での オリゴ糖であり、 通常 2〜二十数糖、 ないし、 2〜20糖である。  In the present invention, an oligosaccharide is an oligosaccharide in the ordinary sense composed of two or more monosaccharides, and is usually 2 to 20 or more sugars or 2 to 20 sugars.
単糖及びオリゴ糖の残基を含有する置換基を選択する場合を含め、 R2、 R3、 R R5及び R6に選択される置換基は、 本発明のォキサゾリン形成反応には実 質的に関与しておらず、 通常の合成反応と同様に、 本発明のォキサゾリン形成反 応の際に反応性に富むと推測される官能基である場合にはこれらが反応しない様 にする必要があり、 例えば、 本発明の上記反応に供する前に、 常法的に用いられ る保護基により保護し、 反応終了後保護基をはずし、 目的物質を得る方法が考え られる。 従って、 一般式 ( 1) で示されるァシルァミノ糖において、 反応性に富 むと推測される基は保護されている必要がある。 Substituents selected for R 2 , R 3 , RR 5 and R 6 , including those for selecting substituents containing monosaccharide and oligosaccharide residues, are actually involved in the oxazoline formation reaction of the present invention. If the functional groups are not qualitatively involved and are presumed to be highly reactive during the oxazoline formation reaction of the present invention as in the ordinary synthesis reaction, it is necessary to prevent these from reacting. For example, a method may be considered in which the target substance is obtained by protecting with a protecting group used in a usual manner before subjecting to the above reaction of the present invention, and removing the protecting group after completion of the reaction. Therefore, in the acylamino sugar represented by the general formula (1), the group presumed to have high reactivity needs to be protected.
保護基としては、 上記一般式 ( 1 ) で示されるァシルァミノ糖の金属フヅ化物 の存在下での本反応を妨げない限り特に限定はされないが、 具体的には、 ァセチ ル基、 ベンゾィル基、 メチルベンゾィル基、 ビバロイル基、 レブリノィル基、 t 一ブチルォキシカルボニル基などのァシル基、 メチル基、 ェチル基などの低級ァ ルキル基 (通常、 炭素数 1〜 5個程度) 、 ベンジル基、 フヱネチル基などのァラ ルキル基、 イソプロピリデン基などのアルキリデン基、 ベンジリデン基などのァ ラルキリデン基ゃァリール基が好ましく用いられ、 中でも、 水酸基ゃァミノ基の 保護基としては、 ァセチル基が好ましく用いられ、 カルボキシル基の保護基とし ては、 低級アルキル基又はァラルキル基が好ましく用いられる。 通常には、 保護 基は、 保護する基の種類に応じて適宜選択され、 複数の種類の基を同一の種類の 保護基で保護してもよいし、 複数の同一の種類の基を複数の種類の保護基で保護 してもよい。  The protective group is not particularly limited as long as it does not hinder the reaction in the presence of the metal fluoride of the acylamino sugar represented by the general formula (1), but specific examples include an acetyl group, a benzoyl group, Methyl benzoyl group, bivaloyl group, levulinyl group, t-butyloxycarbonyl group, etc., lower alkyl group such as methyl group, ethyl group (usually about 1 to 5 carbon atoms), benzyl group, phenethyl group, etc. Alkylidene groups such as aralkyl groups and isopropylidene groups, and aralkylidene groups such as benzylidene groups, and aryl groups are preferably used. As the protective group, a lower alkyl group or an aralkyl group is preferably used. Usually, the protecting group is appropriately selected according to the type of the group to be protected.A plurality of types of groups may be protected by the same type of protecting group, or a plurality of the same type of group may be protected by a plurality of types. It may be protected by any kind of protecting group.
本発明に用いるァシルァミノ糖の好ましい例としては、 下記例 1〜例 9が挙げ られる。  Preferred examples of the acylamino sugar used in the present invention include the following Examples 1 to 9.
例 1 ) X : C 1、 R1: CH3、 R2: 0 CO CH3、 R3: H、 R4: H、 R5: ◦ CO CH3、 R6: 0 CO CH3である一般式 ( 1 ) で示されるァシルァミノ糖。 例 2) X : C 1、 R1 : CH3 R2: OCOCHss R3 : H、 R4: 0 CO CH 3、 R5 : H、 R6: 〇 CO CH3である一般式 ( 1 ) で示されるァシルァミノ糖。 例 3) X : C 1、 R1: CH3、 R2: 0C〇CH3、 R3: H、 R4: H、 R5: 0— /?- D-ガラクト一ス (0Hがァセチル基で保護されたもの) 、 R6 : 0 C〇 CH3である一般式 ( 1) で示されるァシルァミノ糖。 Example 1) X: C 1, R 1: CH 3, R 2: 0 CO CH 3, R 3: H, R 4: H, R 5: ◦ CO CH 3, R 6: 0 CO CH generally a 3 An acylamino sugar represented by the formula (1). Example 2) X: C 1, R 1: CH 3 R 2: OCOCHss R 3: H, R 4: 0 CO CH 3, R 5: H, R 6: 〇 CO CH 3 a is general formula (1) Asilamino sugar indicated. Example 3) X: C 1, R 1: CH 3, R 2: 0C_〇_CH 3, R 3: H, R 4: H, R 5:? 0- / - D- galacto Ichisu (0H is Asechiru group ), An acylamino sugar represented by the general formula (1), wherein R 6 : 0 C〇CH 3 .
例 4) X : C 1、 R1: CH3、 R2: 0— D-グルクロン酸 (OHがァセチル 基で保護され、 かつ、 C00Hがべンジル基で保護されたもの) 、 R3 : H、 R4 : H、 R5 : OCOCH3、 R6: OCOCH3である一般式 ( 1 ) で示されるァシ ルァミノ糖。 Example 4) X: C 1, R 1: CH 3, R 2: 0- D- glucuronic acid (OH is protected by Asechiru group, and those protected with C00H Gabe Njiru group), R 3: H , R 4 : H, R 5 : OCOCH 3 and R 6 : OCOCH3, an acylamino sugar represented by the general formula (1).
例 5 ) X: C 1、 R1 : CH3、 R2: 〇一 D-グルクロン酸 (0Hがァセチ ル基で保護され、 かつ、 C00Hがべンジル基で保護されたもの) 、 : R3 : H、 R4 : OCOCH3、 R5 : H、 6: 0 CO CH3である一般式 ( 1 ) で示される ァシルァミノ糖。 Example 5) X: C 1, R 1: CH 3, R 2: 〇 one D- glucuronic acid (0H are protected by Asechi group, and those protected with C00H Gabe Njiru group),: R 3 : H, R 4 : OCOCH 3 , R 5 : H, 6 : 0 COCH 3 , an acylamino sugar represented by the general formula (1).
例 6) X: C 1、 R1: CH3、 R2: 0—ひ _L-ィズロン酸 (0Hがァセチル 基で保護され、 かつ、 C00Hがべンジル基で保護されたもの) 、 R3 : H、 R4 : 0C0CH3、 R5: H, R6: 0C0CH3である一般式 (1) で示されるァシ ルァミノ糖。 Example 6) X: C 1, R 1: CH 3, R 2: 0- Fei _L- Izuron acid (0H is protected by Asechiru group, and those protected with C00H Gabe Njiru group), R 3: H, R 4: 0C0CH 3, R 5: H, R 6: § sheet Ruamino sugar represented by 0C0CH 3 a is formula (1).
例 7) X: C 1、 R1: CH3、 R2: 〇C0CH3、 R3 : H、 R4: H、 R5: 0— 5- D -ダルコサミン (0H及び NH2が共にァセチル基で保護されたもの) 、 R6: 0 CO CH3である一般式 ( 1 ) で示されるァシルァミノ糖。 Example 7) X: C 1, R 1: CH 3, R 2: 〇_C0CH 3, R 3: H, R 4: H, R 5: 0- 5- D - Darukosamin (0H and NH 2 are both Asechiru group ), An acylamino sugar represented by the general formula (1), wherein R 6 : 0 CO CH 3 .
例 8) X : C 1、 R1 : CH3, R2 : OCOCH3、 R3 : H、 R4 : H、 R5: 0— 5-N-ァセチル -D -ダルコサミン (OHがァセチル基で保護されたもの) 、 R6 : ◦ CO CH3である一般式 ( 1 ) で示されるァシルァミノ糖。 Example 8) X: C 1, R 1: CH 3, R 2: OCOCH 3, R 3: H, R 4: H, R 5: 0- 5-N- Asechiru -D - Darukosamin (OH is at Asechiru group Protected), R 6 : ◦ An acylamino sugar represented by the general formula (1), which is CO CH 3 .
例 9 ) X: C 1、 R1: CH3、 R2: 0 C 0 CH3、 R3: H、 R4: H、 R5: 0—へパリンの還元末端側にゥロン酸残基( ? - D -グルク口ン酸残基又はひ- L - ィズロン酸残基) を有する糖残基 (硫酸化されていない 0H及び NH2がァセチ ル基で保護され、 かつ、 C00Hがべンジル基で保護されたもの) 、 R6 : 0C 0CH3である一般式 ( 1) で示されるァシルァミノ糖 (還元末端に、 1位に C 1を有し、 かつ 2位のアミノ基がァセチル化されているグルコサミン残基を有し、 その他の硫酸化されていない水酸基及びァミノ基がァセチル化されており、 カル ボキシル基がべンジル化されているへパリン) Example 9) X: C 1, R 1 : CH 3 , R 2 : 0 C 0 CH 3 , R 3 : H, R 4 : H, R 5 : 0—Peronic acid residue on the reducing end side of heparin ( ? - D - Guruku port emissions Sanzanmotomata Wahi - L - Izuron 0H and NH 2 in which the sugar residue (unsulfated having an acid residue) is protected by Asechi group, and, C00H Gabe Njiru group ), An acylamino sugar represented by the general formula (1), which is R 6 : 0C 0CH 3 (having C 1 at the reducing end and having an amino group at the 2-position acetylated) Heparin that has a glucosamine residue, other non-sulfated hydroxyl groups and amino groups are acetylated, and carboxyl groups are benzylated)
尚、 上記例 1に示したァシルァミノ糖は、 キチンの構成糖である N-ァセチル- D -グルコサミンの 3、 4および 6位の 0Hをァセチル基で保護し、 1位の〇H を塩素原子に置換したものである。 上記例 4に示したァシルァミノ糖は、 ヒアル ロン酸のゥロン酸とへキソサミンからなる構成二糖単位における 0 H (へキソサ ミンの 4位および 6位、 ゥロン酸の 2位、 3位および 4位) をァセチル基で保護 し、 ゥロン酸残基のカルボキシル基をべンジル基で保護し、 へキソサミン残基の 1位の OHを塩素原子に置換したものである。 上記例 5に示したァシルァミノ糖 は、 コンドロイチンのゥロン酸とへキソサミンからなる構成二糖単位における〇 H (へキソサミンの 4位および 6位、 ゥロン酸の 2位、 3位および 4位) をァセ チル基で保護し、 ゥロン酸残基のカルボキシル基をべンジル基で保護し、 へキソ サミン残基の 1位の OHを塩素原子に置換したものである。 上記例 6に示したァ シルァミノ糖は、 デルマタン硫酸のゥロン酸とへキソサミンからなる構成二糖単 位における OH (へキソサミンの 4位および 6位、 ゥロン酸の 2位、 3位および 4位) をァセチル基で保護し、 ゥロン酸残基のカルボキシル基をべンジル基で保 護し、 へキソサミン残基の 1位の OHを塩素原子に置換したものである。 In addition, the acylamino sugar shown in Example 1 above protects 0H at positions 3, 4, and 6 of N-acetyl-D-glucosamine, which is a constituent sugar of chitin, with an acetyl group, and converts 〇H at position 1 to a chlorine atom. It has been replaced. The acylamino sugars shown in Example 4 above were synthesized from 0H (positions 4 and 6 of hexosamine, positions 2, 3 and 4 of peronic acid) in the disaccharide unit composed of hyaluronic acid peronic acid and hexosamine. ) Protected with acetyl group Then, the carboxyl group of the peronic acid residue is protected with a benzyl group, and the OH at the 1-position of the hexosamine residue is replaced with a chlorine atom. The acylamino sugar shown in Example 5 above has the 〇H (positions 4 and 6 of hexosamine and the positions 2, 3 and 4 of hexonic acid) in the disaccharide unit composed of peronic acid and hexosamine of chondroitin. It is protected with a cetyl group, the carboxyl group of a peronic acid residue is protected with a benzyl group, and the OH at position 1 of the hexosamine residue is replaced with a chlorine atom. The acylaminosugar shown in Example 6 above is the OH in the disaccharide unit composed of peronic acid and hexosamine of dermatan sulfate (positions 4 and 6 of hexosamine, positions 2, 3, and 4 of peronic acid) Is protected with an acetyl group, the carboxyl group of the peronic acid residue is protected with a benzyl group, and the OH at the 1-position of the hexosamine residue is substituted with a chlorine atom.
本発明の製造方法に用いられる金属フッ化物は、 特に限定されないが、 アル力 リ金属フッ化物が好ましく、 より好ましくは、 フッ化ナトリウム、 フッ化力リウ ム、 フヅ化ルビジウム、 フヅ化セシウムなどが挙げられる。 工業的規模での製造 の際には、 試薬としての取り扱いや価格等を考慮すると、 特にフッ化ナトリウム ゃフヅ化カリゥムが好ましい。  The metal fluoride used in the production method of the present invention is not particularly limited, but is preferably an alkali metal fluoride, more preferably sodium fluoride, lithium fluoride, rubidium fluoride, or cesium fluoride. And the like. In the case of production on an industrial scale, sodium fluoride fluoride is particularly preferred in consideration of handling as a reagent and price.
なお、 一般的に行われている様に、 金属フッ化物を無機固体担体に保持させて 用いてもよい。 当該無機固体担体としては、 アルミナ、 シリカゲル、 酸化マグネ シゥム、 モレキュラーシーブス (例えば、 Linde 4A (商品名)) 、 粘土 (例えば、 モンモリロナイ ト) 、 珪藻土 (例えば、 セライ ト(商品名)) 等が挙げられ、 特に アルミナが好ましい。  In addition, as generally used, metal fluoride may be used by being held on an inorganic solid carrier. Examples of the inorganic solid carrier include alumina, silica gel, magnesium oxide, molecular sieves (for example, Linde 4A (trade name)), clay (for example, montmorillonite), and diatomaceous earth (for example, celite (trade name)). And alumina is particularly preferred.
一般式 ( 1) で示されるァシルァミノ糠と金属フッ化物との反応の条件につい ては、 本発明に用いられるァシルァミノ糖と金属フッ化物が反応し、 双環状の糖 ォキサゾリン誘導体が生成される限りにおいて、 特に限定されることはなく、 当 業者が適宜設定する事が出来る。  The conditions for the reaction between the acylamino bran represented by the general formula (1) and the metal fluoride are as long as the acylamino sugar used in the present invention reacts with the metal fluoride to produce a bicyclic sugar oxazoline derivative. There is no particular limitation, and those skilled in the art can appropriately set the parameters.
反応の溶媒としては、 用いるァシルァミノ糖及び金属フッ化物と反応せず、 用 いるァシルアミノ糖を溶解することが出来れば特に限定されないが、 ァセトニト リル (CH3CN) 、 ジメチルスルホキシド (DMSO) 、 ジメチルホルムアミ ド (DMF) 、 テトラヒ ドロフラン、 キシレン等が好ましく、 CH3CN、 DM SO、 DMFがより好ましく、 中でも CH3CNが特に好ましい。 金属フッ化物の使用量、 反応温度及び反応時間などの反応条件は、 用いるァシ ルァミノ糖の量などにより適宜設定されるが、 当該ァシルァミノ糖と金属フッ化 物のモル比は、 好ましくは 1 : 2〜 1 : 3 0、 より好ましくは 1 : 1 0であり、 反応温度は、 好ましくは室温〜溶媒の沸点、 より好ましくは 3 0〜6 0 °Cである。 尚、 使用する溶媒の沸点にて反応を行う場合は、 還流冷却器などの利用が可能で ある。 反応時間としては、 0 . 5時間〜 3日間が好ましい。 The solvent for the reaction is not particularly limited as long as it does not react with the used acylamino sugar and metal fluoride and can dissolve the used amino amino sugar, but it is not limited to acetonitril (CH 3 CN), dimethyl sulfoxide (DMSO), dimethylform Amide (DMF), tetrahydrofuran, xylene and the like are preferred, CH 3 CN, DMSO, and DMF are more preferred, and CH 3 CN is particularly preferred. The reaction conditions such as the amount of the metal fluoride used, the reaction temperature and the reaction time are appropriately set depending on the amount of the acylamino sugar used and the like. The molar ratio of the acylamino sugar to the metal fluoride is preferably 1: The reaction temperature is preferably from room temperature to the boiling point of the solvent, more preferably from 30 to 60 ° C. When the reaction is carried out at the boiling point of the solvent used, a reflux condenser or the like can be used. The reaction time is preferably 0.5 hours to 3 days.
反応条件の設定の際には、 反応の終了を確認することが好ましく、 反応の終了 を確認する方法の具体例としては、 薄層クロマトグラフィ一が挙げられる。  When setting the reaction conditions, it is preferable to confirm the completion of the reaction. A specific example of a method for confirming the completion of the reaction is thin-layer chromatography.
一般式 ( 1 ) で示されるァシルァミノ糖と金属フッ化物との反応は、 水との反 応を避ける為、 アルゴンや窒素などの雰囲気下において、 行うことが好ましい。 反応終了液から目的物質である糖ォキサゾリン誘導体を精製する方法としては、 通常行われている精製方法を適宜選択し用いる事が可能であるが、 たとえば、 反 応終了液より不溶物を取り除き、 次いで分液操作により反応終了液中に溶解して いる水溶解性の物質を取り除いた後、 シリカゲルクロマトグラフィ一や再結晶等 により精製する方法が挙げられる。  The reaction between the acylamino sugar represented by the general formula (1) and the metal fluoride is preferably performed in an atmosphere such as argon or nitrogen in order to avoid a reaction with water. As a method for purifying the target substance, a soxazoline derivative, from the reaction-terminated liquid, it is possible to appropriately select and use a conventional purification method.For example, insoluble substances are removed from the reaction-terminated liquid, and then After removing the water-soluble substance dissolved in the reaction-completed solution by a liquid separation operation, purification by silica gel chromatography, recrystallization or the like can be mentioned.
反応終了液より不溶物を取り除く方法は、 不溶物 (固体) と溶液 (液体) が分 離さえすればよく、 通常用いられるグラスフィルターやセラィ ト等を用いた濾過 方法の利用が可能である。  The method of removing the insoluble matter from the reaction-terminated liquid may be any method as long as the insoluble matter (solid) and the solution (liquid) are separated, and a commonly used filtration method using a glass filter, ceramic, or the like can be used.
一般式 (3 ) で示される糖ォキサゾリン誘導体の製造方法は、 上記の方法によ り一般式 (2 ) で示される糖ォキサゾリン誘導体を得、 得られた糖ォキサゾリン 誘導体の少なくとも一部の保護基を除去することを特徴とする。 この方法により、 一般式 (2 ) で示される糖ォキサゾリン体の保護基の少なくとも一部が除去され た一般式 (3 ) で示される糖ォキサゾリン体を得ることができる。 保護基の除去 は、 常法に従って行うことができる。  In the method for producing the sugar oxazoline derivative represented by the general formula (3), the sugar oxazoline derivative represented by the general formula (2) is obtained by the above method, and at least a part of the protecting group of the obtained sugar oxazoline derivative is removed. It is characterized by being removed. According to this method, a saccharide-containing oxazoline derivative represented by the general formula (3) can be obtained in which at least a part of the protecting group of the saccharide-containing oxazoline derivative is removed. Removal of the protecting group can be performed according to a conventional method.
本発明の製造方法により得られる糖ォキサゾリン誘導体は、 ォキサゾリン環の 開環重合を利用した重合体合成の基質としての利用が考えられ、 特に、 本発明の 製造方法のァシルァミノ糖として、 R 2〜R 6の少なくとも一つが単糖又はオリゴ 糖であるもの (還元末端に、 特定の構造を有する二糖またはグリコサミノグリカ ン) を用いて得られる糖ォキサゾリン誘導体は、 酵素触媒重付加反応を利用する グリコサミノグリ力ン類の合成基質として用いることが出来ると考えられる。 例えば、 ラクトサミンの二糖で構成される基本骨格を一つ以上含有するラクト サミン鎖の還元末端にォキサゾリン環を有する双環状糖ォキサゾリン誘導体を本 発明の製造方法により得、 得られた当該誘導体を基質としてケラタナーゼを作用 させることにより、 ラクトサミン鎖の伸張が可能である。 同様に、 本発明の製造 方法により得られる、 ヒアルロン酸の二糖で構成される基本骨格を一つ以上含有 するヒアルロン酸鎖の還元末端にォキサゾリン環を有する双環状糖ォキサゾリン 誘導体を基質として、 ヒアルロニダ一ゼを作用させることにより、 ヒアルロン酸 鎖の伸張が可能である。 また、 本発明の製造方法により得られるォキサゾリン環 を有するダルコサミン又はその非還元末端に N—ァセチルグルコサミン若しくは ダルコサミンが結合した二糖を基質としてキチナ一ゼを作用させることによりキ チン又はキトサンを得ることも可能であると思われる。 実施例 ' The sugar oxazoline derivative obtained by the production method of the present invention is considered to be used as a substrate for polymer synthesis utilizing ring-opening polymerization of an oxazoline ring. In particular, as the acylamino sugar of the production method of the present invention, R 2 to R A sugar oxazoline derivative obtained by using a compound in which at least one of 6 is a monosaccharide or an oligosaccharide (a disaccharide or glycosaminoglycan having a specific structure at the reducing end) utilizes an enzyme-catalyzed polyaddition reaction It is thought that it can be used as a synthetic substrate for glycosaminoglycans. For example, a bicyclic sugar oxazoline derivative having an oxazoline ring at the reducing end of a lactosamine chain containing at least one basic skeleton composed of lactosamine disaccharide is obtained by the production method of the present invention, and the obtained derivative is used as a substrate. Lactosamine chain can be extended by allowing keratanase to act. Similarly, using a bicyclic sugar oxazoline derivative having an oxazoline ring at the reducing end of a hyaluronic acid chain containing at least one basic skeleton composed of a hyaluronic acid disaccharide obtained by the production method of the present invention as a substrate, Hyaluronic acid chains can be extended by the action of the enzyme. In addition, chitin or chitosan is obtained by reacting chitinase with dalcosamine having an oxazoline ring obtained by the production method of the present invention or a disaccharide having N-acetylglucosamine or dalcosamine bound to its non-reducing terminal as a substrate. It seems that it is also possible. Example '
以下に、 本発明を実施例により更に具体的に説明する。 実施例 1 金属フッ化物を用いる双環状ォキサゾリンの合成  Hereinafter, the present invention will be described more specifically with reference to examples. Example 1 Synthesis of bicyclic oxazoline using metal fluoride
下記表 1に記載の各反応条件の下、 以下の手順により合成を行った。  Under the respective reaction conditions described in Table 1 below, synthesis was performed according to the following procedure.
アルゴン雰囲気下、 フッ化カリゥム又はフッ化セシウムに、 1 . 8 g (5 mmol ) の塩化 N-ァセチル- 3,4,6-トリ - 0 -ァセチル-ひ-グルコサミニルのァセトニトリ ル溶液 7 5 ml又は 1 . 8 g (5 mmol )の塩化 N-ァセチル- 3,4, 6-トリ- 0 -ァセチル -ひ-ダルコサミニルのジメチルホルムアミ ド溶液 7 5 mlを加え、 環流下、 反応さ せた。 薄層クロマトグラフィーにより反応終了を確認後、 グラスフィルター G 4 により濾過した。 ろ液をエバポレー夕一にて濃縮し、 過剰量のクロ口ホルムで希 釈し、 溶液の pHが中性になるまで炭酸水素ナトリウム飽和溶液、 次いで冷水にて 分液操作を行った。 集めた有機層を無水硫酸ナトリゥムで乾燥後、 硫酸ナトリウ ムを濾過により取り除き、 ろ液をエバポレー夕一により濃縮した。 得られた残留 物をシリカゲルフラッシュカラムクロマトグラフィー (ゲル: Merck社製 Si l ika gel 6 0、 粒径 0.040- 0.063腿、 展開溶媒:へキサン/酢酸ェチル = 2 / 3 (容量 比)) により精製し、 展開後の溶液をエバポレー夕一により更に濃縮、 減圧乾燥 し、 黄色のシロップ状の 2-メチル ( 3, 4, 6-トリ-〇-ァセチル- 1, 2-デォキ シ-ひ-ダルコビラノ) [2, 1- d] -2-ォキサゾリンを得た。 収率を表 1に示す。 Under argon atmosphere, add 1.8 g (5 mmol) of N-acetyl-3,4,6-tri-0-acetyl-hi-glucosaminyl in acetonitrile solution in potassium fluoride or cesium fluoride in 75 ml or 1.8 g (5 mmol) of a solution of N-acetyl-3,4,6-tri-0-acetyl-hy-darcosaminyl chloride in dimethylformamide (75 ml) was added, and the mixture was reacted under reflux. After confirming the completion of the reaction by thin layer chromatography, the mixture was filtered through a glass filter G4. The filtrate was concentrated in an evaporator, diluted with an excess amount of black-mouthed form, and separated with a saturated solution of sodium hydrogencarbonate and then with cold water until the pH of the solution became neutral. After the collected organic layer was dried over anhydrous sodium sulfate, sodium sulfate was removed by filtration, and the filtrate was concentrated by evaporation. The obtained residue was subjected to silica gel flash column chromatography (gel: silica gel 60, manufactured by Merck, particle size 0.040-0.063, developing solvent: hexane / ethyl acetate = 2/3 (volume Ratio)), the developed solution was further concentrated by evaporation and dried under reduced pressure, and yellow methyl syrup-like 2-methyl (3,4,6-tri-〇-acetyl-1,2-dexoxy) was obtained. -H-Darcovirano) [2, 1-d] -2-oxazoline was obtained. The yield is shown in Table 1.
金属 白 ■lU 1 溶媒 反応温度 反応時間 収率 Metal WhitelU 1 solvent Reaction temperature Reaction time Yield
フッ化物 (°C) (時間) (%)  Fluoride (° C) (hour) (%)
KF 1 CH3CN 60 24 71. 4 KF 1 CH 3 CN 60 24 71. 4
5 CHaCN 60 78 81. 3 5 CHaCN 60 78 81.3
10 CHaCN 60 88 78. 710 CHaCN 60 88 78. 7
10 DMF 60 24 66. 2 10 DMF 60 24 66.2
C s F 1 CHsCN 主、½) 1 24 9. 5 C s F 1 CHsCN main, ½) 1 24 9.5
5 CHsCN 室 ¾m 24 10. 0 5 CHsCN room ¾m 24 10.0
10 CHaCN 60 1 34. 710 CHaCN 60 1 34. 7
10 DMF 24 18. 5 10 DMF 24 18.5
*1:塩化 N-ァセチル- 3,4,6-トリ- 0-ァセチル- -ダルコサミニル * 1: N-acetyl-3,4,6-tri-O-acetyl-chloride-darcosaminyl chloride
に対する当量 (尚、 フヅ化カリウムの 1 0当量は 2. 9 gであり、 Equivalent (10 equivalents of potassium fluoride is 2.9 g,
フヅ化セシウムの 10当量は 7. 6 gである) また、 得られた生成物 (2—メチル (3 , 4, 6—トリ—0—ァセチル— 1, 2—ジデォキシー α—グルコビラノ) [2, 1 -d] 一 2—ォキサゾリン) の N M Rデータは以下の通りであった。 10 equivalents of cesium fluoride are 7.6 g). The obtained product (2-methyl (3,4,6-tri-0-acetyl-1,2-dideoxy α-glucovirano) [2 , 1-d] -12-oxazoline) was as follows.
JH NMR (250 MHz, CDC13): 5.95(1H, d, Ji, 2=7.34 Hz, ァノマープロトン), 2.0-2.1(12H, in, アセテートのメチルプロトン及びォキサゾリンのメチルプロト ン) . J H NMR (250 MHz, CDC1 3): 5.95 (1H, d, Ji, 2 = 7.34 Hz, Anomapuroton), 2.0-2.1 (12H, in, methyl protons of the methyl protons and Okisazorin acetate).
13C NMR (62.9 MHz, CDCls): 99.4(C- 1), 20.7- 20.9(3C, アセテートのメチル 1 3 C NMR (62.9 MHz, CDCls): 99.4 (C- 1), 20.7- 20.9 (3C, methyl acetate
C), 13.9(ォキサゾリンのメチル C), 169.2-170.6(30, ァセチルのカルボニルC), 13.9 (methyl C of oxazoline), 169.2-170.6 (30, carbonyl of acetyl
C) , 166.7(ォキサゾリン環の C: 0- C二 N) 産業上の利用の可能性 C), 166.7 (C on the oxazoline ring: 0-C2N) Industrial applicability
本発明により、 糖ォキサゾリン誘導体の、 大量生産が可能で、 安価、 且つより 簡便な製造方法が提供される。  According to the present invention, an inexpensive and simpler production method of a sugar oxazoline derivative that can be mass-produced is provided.

Claims

請求の範囲 The scope of the claims
1. 下記一般式 ( 1) で示されるァシルァミノ糖と金属フッ化物とを反応さ せることを特徴とする下記一般式 (2) で示される糖ォキサゾリン誘導体の製造 方法。  1. A process for producing a sugar oxazoline derivative represented by the following general formula (2), which comprises reacting an acylamino sugar represented by the following general formula (1) with a metal fluoride.
Figure imgf000014_0001
Figure imgf000014_0001
(式中、 Xは、 F、 C l、 Br及び Iから選択され、 Wherein X is selected from F, Cl, Br and I;
R1は、 H及び(CH2)n_ CH3 (n=0〜5) から選択され、 R 1 is selected from H and (CH 2 ) n _CH 3 (n = 0-5);
R2、 R3、 R4、 : 5及び: R 6は、 それぞれ独立に、 H、 N3、 保護基により保護さ れた OH、 保護基により保護された NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R7は単糖又はオリゴ糖の残基であって、 OH、 NH2又は COOHを 有する場合にはそれらの基が保護基により保護されている単糖又はオリゴ糖の残 基である) から選択される。 但し、 R2と R3の少なくとも一方及び R4と R5の少 なくとも一方は Hである。 ) R 2 , R 3 , R 4 ,: 5 and: R 6 are each independently H, N 3 , OH protected by a protecting group, NH 2 protected by a protecting group, and Y—R 7 (Y is 0 or NH or S, R 7 is a residue of a monosaccharide or oligosaccharide, and when OH, NH 2 or COOH is present, a monosaccharide whose group is protected by a protecting group. Or a residue of an oligosaccharide). However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
Figure imgf000014_0002
Figure imgf000014_0002
(式中、 R R\ R3、 R4、 R5及び R6は前記と同様である。 ) (Wherein, RR \ R 3 , R 4 , R 5 and R 6 are the same as described above.)
2. 金属フッ化物が、 アルカリ金属フッ化物である請求項 1記載の製造方法。 2. The method according to claim 1, wherein the metal fluoride is an alkali metal fluoride.
3. 下記一般式 (1) で示されるァシルァミノ糖と金属フッ化物とを反応さ せ、 次いで、 得られた糖ォキサゾリン誘導体の保護基の少なくとも一部を除去す ることを含む、 下記一般式 (3) で示される糖ォキサゾリン誘導体の製造方法。
Figure imgf000015_0001
3. reacting the acylamino sugar represented by the following general formula (1) with a metal fluoride, and then removing at least a part of the protecting group of the obtained sugar oxazoline derivative; 3) A method for producing a sugar oxazoline derivative represented by the formula:
Figure imgf000015_0001
(式中、 Xは、 F、 C l、 B r及び Iから選択され、 (Where X is selected from F, Cl, Br and I;
R1は、 H及び(CH2)n— CH3 (n= 0〜5) から選択され、 R 1 is selected from H and (CH 2 ) n — CH 3 (n = 0-5);
R R R5及び R6は、 それぞれ独立に、 H、 N3、 保護基により保護さ れた OH、 保護基により保護された NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R 7は単糖又はオリゴ糖の残基であって、 OH、 NH 2又は CO OHを 有する場合にはそれらの基が保護基により保護されている単糖又はオリゴ糖の残 基である) から選択される。 但し、 R2と R3の少なくとも一方及び R4と R5の少 なくとも一方は Hである。 ) RRR 5 and R 6 are each independently H, N 3 , OH protected by a protecting group, NH 2 protected by a protecting group, and Y—R 7 (Y is 0 or NH or S R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or CO OH is present, these groups are the residues of a monosaccharide or an oligosaccharide protected by a protecting group. Is selected from However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
Figure imgf000015_0002
Figure imgf000015_0002
(式中、 R1は前記と同様であり、 (Wherein, R 1 is as defined above,
R2、 R3、 R4、 R5及び R6は、 それそれ独立に、 H、 N3、 保護基により保護さ れていてもよい OH、 保護基により保護されていてもよい NH2、 及び、 Y— R7 (Yは 0又は NH又は Sであり、 R7は単糖又はオリゴ糖の残基であって、 OH、 NH2又は CO OHを有する場合にはそれらの基が保護基により保護されていて もよい単糖又はオリゴ糖の残基である) から選択される。 但し、 R2と R3の少な くとも一方及び R4と R5の少なくとも一方は Hである。 ) R 2 , R 3 , R 4 , R 5 and R 6 each independently represent H, N 3 , OH optionally protected by a protecting group, NH 2 optionally protected by a protecting group, And Y—R 7 (Y is 0 or NH or S, and R 7 is a residue of a monosaccharide or an oligosaccharide, and when OH, NH 2 or CO OH is present, these groups are protecting groups. Or a monosaccharide or oligosaccharide residue which may be protected by However, at least one of R 2 and R 3 and at least one of R 4 and R 5 are H. )
4. 金属フッ化物が、 アルカリ金属フッ化物である請求項 3記載の製造方法。  4. The method according to claim 3, wherein the metal fluoride is an alkali metal fluoride.
PCT/JP2002/006575 2001-07-02 2002-06-28 Process for production of saccharide oxazoline derivatives WO2003004508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02738865.1A EP1405857B1 (en) 2001-07-02 2002-06-28 Process for the production of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-alpha-glucopyrano)-[2,1-d]-2-oxazoline
US10/482,678 US20040176588A1 (en) 2001-07-02 2002-06-28 Process for production of sugar oxazoline derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001201316A JP4866515B2 (en) 2001-07-02 2001-07-02 Method for producing sugar oxazoline derivative
JP2001-201316 2001-07-02

Publications (1)

Publication Number Publication Date
WO2003004508A1 true WO2003004508A1 (en) 2003-01-16

Family

ID=19038309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006575 WO2003004508A1 (en) 2001-07-02 2002-06-28 Process for production of saccharide oxazoline derivatives

Country Status (4)

Country Link
US (1) US20040176588A1 (en)
EP (1) EP1405857B1 (en)
JP (1) JP4866515B2 (en)
WO (1) WO2003004508A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007291870B2 (en) 2006-08-31 2012-12-06 Simon Fraser University Selective glycosidase inhibitors and uses thereof
CN101679470B (en) 2007-03-09 2014-01-29 生化学工业株式会社 Method for production of sugar oxazoline derivative
WO2011140640A1 (en) 2010-05-11 2011-11-17 Simon Fraser University Selective glycosidase inhibitors and uses thereof
DK2655388T3 (en) 2010-12-23 2016-09-19 Alectos Therapeutics Inc Selective glykosidaseinhibitorer and uses thereof
WO2012129651A1 (en) 2011-03-31 2012-10-04 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
WO2013000086A1 (en) 2011-06-27 2013-01-03 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9199949B2 (en) 2011-06-27 2015-12-01 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
BR112013033098B8 (en) 2011-06-27 2021-03-23 Alectos Therapeutics Inc selective glycosity inhibitors and their uses
EP2890675A4 (en) 2012-08-31 2016-01-13 Alectos Therapeutics Inc Glycosidase inhibitors and uses thereof
EP2890676B1 (en) 2012-08-31 2018-12-05 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof
CN104837845B (en) 2012-10-31 2018-08-28 阿勒克图治疗公司 Glycosidase inhibitor and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382665A (en) * 1993-03-17 1995-01-17 The United States Of America As Represented By The United States Department Of Energy Synthesis of oxazolines and oxazines
JPH08245678A (en) * 1995-03-10 1996-09-24 Shin Etsu Chem Co Ltd Disaccharide, its oligomer and production of the oligomer
JPH093088A (en) 1995-06-19 1997-01-07 Shin Etsu Chem Co Ltd Production of aminodisaccharide and chitin or its analogue polysaccharides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382665A (en) * 1993-03-17 1995-01-17 The United States Of America As Represented By The United States Department Of Energy Synthesis of oxazolines and oxazines
JPH08245678A (en) * 1995-03-10 1996-09-24 Shin Etsu Chem Co Ltd Disaccharide, its oligomer and production of the oligomer
JPH093088A (en) 1995-06-19 1997-01-07 Shin Etsu Chem Co Ltd Production of aminodisaccharide and chitin or its analogue polysaccharides

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, SHIRO ET AL.: "A novel method for the synthesis of chitobiose via enzymatic glycosylation using a sugar oxazoline as glycosyl dono", TETRAHEDRON LETTERS, vol. 38, no. 12, 1997, pages 2111 - 2112
MITCHELL M.A. ET AL.: "Synthesis of delta2-1,3-oxazolines and delta2-1,3-oxazines using potassium fluoride on alumina", SYNTHESIS, 1994, pages 675 - 677, XP002956187 *
See also references of EP1405857A4 *
SHIN-ICHIRO SHODA ET AL.: "A facile method for synthesis of 1,2-oxazoline derivative of N-acetylglucosamine promoted by potassium fluoride", CHEMISTRY LETTERS, no. 2, 5 February 2002 (2002-02-05), pages 150 - 151, XP002956188 *
WONG, WAI C ET AL.: "A convenient synthesis of 2-amino-2-oxazolines and their pharmacological evaluation at cloned human alpha adrenergic receptors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 4, no. 19, 1994, pages 2317 - 2322

Also Published As

Publication number Publication date
JP2003012683A (en) 2003-01-15
JP4866515B2 (en) 2012-02-01
EP1405857A4 (en) 2007-09-19
US20040176588A1 (en) 2004-09-09
EP1405857A1 (en) 2004-04-07
EP1405857B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
JPS63165394A (en) Production of sucrose derivative
US20110306757A1 (en) Process for the synthesis of unprotected pentasaccharides from a protected pentasaccharide precursor
CA2035038C (en) Synthetic intermediates of 2-alkynyladenosines, processes for preparing the synthetic intermediates, processes for preparing 2-alkynyladenosines utilizing the synthetic intermediates, and stable 2-alkynyladenosine derivatives
WO2003004508A1 (en) Process for production of saccharide oxazoline derivatives
US7105320B2 (en) Process for producing hyaluronic acid or its derivative
JP2014510781A (en) N-substituted mannosamine derivative, process for its preparation and use thereof
EP3713967A1 (en) Method of synthesising 6-deoxy-6-amino- -d-glucopyranoside-containing polymers and their precursors
KR101529061B1 (en) Saccharide structures and methods of making and using such structures
JP5004950B2 (en) Production of polysaccharides containing L-iduronate
US20050010044A1 (en) Polysaccharides and methods and intermediates useful for their preparation
KR101625161B1 (en) Process for the glycosidation of colchicine and thiocolchicine
CA2705108A1 (en) New carbohydrate derivatives
WO2021043631A1 (en) Intermediates useful for preparing iduronic acid containing di- and polysaccharides
JP4527104B2 (en) Method for producing oligosaccharide
Lassota et al. Pyrimidine Homoribonucleosides: Synthesis, Solution Conformation, and Some Biological Properties
CN114591383A (en) Synthesis of galactose derivatives and application of galactose derivatives in preparation of human milk oligosaccharides
KR20040006826A (en) Method for Producing 2-Deoxy-L-ribose
EP2857411B1 (en) Method for preparing fully protection heparin pentasaccharide and intermediate thereof
JP3914580B2 (en) Ring-opening polymerizable monomer, polymer thereof and production method thereof
Hiebl et al. Synthesis of 2, 2′-Anhydro Nucleosides with a Modified Sugar Side-Chain
US20140303363A1 (en) Preparation and Use of Isolactosamine and Intermediates therefor
JPH05310773A (en) New protecting method of 2-deoxystreptamines and new bicyclic aminosugar derivative
STARK I. SYNTHESIS OF 5-THIO-D-GLUCOPYRANOSE 1-AND 6-PHOSPHATE. II. SYNTHESIS OF 5-THIO-D-GLUCOPYRANOSE NUCLEOSIDES
CN101228174A (en) Crystalline sugar compositions and method of making

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10482678

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002738865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002738865

Country of ref document: EP