WO2003002982A1 - Light stability testing device - Google Patents

Light stability testing device Download PDF

Info

Publication number
WO2003002982A1
WO2003002982A1 PCT/JP2002/004840 JP0204840W WO03002982A1 WO 2003002982 A1 WO2003002982 A1 WO 2003002982A1 JP 0204840 W JP0204840 W JP 0204840W WO 03002982 A1 WO03002982 A1 WO 03002982A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sensor
measuring
stability test
paragraph
Prior art date
Application number
PCT/JP2002/004840
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tsukuda
Original Assignee
Nagano Science Equipment Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Science Equipment Mfg. Co., Ltd. filed Critical Nagano Science Equipment Mfg. Co., Ltd.
Priority to JP2003509118A priority Critical patent/JPWO2003002982A1/en
Publication of WO2003002982A1 publication Critical patent/WO2003002982A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/004Investigating resistance of materials to the weather, to corrosion, or to light to light

Definitions

  • the present invention relates to a light stability test apparatus for testing the light stability of, for example, chemicals.
  • FIG. 4 A conventional light stability test apparatus will be described with reference to FIGS. 4, 5, 6, 7, and 8.
  • FIG. 4 A conventional light stability test apparatus will be described with reference to FIGS. 4, 5, 6, 7, and 8.
  • FIG. 4 is a main part front view showing a light stability test apparatus according to a conventional technique.
  • This light stability test device 1 is a device for adjusting the light emitted from a light source 2 by an optical system 3 and irradiating the light on a sample (not shown) mounted on a sample stage 4 to test the light stability of the sample. is there.
  • the optical system 3 mainly includes a first reflecting mirror 31, a beam adjusting means 33, an integrated lens 35 as a light flux controlling means, a second reflecting mirror 37, and a third reflecting mirror 39.
  • the integrated lens 35 is made up of a bunch of chi-yoke-shaped quartz rods, and a spherical glass is attached to the upper part.
  • each quartz column behaves like a small light source. Thereby, for example, even if the light beam passing through the predetermined aperture is rectangular, it can be changed to a circular light beam.
  • Reference numeral 4 denotes a sample stage for mounting a sample (not shown), a visible light measuring sensor 5 for measuring the amount of visible light irradiated on the sample stage 4, and an ultraviolet measuring sensor for measuring the amount of ultraviolet irradiation. 6 is installed.
  • the sample stage 4 is rotatable via a rotating shaft 71 by a driving force of a driving device 7.
  • the light stability test apparatus 1 is largely divided into a lamp house 8 and a sample chamber 9.
  • Means 33, an integrated lens 35 as a light flux controlling means and a second reflecting mirror 37 are installed in a lamp house 8, and a third reflecting mirror 39 and a sample stage 4 of the optical system 3 are provided. It is installed in the sample room 9.
  • the light beam adjusting means 33 in the optical system 3 has a stop which is a total light beam adjusting means and an ultraviolet ray limiting filter which is an ultraviolet ray adjusting means.
  • the stop which is a means for controlling all rays, controls and adjusts the amount of all visible light and ultraviolet rays uniformly
  • the filter for limiting ultraviolet light which is means for controlling ultraviolet rays, only filters out ultraviolet rays (particularly, far ultraviolet rays). To control.
  • the light source which is a total light beam adjusting means and an ultraviolet ray limiting filter which is an ultraviolet ray adjusting means.
  • the light stability test apparatus 1 having the above configuration, first, a sample (not shown) is placed on the sample stage 4. Then, a light beam is emitted from the xenon lamp of the light source 2. This light beam is first condensed by the first reflecting mirror 31, and then passes through an ultraviolet ray limiting filter, which is an ultraviolet ray adjusting means for limiting ultraviolet rays in the light ray adjusting means 33. Thereafter, the light is passed through a stop, which is a total light adjusting means, in order to adjust and limit the total amount of light, that is, the amount of all visible light and ultraviolet light. After that, the direction of the light beam is adjusted by the integrated lens 35 as a light flux controlling means.
  • an ultraviolet ray limiting filter which is an ultraviolet ray adjusting means for limiting ultraviolet rays in the light ray adjusting means 33.
  • a stop which is a total light adjusting means, in order to adjust and limit the total amount of light, that is, the amount of all visible light and ultraviolet light.
  • the direction of the light beam is changed to a substantially horizontal direction by the second reflecting mirror 37 and enters the sample chamber 9, and is further reflected downward by the third reflecting mirror 39 to irradiate a sample (not shown) mounted on the sample stage 4. . Since the irradiation is performed for a long time, the sample stage 4 is rotated by the driving device 7 via the rotating shaft 71 during irradiation to improve the irradiation distribution, and the light stability of the sample is tested. Will be.
  • the sensor for visible light measurement 5 or the sensor for ultraviolet light measurement A signal from any one of the sixteen is transmitted to a control unit (not shown), and the control unit calculates and controls the light amount and time.
  • the light amount of the light source 2 is adjusted by a signal from the visible light measurement sensor 5. Further, the measured values by the ultraviolet ray measuring sensor 6 are integrated and recorded.
  • the light stability test apparatus 1 has the following problems.
  • FIG. 7 is a diagram showing the spectral distribution of sunlight, a xenon lamp, and a D65 lamp (FLR20S-D-EDL-D65 / M, manufactured by Toshiba).
  • the horizontal axis shows the wavelength
  • the vertical axis shows the relative value of the intensity.
  • the spectral distribution of the xenon lamp and the D65 lamp which is a light source approximated by sunlight, has an excess ultraviolet ray portion as compared with the spectral distribution of sunlight.
  • the standards of the Ministry of Health and Welfare in the photostability test of pharmaceuticals, etc. as samples are based on sunlight.
  • the integrated irradiation dose is more than 1200 kLxhr for visible light and It is specified as 200 whr / m 2 or more.
  • FIG. 5 shows the sensitivity distribution of the visible light measuring sensor 5 and the ultraviolet light measuring sensor 6.
  • b is the sensitivity of the visible light measuring sensor 5, that is, the sensitivity of the illuminometer to visible light, which is close to the so-called relative luminous efficiency.
  • a is the sensitivity of the ultraviolet ray measuring sensor 16 and approximates the light source distribution of black light.
  • the measurement definition of ultraviolet light is defined as "350 nm to 370 nm", and the FDA clearly defines it as "black light spectrum distribution". As is clear from FIG.
  • Fig. 6 is a graph showing the degree of degradation of menatrene (vitamin B1) for each spectrum.
  • the integrated irradiation amount of sunlight, xenon light source and D65 light source is applied to the drug menatrene (vitamin B1) having this deterioration curve by 1,200 kLX hr, respectively, the degree of deterioration is as follows. It became like.
  • the irradiation amount of the ultraviolet rays was set to 220 whr / m 2 by controlling an ultraviolet filter which is an ultraviolet adjusting means.
  • FIG. 8 is a diagram showing the transmittance of the ultraviolet filter at this time.
  • the degree of deterioration is a relative evaluation with sunlight as 1.
  • the degree of deterioration differs depending on the light source used. There is a problem that an accurate light stability test is difficult.
  • An object of the present invention is to provide a light stability test device capable of performing a test. Disclosure of the invention
  • a light stability test apparatus includes a light source, an optical system for adjusting a light beam emitted from the light source, and a sample to be irradiated with the light beam passing through the optical system.
  • a light stability test apparatus having a sample stage and an optical sensor attached to the sample stage for measuring an irradiation amount of a light beam, wherein the optical sensor is for measuring a visible light irradiation amount for measuring a visible light irradiation amount. It has a sensor, an ultraviolet ray measuring sensor for measuring the irradiation amount of ultraviolet light, and an intermediate wavelength light measuring sensor for measuring the irradiation amount of intermediate wavelength light between the visible light and the ultraviolet light.
  • visible light refers to light having a wavelength of mainly 500 nm to 780 nm
  • ultraviolet light mainly refers to light having a wavelength of 200 nm to 400 nm.
  • intermediate wavelength light refers to light having a wavelength of mainly from 400 11111 to 500 nm.
  • a light stability having a light source, a sample stage on which a sample to be irradiated with the light beam emitted from the light source is mounted, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam.
  • the optical sensor is a visible light measurement sensor that measures the amount of visible light irradiation, an ultraviolet light measurement sensor that measures the amount of ultraviolet light irradiation, and an irradiation amount of an intermediate wavelength light between visible light and ultraviolet light. It has an intermediate-wavelength light measurement sensor to be measured. It also has a measurement value table that displays the measurement values of the intermediate-wavelength light measurement sensor It is preferable to have an indicator.
  • the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point.
  • the measurement value display section has an instantaneous value display section for displaying an instantaneous value which is a measurement value at each time point.
  • control unit that controls the optical system by transmitting a signal from the intermediate wavelength light beam measurement sensor is provided.
  • control unit that controls the light source by transmitting a signal from the intermediate wavelength light measurement sensor.
  • Controlling the light source means, for example, increasing or decreasing the amount of light emitted from the light source, or increasing or decreasing the irradiation time.
  • the sensitivity peak value of the intermediate wavelength light measuring sensor is preferably in the range of 400 nm to 500 nm.
  • the sensitivity peak value of the intermediate wavelength light measuring sensor is preferably in the range of 450 nm to 450 nm.
  • the sensitivity peak value of the ultraviolet light measuring sensor is preferably in a range from 350 nm to 370 nm.
  • the sensitivity peak value of the visible light measurement sensor is preferably in the range of 550 nm to 560 nm.
  • the light source an optical system for adjusting the light beam emitted from the light source, a sample stage on which a sample to be irradiated with the light beam passing through the optical system is mounted, and the irradiation amount of the light beam attached to the sample stage is determined.
  • the optical sensor is a spectroradiometer, and the spectrum is evaluated from 400 nm to 500 nm for an intermediate wavelength light beam. A spectrum distribution having a peak value of nm may be used as the weighted evaluation coefficient.
  • a light stability having a light source, a sample stage on which a sample to be irradiated with the light beam emitted from the light source is mounted, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam.
  • the optical sensor is a spectroradiometer, and the spectrum is evaluated by a spectrum having a peak value of 400 nm to 500 nm for an intermediate wavelength light beam. The distribution may be used as the weighted evaluation coefficient.
  • the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting a spectrum distribution having a peak value of 450 nm to 470 nm for an intermediate wavelength light beam. It is preferable to use an evaluation coefficient.
  • the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting a spectrum distribution having a peak value of 35 O nm to 37 O nm for ultraviolet rays. It is preferable to use an evaluation coefficient.
  • the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting the spectrum distribution having a peak value of 55 O nm to 56 O nm for visible light. Preferably, it is a coefficient.
  • a measurement value display unit for displaying a measurement value of the irradiation amount of the intermediate wavelength light beam by the spectroradiometer.
  • the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point.
  • the measurement value display section has an instantaneous value display section for displaying an instantaneous value which is a measurement value at each time point.
  • control unit for controlling the optical system by transmitting a signal of the measured value of the irradiation amount of the intermediate wavelength light beam by the spectroradiometer.
  • control unit that controls the light source by transmitting a signal from the intermediate wavelength light measurement sensor.
  • the sample stage is rotatable.
  • FIG. 1 is a perspective view of an essential part showing a light stability test apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a sensitivity distribution of a sensor for measuring an intermediate wavelength light beam in the light stability test apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of an essential part showing a light stability test apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a main part front view showing a light stability test apparatus according to a conventional technique.
  • FIG. 5 is a diagram showing a sensitivity distribution of a sensor for measuring visible light and ultraviolet light.
  • FIG. 6 is a diagram showing the degree of deterioration of menatrene.
  • FIG. 7 is a diagram showing the spectral distribution of sunlight, a xenon lamp, and a D65 lamp.
  • FIG. 8 is a diagram showing the transmittance of an ultraviolet filter. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view of a main part showing a light stability test apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a sensitivity distribution of a sensor for measuring an intermediate wavelength light beam in the light stability test apparatus according to the first embodiment of the present invention.
  • Reference numeral 4 denotes a sample stage, which is rotatable by a driving device 72 via a rotating shaft 71. On this sample table 4, three optical sensors are mounted. 5 is acceptable An eye ray measuring sensor, 6 is an ultraviolet ray measuring sensor, and 7 is an intermediate wavelength light ray measuring sensor.
  • the visible light measuring sensor 5 has a sensitivity peak value around 5555 nm and mainly measures the irradiation amount of light in the visible light region.
  • the ultraviolet measurement sensor 6 has a sensitivity peak value near 360 nm and mainly measures the irradiation amount of light in the ultraviolet region.
  • the intermediate-wavelength light measurement sensor 7 has a sensitivity peak value near 400 nm, and mainly measures the irradiation amount of light in the intermediate-wavelength light region.
  • an ultraviolet intensity meter having a light receiving unit of UD40 manufactured by Topcon Corporation is used as the intermediate-wavelength light measurement sensor 7. As shown in FIG. 2, this intermediate-wavelength light measurement sensor 7 has a sensitivity peak value near 400 nm.
  • the horizontal axis represents the wavelength (unit: nm), and the vertical axis represents the relative value of each spectrum intensity.
  • Each of the sensors 5, 6, and 7 has a recording unit and a display unit (not shown) of the measured value and the integrated value measured by each sensor.
  • a sample (not shown) is placed on the sample table 4.
  • the light stability of the sample is tested by irradiating a sample (not shown) with a light beam emitted from a light source (not shown) via an optical system (not shown).
  • the sample stage 4 is rotated by a driving device 72 via a rotation shaft 71 in order to make the irradiation distribution uniform.
  • the instantaneous value of each dose and the integrated dose are recorded in a recording unit (not shown) and displayed on a display unit (not shown).
  • the visible light integrated value, ultraviolet light integrated value and The intermediate wavelength integrated value is the integrated value of the irradiation amount of each light beam measured by the above-described visible light measuring sensor 5, ultraviolet light measuring sensor 6, and intermediate wavelength light measuring sensor 7, respectively.
  • the integration ratio is a relative value when the intermediate wavelength integrated value of sunlight is 1.000.
  • the degree of deterioration is a relative value when the degree of deterioration when sunlight is used as the light source is 1.0.
  • the measured value of the intermediate-wavelength light measurement sensor 7 is displayed, but the signal from the intermediate-wavelength light measurement sensor 7 is transmitted to the control unit to control and adjust the optical system and the light source. It is also possible to do
  • a further effect can be obtained by using a spectroradiometer.
  • a spectroradiometer measures the entire area of the spectrum. For example, the measurement results are shown in Fig. 7, which shows the spectral distribution of sunlight, xenon lamps, and D65 lamps.
  • An index obtained by weighted averaging using the sensitivity coefficient (or weighted evaluation coefficient) of the sensor used in the stability test apparatus according to the first embodiment of the present invention can be used as the irradiation value.
  • the data for each spectrum from the spectroradiometer is calculated by a microcomputer or the like, and the visible light integrated value, the ultraviolet light integrated value, and the intermediate wavelength integrated value are recorded and can be displayed on the display unit.
  • E i (E), E 2 ( ⁇ ), and ⁇ 3 ( ⁇ ) are integrated values for each spectrum.
  • V, V 2 ⁇ and V 3 are weighted evaluation coefficients at each wavelength.
  • the photostability test apparatus is capable of performing an accurate photostability test even for a drug having a large degree of deterioration in the intermediate wavelength region (400 nm to 500 nm). Can be.
  • the light stability test apparatus includes a light source, an optical system that adjusts a light beam emitted from the light source, and a sample on which a sample irradiated with the light beam passing through the optical system is placed.
  • the optical sensor includes a visible light measuring sensor for measuring an irradiation amount of visible light, an ultraviolet measurement sensor for measuring an irradiation amount of ultraviolet light, and Since it has an intermediate-wavelength-light-measurement sensor that measures the amount of irradiation of intermediate-wavelength light between visible light and ultraviolet light, a drug with a large degree of deterioration in the intermediate-wavelength region (400 ⁇ ! ⁇ 500 nm) Even in this case, an accurate photostability test can be performed, which is useful for performing an accurate photostability test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A light stability testing device comprising a light source, an optical system for regulating light emitted from the light source, a sample table for mounting thereon a sample to be irradiated with light passing through the optical system, and an optical sensor attached to the sample table, for measuring the dose of light, wherein the optical sensor has a visible light measuring sensor (5) for measuring the dose of visible light, a ultraviolet measuring sensor (6) for measuring the dose of ultraviolet ray, and an intermediate wavelength light measuring sensor (7) for measuring the dose of an intermediate wavelength light between visible light and ultraviolet ray, whereby the light stability testing device can conduct an accurate light stability test even on a medicine having a large degree of deterioration in an intermediate wavelength area (400 nm-500 nm).

Description

明 細 書 光安定性試験装置 技術分野  Description Light stability test equipment Technical field
本発明は、 例えば、 薬品等の光安定性を試験するための光安定性試験 装置に関する。 背景技術  The present invention relates to a light stability test apparatus for testing the light stability of, for example, chemicals. Background art
従来の光安定性試験装置を第 4図、 第 5図、 第 6図、 第 7図及び第 8 図を参照しつつ説明する。  A conventional light stability test apparatus will be described with reference to FIGS. 4, 5, 6, 7, and 8. FIG.
第 4図は、従来技術に係る光安定性試験装置を示す要部正面図である。 この光安定性試験装置 1は、 光源 2から発せちれた光線を光学系 3で調 節して試料台 4に載置された図示しない試料に照射し試料の光安定性を 試験するものである。 光学系 3は、 主に、 第一反射鏡 3 1、 光線調節手 段 3 3、 光束制御手段であるインテグレーテツ ドレンズ 3 5, 第二反射 鏡 3 7及び第三反射鏡 3 9から成っている。 インテグレーテッ ドレンズ 3 5は、 チヨーク状の石英の棒が束にしてあり上部に球面ガラスが貼り 付けてある。 ここを光線が通ると石英柱一本一本が小さな光源のような 挙動をする。 これにより、 例えば、 所定の絞りを通った光束が長方形で あっても円形の光束に変えることができる。  FIG. 4 is a main part front view showing a light stability test apparatus according to a conventional technique. This light stability test device 1 is a device for adjusting the light emitted from a light source 2 by an optical system 3 and irradiating the light on a sample (not shown) mounted on a sample stage 4 to test the light stability of the sample. is there. The optical system 3 mainly includes a first reflecting mirror 31, a beam adjusting means 33, an integrated lens 35 as a light flux controlling means, a second reflecting mirror 37, and a third reflecting mirror 39. . The integrated lens 35 is made up of a bunch of chi-yoke-shaped quartz rods, and a spherical glass is attached to the upper part. When a light beam passes here, each quartz column behaves like a small light source. Thereby, for example, even if the light beam passing through the predetermined aperture is rectangular, it can be changed to a circular light beam.
4は図示しない試料を載置するための試料台でこの試料台 4に可視光 線の照射量を測定するための可視光線測定用センサー 5と紫外線の照射 量を測定するための紫外線測定用センサー 6が取り付けられている。尚、 試料台 4は駆動装置 7の駆動力により回転軸 7 1を介して回転可能にな つている。 この従来技術に係る光安定性試験装置 1においては、 大きく ランプハ ウス 8 と試料室 9に分けられており、 上記構成のうち光源 2及び光学系 3のうちの第一反射鏡 3 1、 光線調節手段 3 3、 光束制御手段であるィ ンテグレーテツ ドレンズ 3 5及び第二反射鏡 3 7がランプハウス 8のな かに設置され、 光学系 3のうちの第三反射鏡 3 9及ぴ試料台 4が試料室 9のなかに設置されている。 Reference numeral 4 denotes a sample stage for mounting a sample (not shown), a visible light measuring sensor 5 for measuring the amount of visible light irradiated on the sample stage 4, and an ultraviolet measuring sensor for measuring the amount of ultraviolet irradiation. 6 is installed. The sample stage 4 is rotatable via a rotating shaft 71 by a driving force of a driving device 7. In the light stability test apparatus 1 according to the prior art, the light stability test apparatus 1 is largely divided into a lamp house 8 and a sample chamber 9. Means 33, an integrated lens 35 as a light flux controlling means and a second reflecting mirror 37 are installed in a lamp house 8, and a third reflecting mirror 39 and a sample stage 4 of the optical system 3 are provided. It is installed in the sample room 9.
光学系 3のなかの光線調節手段 3 3は、 全光線調節手段である絞り及 ぴ紫外線調節手段である紫外線制限フィルターを有している。 全光線調 節手段である絞りは可視光線及び紫外線全ての光線量を一律に調節制御 するものであり、 紫外線調節手段である紫外線制限フィルタ一は光線の なかの紫外線のみ (特に、 遠紫外線) を制御するものである。 尚、 光源 The light beam adjusting means 33 in the optical system 3 has a stop which is a total light beam adjusting means and an ultraviolet ray limiting filter which is an ultraviolet ray adjusting means. The stop, which is a means for controlling all rays, controls and adjusts the amount of all visible light and ultraviolet rays uniformly, and the filter for limiting ultraviolet light, which is means for controlling ultraviolet rays, only filters out ultraviolet rays (particularly, far ultraviolet rays). To control. The light source
2 と してはキセノンランプを使用している。 As for 2, a xenon lamp is used.
上記構成を有する光安定性試験装置 1では、 まず、 試料台 4の上に図 示しない試料が置かれる。 その後、 光源 2のキセノンランプから光線が 発せられる。 この光線はまず、 第一反射鏡 3 1により集光され、 その後、 光線調節手段 3 3の中の紫外線を制限するため紫外線調節手段である紫 外線制限フィルターを通過する。 その後、 全体光量即ち可視光線及び紫 外線全ての光線量を調節制限するため全光線調節手段である絞りを通過 させる。 その後、 光束制御手段であるインテグレーテッ ドレンズ 3 5に より光線の方向を整える。 その後、 第二反射鏡 3 7により光線の方向を 略水平に変え試料室 9に入り、 更に第三反射鏡 3 9により下方に反射し 試料台 4に載置された図示しない試料に照射される。 尚、 長時間にわた つて照射されるため、 照射分布を良くするため、 照射中、 駆動装置 7に より回転軸 7 1を介して試料台 4が回転され、 試料の光安定性が試験さ れることになる。  In the light stability test apparatus 1 having the above configuration, first, a sample (not shown) is placed on the sample stage 4. Then, a light beam is emitted from the xenon lamp of the light source 2. This light beam is first condensed by the first reflecting mirror 31, and then passes through an ultraviolet ray limiting filter, which is an ultraviolet ray adjusting means for limiting ultraviolet rays in the light ray adjusting means 33. Thereafter, the light is passed through a stop, which is a total light adjusting means, in order to adjust and limit the total amount of light, that is, the amount of all visible light and ultraviolet light. After that, the direction of the light beam is adjusted by the integrated lens 35 as a light flux controlling means. Thereafter, the direction of the light beam is changed to a substantially horizontal direction by the second reflecting mirror 37 and enters the sample chamber 9, and is further reflected downward by the third reflecting mirror 39 to irradiate a sample (not shown) mounted on the sample stage 4. . Since the irradiation is performed for a long time, the sample stage 4 is rotated by the driving device 7 via the rotating shaft 71 during irradiation to improve the irradiation distribution, and the light stability of the sample is tested. Will be.
尚、 上記照射中、 可視光線測定用センサー 5又は紫外線測定用センサ 一 6いずれか一方からの信号が図示しない制御部に伝達され、 この制御 部で演算して光線量及び時間を制御している。 During the irradiation, the sensor for visible light measurement 5 or the sensor for ultraviolet light measurement A signal from any one of the sixteen is transmitted to a control unit (not shown), and the control unit calculates and controls the light amount and time.
照射中、 可視光線測定用センサー 5からの信号によって光源 2の光量 が調節される。 また、 紫外線測定用センサー 6による測定値は積算され 記録される。  During irradiation, the light amount of the light source 2 is adjusted by a signal from the visible light measurement sensor 5. Further, the measured values by the ultraviolet ray measuring sensor 6 are integrated and recorded.
しかし、 上記従来技術に係る光安定性試験装置 1においては次のよう な問題点があった。  However, the light stability test apparatus 1 according to the above prior art has the following problems.
第 7図は、 太陽光、 キセノンランプ及び D 6 5ランプ (東芝製 F L R 2 0 S - D - E D L - D 6 5 /M) のスぺク トル分布を示す図である。 横軸に波長を示し、 縦軸に強度の相対値を示している。 図 8に示される ように、 キセノンランプ及ぴ D 6 5ランプという太陽光近似光源のスぺ ク トル分布は、 太陽光のスぺク トル分布と比較して紫外線部分が過剰に なっている。  FIG. 7 is a diagram showing the spectral distribution of sunlight, a xenon lamp, and a D65 lamp (FLR20S-D-EDL-D65 / M, manufactured by Toshiba). The horizontal axis shows the wavelength, and the vertical axis shows the relative value of the intensity. As shown in FIG. 8, the spectral distribution of the xenon lamp and the D65 lamp, which is a light source approximated by sunlight, has an excess ultraviolet ray portion as compared with the spectral distribution of sunlight.
一方、 試料である医薬品等の光安定性試験における厚生省の基準は太 陽光を基準に定めれられており、 具体的には、 積算照射量は、 可視光線 が 1 2 0 0 kLxhr 以上、 紫外線が 2 0 0 w h r /m2以上と規定されて いる。 On the other hand, the standards of the Ministry of Health and Welfare in the photostability test of pharmaceuticals, etc. as samples are based on sunlight.Specifically, the integrated irradiation dose is more than 1200 kLxhr for visible light and It is specified as 200 whr / m 2 or more.
従って、 上記光安定性試験装置 1においては、 上述した二個の光セン サー即ち可視光線測定用センサー 5及ぴ紫外線測定用センサー 6のみが 試料台 6に取り付けられている。 この可視光線測定用センサー 5及び紫 外線測定用センサー 6の感度分布を第 5図に示す。 第 5図中、 bは可視 光線測定用センサー 5の感度即ち可視光に対する照度計の感度で、 いわ ゆる比視感度に近似したものである。 一方、 aは紫外線測定用センサ一 6の感度でブラックライ トの光源分布に近似させたものである。 尚、 紫 外線光の測定定義は 「 3 5 0 n mから 3 7 0 n m」 と定義されており、 F D Aでは、 明確に 「ブラックライ トのスペク トル分布」 としている。 この第 5図において明確なように、 4 0 0 nmから 5 0 0 n mの波長 付近の感受性が殆ど存在しないのがわかる。 太陽光のように、 光源のス ぺク トルに一定の分布型が想定される場合、 上記二個のセンサー即ち可 視光線測定用センサー 5及び紫外線測定用センサー 6による測定で全体 の強度を代表するのに十分である。 Therefore, in the light stability test apparatus 1, only the two light sensors described above, that is, the visible light measurement sensor 5 and the ultraviolet light measurement sensor 6, are attached to the sample stage 6. FIG. 5 shows the sensitivity distribution of the visible light measuring sensor 5 and the ultraviolet light measuring sensor 6. In FIG. 5, b is the sensitivity of the visible light measuring sensor 5, that is, the sensitivity of the illuminometer to visible light, which is close to the so-called relative luminous efficiency. On the other hand, a is the sensitivity of the ultraviolet ray measuring sensor 16 and approximates the light source distribution of black light. The measurement definition of ultraviolet light is defined as "350 nm to 370 nm", and the FDA clearly defines it as "black light spectrum distribution". As is clear from FIG. 5, there is almost no sensitivity near the wavelength of 400 nm to 500 nm. When the distribution of the light source spectrum is assumed to be constant, such as sunlight, the overall intensity is represented by the above two sensors, namely, the visible light measurement sensor 5 and the ultraviolet measurement sensor 6. Enough to do.
しかし、 光源が変わり、 種々のパターンのスペク トル分布が予想され る場合、 光線の照射効果即ち試験結果に差が出ることがある。 例えば、 第 6図に示されるように、 1つの薬剤であるメナトレン(ビタミン B 1 ) は中間波長域に大きな劣化度を有する。 第 6図はメナト レン (ビタ ミン B 1 ) のスペク トル毎の劣化度を示す図である。 この劣化曲線をもつ薬 剤メナト レン (ビタ ミ ン B 1 ) に太陽光、 キセノン光源及び D 6 5光源 の積算照射量を各々、 1 2 0 0 k L X h rかけた場合、 各劣化度は次の ようになった。 尚、 紫外線の照射量は紫外線調節手段である紫外線フィ ルターを制御して、 何れも 2 2 0 w h r /m2と した。 第 8図はこの際 の紫外線フィルター透過率を示す図である。 尚、 劣化度は太陽光を 1と した相対評価とする。 However, if the light source changes and various patterns of spectral distribution are expected, there may be a difference in the light irradiation effect, that is, the test result. For example, as shown in FIG. 6, one drug, menatrene (vitamin B 1) has a large degree of deterioration in the intermediate wavelength region. Fig. 6 is a graph showing the degree of degradation of menatrene (vitamin B1) for each spectrum. When the integrated irradiation amount of sunlight, xenon light source and D65 light source is applied to the drug menatrene (vitamin B1) having this deterioration curve by 1,200 kLX hr, respectively, the degree of deterioration is as follows. It became like. The irradiation amount of the ultraviolet rays was set to 220 whr / m 2 by controlling an ultraviolet filter which is an ultraviolet adjusting means. FIG. 8 is a diagram showing the transmittance of the ultraviolet filter at this time. The degree of deterioration is a relative evaluation with sunlight as 1.
光源 可視光積算照射量 紫外光線積算照射量 劣化度 太暘光 1 2 0 0 k L x h r 2 2 0 w h r /m2 1. 0 0 キセノ ン光源 1 2 0 0 k L x h r 2 2 0 w h r /m 1. 2 1 D 6 5光源 1 2 0 0 k L x h r 2 2 0 w h r /m 1. 1 6 上記の試験結果のように、 この薬剤メナト レン (ビタミン B 1 ) にお いては従来評価では同じ照射量になるように照射しても、 使用する光源 により劣化度に差が出ることになる。 また、 その他の一般的な薬剤であ つても、 同様な性質をもつものが多い。 Light source Visible light cumulative irradiation Ultraviolet light cumulative irradiation Deterioration Degree of light 1 200 kL xhr 22 0 whr / m 2 1.000 Xenon light source 1 200 kL xhr 22 0 whr / m 1 2 1 D 6 5 Light source 1 200 kL xhr 220 whr / m 1.16 As shown in the above test results, this drug menatrene (vitamin B 1) has the same irradiation in the conventional evaluation. Even if irradiation is performed in such a way, the degree of deterioration will differ depending on the light source used. In addition, many other common drugs have similar properties.
このよ う に、 中間波長領域 (4 0 0 n m〜 5 0 0 n m) に大きな劣化 度を有する薬剤では使用する光源により劣化度に差が出ることになり、 正確な光安定性試験が困難であるという問題点があった。 As described above, for a medicine having a large degree of deterioration in the intermediate wavelength region (400 nm to 500 nm), the degree of deterioration differs depending on the light source used. There is a problem that an accurate light stability test is difficult.
そこで、 本発明は、 上記問題点を解決するためになされたもので、 中 間波長領域 (4 0 0 n m〜 5 0 0 n m ) に大きな劣化度を有する薬剤で あっても正確な光安定性試験を実施しうる光安定性試験装置を提供する ことを目的とする。 発明の開示  Therefore, the present invention has been made to solve the above-mentioned problems, and it has been found that accurate photostability can be achieved even for a drug having a large degree of deterioration in the intermediate wavelength region (400 nm to 500 nm). An object of the present invention is to provide a light stability test device capable of performing a test. Disclosure of the invention
上記目的を達成するために、本発明に係る光安定性試験装置は、光源、 当該光源から発せられた光線を調節する光学系、 当該光学系を経た光線 が照射される試料を載置するための試料台及び当該試料台に取り付けら れた光線の照射量を測定するための光センサーを有する光安定性試験装 置において、 前記光センサーは可視光線の照射量を測定する可視光線測 定用センサー、 紫外線の照射量を測定する紫外線測定用センサー及び可 視光線と紫外線間の中間波長光線の照射量を測定する中間波長光線測定 用センサ一を有するものである。 ここで、 「可視光線」 とは波長が主に、 5 0 0 n mから 7 8 0 n mの光線をいい、 「紫外線」 とは波長が主に、 2 0 0 n mから 4 0 0 n mの光線をいい、 「中間波長光線」 とは波長が 主に4 0 0 11 111カ ら 5 0 0 n mの光線をいう。  In order to achieve the above object, a light stability test apparatus according to the present invention includes a light source, an optical system for adjusting a light beam emitted from the light source, and a sample to be irradiated with the light beam passing through the optical system. A light stability test apparatus having a sample stage and an optical sensor attached to the sample stage for measuring an irradiation amount of a light beam, wherein the optical sensor is for measuring a visible light irradiation amount for measuring a visible light irradiation amount. It has a sensor, an ultraviolet ray measuring sensor for measuring the irradiation amount of ultraviolet light, and an intermediate wavelength light measuring sensor for measuring the irradiation amount of intermediate wavelength light between the visible light and the ultraviolet light. Here, “visible light” refers to light having a wavelength of mainly 500 nm to 780 nm, and “ultraviolet light” mainly refers to light having a wavelength of 200 nm to 400 nm. In other words, “intermediate wavelength light” refers to light having a wavelength of mainly from 400 11111 to 500 nm.
また、 光源、 当該光源から発せられた光線が照射される試料を載置す るための試料台及び当該試料台に取り付けられた光線の照射量を測定す るための光センサーを有する光安定性試験装置において、 前記光センサ 一は可視光線の照射量を測定する可視光線測定用センサー、 紫外線の照 射量を測定する紫外線測定用センサー及び可視光線と紫外線間の中間波 長光線の照射量を測定する中間波長光線測定用センサーを有するもので また、 中間波長光線測定用センサーによる測定値を表示する測定値表 示部を有することが好ましい。 Also, a light stability having a light source, a sample stage on which a sample to be irradiated with the light beam emitted from the light source is mounted, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam. In the test apparatus, the optical sensor is a visible light measurement sensor that measures the amount of visible light irradiation, an ultraviolet light measurement sensor that measures the amount of ultraviolet light irradiation, and an irradiation amount of an intermediate wavelength light between visible light and ultraviolet light. It has an intermediate-wavelength light measurement sensor to be measured. It also has a measurement value table that displays the measurement values of the intermediate-wavelength light measurement sensor It is preferable to have an indicator.
また、 前記測定値表示部は各時点における測定値を積算した積算値を 表示するための積算値表示部を有することが好ましい。  Further, it is preferable that the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point.
また、 前記測定値表示部は各時点における測定値である瞬時値を表示 するための瞬時値表示部を有することが好ましい。  Further, it is preferable that the measurement value display section has an instantaneous value display section for displaying an instantaneous value which is a measurement value at each time point.
また、 前記中間波長光線測定用センサーからの信号が伝達されること により前記光学系を制御する制御部を有することが好ましい。  Further, it is preferable that a control unit that controls the optical system by transmitting a signal from the intermediate wavelength light beam measurement sensor is provided.
また、 前記中間波長光線測定用センサーからの信号が伝達されること により前記光源を制御する制御部を有することが好ましい。 「光源を制 御する」 とは、 例えば、 光源から発せられる光線量を増減させたり、 照 射時間を長短させたりすることをいう。  In addition, it is preferable to have a control unit that controls the light source by transmitting a signal from the intermediate wavelength light measurement sensor. “Controlling the light source” means, for example, increasing or decreasing the amount of light emitted from the light source, or increasing or decreasing the irradiation time.
また、 前記中間波長光線測定用センサーの感受性ピーク値は 4 0 0 n mから 5 0 0 n mまでの範囲にあることが好ましい。  Further, the sensitivity peak value of the intermediate wavelength light measuring sensor is preferably in the range of 400 nm to 500 nm.
また、 前記中間波長光線測定用センサーの感受性ピーク値は 4 5 0 η mから 4 7 0 n mまでの範囲にあることが好ましい。  Further, the sensitivity peak value of the intermediate wavelength light measuring sensor is preferably in the range of 450 nm to 450 nm.
また、 前記紫外光線測定用センサーの感受性ピーク値は 3 5 0 n mか ら 3 7 0 n mまでの範囲にあることが好ましい。  Further, the sensitivity peak value of the ultraviolet light measuring sensor is preferably in a range from 350 nm to 370 nm.
また、 前記可視光線測定用センサーの感受性ピーク値は 5 5 0 n mか ら 5 6 0 n mまでの範囲にあることが好ましい。  In addition, the sensitivity peak value of the visible light measurement sensor is preferably in the range of 550 nm to 560 nm.
また、 光源、 当該光源から発せられた光線を調節する光学系、 当該光 学系を経た光線が照射される試料を載置するための試料台及び当該試料 台に取り付けられた光線の照射量を測定するための光センサーを有する 光安定性試験装置において、 前記光センサ一はスぺク トロラジオメータ であって、 スぺク トルの評価を中間波長光線については 4 0 0 n mから 5 0 0 n mのピーク値をもつスぺク トル分布を加重評価係数とするもの であってもよレヽ。 また、 光源、 当該光源から発せられた光線が照射される試料を載置す るための試料台及び当該試料台に取り付けられた光線の照射量を測定す るための光センサーを有する光安定性試験装置において、 前記光センサ 一はスぺク トロラジオメータであって、 スぺク トルの評価を中間波長光 線については 4 0 0 n mから 5 0 0 n mのピーク値をもつスぺク トル分 布を加重評価係数とするものであってもよい。 In addition, the light source, an optical system for adjusting the light beam emitted from the light source, a sample stage on which a sample to be irradiated with the light beam passing through the optical system is mounted, and the irradiation amount of the light beam attached to the sample stage is determined. In a light stability test apparatus having an optical sensor for measurement, the optical sensor is a spectroradiometer, and the spectrum is evaluated from 400 nm to 500 nm for an intermediate wavelength light beam. A spectrum distribution having a peak value of nm may be used as the weighted evaluation coefficient. Also, a light stability having a light source, a sample stage on which a sample to be irradiated with the light beam emitted from the light source is mounted, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam. In the test apparatus, the optical sensor is a spectroradiometer, and the spectrum is evaluated by a spectrum having a peak value of 400 nm to 500 nm for an intermediate wavelength light beam. The distribution may be used as the weighted evaluation coefficient.
また、 前記光センサーはスぺク トロラジオメータであって、 スぺク ト ルの評価を中間波長光線については 4 5 0 n mから 4 7 0 n mのピーク 値をもつスぺク トル分布を加重評価係数とすることが好ましい。  Further, the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting a spectrum distribution having a peak value of 450 nm to 470 nm for an intermediate wavelength light beam. It is preferable to use an evaluation coefficient.
また、 前記光センサ一はスぺク トロラジオメータであって、 スぺク ト ルの評価を紫外光線については 3 5 O n mから 3 7 O n mのピーク値を もつスぺク トル分布を加重評価係数とすることが好ましい。  The optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting a spectrum distribution having a peak value of 35 O nm to 37 O nm for ultraviolet rays. It is preferable to use an evaluation coefficient.
また、 前記光センサーはスぺク トロラジオメータであって、 スぺク ト ルの評価を可視光線については 5 5 O n mから 5 6 O n mのピーク値を もつスぺク トル分布を加重評価係数とすることが好ましい。  Further, the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting the spectrum distribution having a peak value of 55 O nm to 56 O nm for visible light. Preferably, it is a coefficient.
また、 前記スぺク トロラジオメータによる中間波長光線の照射量の測 定値を表示する測定値表示部を有することが好ましい。  Further, it is preferable to have a measurement value display unit for displaying a measurement value of the irradiation amount of the intermediate wavelength light beam by the spectroradiometer.
また、 前記測定値表示部は各時点における測定値を積算した積算値を 表示するための積算値表示部を有することが好ましい。  Further, it is preferable that the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point.
また、 前記測定値表示部は各時点における測定値である瞬時値を表示 するための瞬時値表示部を有することが好ましい。  Further, it is preferable that the measurement value display section has an instantaneous value display section for displaying an instantaneous value which is a measurement value at each time point.
また、 前記スぺク トロラジオメータによる中間波長光線の照射量の測 定値の信号が伝達されることにより前記光学系を制御する制御部を有す ることが好ましい。  Further, it is preferable to have a control unit for controlling the optical system by transmitting a signal of the measured value of the irradiation amount of the intermediate wavelength light beam by the spectroradiometer.
また、 前記中間波長光線測定用センサーからの信号が伝達されること により前記光源を制御する制御部を有することが好ましい。 また、 前記試料台は回転可能にされていることが好ましい。 図面の簡単な説明 In addition, it is preferable to have a control unit that controls the light source by transmitting a signal from the intermediate wavelength light measurement sensor. Preferably, the sample stage is rotatable. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第一実施例に係る光安定性試験装置を示す要部斜 視図である。  FIG. 1 is a perspective view of an essential part showing a light stability test apparatus according to a first embodiment of the present invention.
第 2図は、 本発明の第一実施例に係る光安定性試験装置における中間 波長光線測定用センサーの感度分布を示す図である。  FIG. 2 is a diagram showing a sensitivity distribution of a sensor for measuring an intermediate wavelength light beam in the light stability test apparatus according to the first embodiment of the present invention.
第 3図は、 本発明の第二実施例に係る光安定性試験装置を示す要部斜 視図である。  FIG. 3 is a perspective view of an essential part showing a light stability test apparatus according to a second embodiment of the present invention.
第 4図は、従来技術に係る光安定性試験装置を示す要部正面図である。 第 5図は、 可視光線及び紫外線測定用センサーの感度分布を示す図で ある。  FIG. 4 is a main part front view showing a light stability test apparatus according to a conventional technique. FIG. 5 is a diagram showing a sensitivity distribution of a sensor for measuring visible light and ultraviolet light.
第 6図は、 メナトレンの劣化度を示す図である。  FIG. 6 is a diagram showing the degree of deterioration of menatrene.
第 7図は、 太陽光、 キセノンランプ及び D 6 5ランプのスぺク トル分 布を示す図である。  FIG. 7 is a diagram showing the spectral distribution of sunlight, a xenon lamp, and a D65 lamp.
第 8図は、 紫外線フィルター透過率を示す図である。 発明を実施するための最良の形態  FIG. 8 is a diagram showing the transmittance of an ultraviolet filter. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に添付の図面に従って説明する。  The present invention will be described in more detail with reference to the accompanying drawings.
本発明の第一実施例に係る光安定性試験装置を第 1図及び第 2図を参 照しつつ説明する。 第 1図は、 本発明の第一実施例に係る光安定性試験 装置を示す要部斜視図である。 第 2図は、 本発明の第一実施例に係る光 安定性試験装置における中間波長光線測定用センサーの感度分布を示す 図である。  A light stability test apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of a main part showing a light stability test apparatus according to a first embodiment of the present invention. FIG. 2 is a diagram showing a sensitivity distribution of a sensor for measuring an intermediate wavelength light beam in the light stability test apparatus according to the first embodiment of the present invention.
4は試料台で駆動装置 7 2により回転軸 7 1 を介して回転可能であ る。 この試料台 4の上に 3個の光ンサ一が取り付けられている。 5は可 視光線測定用センサー、 6は紫外線測定用センサー及ぴ 7は中間波長光 線測定用センサーである。 可視光線測定用センサー 5は、 5 5 5 n m付 近に感受性ピーク値をもち、 主に可視光領域の光線の照射量を測定する ものである。 紫外線測定用センサー 6は、 3 6 0 n m付近に感受性ピー ク値をもち、 主に紫外光領域の光線の照射量を測定するものである。 ま た、 中間波長光線測定用センサー 7は、 4 0 0 n m付近に感受性ピーク 値をもち、 主に中間波長光領域の光線の照射量を測定するものである。 本実施例においては、 中間波長光線測定用センサー 7として、 トプコ ン社製の U D 4 0の受光部をもつ紫外線強度計である。 第 2図に示すよ うに、 この中間波長光線測定用センサー 7は 4 0 0 n m付近に感受性ピ 一ク値をもつ。 尚、 第 2図において、 横軸は波長 (単位 : n m )、 縦軸 が各スぺク トル強度の相対値を示す。 Reference numeral 4 denotes a sample stage, which is rotatable by a driving device 72 via a rotating shaft 71. On this sample table 4, three optical sensors are mounted. 5 is acceptable An eye ray measuring sensor, 6 is an ultraviolet ray measuring sensor, and 7 is an intermediate wavelength light ray measuring sensor. The visible light measuring sensor 5 has a sensitivity peak value around 5555 nm and mainly measures the irradiation amount of light in the visible light region. The ultraviolet measurement sensor 6 has a sensitivity peak value near 360 nm and mainly measures the irradiation amount of light in the ultraviolet region. The intermediate-wavelength light measurement sensor 7 has a sensitivity peak value near 400 nm, and mainly measures the irradiation amount of light in the intermediate-wavelength light region. In the present embodiment, an ultraviolet intensity meter having a light receiving unit of UD40 manufactured by Topcon Corporation is used as the intermediate-wavelength light measurement sensor 7. As shown in FIG. 2, this intermediate-wavelength light measurement sensor 7 has a sensitivity peak value near 400 nm. In FIG. 2, the horizontal axis represents the wavelength (unit: nm), and the vertical axis represents the relative value of each spectrum intensity.
5 , 6及び 7の各センサーに関し、 各々、 各センサーで測定した測定 値及び積算値の図示しない記録部及び表示部を有している。  Each of the sensors 5, 6, and 7 has a recording unit and a display unit (not shown) of the measured value and the integrated value measured by each sensor.
尚、 光安定性試験装置における光学系等の他の機械的構成は従来と略 同様である。  The other mechanical configurations such as the optical system in the light stability test apparatus are substantially the same as those in the related art.
次に、 上記構成を有する本発明の第一実施例に係る光安定性試験装置 の作用 ·効果を説明する。  Next, the operation and effect of the photostability test apparatus according to the first embodiment of the present invention having the above configuration will be described.
まず、 試料台 4の上に図示しない試料が載置される。 次に、 図示しな い光源から発せられた光線が図示しない光学系を介して図示しない試料 に照射されることにより、 試料の光安定性が試験されることになる。 照 射中は、 照射分布を均一にするため、 試料台 4は駆動装置 7 2により回 転軸 7 1を介して回転される。  First, a sample (not shown) is placed on the sample table 4. Next, the light stability of the sample is tested by irradiating a sample (not shown) with a light beam emitted from a light source (not shown) via an optical system (not shown). During irradiation, the sample stage 4 is rotated by a driving device 72 via a rotation shaft 71 in order to make the irradiation distribution uniform.
この光安定性試験中、 試料台 4に取り付けられた 3個のセンサー即ち 可視光線測定用センサー 5、 紫外線測定用センサー 6及び中間波長光線 測定用センサー 7によって光線中の可視光、 紫外線及び中間波長光線の 各照射量の瞬時値及び積算照射量が図示しない記録部に記録され及び図 示しない表示部に各々表示されることになる。 During this light stability test, three sensors mounted on the sample stage 4, namely, the visible light measuring sensor 5, the ultraviolet light measuring sensor 6, and the intermediate wavelength light measuring sensor 7, detect visible light, ultraviolet light and Ray of light The instantaneous value of each dose and the integrated dose are recorded in a recording unit (not shown) and displayed on a display unit (not shown).
上記光安定性試験装置において、 光源を太陽光、 キセノン光源及び D 6 5光源に関して次に示す実験結果が得られた。  In the light stability test apparatus described above, the following experimental results were obtained for the light sources of sunlight, xenon light source and D65 light source.
光源 可視光積算値 紫外光積算値 中間波長積算値 積算比 劣化度Light source Visible light integrated value Ultraviolet light integrated value Intermediate wavelength integrated value Integration ratio Degree of deterioration
(k L x h r ) (wh r Zm2) (w h r /m2) (相対値) 太陽光 1 2 0 0 2 2 0 2 9 0 7 1. 0 0 1. 0 0 キセノン光源 1 2 0 0 2 2 0 3 4 3 9 1. 2 0 1. 2 7 D 6 5光源 1 2 00 2 2 0 2 8 5 4 0. 9 8 1. 1 1 上記の表において、 可視光積算値、 紫外光積算値及び中間波長積算値 は各々、 上述した可視光線測定用センサー 5、 紫外線測定用センサー 6 及び中間波長光線測定用センサー 7で測定された各光線の照射量の積算 値である。 積算比は、 太陽光の中間波長積算値を 1. 0 0とした場合の 相対値である。 劣化度は、 太陽光を光源とした場合の劣化度を 1. 0 0 とした場合の相対値である。 (k L xhr) (whr zm 2 ) (whr / m 2 ) (relative value) Sunlight 1 2 0 0 2 2 0 2 9 0 7 1.0.0 1 .0 0 Xenon light source 1 2 0 0 2 2 0 3 4 3 9 1.2 0 1.2 7 D 6 5 Light source 1 2 00 2 2 0 2 8 5 4 0.9.8 1.1 1 1 In the above table, the visible light integrated value, ultraviolet light integrated value and The intermediate wavelength integrated value is the integrated value of the irradiation amount of each light beam measured by the above-described visible light measuring sensor 5, ultraviolet light measuring sensor 6, and intermediate wavelength light measuring sensor 7, respectively. The integration ratio is a relative value when the intermediate wavelength integrated value of sunlight is 1.000. The degree of deterioration is a relative value when the degree of deterioration when sunlight is used as the light source is 1.0.
上記の表に示されるように、 中間波長積算値と劣化度との間に大きな 関係が認められる。 このように、 可視光線測定用センサー 5及ぴ紫外線 測定用センサー 6の測定値のみならず、 中間波長光線測定用センサー 7 の測定値を表示することにより、 試料の劣化度をより正確にかつ詳細に 表示することができる。  As shown in the above table, a large relationship is recognized between the intermediate wavelength integrated value and the degree of deterioration. As described above, not only the measurement value of the visible light measurement sensor 5 and the measurement value of the ultraviolet ray measurement sensor 6 but also the measurement value of the intermediate wavelength light measurement sensor 7 are displayed, so that the degree of deterioration of the sample can be more accurately and in detail. Can be displayed.
尚、 本実施例においては、 中間波長光線測定用センサー 7の測定値を 表示したが、 さらに、 中間波長光線測定用センサー 7からの信号を制御 部に伝達し、 光学系や光源の制御 ·調整をすることも可能である。  In this embodiment, the measured value of the intermediate-wavelength light measurement sensor 7 is displayed, but the signal from the intermediate-wavelength light measurement sensor 7 is transmitted to the control unit to control and adjust the optical system and the light source. It is also possible to do
また、 本件実施例における光センサーとは異なる実施例としては、 ス ぺク トロラジオメータを利用してもさらなる効果を上げることができ る。 スぺク トロラジオメータはスぺク トル全域を測光するもので、 例え ば、 測定結果は太陽光、 キセノンランプ及び D 6 5ランプのスペク トル 分布を示す第 7図のようになる。 Further, as an embodiment different from the optical sensor in the present embodiment, a further effect can be obtained by using a spectroradiometer. A spectroradiometer measures the entire area of the spectrum. For example, the measurement results are shown in Fig. 7, which shows the spectral distribution of sunlight, xenon lamps, and D65 lamps.
本発明の第一実施例に係る安定性試験装置において使用したセンサー の感度係数 (又は加重評価係数) を使って加重平均した指数を照射値と して使用することができる。 スぺク トロラジオメータからの分光別のデ ータをマイコン等によって演算して、 可視光積算値、 紫外光積算値及び 中間波長積算値を記録し、 表示部に表示することができる。  An index obtained by weighted averaging using the sensitivity coefficient (or weighted evaluation coefficient) of the sensor used in the stability test apparatus according to the first embodiment of the present invention can be used as the irradiation value. The data for each spectrum from the spectroradiometer is calculated by a microcomputer or the like, and the visible light integrated value, the ultraviolet light integrated value, and the intermediate wavelength integrated value are recorded and can be displayed on the display unit.
具体的に、 式において表すと次のようになる。 紫外線のエネルギ' E , = J V! , E 1 (え) d λ 紫外線のエネルギー : E2= j v2;iE2 ( λ ) d λ 紫外線のエネルギー : E3= J V3.E 3 ( λ ) d λ Specifically, the expression is as follows. UV energy 'E, = JV! , E 1 (E) d λ Ultraviolet energy: E 2 = jv 2 ; iE 2 (λ) d λ Ultraviolet energy: E 3 = JV 3 .E 3 (λ) d λ
ここで、 E i (え)、 E 2 ( λ ) 及び Ε 3 ( λ ) は各々、 スぺク トル毎 の積算値である。 V 、 V 2 λ及び V 3 は各波長における加重評価係数で め 。 Here, E i (E), E 2 (λ), and Ε 3 (λ) are integrated values for each spectrum. V, V 2 λ and V 3 are weighted evaluation coefficients at each wavelength.
このように、 光センサ一として、 スぺク トロラジォメータを使用して も中間波長領域 (4 0 0 η π!〜 5 0 0 nm) に大きな劣化度を有する薬 剤であっても正確な光安定性試験を実施することができる。  As described above, even if a spectroradiometer is used as the optical sensor, even if the agent has a large degree of deterioration in the intermediate wavelength region (400 ηπ! To 500 nm), accurate light stability can be obtained. A sex test can be performed.
以上のように、 本発明に係る光安定性試験装置は、 中間波長領域 (4 00 nm〜 5 0 0 n m) に大きな劣化度を有する薬剤であっても正確な 光安定性試験を実施することができる。  As described above, the photostability test apparatus according to the present invention is capable of performing an accurate photostability test even for a drug having a large degree of deterioration in the intermediate wavelength region (400 nm to 500 nm). Can be.
産業上の可能性 Industrial potential
以上のように、 本発明に係る光安定性試験装置は、 光源、 当該光源か ら発せられた光線を調節する光学系、 当該光学系を経た光線が照射され る試料を載置するための試料台及び当該試料台に取り付けられた光線の 照射量を測定するための光センサーを有する光安定性試験装置におい て、 前記光センサーは可視光線の照射量を測定する可視光線測定用セン サー、 紫外線の照射量を測定する紫外線測定用センサー及び可視光線と 紫外線間の中間波長光線の照射量を測定する中間波長光線測定用センサ 一を有するので、 中間波長領域 ( 4 0 0 η π!〜 5 0 0 n m ) に大きな劣 化度を有する薬剤であっても正確な光安定性試験を実施することがで き、 正確な光安定性試験の実施に有用である。 As described above, the light stability test apparatus according to the present invention includes a light source, an optical system that adjusts a light beam emitted from the light source, and a sample on which a sample irradiated with the light beam passing through the optical system is placed. Stage and the light beam attached to the sample stage In a light stability test apparatus having an optical sensor for measuring an irradiation amount, the optical sensor includes a visible light measuring sensor for measuring an irradiation amount of visible light, an ultraviolet measurement sensor for measuring an irradiation amount of ultraviolet light, and Since it has an intermediate-wavelength-light-measurement sensor that measures the amount of irradiation of intermediate-wavelength light between visible light and ultraviolet light, a drug with a large degree of deterioration in the intermediate-wavelength region (400 ηπ! ~ 500 nm) Even in this case, an accurate photostability test can be performed, which is useful for performing an accurate photostability test.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光源、 当該光源から発せられた光線を調節する光学系、 当該光学系 を経た光線が照射される試料を載置するための試料台及び当該試料台に 取り付けられた光線の照射量を測定するための光センサーを有する光安 定性試験装置において、 前記光センサーは可視光線の照射量を測定する 可視光線測定用センサー、 紫外線の照射量を測定する紫外線測定用セン サー及び可視光線と紫外線間の中間波長光線の照射量を測定する中間波 長光線測定用センサーを有することを特徴とする光安定性試験装置。 1. A light source, an optical system for adjusting the light emitted from the light source, a sample stage on which a sample to be irradiated with the light passing through the optical system is mounted, and an irradiation amount of the light beam attached to the sample stage is measured. A light stability test apparatus having an optical sensor for measuring the amount of visible light, a sensor for measuring visible light, an sensor for measuring ultraviolet light for measuring the amount of ultraviolet light, and a light sensor for measuring the amount of ultraviolet light. A light stability test apparatus comprising an intermediate wavelength ray measuring sensor for measuring the irradiation amount of the intermediate wavelength ray.
2 . 光源、 当該光源から発せられた光線が照射される試料を載置するた めの試料台及び当該試料台に取り付けられた光線の照射量を測定するた めの光センサーを有する光安定性試験装置において、 前記光センサ一は 可視光線の照射量を測定する可視光線測定用センサー、 紫外線の照射量 を測定する紫外線測定用センサー及び可視光線と紫外線間の中間波長光 線の照射量を測定する中間波長光線測定用センサーを有することを特徴 とする光安定性試験装置。 2. Light stability having a light source, a sample stage for mounting a sample to be irradiated with the light beam emitted from the light source, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam. In the test apparatus, the optical sensor is a visible light measuring sensor for measuring the amount of visible light irradiation, an ultraviolet ray measuring sensor for measuring the amount of ultraviolet light irradiation, and measuring the irradiation amount of an intermediate wavelength light beam between visible light and ultraviolet light. A light stability test device comprising a sensor for measuring an intermediate wavelength light beam.
3 . 前記中間波長光線測定用センサーによる測定値を表示する測定値表 示部を有することを特徴とする請求の範囲第 1項又は第 2項記載の光安 定性試験装置。  3. The light stability test apparatus according to claim 1, further comprising a measured value display section for displaying a measured value obtained by the intermediate-wavelength light measuring sensor.
4 . 前記測定値表示部は各時点における測定値を積算した積算値を表示 するための積算値表示部を有することを特徴とする請求の範囲第 3項記 載の光安定性試験装置。  4. The light stability test apparatus according to claim 3, wherein the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point.
5 . 前記測定値表示部は各時点における測定値である瞬時値を表示する ための瞬時値表示部を有することを特徴とする請求の範囲第 3項又は第 4項記載の光安定性試験装置。  5. The light stability test apparatus according to claim 3 or 4, wherein the measured value display section has an instantaneous value display section for displaying an instantaneous value which is a measured value at each time point. .
6 . 前記中間波長光線測定用センサーからの信号が伝達されることによ り前記光学系を制御する制御部を有することを特徴とする請求の範囲第 1項、 第 3項、 第 4項又は第 5項記載の光安定性試験装置。 6. A control unit for controlling the optical system by transmitting a signal from the intermediate wavelength light measurement sensor. The light stability test apparatus according to paragraph 1, paragraph 3, paragraph 4, or paragraph 5.
7 . 前記中間波長光線測定用センサーからの信号が伝達されることによ り前記光源を制御する制御部を有することを特徴とする請求の範囲第 2 項、 第 3項、 第 4項, 第 5項又は第 6項記載の光安定性試験装置。  7. A control unit for controlling the light source by transmitting a signal from the sensor for measuring an intermediate wavelength light beam, wherein the control unit controls the light source. Item 7. The light stability test device according to item 5 or 6.
8 . 前記中間波長光線測定用センサーの感受性ピーク値は 4 0 0 n mか ら 5 0 0 n mまでの範囲にあることを特徴とする請求の範囲第 1項, 第 2項, 第 3項, 第 4項、 第 5項、 第 6項又は第 7項記載の光安定性試験  8. The sensor according to claim 1, wherein a peak sensitivity value of the sensor for measuring an intermediate wavelength light beam is in a range from 400 nm to 500 nm. Light stability test according to paragraph 4, paragraph 5, paragraph 6 or paragraph 7
9 . 前記中間波長光線測定用センサーの感受性ピーク値は 4 5 0 n mか ら 4 7 0 n mまでの範囲にあることを特徴とする請求の範囲第 1項, 第 2項, 第 3項, 第 4項、 第 5項、 第 6項、 第 7項又は第 8項記載の光安 定性試験装置。 9. The sensor according to claim 1, wherein the sensitivity peak value of the intermediate wavelength light measurement sensor is in a range from 450 nm to 470 nm. The light stability test apparatus according to paragraph 4, paragraph 5, paragraph 6, paragraph 7, paragraph 7, or paragraph 8.
1 0 . 前記紫外光線測定用センサーの感受性ピーク値は 3 5 0 n mから 3 7 0 n mまでの範囲にあることを特徴とする請求の範囲第 1項, 第 2 項, 第 3項, 第 4項、 第 5項、 第 6項、 第 7項、 第 8項又は第 9項記載 の光安定性試験装置。  10. The sensor according to claim 1, wherein the ultraviolet light measurement sensor has a sensitivity peak value in a range from 350 nm to 370 nm. The photostability test apparatus according to any one of paragraphs 5, 5, 6, 7, 8, and 9.
1 1 . 前記可視光線測定用センサーの感受性ピーク値は 5 5 0 n mから 5 6 0 n mまでの範囲にあることを特徴とする請求の範囲第 1項, 第 2 項, 第 3項, 第 4項、 第 5項、 第 6項、 第 7項, 第 8項、 第 9項又は第 1 0項記載の光安定性試験装置。  11. The claim 1, wherein the sensitivity peak value of the sensor for measuring visible light is in the range of 550 nm to 560 nm. Clause 5, Clause 6, Clause 7, Clause 7, Clause 8, Clause 9 or Clause 10, or the photostability test apparatus.
1 2 . 光源、 当該光源から発せられた光線を調節する光学系、 当該光学 系を経た光線が照射される試料を載置するための試料台及び当該試料台 に取り付けられた光線の照射量を測定するための光センサーを有する光 安定性試験装置において、 前記光センサーはスぺク トロラジオメータで あって、 スぺク トルの評価を中間波長光線については 4 0 0 n mから 5 0 0 n mのピーク値をもつスぺク トル分布を加重評価係数とすることを 特徴とする光安定性試験装置。 12. Light source, optical system for adjusting the light beam emitted from the light source, a sample stage on which a sample to be irradiated with the light beam passing through the optical system is mounted, and the irradiation amount of the light beam attached to the sample stage is determined. In a light stability test apparatus having an optical sensor for measurement, the optical sensor is a spectroradiometer, and the spectrum is evaluated from 400 nm to 500 nm for an intermediate wavelength light beam. The spectral distribution with the peak value of Characteristic light stability test equipment.
1 3 . 光源、 当該光源から発せられた光線が照射される試料を載置する ための試料台及び当該試料台に取り付けられた光線の照射量を測定する ための光センサーを有する光安定性試験装置において、 前記光センサー はスぺク トロラジオメータであって、 スぺク トルの評価を中間波長光線 については 4 0 0 n mから 5 0 0 n mのピーク値をもつスぺク トノレ分布 を加重評価係数とすることを特徴とする光安定性試験装置。  13 3. Light stability test including a light source, a sample stage on which a sample to be irradiated with the light beam emitted from the light source is mounted, and an optical sensor attached to the sample stage for measuring the irradiation amount of the light beam In the apparatus, the optical sensor is a spectroradiometer, and the spectrum is evaluated by weighting a spectrum distribution having a peak value of 400 nm to 500 nm for an intermediate wavelength light beam. A light stability test apparatus characterized by an evaluation coefficient.
1 4 . 前記光センサ一はスぺク トロラジオメータであって、 スぺク トル の評価を中間波長光線については 4 5 0 n mから 4 7 0 n mのピーク値 をもつスぺク トル分布を加重評価係数とすることを特徴とする請求の範 囲第 1 2項又は第 1 3項記載の光安定性試験装置。  14. The optical sensor is a spectroradiometer, and the spectrum is evaluated by using a spectrum distribution having a peak value of 450 nm to 470 nm for an intermediate wavelength light beam. The light stability test apparatus according to claim 12 or 13, wherein the light stability test apparatus is a weighted evaluation coefficient.
1 5 . 記光センサーはスぺク トロラジオメータであって、 スぺク トル の評価を紫外光線については 3 5 O n mから 3 7 O n mのピーク値をも つスぺク トル分布を加重評価係数とすることを特徴とする請求の範囲第 1 2項、 第 1 3項又は第 1 4項記載の光安'定性試験装置。  15 5. The light sensor is a spectroradiometer, and the spectrum is evaluated. For ultraviolet rays, a spectrum distribution with a peak value of 35 O nm to 37 O nm is weighted. The Mitsuyasu qualitative test apparatus according to claim 12, characterized in that it is an evaluation coefficient.
1 6 . 前記光センサ一はスぺク トロラジオメータであって、 スぺク トル の評価を可視光線については 5 5 O n mから 5 6 0 n mのピーク値をも つスぺク トル分布を加重評価係数とすることを特徴とする請求の範囲第 1 2項、 第 1 3項、 第 1 4項又は第 1 5項記載の光安定性試験装置。 16. The optical sensor is a spectroradiometer, and the spectrum is evaluated by using a spectrum distribution having a peak value of 55 nm to 560 nm for visible light. 16. The light stability test apparatus according to claim 12, wherein the light stability test apparatus is a weighted evaluation coefficient.
1 7 . 前記スぺク ト口ラジオメータによる中間波長光線の照射量の測定 値を表示する測定値表示部を有することを特徴とする請求の範囲第 1 2 項、 第 1 3項、 第 1 4項、 第 1 5項又は第 1 6項記載の光安定性試験装 17. A measurement value display section for displaying a measurement value of an irradiation amount of an intermediate-wavelength light beam by the spectrum mouth radiometer, wherein the measurement value display section displays a measurement value display section. Light stability test equipment described in Paragraph 4, 15 or 16
1 8 . 前記測定値表示部は各時点における測定値を積算した積算値を表 示するための積算値表示部を有することを特徴とする請求の範囲第 1 7 項記載の光安定性試験装置。 18. The light stability test apparatus according to claim 17, wherein the measured value display section has an integrated value display section for displaying an integrated value obtained by integrating the measured values at each time point. .
1 9. 前記測定値表示部は各時点における測定値である瞬時値を表示す るための瞬時値表示部を有することを特徴とする請求の範囲第 1 7項又 は第 1 8項記載の光安定性試験装置。 19. The measurement value display section according to claim 17, wherein the measurement value display section has an instantaneous value display section for displaying an instantaneous value which is a measurement value at each time point. Light stability test equipment.
2 0. 前記スぺク トロラジォメータによる中間波長光線の照射量の測定 値の信号が伝達されることにより前記光学系を制御する制御部を有する ことを特徴とする請求の範囲第 1 2項, 第 1 4項, 第 1 5項, 第 1 6項, 第 1 8項又は第 1 9項記載の光安定性試験装置。  20. A control unit for controlling the optical system by transmitting a signal of a measured value of an irradiation amount of an intermediate wavelength light beam by the spectroradiometer, wherein the control unit controls the optical system. 14. The photostability test apparatus according to paragraph 14, paragraph 15, paragraph 16, paragraph 18, paragraph 19 or paragraph 19.
2 1. 前記中間波長光線測定用センサーからの信号が伝達されることに より前記光源を制御する制御部を有することを特徴とする請求の範囲第 1 3項、 第 1 4項、 第 1 5項, 第 1 6項、 第 1 7項、 第 1 8項、 第 1 9 項又は第 2 0項記載の光安定性試験装置。  21. A control device for controlling the light source by transmitting a signal from the sensor for measuring an intermediate wavelength light beam, wherein the control unit controls the light source. Clause 16, Clause 17, Clause 17, Clause 18, Clause 19, or Clause 20.
2 2. 前記試料台は回転可能にされていることを特徴とする請求の範囲 第 1項, 第 2項, 第 3項, 第 4項, 第 5項, 第 6項, 第 7項, 第 8項, 第 9項, 第 1 0項, 第 1 1項、 第 1 2項、 第 1 3項、 第 1 4項, 第 1 5 項、 第 1 6項、 第 1 7項、 第 1 8項、 第 1 9項、 第 2 0項又は第 2 1項 記載の光安定性試験装置。  2 2. The sample stage, wherein the sample stage is rotatable. Claims 1, 2, 3, 3, 4, 5, 6, 7, 8 Section 8, Section 9, Section 10, Section 11, Section 12, Section 13, Section 14, Section 15, Section 16, Section 17, Section 17, Section 18 Item 18. The light stability test apparatus according to Item 19, Item 20 or Item 21.
PCT/JP2002/004840 2001-06-29 2002-05-20 Light stability testing device WO2003002982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003509118A JPWO2003002982A1 (en) 2001-06-29 2002-05-20 Light stability test equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001198856 2001-06-29
JP2001-198856 2001-06-29

Publications (1)

Publication Number Publication Date
WO2003002982A1 true WO2003002982A1 (en) 2003-01-09

Family

ID=19036224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004840 WO2003002982A1 (en) 2001-06-29 2002-05-20 Light stability testing device

Country Status (2)

Country Link
JP (1) JPWO2003002982A1 (en)
WO (1) WO2003002982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050692A (en) * 2017-11-03 2019-05-13 주식회사 쓰리딜라이트 Auto Leveling System for 3D printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572116A (en) * 1991-09-09 1993-03-23 Nagano Kagaku Kikai Seisakusho:Kk Optical testing device
JPH11132938A (en) * 1997-10-31 1999-05-21 Iwasaki Electric Co Ltd Weathering test device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572116A (en) * 1991-09-09 1993-03-23 Nagano Kagaku Kikai Seisakusho:Kk Optical testing device
JPH11132938A (en) * 1997-10-31 1999-05-21 Iwasaki Electric Co Ltd Weathering test device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050692A (en) * 2017-11-03 2019-05-13 주식회사 쓰리딜라이트 Auto Leveling System for 3D printer
KR102018570B1 (en) 2017-11-03 2019-09-06 주식회사 쓰리딜라이트 Auto Leveling System for 3D printer

Also Published As

Publication number Publication date
JPWO2003002982A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
Proctor et al. NIST high accuracy reference reflectometer-spectrophotometer
US6963399B2 (en) Method and apparatus for quantifying an “integrated index” of a material medium
JPH02236441A (en) Apparatus and method for identifying multiple gas
WO2015010434A1 (en) Apparatus and method for measuring reflection characteristic of material
CN107607201A (en) A kind of spuious light measurement system of imaging spectrometer spectrum
Larason et al. Sources of error in UV radiation measurements
CRIPPS et al. Ultraviolet action spectrum with a prism‐grating monochromator
JP2001521628A (en) Calibration medium for UV absorption detector
JP4592023B2 (en) Online spectral transmission color measurement method and online spectral transmission color measurement device
Zwinkels et al. Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements
Xu et al. Characterization and calibration of broadband ultraviolet radiometers
JP6763995B2 (en) Spectral measuring device and spectroscopic measuring method
WO2003002982A1 (en) Light stability testing device
Martin et al. The importance of radiometer angular response for ultraviolet phototherapy dosimetry
JPH05215672A (en) Polarimeter
JPWO2003002983A1 (en) Light stability test equipment
Landry et al. Optical radiation measurements: instrumentation and sources of error
Weidner Spectral reflectance
Sharma et al. Upgradation of a spectral irradiance measurement facility at National Physical Laboratory, India
Barnes et al. UV bidirectional reflectance distribution function measurements for diffusers
Boxhammer et al. Design and validation characteristics of environmental chambers for photostability testing
Mkabela The development of a measuring technique for the UV-C distribution emitted from low pressure mercury lamps
Moseley Phototest equipment
Goodman Calibration of light sources and detectors
Gibson et al. Techniques for spectroradiometry and broadband radiometry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003509118

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase