WO2003002913A1 - Dispositif combustor de turbine a gaz - Google Patents

Dispositif combustor de turbine a gaz Download PDF

Info

Publication number
WO2003002913A1
WO2003002913A1 PCT/JP2002/006318 JP0206318W WO03002913A1 WO 2003002913 A1 WO2003002913 A1 WO 2003002913A1 JP 0206318 W JP0206318 W JP 0206318W WO 03002913 A1 WO03002913 A1 WO 03002913A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
combustion chamber
gas turbine
turbine combustor
cylinder
Prior art date
Application number
PCT/JP2002/006318
Other languages
English (en)
French (fr)
Inventor
Shigemi Mandai
Katsunori Tanaka
Masahito Kataoka
Keijirou Saitoh
Wataru Akizuki
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP02741279.0A priority Critical patent/EP1400756B1/en
Priority to CA002433402A priority patent/CA2433402C/en
Priority to US10/416,515 priority patent/US7032386B2/en
Publication of WO2003002913A1 publication Critical patent/WO2003002913A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the present invention relates to a gas turbine combustor, and more particularly, to a gas turbine combustor capable of stably cooling a wall of a combustor regardless of an operation time or an operation condition.
  • FIG. 13 is an axial sectional view showing a premixed combustor of a gas turbine that has been used so far.
  • a pilot cone 6100 for forming a diffusion flame is provided in the outer cylinder 700 of the combustor block.
  • a fuel nozzle block 29 is attached to the outlet of the outer cylinder 700 of the combustor block, and the fuel block 29 is inserted into the cylinder 19 of the combustion chamber.
  • the pilot cone 610 reacts the pilot fuel supplied from the pilot fuel supply nozzle (not shown) with the combustion air supplied from the compressor to form a diffusion flame.
  • eight premixed flame forming nozzles 510 for forming a premixed flame are provided around the pilot connector 610.
  • the premixed gas is produced by mixing combustion air and main fuel, and is injected from the premixed flame forming nozzle 510 toward the combustor.
  • the premixed gas injected from the premixed flame forming nozzle 510 into the combustor is ignited by the high temperature combustion gas discharged from the diffusion flame to form a premixed gas combustion flame.
  • Premixed gas flame ?
  • the high-temperature and high-pressure combustion gas is exhausted, and the combustion gas passes through a combustor transition piece (not shown) and is guided to the first stage nosle of the turbine.
  • the vibrating combustion is generated when abrupt combustion occurs near the wall surface of the combustion chamber / cylinder.
  • Conventionally there has been a problem that the combustion becomes unstable due to the vibrating combustion and stable operation cannot be performed.
  • the life of the cylinder in the combustion chamber is shortened due to overheating.
  • the life of the cylinder in the combustion chamber became short, frequent repairs and replacements were required, and maintenance and inspection were troublesome. Accordingly, it is an object of the present invention to provide a gas turbine combustor that stably cools the wall surface of the gas turbine combustor regardless of the operation time and the operation state, and can perform a stable operation. Disclosure of the invention
  • the gas turbine combustor according to the present invention is characterized in that a means for forming a cooling air layer directed downstream of the combustion chamber cylinder immediately after the fuel nozzle block of the gas turbine combustor is provided on the inner wall surface of the combustion chamber cylinder.
  • a cooling air layer is formed immediately after the nozzle opening where the premixed gas concentration is high on the inner wall surface of the combustion chamber cylinder, so that combustion near the wall surface in this portion can be suppressed. Therefore, vibration combustion can be suppressed, and the combustion chamber cylinder can be protected from high-temperature combustion gas.
  • a cooling steam layer may be formed on the inner wall surface of the cylinder in the combustion chamber by cooling steam instead of the cooling air sent from the compressor (the same applies hereinafter). Since steam has a higher cooling efficiency than air, combustion on the inner wall surface of the cylinder in the combustion chamber can be further suppressed. Therefore, vibration combustion can be more reliably suppressed than when air is used.
  • a fuel nozzle block is provided with a certain gap provided between the combustor and the combustion chamber cylinder, and cooling is performed from the gap in a downstream direction of the combustion chamber cylinder.
  • the method is characterized in that a cooling air layer is formed on the inner wall surface of the combustion chamber cylinder by flowing air.
  • cooling air flows from a fixed gap provided between the fuel nozzle block and the combustion chamber cylinder to form a cooling air layer on the inner wall surface of the combustion chamber cylinder. Since the cooling air flows from the gap along the inner wall surface of the cylinder in the combustion chamber, the flow of the cooling air does not easily separate, and a uniform cooling air layer can be formed.
  • the cylinder in the combustion chamber can be reliably cooled, and combustion near the inner wall surface can be prevented to suppress vibration combustion.
  • a cooling air layer is formed uniformly in the entire circumferential direction of the cylinder in the combustion chamber. For this reason, the combustion in the vicinity of the inner wall surface can be prevented over the entire circumferential direction of the combustion chamber cylinder, so that the occurrence of oscillating combustion can be more reliably suppressed.
  • the gas turbine combustor according to the next invention is characterized in that a cooling air layer forming ring for forming a cooling air layer toward the downstream direction of the combustion chamber inner cylinder is provided on the inner wall surface of the combustion chamber cylinder, It is characterized in that a certain gap is provided between the nose plug and the cylinder of the combustion chamber.
  • the cooling air layer forming ring is provided between the cylinder of the combustion chamber and the fuel nozzle block, so that even if the fuel nozzle block is deformed due to thermal expansion, a constant air layer is formed to form the cooling air layer. Gap can be maintained. As a result, stable operation can be achieved and the reliability of the combustor improves.
  • the cooling air layer forming ring is protected from the high temperature combustion gas by the fuel nozzle block, the cooling air layer ring is not thermally deformed. Therefore, the gap formed between the cooling air layer forming ring and the cylinders in the combustion chamber is always kept at a fixed interval, so that even if the fuel nozzle is deformed during operation, the cooling air layer is formed uniformly.
  • the gas turbine combustor according to the next invention is characterized in that the gas turbine combustor further includes a manifold portion for storing cooling air upstream of the cooling air layer forming ring.
  • This gas turbine combustor is equipped with a manifold upstream of the cooling air layer forming ring, and stores cooling air in this manifold to remove pulsation of cooling air and reduce safety. Then, cooling air is supplied to the combustion chamber cylinder. For this reason, pressure change in the combustion chamber due to the pulsation of the cooling air and temporary combustion near the wall surface of the cylinder in the combustion chamber can be suppressed, so that oscillating combustion can be surely suppressed.
  • the gas turbine combustor according to the next invention is characterized in that, in the gas turbine combustor, a certain interval is provided between the cooling air layer forming ring and the fuel nozzle block.
  • the gas turbine combustor according to the next invention is characterized in that, in the gas turbine combustor, a plurality of closing members are provided in the gap at different intervals in a circumferential direction.
  • a gas turbine combustor according to the next invention is characterized in that, in the gas turbine combustor, a closing member is provided at one position of the gap. Combustion near the wall of the combustion chamber cylinder causes oscillating combustion. However, the vibration field formed inside the combustion chamber cylinder always forms a vibration field mode due to the presence of an even number of antinodes.
  • This gas turbine combustor allows combustion immediately after the closing member and forms combustion points at different intervals in the circumferential direction of the cylinder of the combustion chamber so that the antinode of the pressure becomes irregular. This suppresses the occurrence.
  • FIG. 1 is an axial sectional view showing a gas turbine combustor according to a first embodiment of the present invention
  • FIG. 2 is an explanatory diagram showing a gas turbine combustor according to a modification of the first embodiment.
  • FIG. 3 is an explanatory view showing a state of a combustion nozzle block during operation of the gas turbine
  • FIG. 4 is an axial sectional view showing a gas turbine combustor according to the second embodiment of the present invention.
  • FIG. 5 is an axial sectional view showing a gas turbine combustor according to the third embodiment
  • FIG. 6 is an axial sectional view showing an example of the gas turbine combustor according to the fourth embodiment. Yes, Fig.
  • FIG. 7 is a front view of the gas turbine combustor shown in Fig. 6, and Fig. 8 is a conceptual diagram showing the mode of the vibration field when vibration combustion occurs in the gas turbine combustor.
  • Fig. 9 shows the results of the fourth embodiment.
  • Fig. 10 is a front view showing another example of such a gas turbine combustor.
  • Fig. 10 is an axial cross-sectional view showing a gas turbine combustor according to the fifth embodiment.
  • FIG. 12 is an explanatory diagram showing an example of a soother used for the gas turbine combustor according to the fifth embodiment.
  • FIG. 12 is an axial cross-sectional view showing the gas turbine combustor according to the sixth embodiment.
  • FIG. 13 is an axial sectional view showing a gas turbine premixed combustor that has been used so far.
  • FIG. 1 is an axial sectional view showing a gas turbine furnace according to a first embodiment of the present invention.
  • This gas turbine combustor is characterized in that a means for forming a cooling air layer from the fuel nozzle block in the axial direction of the combustor is provided on the inner wall surface of the gas turbine combustor.
  • a fuel nozzle block 20 having a premixed flame forming nozzle 500 and a pilot cone 600 therein is inserted into the cylinder 10 of the combustion chamber.
  • the premixed gas injected from the premixed flame forming nozzle 500 is ignited by the diffusion flame formed from the pilot cone 600 and burns.
  • a plurality of spacers 30 are provided on the inner wall surface of the combustion chamber cylinder 10 in the circumferential direction. Cooling air is provided between the fuel nosle block 20 and the combustion chamber cylinder 10. As a means for forming a layer, a fixed gap 50 is formed between the fuel nozzle block 20 and the inner wall surface of the combustion chamber cylinder 10. In the combustion chamber cylinder 10, cooling air is provided in the gap 50. A cooling air supply hole 40 for feeding air is provided, and the cooling air sent from the cooling air supply hole 40 flows out of the gap 50 to cool the inner wall surface of the cylinder 10 of the combustion chamber. This cooling air layer forms a temperature boundary layer between the high-temperature combustion gas and the combustion chamber inner cylinder 10 to protect the combustion chamber cylinder 10 from the high-temperature combustion gas.
  • the cooling air layer is formed on the inner wall surface of the combustion chamber cylinder 10
  • the inner wall surface of the combustion chamber cylinder 10 is protected from high-temperature combustion gas.
  • the temperature of the combustion chamber cylinder 10 can be prevented from rising, so that the life of the combustion chamber cylinder 10 can be extended.
  • the cooling air layer formed on the inner wall surface of the cylinder 10 of the combustion chamber rapid combustion does not occur near the inner wall surface, and as a result, vibration combustion can be suppressed.
  • FIG. 2 (a) is an axial sectional view showing a gas turbine combustor according to a modification of the first embodiment.
  • FIG. 2 (b) is a view taken in the direction of arrow AA in FIG. 2 (a). In FIG. 2 (b), the lower half is omitted.
  • This gas turbine combustor is characterized in that a cooling air supply hole 20a is provided on the outer edge of the fuel nozzle block 20. As shown in FIG. 2 (b), a cooling air supply hole 20a is provided in the vicinity of the outer edge of the fuel nozzle block 20 in the circumferential direction. Cooling air flows from the gap 50 to form a cooling air layer on the inner wall surface of the cylinder 10 of the combustion chamber.
  • FIG. 3 is an explanatory diagram showing a state of a combustion nozzle block during operation of the gas turbine.
  • the fuel nozzle block 20 is thermally expanded toward the inner wall surface of the cylinder 10 of the combustion chamber by the high-temperature combustion gas, the above-mentioned thermal expansion is restrained at the portion where the spacer 30 is provided.
  • the nore block 20 is transformed into a flower shape (Fig. 3 (a)).
  • Fig. 3 (a) As a result, as shown in Fig. 3 (a), in a gas turbine combustor without the cooling air supply hole 20a, the gap 50 may be uneven, so that the combustion chamber The cooling air layer formed on the inner wall surface of the cylinder 10 was also uneven.
  • the portion where the gap 50 is closed by the thermal deformation of the fuel nozzle block 20 is also cooled. Since the cooling air is supplied from the air supply holes 20a, a cooling air layer is formed on the inner wall surface of the cylinder 10 in the combustion chamber. Thus, regardless of the thermal expansion of the fuel nozzle block 20, a cooling air layer can be formed on the inner wall surface of the combustion chamber cylinder 10, so that the combustion chamber cylinder 10 is always protected from high-temperature combustion gas, Also, vibration combustion can be suppressed.
  • the gas turbine combustor according to the first embodiment when the fuel nozzle block moves in the radial direction for some reason during operation, a gap formed between the inner wall surface of the gas turbine combustor and the fuel nozzle block is formed.
  • the size becomes uneven.
  • the thickness of the cooling air layer formed on the inner wall surface of the gas turbine combustor also becomes non-uniform, and there is a possibility that the cooling of the inner wall surface becomes insufficient.
  • the nozzle block seen from the front has a flower shape (Fig. 3 (a)).
  • the gap formed between the inner wall surface of the gas turbine combustor and the fuel nozzle opening becomes uneven, and the cooling air layer formed on the inner wall surface of the gas turbine combustor becomes It is not formed uniformly. As a result, there was a possibility that the cooling of the cylinders in the combustion chamber became insufficient.
  • FIG. 4 is an axial sectional view showing a gas turbine combustor according to a second embodiment of the present invention.
  • a ring 100 is provided on the inner wall surface of the combustion chamber cylinder 11 by a spacer 31 at a constant distance from the inner wall surface.
  • the ring 100 can be attached to the wall surface of the cylinder 11 of the combustion chamber by, for example, welding. If the strength of the ring 100 is sufficient, the spacer 31 need not be provided.
  • the outer edge 21a of the fuel nozzle block 21 is attached to the side surface 100a of the ring 100 which is perpendicular to the wall surface of the cylinder 11 of the combustion chamber. You can apply it vertically. In this way, even if the fuel nosed block 21 a hits the ring 100 due to thermal expansion, the bending moment hardly acts on the side surface 100 a of the ring 100, so that the ring 100 The gap 51 formed by the inner wall of the combustion chamber cylinder 11 does not collapse. With such a structure, the gap 51 can be secured without providing the spacer 31 even if the strength of the ring 100 itself or the strength of the mounting portion of the ring 100 is not particularly increased. .
  • a cooling air supply hole 41 is provided in a portion of the combustion chamber cylinder 11 where the ring 100 is attached, and the cooling air is supplied to the ring 100 from the cooling air supply hole 41 during operation of the gas turbine. Then, cooling air flows out of a gap 51 formed between the ring 100 and the inner wall surface of the combustion chamber cylinder 11, and forms a cooling air layer on the inner wall surface of the combustion chamber cylinder 11. Since this cooling air layer forms a temperature boundary layer between the high-temperature combustion gas and the combustion chamber cylinder 11, the combustion chamber cylinder 11 is protected from the high-temperature combustion gas.
  • the fuel nozzle block 21 is inserted into the cylinder 11 of the combustion chamber. At this time, the fuel nozzle opening 21 is arranged inside the ring 100 at a constant interval.
  • This fixed interval makes it easier to incorporate the fuel nozzle block 21 into the cylinder 11 of the combustion chamber.
  • the thermal deformation of the fuel nozzle block 21 can be tolerated by the certain interval.
  • thermal deformation of the fuel nozzle block 21 can be suppressed.
  • the fuel nozzle block 21 may thermally expand in the radial direction and come into contact with the ring 100. is there. In the gas turbine combustor according to the second embodiment, even if the fuel nozzle block 21 comes into contact with the ring 100 due to thermal expansion, the ring 100 is not deformed.
  • the cooling air can flow evenly to the inner wall of the cylinder 11 in the combustion chamber, so that the cooling air layer can be reliably formed. Further, since the combustion gas first hits the fuel nozzle block 21 and does not directly hit the ring 100, the temperature of the ring 100 does not rise to such an extent that it is thermally deformed. Therefore, the ring 100 is not thermally deformed during the operation of the gas turbine, and the gap 51 formed by the ring 100 and the inner wall of the combustion chamber cylinder 11 can be kept constant.
  • the gas turbine combustor according to the second embodiment even if the fuel nozzle block 21 is deformed due to thermal expansion, a cooling air layer can be reliably formed on the inner wall of the combustion chamber cylinder 11. Therefore, regardless of the operation time and the operation state of the gas turbine, the combustion chamber cylinder 11 can be cooled reliably, and the oscillating combustion can be suppressed reliably, so that stable operation can be performed.
  • FIG. 5 is an axial sectional view showing the gas turbine combustor according to the third embodiment.
  • This gas turbine combustor is characterized in that a manifold is provided on a cooling air layer forming ring attached to the inner wall surface of the gas turbine combustor.
  • Combustion chamber cylinder 1 2 A ring 101 is attached to the inner wall surface, and a gap 52 is formed by a spacer 32 provided between the inner wall surface and the ring 101. Cooling air flows from the gap 52 to the side of the combustion chamber cylinder 12 to form a cooling air layer on the inner wall surface of the combustion chamber cylinder 12.
  • a manifold 200 is provided on the ring 101, and cooling air supplied from a cooling air supply hole 42 provided in the cylinder 12 of the combustion chamber is guided to the manifold 200.
  • the cooling air is stored in the manifold 200 and then flows out toward the cylinder 12 of the combustion chamber, so that the cooling air can be uniformly supplied in the circumferential direction. For this reason, a cooling air layer is formed stably on the inner wall surface of the combustion chamber cylinder 12, so that the combustion chamber cylinder 12 can be reliably protected from high-temperature combustion gas, and oscillation combustion can also be stably suppressed. .
  • FIG. 6 is an axial cross-sectional view illustrating an example of the gas turbine combustor according to the fourth embodiment.
  • FIG. 7 is a front view of the gas turbine combustor shown in FIG. 6 (a premixing nozzle and the like are omitted).
  • the gap for supplying cooling air formed by the combustion chamber cylinder and the ring forming the cooling air layer is closed by a closing member, and combustion is allowed only on the downstream side of the closing member. It is characterized in that the oscillating combustion is suppressed by breaking the symmetry and forming a pressure antinode.
  • FIG. 8 is a conceptual diagram showing a mode of a vibration field when vibration combustion occurs in a gas turbine combustor.
  • + represents antinode of positive pressure
  • one represents antinode of negative pressure.
  • Combustion chamber When abrupt combustion occurs near the inner wall surface of the inner cylinder 15, a sudden pressure change occurs.
  • the antinode of the positive pressure and the negative pressure in any of the modes shown in FIGS. Oscillation occurs alternately with the belly, causing oscillating combustion.
  • this antinode of pressure always occurs symmetrically.
  • a ring 102 forming a cooling air layer is inserted into the combustion chamber cylinder 15 at a fixed interval from the inner wall surface of the combustion chamber cylinder 15.
  • the combustion chamber tube 15 is provided with a cooling air supply hole 45 from which cooling air is supplied to the ring 102.
  • the gap 55 is provided with three closing members 35 at different intervals in the circumferential direction, and prevents cooling air from passing through these portions.
  • the number of closing members 35 is at most about 15 and is preferably 5 to 9 from the viewpoint of providing an appropriate interval between the closing members 35 and the easiness of manufacture.
  • the premixed gas burns near the inner wall surface of the combustion chamber cylinder 15 downstream of the closing member 35. Therefore, combustion occurs near the inner wall surface of the cylinder 15 in the combustion chamber only on the downstream side of the closing member 35, and the intervals between the combustion points differ in the circumferential direction. Therefore, since the antinode of the pressure is generated irregularly in the circumferential direction of the inner cylinder 15 of the combustion chamber, the symmetry of the antinode of the pressure is broken. As a result, the vibration field modes shown in FIGS. 8 (a) to 8 (d) cannot be formed, so that the oscillating combustion hardly occurs.
  • the number of the closing members 35 is three in the above example, the number of the closing members 35 may be one as shown in FIG.
  • the mode of the vibration field is formed by the presence of an even number of antinodes of pressure.
  • the mode of the vibration field cannot be formed by only one antinode of pressure, so that the oscillating combustion can be suppressed.
  • FIG. 10 is an axial sectional view showing a gas turbine combustor according to a fifth embodiment of the present invention.
  • the outer peripheral portion of the end of the fuel nozzle block has a spring structure, and the outer peripheral portion has a function of positioning the fuel nozzle block and the cylinder in the combustion chamber and a function of absorbing thermal deformation of the fuel nozzle block. It is characterized in that a plurality of cooling air supply holes are provided on the outer periphery to form a cooling air layer on the inner wall surface of the cylinder of the gas turbine combustion chamber.
  • the fuel nozzle block 23 is inserted into the combustion chamber cylinder 13 with a certain gap 53 between the inner wall surface of the combustion chamber cylinder 13. Further, as shown in FIG. 10 (b), a plurality of cooling air supply ports 23a are provided in the outer edge of the fuel nozzle block 23 in the circumferential direction.
  • the cooling air supply port 23a may be formed by penetrating a hole through the outer edge of the fuel nozzle block 23 as in the fuel nosle block 20 shown in FIG. 2 (b). Good.
  • the outer wall of the fuel nozzle block 23 is formed as shown in FIG. It is desirable to form it into a shape with an open edge.
  • annular spacer 80 is attached to the fuel nozzle block 23.
  • the annular spacer 80 may be attached to the fuel nozzle hole 23 by welding or riveting, or may be formed integrally with the fuel nozzle block 23. Then, the end 80 a of the annular spacer 80 comes into contact with the inner wall surface of the cylinder 13 of the combustion chamber, and the curved section 80 b bends, so that the fuel nozzle block 23 is connected to the cylinder 13 of the combustion chamber. Keep it in the center. Further, as shown in FIG. 10 (a), since the annular spacer 80 has the curved portion 80b, the fuel nozzle block 23 is heated by the high-temperature combustion gas so that the cylinder 13 of the combustion chamber is heated.
  • the curved portion 80b of the annular spacer 80 bends accordingly, so that the thermal expansion can be absorbed.
  • the curved portion 80 b of the annular spacer 8 Q bends.
  • the position of the fuel nozzle block 23 can be maintained at the center of the combustion chamber cylinder 13 by the force generated toward the combustion chamber cylinder 13 toward the center.
  • the spacer 80 Since the spacer 80 has a ⁇ shape, a force acts on the annular spacer 80 in the circumferential direction when the curved portion 80b bends. In order to reduce this force and to deflect the annular spacer 80 more smoothly, a notch is formed in the annular spacer 80 as shown in FIGS. 11 (a) and 11 (b).
  • the annular spacer 80 may be divided circumferentially by providing 80 c or the like.
  • the force that compresses the annular spacer 80 in the circumferential direction which is generated when the curved portion 80b of the annular spacer 80 bends, causes the notch 80c to become narrower. Is absorbed by. As a result, the thermal expansion of the fuel nozzle block 23 can be more smoothly absorbed, and the fuel nozzle block 23 can be easily maintained at the center of the inner cylinder 13 of the combustion chamber.
  • a cooling air supply hole 43 for supplying cooling air is provided in the body of the cylinder 13 in the combustion chamber.
  • a cooling air supply hole may be provided in the curved portion 80b of the annular spacer 80 to supply cooling air therefrom, or the cooling air supply hole 4 provided in the combustion chamber tube 13 may be provided. Cooling air may be supplied in combination with 3.
  • the cooling air supplied from the cooling air supply hole 43 is guided to a space surrounded by the annular spacer 80, the fuel nozzle block 23, and the inner wall surface of the cylinder 13 of the combustion chamber. Cooling air is supplied to the combustion chamber cylinder 13 from the gap 53 and the cooling air supply port 23 a provided at the outer edge of the fuel nozzle block 23, and the inner wall surface of the combustion chamber cylinder 13 A cooling air layer is formed in the air.
  • the curved portion 80 b of the annular spacer 80 bends even when the fuel nozzle 23 is thermally expanded by high-temperature combustion gas during operation of the gas turbine. As a result, the position of the fuel nozzle block 23 is maintained at the center of the cylinder 13 in the combustion chamber. As a result, the gap 53 becomes smaller while maintaining a constant interval in the circumferential direction due to the thermal expansion of the fuel nozzle block 23, so that the cooling air layer formed on the inner wall surface of the combustion chamber cylinder 13 is interrupted. There is no.
  • the fuel nozzle block 23 expands thermally, and its outer edge is inside the cylinder 13 of the combustion chamber. Even if it comes into contact with the wall surface, the cooling air is always supplied from the cooling air supply port 23a provided on the outer edge, so that a cooling air layer is always formed on the inner wall surface of the combustion chamber tube 13. By this cooling air layer, the inner wall surface of the combustion chamber cylinder is always protected from high-temperature combustion gas, and rapid combustion hardly occurs near the wall surface, so that oscillating combustion can be suppressed.
  • FIG. 12 is an axial sectional view showing the gas turbine combustor according to the sixth embodiment.
  • This gas turbine combustor is provided with a cooling air supply hole which penetrates through the body of the cylinder of the combustion chamber at an angle, and allows the cooling air to flow from the cooling air supply hole, so that the gas turbine combustor immediately after the fuel nozzle block. It is characterized in that a cooling air layer is formed on the inner wall surface of the gas turbine combustor 14 toward the axially downstream side of the combustor.
  • an undercut 44a may be provided downstream of the outlet of the cooling air hole 44 so that the cooling air flow does not separate.
  • the cooling air supply hole 44 opens on the inner wall surface side of the combustion chamber cylinder 14 downstream of the rear end of the fuel nozzle block 24. For this reason, even if the fuel nozzle block 24 expands toward the inner wall surface of the combustion chamber cylinder 14 by the high-temperature combustion gas and closes the gap 54, the cooling air supplied from the cooling air supply hole 44 does not A cooling air layer is formed on the inner wall surface of the combustion chamber tube 14. Therefore, regardless of the deformation of the fuel nozzle block 24, the inner wall surface of the combustion chamber tube 14 is protected from high-temperature combustion gas, so that the life of the gas turbine combustor 14 can be extended.
  • this cooling air layer is always formed on the inner wall surface of the gas turbine combustor 14, rapid combustion is less likely to occur near the inner wall surface, so that stable operation can be performed while suppressing oscillating combustion. .
  • the cooling air layer is formed on the inner wall surface of the combustion chamber cylinder immediately after the nozzle block, the cooling air layer is formed immediately after the nozzle block having a high premixed gas concentration.
  • combustion near the wall surface can be suppressed.
  • vibration combustion can be suppressed, and the combustion chamber cylinder can be protected from high-temperature combustion gas.
  • cooling air is caused to flow from a certain gap provided between the fuel nozzle block and the combustion chamber cylinder to form a cooling air layer on the inner wall surface of the combustion chamber cylinder. .
  • the cooling air flows from the gap along the inner wall surface of the combustion chamber cylinder, so that the flow of the cooling air does not easily separate.
  • a uniform cooling air layer is formed and the cylinder in the combustion chamber can be cooled reliably, so that combustion near the inner wall surface can be prevented and vibration combustion can be suppressed.
  • a certain gap is opened in the circumferential direction of the combustion chamber cylinder, combustion near the inner wall surface is prevented over the entire circumferential direction of the combustion chamber cylinder, and the occurrence of oscillating combustion can be more reliably suppressed.
  • the cooling air layer forming ring is provided between the inner cylinder of the combustion chamber and the fuel nozzle block, even if the fuel nozzle block is deformed due to thermal expansion.
  • stable operation can be performed by maintaining a certain gap for flowing cooling air that forms a cooling air layer.
  • the cooling air layer forming ring is protected from the high temperature combustion gas by the fuel nozzle block, the cooling air layer is formed uniformly. As a result, oscillating combustion is suppressed irrespective of the operating time and operating conditions of the gas turbine, and stable operation can be achieved by cooling the combustion chamber cylinder.
  • the manifold is provided on the upstream side of the cooling air layer forming ring, the pulsation of the cooling air can be removed and the cooling air can be stably supplied to the cylinder in the combustion chamber.
  • the pressure change in the combustion chamber due to the pulsation of the cooling air and the combustion near the wall surface of the cylinder in the combustion chamber, thereby reliably suppressing the oscillating combustion.
  • the combustion chamber cylinder can be cooled stably, the life of the combustor can be extended.
  • the cooling air layer forming ring and the fuel nozzle Since a certain interval is provided between the fuel nozzle opening and the fuel nozzle opening, even if the fuel nozzle opening is thermally deformed, this interval becomes a thermal expansion allowance and can absorb this thermal deformation. As a result, a cooling air layer can be formed stably regardless of the operation time and operation state of the gas turbine, and vibration combustion can be suppressed. In addition, the spacing facilitates the work of assembling the fuel nozzle block to the cylinder in the combustion chamber.
  • a plurality of closing members are further provided in the gap at circumferentially different intervals, and combustion is allowed immediately after the closing member to allow combustion in the combustion chamber. Occurrence of oscillating combustion is suppressed by forming an antinode of pressure irregularly in the circumferential direction of the cylinder.
  • the gas turbine combustor according to the present invention is useful for the operation of a gas turbine, and stably cools the wall of the gas turbine combustor regardless of the operation time and the operation state of the gas turbine. It is suitable for driving gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

明 細 書 ガスタービン燃焼器 技術分野
この発明は、 ガスタービンの燃焼器に関し、 さらに詳しくは、 運転時間や運転 状況に関わらず燃焼器の壁面を安定して冷却できるガスタービン燃焼器に関する。 背景技術
近年のガスタービン燃焼器においては、 環境保全等の観点から、 サーマル N O Xの低減により有利な予混合燃焼方式が使用されてきている。 予混合燃焼方式と は、 燃料と過剰な空気とを予め混合して燃焼させるものであり、 燃焼器中におけ るすべての領域において燃料が希薄な条件の下で燃焼するため、 N O Xを容易に 低減できる。 次に、 これまで使用されてきた予混合燃焼器について説明する。 第 1 3図は、 これまで使用されてきたガスタービンの予混合燃焼器を示す軸方 向断面図である。 燃焼器ノズノレブロック外筒 7 0 0内には、 拡散火炎を形成する ためのパイロットコーン 6 1 0が設けられている。 そして、 燃焼器ノズノレブロッ ク外筒 7 0 0の出口には燃料ノズルブ口ック 2 9が取付けられており、 この燃料 ノス 'ノレブロック 2 9は燃焼室内筒 1 9に挿入されている。 また、 パイロットコー ン 6 1 0は、 パイ口ット燃料供給ノズノレ (図示せず) から供給されるパイロット 燃料と、 圧縮機から供給される燃焼用空気とを反応させて拡散火炎を形成する。 第 1 3図からは明らかではないが、 予混合火炎を形成するための予混合火炎形 成ノズル 5 1 0は、 前記パイロットコ一ン 6 1 0の周囲に 8個設けられている。 予混合気体は、 燃焼用空気と主燃料とを混合させて作られるものであり、 前記予 混合火炎形成ノズル 5 1 0から燃焼器側へ噴射される。 予混合火炎形成ノズル 5 1 0から燃焼器内へ噴射された予混合気体は、 上記拡散火炎から排出される高温 の燃焼ガスによつて着火され予混合気体燃焼火炎を形成する。 予混合気体火炎か らは高温 ·高圧の燃焼ガスが排出されて、 当該燃焼ガスは燃焼器尾筒 (図示せず ) を通ってタービン第一段ノス 'ノレへと導かれる。
ところで、 燃焼室內筒の壁面近傍で急激な燃焼が起こると振動燃焼が発生する 力、 従来は、 この振動燃焼によって燃焼が不安定となり、 安定した運転ができな いという問題があった。 また、 燃焼室内筒の壁面近傍で燃焼が起こると、 燃焼室 内筒が過熱して寿命が短くなるという問題があった。 そして、 燃焼室内筒の寿命 が短くなると頻繁に補修や交換が必要となり、 保守や点検に手間を要していた。 従って、 この発明は、 運転時間や運転状況に関わらずガスタービン燃焼器の壁 面を安定して冷却し、 安定した運転ができるガスタービン燃焼器を提供すること を目的としている。 発明の開示
本発明にかかるガスタービン燃焼器は、 燃焼室内筒の内壁面に、 前記燃焼室内 筒の下流方向に向かう冷却空気層をガスタービン燃焼器の燃料ノズルプロック直 後から形成する手段を設けたことを特徴とする。
このガスタービン燃焼器は、 燃焼室内筒の内壁面に予混合気体の濃度が高いノ ズルブ口ック直後から冷却空気層を形成するので、 この部分における壁面近傍で の燃焼を抑制できる。 したがって、 振動燃焼が抑制でき、 また高温の燃焼ガスか ら燃焼室内筒を保護できる。 なお、 圧縮機から送られてくる冷却空気の代わりに 冷却用の蒸気によって燃焼室内筒の内壁面に冷却蒸気層を形成してもよい (以下 同様) 。 蒸気は空気よりも冷却効率が高いので、 燃焼室内筒の内壁面における燃 焼をより抑制できる。 したがって、 空気を使用した場合よりも振動燃焼を確実に 抑制できる。
つぎの発明にかかるガスタ一ビン燃焼器は、 燃焼室内筒との間に一定の間隔を もった隙間を設けて燃料ノズルブロックを設置し、 当該隙間から前記燃焼室内筒 の下流方向に向かって冷却空気を流して前記燃焼室内筒の内壁面に冷却空気層を 形成することを特徴とする。 このガスタービン燃焼器は、 燃料ノズルプロックと燃焼室内筒との間に設けた 一定の隙間から冷却空気を流して燃焼室内筒の内壁面に冷却空気層を形成する。 冷却空気はこの隙間から燃焼室内筒の内壁面に沿って流れるので、 冷却空気の流 れは剥離し難くなり均一な冷却空気層が形成できる。 このため、 燃焼室内筒を確 実に冷却でき、 内壁面近傍における燃焼を防止して振動燃焼を抑制できる。 また、 前記隙間は燃焼室内筒の周方向にわたって開口しているため、 燃焼室内筒の周方 向全体には均一に冷却空気層が形成される。 このため、 燃焼室内筒の周方向全域 にわたつて内壁面近傍における燃焼が防止できるので、 振動燃焼の発生をより確 実に抑制できる。
つぎの発明にかかるガスタービン燃焼器は、 燃焼室内筒の内壁面に当該燃焼室 内筒の下流方向に向かって冷却空気層を形成するための冷却空気層形成リングを、 ガスタービン燃焼器の燃料ノズノレブ口ックと前記燃焼室内筒との間に一定の隙間 をもって備えたことを特徴とする。
このガスタービン燃焼器は、 冷却空気層形成リングを燃焼室内筒と燃料ノズノレ ブロックとの間に設けたので、 燃料ノズノレブロックが熱膨張によって変形しても、 冷却空気層を形成するための一定の隙間を維持できる。 このため、 安定した運転 ができ、 燃焼器の信頼性も向上する。 また、 冷却空気層形成リングが燃料ノズノレ ブロックによって高温の燃焼ガスから保護されるので、 冷却空気形成リングが熱 変形することはない。 したがって、 冷却空気層形成リングと燃焼室内筒との間に 形成される隙間は常に一定の間隔に保たれるので、 運転中に燃料ノズノレブ口ック が変形しても冷却空気層は均一に形成される。 このため、 ガスタービンの運転時 間や運転状況に関わらず安定して燃焼室内筒を冷却でき、 振動燃焼も抑制できる。 つぎの発明にかかるガスタービン燃焼器は、 上記ガスタービン燃焼器にぉレ、て、 さらに、 上記冷却空気層形成リングの上流側に冷却空気を蓄えるマ二ホールド部 を備えたことを特 ί敷とする。
このガスタービン燃焼器は、 冷却空気層形成リングの上流側にマ二ホールドを 備え、 このマ二ホールドに冷却空気を蓄えることで、 冷却空気の脈動を除去し安 定して冷却空気を燃焼室内筒に供給する。 このため、 冷却空気の脈動に起因する 燃焼室内の圧力変化や燃焼室内筒の壁面近傍における一時的な燃焼が抑制できる ので、 振動燃焼を確実に抑制できる。
つぎの発明にかかるガスタービン燃焼器は、 上記ガスタービン燃焼器において、 さらに、 上記冷却空気層形成リングと上記燃料ノズルブ口ックとの間に一定の間 隔を設けたことを特徴とする。
このガスタービン燃焼器は、 冷却空気層形成リングと燃料ノズルブロックとの 間に一定の間隔を設けてあるので、 燃料ノズルプロックが熱変形してもこの間隔 が熱膨張代となってこの熱変形を吸収できる。 そして冷却空気層形成リングから は燃料ノズノレブ口ックの熱変形に関わらず安定して冷却空気が供給されるので、 ガスタ一ビンの運転時間や運転状況に関わらず安定して冷却空気層が形成できる。 また、 上記間隔を設けてあるので、 燃料ノズノレブロックを燃焼室内筒に組み付け る際の作業が容易になる。 さらに、 この一定の間隔から流れる冷却空気によって 燃料ノズルブ口ックが冷却されるため、 当該燃料ノズルブ口ックの熱変形を抑制 できる。
つぎの発明にかかるガスタ一ビン燃焼器は、 上記ガスタ一ビン燃焼器において、 さらに、 周方向に異なる間隔で複数個の塞ぎ部材を上記隙間へ設けたことを特徴 とする。
つぎの発明にかかるガスタービン燃焼器は、 上記ガスタービン燃焼器において、 さらに、 塞ぎ部材を上記隙間の一箇所に設けたことを特徴とする。 燃焼室内筒の 壁面近傍における燃焼が振動燃焼の原因となるが、 燃焼室内筒内部に形成される 振動場は、 必ず圧力の腹が偶数個存在することで、 振動場のモードを形成する。 このガスタービン燃焼器は、 塞ぎ部材の直後で燃焼を許容して燃焼室内筒の周 方向に燃焼箇所を異なる間隔で形成し、 圧力の腹が不規則となるようにすること で、 振動燃焼の発生を抑制するものである。 なお、 燃焼器の軸方向に垂直な断面 内において、 圧力の腹が 1個であれば振動場のモードを形成できないので、 振動 燃焼は発生し難くなる。 したがって、 塞ぎ部材を一箇所に設けて燃焼箇所を一箇 所としてもよい。 このガスタービン燃焼器では塞ぎ部材によって冷却空気が通過 する面積が小さくなるので、 冷却空気層を形成するための冷却空気量が十分確保 できない場合でも、 振動燃焼を抑制できる。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1にかかるガスタービン燃焼器を示す軸方向 断面図であり、 第 2図は、 実施の形態 1の変形例にかかるガスタービン燃焼器を 示す説明図であり、 第 3図は、 ガスタービンの運転中における燃焼ノズルブロッ クの状態を示す説明図であり、 第 4図は、 この発明の実施の形態 2にかかるガス タービン燃焼器を示す軸方向断面図であり、 第 5図は、 実施の形態 3にかかるガ スタービン燃焼器を示す軸方向断面図であり、 第 6図は、 実施の形態 4にかかる ガスタービン燃焼器の一例を示す軸方向断面図であり、 第 7図は、 第 6図に示し たガスタービン燃焼器の正面図であり、 第 8図は、 ガスタービン燃焼器で振動燃 焼が発生した場合における振動場のモードを表した概念図であり、 第 9図は、 実 施の形態 4にかかるガスタービン燃焼器のもう一つの例を示す正面図であり、 第 1 0図は、 実施の形態 5にかかるガスタービン燃焼器を示す軸方向断面図であり、 第 1 1図は、 実施の形態 5にかかるガスタービン燃焼器に使用するスぺーザの一 例を示す説明図であり、 第 1 2図は、 実施の形態 6にかかるガスタービン燃焼器 を示す軸方向断面図であり、 第 1 3図は、 これまで使用されてきたガスタービン 予混合燃焼器を示す軸方向断面図である。 発明を実施するための最良の形態
以下、 この発明につき図面を参照しつつ詳細に説明する。 なお、 この実施の形 態によりこの発明が限定されるものではない。 また、 下記実施の形態における構 成要素には、 当業者が容易に想定できるものが含まれるものとする。 なお、 次の 実施の形態においては予混合燃焼方式のガスタ一ビン燃焼器を例にとつて説明す るが、 この発明を適用できるガスタービン燃焼器はこれに限定されるものではな レ、。
(実施の形態 1)
第 1図は、 この発明の実施の形態 1にかかるガスタービン 焼器を示す軸方向 断面図である。 このガスタービン燃焼器は、 ガスタービン燃焼器の内壁面に、 燃 料ノズルプロックから燃焼器の軸方向に向かって冷却空気層を形成する手段を設 けた点に特徴がある。 予混合火炎形成ノズル 5 0 0およびパイロットコーン 6 0 0を内部に備えた燃料ノズルブ口ック 2 0は燃焼室内筒 1 0に挿入されている。 そして、 パイロットコーン 6 0 0から形成される拡散火炎によって、 予混合火炎 形成ノズル 5 0 0から噴射された予混合気体が着火し燃焼する。
燃焼室内筒 1 0の内壁面には周方向に向かって複数のスペ^ "サ 3 0が設けられ ている。 そして、 燃料ノス 'ノレブロック 2 0と燃焼室内筒 1 0との間に冷却空気層 を形成する手段として、 燃料ノズルプロック 2 0と燃焼室内筒 1 0の内壁面との 間に一定の隙間 5 0を形成する。 また、 燃焼室内筒 1 0には、 隙間 5 0に冷却空 気を送り込むための冷却空気供給孔 4 0が設けられている。 そして、 この冷却空 気供給孔 4 0から送り込まれる冷却空気は隙間 5 0から流れ出て、 燃焼室内筒 1 0の内壁面に冷却空気層を形成する。 この冷却空気層が高温の燃焼ガスと燃焼室 内筒 1 0との間に温度境界層を形成して燃焼室内筒 1 0を高温の燃焼ガスから保 護する。
実施の形態 1にかかるガスタービン燃焼器によれば、 燃焼室内筒 1 0の内壁面 に冷却空気層が形成されるので、 燃焼室内筒 1 0の内壁面が高温の燃焼ガスから 保護される。 これによつて、 燃焼室内筒 1 0の昇温を防止できるので、 燃焼室内 筒 1 0の寿命を長くできる。 また、 燃焼室内筒 1 0の内壁面に形成されるこの冷 却空気層によって当該内壁面近傍では急激な燃焼が発生しなくなり、 その結果振 動燃焼も抑制できる。
(変形例)
第 2図 (a ) は、 実施の形態 1の変形例にかかるガスタービン燃焼器を示す軸 方向断面図である。 また、 第 2図 (b ) は、 第 2図 (a ) の A— A矢視図である。 なお、 第 2図 (b ) では下半分は省略してある。 このガスタービン燃焼器は、 燃 料ノズルプロック 2 0の外縁に、 冷却空気供給孔 2 0 aを設けた点に特徴がある。 第 2図 (b ) に示すように、 燃料ノズルブロック 2 0の外縁近傍には、 周方向に 向かって冷却空気供給孔 2 0 aが設けられており、 この冷却空気供給孔 2 0 aと 上記隙間 5 0とから冷却空気を流して、 燃焼室内筒 1 0の内壁面に冷却空気層を 形成する。
第 3図は、 ガスタービンの運転中における燃焼ノズルプロックの状態を示す説 明図である。 いま、 高温の燃焼ガスによって燃料ノズルブロック 2 0が燃焼室内 筒 1 0の内壁面側へ熱膨張すると、 スぺ一サ 3 0が設けてある部分で上記熱膨張 が拘束される結果、 燃料ノズノレブロック 2 0は花形状に変形する (第 3図 (a ) ) 。 その結果、 第 3図 (a ) に示すように、 冷却空気供給孔 2 0 aを備えていな いガスタービン燃焼器では隙間 5 0の間隔が不均一になる可能性があるので、 燃 焼室内筒 1 0の内壁面に形成される冷却空気層も不均一になっていた。
し力 し、 第 3図 (b ) に示すように、 この変形例にかかるガスタービン燃焼器 では、 燃料ノズルブ口ック 2 0の熱変形によって隙間 5 0が塞がれた部分にも冷 却空気供給孔 2 0 aから冷却空気が供給されるので、 燃焼室内筒 1 0の内壁面に は冷却空気層が形成される。 このように、 燃料ノズルプロック 2 0の熱膨張に関 わらず、 燃焼室内筒 1 0の内壁面に冷却空気層を形成できるので、 当該燃焼室内 筒 1 0は常に高温の燃焼ガスから保護され、 また振動燃焼も抑制できる。
(実施の形態 2 )
実施の形態 1にかかるガスタービン燃焼器は、 運転中何らかの理由で燃料ノズ ルブロックがその径方向に移動すると、 ガスタービン燃焼器内壁面と当該燃料ノ ズルブ口ックとで形成される隙間の大きさが不均一になってしまう。 その結果、 ガスタービン燃焼器内壁面に形成される冷却空気層の厚さも不均一となってしま うため、 当該内壁面の冷却が不十分になるおそれがあった。
また、 ノズノレブロックが熱膨張すると、 スぺーザが存在する部分で径方向に向 かう変形が阻害されるので、 スぺーサが存在する部分としない部分とでは変形の 仕方が異なり、 正面から見たノズルブロックの形状は花形状になってしまう (第 3図 (a ) ) 。 このような形に変形すると、 ガスタービン燃焼器内壁面と燃料ノ ズルブ口ックとで形成される隙間の間隔が不均一になって、 ガスタービン燃焼器 内壁面に形成される冷却空気層が均一に形成されなくなる。 その結果、 燃焼室内 筒の冷却が不十分になるおそれもあった。
実施の形態 2にかかるガスタ一ビン燃焼器はこのような不具合を解決するもの であって、 冷却空気層を形成する手段として、 ガスタービン燃焼器の壁面内壁面 と一定の間隔をもって冷却空気層形成リングを設けた点に特徴がある。 第 4図は、 この発明の実施の形態 2にかかるガスタービン燃焼器を示す軸方向断面図である。 燃焼室内筒 1 1の内壁面には、 スぺーサ 3 1によって当該内壁面と一定の間隔を もってリング 1 0 0が設けられている。 このリング 1 0 0は、 例えば溶接によつ て燃焼室内筒 1 1の內壁面に取付けることができる。 なお、 リング 1 0 0の強度 が十分であれば、 スぺーサ 3 1を設けなくともよい。
また、 第 4図 (b ) に示すように、 燃焼室内筒 1 1の壁面に垂直であるリング 1 0 0の側面 1 0 0 aに、 燃料ノズルブ口ック 2 1の外縁部 2 1 aを垂直に当て るようにしてもよレ、。 このようにすると、 熱膨張によって燃料ノス'ノレブロック 2 1 aがリング 1 0 0に当たっても、 リング 1 0 0の側面 1 0 0 aには曲げのモー メントがほとんど作用しないため、 リング 1 0 0と燃焼室内筒 1 1の内壁面とに よって形成される隙間 5 1がつぶれることはない。 このような構造をとれば、 リ ング 1 0 0自体の強度、 あるいはリング 1 0 0の取り付け部における強度を特に 強く しなくとも、 スぺーサ 3 1を設けないで当該隙間 5 1を確保できる。
燃焼室内筒 1 1のリング 1 0 0が取付けられている部分には冷却空気供給孔 4 1が設けられており、 ガスタービンの運転中はここからリング 1 0 0に冷却空気 が供給される。 そして、 リング 1 0 0と燃焼室内筒 1 1の内壁面とによって形成 される隙間 5 1から冷却用空気が流れ出て、 燃焼室内筒 1 1の内壁面に冷却空気 層を形成する。 この冷却空気層は高温の燃焼ガスと燃焼室内筒 1 1との間に温度 境界層を形成するため、 燃焼室内筒 1 1は高温の燃焼ガスから保護される。 なお、 燃料ノズノレブロック 2 1は燃焼室内筒 1 1に挿入されているが、 このとき燃料ノ ズルブ口ック 2 1はリング 1 0 0の内側に一定の間隔をもって配置される。 この 一定の間隔によって燃料ノズルブ口ック 2 1を燃焼室内筒 1 1に組み込み易くな る。 また、 燃料ノズルブロック 2 1の熱変形をこの一定の間隔によって許容でき る。 さらに、 こめ一定の間隔から流れる冷却空気によって燃料ノズルブロック 2 1が冷却されるため、 当該燃料ノズルブ口ック 2 1の熱変形を抑制できる。 ガスタ一ビンの運転中、 高温の燃焼ガスによつて燃料ノズルブ口ック 2 1の温 度が上昇すると燃料ノズルブロック 2 1が径方向に熱膨張し、 リング 1 0 0に接 触することがある。 実施の形態 2にかかるガスタ一ビン燃焼器では、 熱膨張によ つて燃料ノズルブ口ック 2 1がリング 1 0 0に接触したとしてもリング 1 0 0は 変形しないため、 前記隙間 5 1は一定の間隔を保つことができる。 したがって、 ガスタービンの運転中に燃料ノズルブロック 2 1が変形しても、 冷却空気を燃焼 室内筒 1 1の内壁へ均等に流すことができるため、 確実に冷却空気層を形成でき る。 また、 燃焼ガスはまず燃料ノズルブ口ック 2 1に当たりリング 1 0 0に直接 当たることはないので、 リング 1 0 0の温度は熱変形する程度まで上昇すること はない。 したがって、 ガスタービン運転中にリング 1 0 0が熱変形することはな く、 リング 1 0 0と燃焼室内筒 1 1内壁とによって形成される隙間 5 1の間隔を 一定に保つことができる。
実施の形態 2にかかるガスタービン燃焼器によれば、 燃料ノズノレブロック 2 1 が熱膨張によって変形しても、 燃焼室内筒 1 1の内壁に冷却空気層を確実に形成 できる。 このため、 ガスタービンの運転時間や運転状況に関わらず、 確実に燃焼 室内筒 1 1を冷却でき、 また、 振動燃焼も確実に抑制できるので、 安定した運転 ができる。
(実施の形態 3 )
第 5図は、'実施の形態 3にかかるガスタービン燃焼器を示す軸方向断面図であ る。 このガスタービン燃焼器は、 ガスタービン燃焼器の内壁面に取付けられた冷 却空気層形成リングにマ二ホールドを備えた点に特徴がある。 燃焼室内筒 1 2の 内壁面にはリング 1 0 1が取付けられており、 当該内壁面とリング 1 0 1との間 に設けられたスぺーサ 3 2によって隙間 5 2を形成する。 この隙間 5 2から燃焼 室内筒 1 2側へ冷却空気を流して、 燃焼室内筒 1 2の内壁面に冷却空気層を形成 する。
リング 1 0 1にはマ二ホールド 2 0 0が設けられており、 燃焼室内筒 1 2に設 けられた冷却空気供給孔 4 2から供給された冷却空気がここへ導かれる。 この冷 却空気は、 マ二ホールド 2 0 0内へ蓄えられてから燃焼室内筒 1 2側へ向かって 流れ出すので、 冷却空気を周方向へ均一に供給できる。 このため、 燃焼室内筒 1 2の内壁面には安定して冷却空気層が形成されるので、 燃焼室内筒 1 2を確実に 高温の燃焼ガスから保護でき、 また振動燃焼も安定して抑制できる。
(実施の形態 4 )
第 6図は、 実施の形態 4にかかるガスタービン燃焼器の一例を示す軸方向断面 図である。 また、 第 7図は、 第 6図に示したガスタービン燃焼器の正面図である (予混合ノズル等は省略) 。 このガスタービン燃焼器は、 燃焼室内筒と冷却空気 層を形成するリングとによって形成される冷却空気を供給する隙間を塞ぎ部材に よって塞ぎ、 この塞ぎ部材の後流側でのみ燃焼を許容することで、 対称性を崩し て圧力の腹を形成することで振動燃焼を抑制する点に特徴がある。
第 8図は、 ガスタービン燃焼器で振動燃焼が発生した場合における振動場のモ ードを表した概念図である。 図中 +は正圧の腹を、 一は負圧の腹を表す。 燃焼室 内筒 1 5の内壁面近傍で急激な燃焼が起こると急激な圧力変化が発生する結果、 第 8図 (a ) 〜 (d ) に示すいずれかのモードで正圧の腹と負圧の腹とが交互に 生じて振動燃焼が発生する。 このように、 この圧力の腹は必ず対称に生ずる。 し たがって、 この対称性を崩すように燃焼室内筒 1 5の内壁面近傍において燃焼さ せた場合には、 圧力の腹は燃焼室内筒 1 5の周方向へ不規則に発生するので対称 性が崩される結果、 振動燃焼は発生し難くなる。
第 6図および第 7図に示すように、 燃焼室内筒 1 5の内部には、 冷却空気層を 形成するリング 1 0 2が燃焼室内筒 1 5の内壁面と一定の間隔をもって挿入され ,
11 ており、 隙間 5 5を形成する。 また、 燃焼室内筒 1 5には冷却空気供給孔 4 5が 設けられており、 ここから冷却空気がリング 1 0 2へ供給される。 第 7図に示す ように、 隙間 5 5には 3個の塞ぎ部材 3 5がそれぞれ周方向に異なる間隔で備え られており、 この部分を冷却空気が通過することを防止する。
なお、 η個の塞ぎ部材 3 5を使用する場合には、 隣り合う塞ぎ部材 3 5同士の 間隔も η個存在する。 このとき少なくとも 1つの間隔が他の間隔と異なっていれ ば、 圧力の腹は燃焼室内筒 1 5の周方向へ不規則に発生するので、 圧力の腹の対 称性を崩すことはできる。 また、 塞ぎ部材 3 5の数があまり多くなると、 塞ぎ部 材 3 5が近接した部分で同時に燃焼が起こり、 圧力の腹が対称に形成される場合 がある。 したがって、 塞ぎ部材の個数は多くとも 1 5個程度までであり、 塞ぎ部 材 3 5同士に適当な間隔を設けるという観点および製作の容易さという観点から、 5〜 9個が好ましい。
塞ぎ部材 3 5の下流側は冷却空気が流れないため、 塞ぎ部材 3 5の下流側にお ける燃焼室内筒 1 5の内壁面近傍では予混合気体が燃焼する。 し力 し、 燃焼室内 筒 1 5の内壁面近傍で燃焼が発生しているのは塞ぎ部材 3 5の下流側のみであり、 しかも燃焼箇所の間隔は周方向で異なっている。 したがって、 圧力の腹は燃焼室 内筒 1 5の周方向へ不規則に発生するので、 圧力の腹の対称性が崩される。 その 結果、 第 8図 (a ) 〜 (d ) に示すような振動場のモードを形成できなくなるた め、 振動燃焼は発生し難くなる。 なお、 上記例において塞ぎ部材 3 5は 3個とし たが、 第 9図に示すように塞ぎ部材 3 5の個数を 1個としてもよレ、。 振動場のモ ードは、 圧力の腹が偶数個存在することで形成されるが、 圧力の腹が 1個のみで は振動場のモードを形成できないので、 振動燃焼を抑制できるためである。
このガスタービン燃焼器は、 塞ぎ部材 3 5を設けない場合と比較して隙間 5 5 の面積が小さくなるので、 隙間 5 5を通過する冷却空気量も、 塞ぎ部材 3 5を設 けない場合と比較して少なくできる。 このため、 例えば、 冷却空気層を形成する ために使用できる冷却空気の量が少ないために冷却空気層を燃焼室内筒 1 5の内 周全体にわたって形成することが困難である場合であっても振動燃焼を抑制でき る。
(実施の形態 5 )
第 1 0図は、 この発明の実施の形態 5にかかるガスタービン燃焼器を示す軸方 向断面図である。 このガスタービン燃焼器は、 燃料ノズルブロック端部の外周部 をばね構造とし、 当該外周部に燃料ノズルブ口ックと燃焼室内筒との位置決め機 能および燃料ノズルブロックの熱変形を吸収させる機能を持たせるとともに、 当 該外周に冷却空気供給孔を複数設けてガスタービン燃焼室内筒の内壁面に冷却空 気層を形成する点に特徴がある。
燃料ノズノレブロック 2 3は、 燃焼室内筒 1 3の内壁面と一定の隙間 5 3をもつ て、 燃焼室内筒 1 3に挿入されている。 また、 第 1 0図 (b ) に示すように、 燃 料ノズルプロック 2 3の外縁部には、 その周方向に向かって冷却空気供給口 2 3 aが複数設けられている。 なお、 第 2図 (b ) に示す燃料ノス 'ノレブロック 2 0の ように、 燃料ノズルブロック 2 3の外縁部に孔を貫通させることによってこの冷 却空気供給口 2 3 aを形成してもよい。 し力 し、 燃料ノズノレブロック 2 3が燃焼 室内筒 1 3の内壁方向に膨張した場合であっても確実に冷却空気層を形成できる ように、 第 1 0図 (b ) に示すように外縁側が開口した形状に形成することが望 ましい。
第 1 0図 (a ) に示すように、 燃料ノズノレブロック 2 3には環状のスぺーサ 8 0が取り付けられている。 環状のスぺーサ 8 0は燃料ノズノレブ口ック 2 3に溶接 やリベット締めなどによって取り付けてもよいし、 燃料ノス'ノレブロック 2 3と一 体に成形してもよい。 そして、 環状のスぺーサ 8 0の端部 8 0 aが燃焼室内筒 1 3の内壁面に接触し、 湾曲部 8 0 bがたわむことで、 燃料ノズルブロック 2 3を 燃焼室内筒 1 3の中心部に保つようになつている。 また、 第 1 0図 (a ) に示す ように、 環状のスぺーサ 8 0は湾曲部 8 0 bを備えているため、 燃料ノズルプロ ック 2 3が高温の燃焼ガスによって燃焼室内筒 1 3の内壁側へ熱膨張しても、 そ れにともなって環状のスぺーサ 8 0の湾曲部 8 0 bがたわむので、 この熱膨張を 吸収できる。 そして、 このとき環状のスぺ一サ 8 Qの湾曲部 8 0 bがたわむこと によって発生する燃焼室内筒 1 3の中心方向に向かう力によって、 燃料ノズルブ ロック 2 3の位置を燃焼室内筒 1 3の中心部に保つことができる。
なお、 スぺーサ 8 0の形状は;^状であるため、 湾曲部 8 0 bがたわむときに環 状のスぺーサ 8 0を周方向へ圧縮する力が働く。 この力を緩和し、 より滑ら力に 環状のスぺ一サ 8 0をたわませるため、 第 1 1図 (a ) および (b ) に示すよう に、 環状のスぺーサ 8 0に切り欠き 8 0 cを設ける等することで環状のスぺーサ 8 0を周方向に分割する構造としてもよレ、。 このようにすると、 環状のスぺーサ 8 0の湾曲部 8 0 bがたわむ際に発生する環状のスぺーサ 8 0を周方向へ圧縮す る力は、 切り欠き 8 0 cが狭くなることで吸収される。 その結果、 燃料ノズルブ ロック 2 3の熱膨張をより滑らかに吸収して、 燃料ノズルブ口ック 2 3を燃焼室 内筒 1 3の中心部に保ちやすくできる。
第 1 0図 (a ) に示すように、 燃焼室内筒 1 3の胴部には冷却空気を供給する ための冷却空気供給孔 4 3が設けられている。 なお、 環状のスぺ一サ 8 0の湾曲 部 8 0 bに冷却空気供給孔を設けて、 ここから冷却空気を供給してもよいし、 燃 焼室内筒 1 3に設ける冷却空気供給孔 4 3と併用して冷却空気を供給してもよい。 冷却空気供給孔 4 3から供給された冷却空気は環状のスぺーサ 8 0と燃料ノズノレ ブロック 2 3と燃焼室内筒 1 3の内壁面とで囲まれる空間に導力れる。 そして、 隙間 5 3と燃料ノズルブ口ック 2 3の外縁に設けられた冷却空気供給口 2 3 aと から冷却空気が燃焼室内筒 1 3側へ供給されて、 燃焼室内筒 1 3の内壁面に冷却 空気層を形成する。
このガスタービン燃焼器では、 ガスタービンの運転中、 高温の燃焼ガスによつ て燃料ノズノレブ口ック 2 3が熱膨張しても、 環状のスぺーサ 8 0の湾曲部 8 0 b がたわむことによって燃料ノズルブ口ック 2 3の位置は燃焼室内筒 1 3の中心部 に保たれる。 このため、 燃料ノズルプロック 2 3の熱膨張にともなって隙間 5 3 は周方向にわたって一定の間隔を保たれながら小さくなるので、 燃焼室内筒 1 3 の内壁面に形成される冷却空気層が途切れることはない。
さらに燃料ノズルブ口ック 2 3が熱膨張してその外縁部が燃焼室内筒 1 3の内 壁面に接触しても、 当該外縁に設けられた冷却空気供給口 2 3 aから常に冷却空 気が供給されるので、 燃焼室内筒 1 3の内壁面には常に冷却空気層が形成される。 この冷却空気層によって、 常に燃焼室内筒の内壁面は高温の燃焼ガスから保護さ れ、 また、 当該壁面近傍では急激な燃焼が発生し難くなるので、 振動燃焼も抑制 できる。
(実施の形態 6 )
第 1 2図は、 実施の形態 6にかかるガスタービン燃焼器を示す軸方向断面図で ある。 このガスタービン燃焼器は、 燃焼室内筒の胴部を斜めに貫通する冷却空気 供給孔を当該胴部に設け、 この冷却空気供給孔から冷却空気を流すことで、 燃料 ノズルプロックの直後からガスタービン燃焼器の軸方向下流に向かってガスター ビン燃焼器 1 4の内壁面に冷却空気層を形成する点に特徴がある。
冷却空気供給孔 4 4の中心軸 Xと燃焼室内筒 1 4の軸 Yとのなす角 α が大き くなると、 燃焼室内筒 1 4の内壁面に冷却空気流のよどみ点が発生するので、 燃 焼室内筒 1 4が十分冷却されない場合がある。 このため、 当該角度 α は加工で きる範囲でできるだけ小さくすることが望ましい。 また、 第 1 2図 (b ) に示す ように、 冷却空気孔 4 4の出口下流側へ、 冷却空気流が剥離しないようにアンダ 一カット 4 4 aを設けてもよい。
このガスタービン燃焼器では、 冷却空気供給孔 4 4は、 燃料ノズルブロック 2 4の後端部よりも下流側における燃焼室内筒 1 4の内壁面側に開口している。 こ のため、 燃料ノズルプロック 2 4が高温の燃焼ガスによって燃焼室内筒 1 4の内 壁面側へ膨張して隙間 5 4を塞いだとしても、 冷却空気供給孔 4 4から供給され る冷却空気によって燃焼室内筒 1 4の内壁面に冷却空気層が形成される。 したが つて、 燃料ノズルプロック 2 4の変形に関わらず燃焼室内筒 1 4の内壁面が高温 の燃焼ガスから保護されるため、 ガスタービン燃焼器 1 4の寿命を長くできる。 また、 常にこの冷却空気層がガスタービン燃焼器 1 4の内壁面に形成されている ので、 当該内壁面近傍では急激な燃焼が発生し難くなる結果、 振動燃焼を抑制し て安定した運転ができる。 以上説明したように、 この発明にかかるガスタービン燃焼器では、 燃焼室内筒 の内壁面にノズルプロック直後から冷却空気層を形成するようにしたので、 予混 合気体濃度の高いノズルブ口ック直後における壁面近傍での燃焼を抑えることが できる。 これによつて振動燃焼が抑制でき、 また高温の燃焼ガスから燃焼室内筒 を保護できる。
つぎの発明にかかるガスタービン燃焼器では、 燃料ノズルプロックと燃焼室内 筒との間に設けた一定の隙間から冷却空気を流して燃焼室内筒の内壁面に冷却空 気層を形成するようにした。 このため、 冷却空気はこの隙間から燃焼室内筒の内 壁面に沿って流れるので、 冷却空気の流れは剥離し難くなる。 このため、 均一な 冷却空気層が形成されて燃焼室内筒を確実に冷却できるので、 内壁面近傍におけ る燃焼を防止して振動燃焼を抑制できる。 また、 一定の隙間が燃焼室內筒の周方 向にわたって開口しているので、 燃焼室内筒の周方向全域にわたって内壁面近傍 における燃焼が防止して振動燃焼の発生をより確実に抑制できる。
つぎの発明にかかるガスタービン燃焼器では、 冷却空気層形成リングを燃焼室 内筒と燃料ノズルブ口ックとの間に設けたので、 燃料ノズルブ口ックが熱膨張に よつて変形しても、 冷却空気層を形成する冷却空気を流す一定の隙間を維持して 安定した運転ができる。 また、 冷却空気層形成リングが燃料ノズルブ口ックによ つて高温の燃焼ガスから保護されるので冷却空気層が均一に形成される。 その結 果、 ガスタービンの運転時間や運転状況に関わらず振動燃焼を抑制し、 また燃焼 室内筒を冷却して安定した運転ができる。
つぎの発明にかかるガスタービン燃焼器では、 冷却空気層形成リングの上流側 にマ二ホールドを備えるようにしたので、 冷却空気の脈動を除去し安定して冷却 空気を燃焼室内筒に供給できる。 その結果、 冷却空気の脈動に起因する燃焼室内 の圧力変化や燃焼室内筒の壁面近傍における燃焼を抑制して、 振動燃焼を確実に 抑制できる。 また、 燃焼室内筒も安定して冷却できるので、 燃焼器の寿命を長く できる。
つぎの発明にかかるガスタービン燃焼器では、 冷却空気層形成リングと燃料ノ ズルブ口ックとの間に一定の間隔を設けるようにしたので、 燃料ノズルブ口ック が熱変形してもこの間隔が熱膨張代となってこの熱変形を吸収できる。 その結果、 ガスタ一ビンの運転時間や運転状況に関わらず安定して冷却空気層を形成して振 動燃焼を抑制できる。 また、 上記間隔によって、 燃料ノズルブロックを燃焼室内 筒に組み付ける際の作業が容易になる。
つぎの発明にかかるガスタービン燃焼器では、 上記ガスタービン燃焼器におい て、 さらに、 周方向に異なる間隔で複数個の塞ぎ部材を上記隙間へ設け、 塞ぎ部 材の直後で燃焼を許容し燃焼室内筒の周方向へ不規則に圧力の腹を形成すること で、 振動燃焼の発生を抑えるようにした。
つぎの発明にかかるガスタービン燃焼器では、 上記ガスタービン燃焼器におい て、 さらに、 塞ぎ部材を上記隙間の一箇所に設けることで、 圧力の腹を燃焼室内 筒の一箇所のみに形成することで、 圧力の腹の対称性を崩して振動燃焼を抑える ようにした。 このため、 塞ぎ部材によって冷却空気が通過する面積が小さくなる ので、 冷却空気層を形成するための冷却空気量が十分確保できない場合でも、 振 動燃焼を抑制できる。
産業上の利用可能性
以上のように、 本発明にかかるガスタービン燃焼器は、 ガスタービンの運転に 有用であり、 ガスタービンの運転時間や運転状況に関わらず、 ガスタービン燃焼 器の壁面を安定して冷却し、 安定してガスタ一ビンを運転することに適している。

Claims

請 求 の 範 囲
1 . 燃焼室内筒の内壁面に、 前記燃焼室内筒の下流方向に向かう冷却空気層を ガスタ一ビン燃焼器の燃料ノズノレブロック直後から形成する手段を設けたことを 特徴とするガスタービン燃焼器。
2 . 燃焼室内筒との間に一定の間隔をもった隙間を設けて燃料ノズルプロック を設置し、 当該隙間から前記燃焼室内筒の下流方向に向かって冷却空気を流して 前記燃焼室内筒の内壁面に冷却空気層を形成することを特徴とするガスタービン 燃焼器。
3 . 燃焼室内筒の内壁面に当該燃焼室内筒の下流方向に向かって冷却空気層を 形成するための冷却空気層形成リングを、 ガスタービン燃焼器の燃料ノズルプロ ックと前記燃焼室内筒との間に一定の隙間をもつて備えたことを特徴とするガス タービン燃焼器。
4 . さらに、 上記冷却空気層形成リングの上流側に冷却空気を蓄えるマ二ホー ノレド部を備えたことを特徴とする請求の範囲第 3項に記載のガスタービン燃焼器。
5 . さらに、 上記冷却空気層形成リングと上記燃料ノスソレブロックとの間に一 定の間隔を設けたことを特徴とする請求の範囲第 3項または第 4項に記載のガス タービン燃焼器。
6 . さらに、 周方向に異なる間隔で複数個の塞ぎ部材を上記隙間へ設けたこと を特徴とする請求の範囲第 2項〜第 4項のいずれか一つに記載のガスタービン燃
7 . さらに、 周方向に異なる間隔で複数個の塞ぎ部材を上記隙間へ設けたこと を特徴とする請求の範囲第 5項に記載のガスタービン燃焼器。
8 . さらに、 塞ぎ部材を上記隙間の一箇所に設けたことを特徴とする請求の範 囲第 2項〜第 4項のいずれか一つに記載のガスタービン燃焼器。
9 . さらに、 塞ぎ部材を上記隙間の一箇所に設けたことを特徴とする請求の範 囲第 5項に記載のガスタ一ビン燃焼器。
PCT/JP2002/006318 2001-06-27 2002-06-25 Dispositif combustor de turbine a gaz WO2003002913A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02741279.0A EP1400756B1 (en) 2001-06-27 2002-06-25 Gas turbine combustor
CA002433402A CA2433402C (en) 2001-06-27 2002-06-25 Combustor for gas turbine
US10/416,515 US7032386B2 (en) 2001-06-27 2002-06-25 Gas turbine combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-195310 2001-06-27
JP2001195310A JP3924136B2 (ja) 2001-06-27 2001-06-27 ガスタービン燃焼器

Publications (1)

Publication Number Publication Date
WO2003002913A1 true WO2003002913A1 (fr) 2003-01-09

Family

ID=19033310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006318 WO2003002913A1 (fr) 2001-06-27 2002-06-25 Dispositif combustor de turbine a gaz

Country Status (6)

Country Link
US (1) US7032386B2 (ja)
EP (1) EP1400756B1 (ja)
JP (1) JP3924136B2 (ja)
CN (1) CN1243195C (ja)
CA (1) CA2433402C (ja)
WO (1) WO2003002913A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271057A2 (en) * 2001-06-29 2003-01-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905166B1 (fr) * 2006-08-28 2008-11-14 Snecma Sa Chambre de combustion annulaire d'une turbomachine.
FR2920525B1 (fr) * 2007-08-31 2014-06-13 Snecma Separateur pour alimentation de l'air de refroidissement d'une turbine
JP4969384B2 (ja) * 2007-09-25 2012-07-04 三菱重工業株式会社 ガスタービン燃焼器の冷却構造
DE102007050664A1 (de) * 2007-10-24 2009-04-30 Man Turbo Ag Brenner für eine Strömungsmaschine, Leitblech für einen derartigen Brenner sowie eine Strömungsmaschine mit einem derartigen Brenner
US7921653B2 (en) * 2007-11-26 2011-04-12 General Electric Company Internal manifold air extraction system for IGCC combustor and method
CN102165258B (zh) * 2008-09-29 2014-01-22 西门子公司 燃料喷嘴
EP2295858A1 (de) 2009-08-03 2011-03-16 Siemens Aktiengesellschaft Stabilisierung der Flamme eines Brenners
JP5537895B2 (ja) * 2009-10-21 2014-07-02 川崎重工業株式会社 ガスタービン燃焼器
US8667801B2 (en) * 2010-09-08 2014-03-11 Siemens Energy, Inc. Combustor liner assembly with enhanced cooling system
WO2012132898A1 (ja) * 2011-03-30 2012-10-04 三菱重工業株式会社 燃焼器及びこれを備えたガスタービン
FR2976021B1 (fr) * 2011-05-30 2014-03-28 Snecma Turbomachine a chambre annulaire de combustion
JP6082287B2 (ja) * 2013-03-15 2017-02-15 三菱日立パワーシステムズ株式会社 燃焼器、ガスタービン、及び燃焼器の第一筒
JP6004976B2 (ja) 2013-03-21 2016-10-12 三菱重工業株式会社 燃焼器及びガスタービン
CN104296160A (zh) * 2014-09-22 2015-01-21 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种具有冷却功能的燃气轮机燃烧室的导流衬套
JP6485942B2 (ja) 2014-09-25 2019-03-20 三菱日立パワーシステムズ株式会社 燃焼器、ガスタービン
DE112016005084B4 (de) * 2015-11-05 2022-09-22 Mitsubishi Heavy Industries, Ltd. Verbrennungszylinder, Gasturbinenbrennkammer und Gasturbine
CN105402768A (zh) * 2015-12-29 2016-03-16 云南航天工业有限公司 一种发汗式冷却喷口燃烧器
US10577973B2 (en) 2016-02-18 2020-03-03 General Electric Company Service tube for a turbine engine
KR102071168B1 (ko) * 2016-05-23 2020-01-29 미츠비시 히타치 파워 시스템즈 가부시키가이샤 연소기, 가스 터빈
JP2021063464A (ja) * 2019-10-15 2021-04-22 三菱パワー株式会社 ガスタービン燃焼器
US11371701B1 (en) 2021-02-03 2022-06-28 General Electric Company Combustor for a gas turbine engine
US11885495B2 (en) 2021-06-07 2024-01-30 General Electric Company Combustor for a gas turbine engine including a liner having a looped feature
US11959643B2 (en) 2021-06-07 2024-04-16 General Electric Company Combustor for a gas turbine engine
US12085283B2 (en) 2021-06-07 2024-09-10 General Electric Company Combustor for a gas turbine engine
US11774098B2 (en) 2021-06-07 2023-10-03 General Electric Company Combustor for a gas turbine engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359724A (en) * 1965-08-03 1967-12-26 Bristol Siddeley Engines Ltd Cooling means in combustors for gas turbine engines
JPH08285284A (ja) * 1995-04-10 1996-11-01 Toshiba Corp ガスタービン用燃焼器構造体
EP1001224A2 (en) * 1998-11-12 2000-05-17 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6105372A (en) * 1997-09-08 2000-08-22 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL74196C (ja) * 1947-08-11
US2860483A (en) * 1953-01-02 1958-11-18 Phillips Petroleum Co Apparatus for burning fluid fuel in a high velocity air stream with addition of lower velocity air during said burning
US3705492A (en) * 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
US3854285A (en) * 1973-02-26 1974-12-17 Gen Electric Combustor dome assembly
US4485630A (en) * 1982-12-08 1984-12-04 General Electric Company Combustor liner
GB2134243A (en) 1983-01-27 1984-08-08 Rolls Royce Combustion equipment for a gas turbine engine
JP2852110B2 (ja) * 1990-08-20 1999-01-27 株式会社日立製作所 燃焼装置及びガスタービン装置
JP2597800B2 (ja) * 1992-06-12 1997-04-09 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用燃焼器
US5836164A (en) * 1995-01-30 1998-11-17 Hitachi, Ltd. Gas turbine combustor
US6015372A (en) * 1998-03-03 2000-01-18 Medx 96, Inc. Abdominal exercise machine and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359724A (en) * 1965-08-03 1967-12-26 Bristol Siddeley Engines Ltd Cooling means in combustors for gas turbine engines
JPH08285284A (ja) * 1995-04-10 1996-11-01 Toshiba Corp ガスタービン用燃焼器構造体
US6105372A (en) * 1997-09-08 2000-08-22 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
EP1001224A2 (en) * 1998-11-12 2000-05-17 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1400756A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271057A2 (en) * 2001-06-29 2003-01-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
EP1271057A3 (en) * 2001-06-29 2004-01-21 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6732528B2 (en) 2001-06-29 2004-05-11 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor

Also Published As

Publication number Publication date
EP1400756A4 (en) 2010-04-28
JP2003014236A (ja) 2003-01-15
CN1243195C (zh) 2006-02-22
CA2433402C (en) 2008-04-22
JP3924136B2 (ja) 2007-06-06
EP1400756A1 (en) 2004-03-24
CA2433402A1 (en) 2003-01-09
CN1463345A (zh) 2003-12-24
US20040074236A1 (en) 2004-04-22
EP1400756B1 (en) 2013-10-09
US7032386B2 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
WO2003002913A1 (fr) Dispositif combustor de turbine a gaz
JP4597489B2 (ja) ガスタービンエンジンの燃焼器ライナ用の多孔パッチ
JP4124585B2 (ja) 選択的に傾斜させた冷却孔を有する燃焼器ライナ
JP5374031B2 (ja) タービンエンジンにおけるNOxエミッションを低減するのを可能にするための装置及びガスタービンエンジン
JP5583368B2 (ja) 予混合直接噴射ノズル
US9506654B2 (en) System and method for reducing combustion dynamics in a combustor
EP1975512B1 (en) Combustors with impingement cooled igniters and igniter tubes for improved cooling of igniters
US8205336B2 (en) Method for manufacturing a combustor heat shield
US9625152B2 (en) Combustor heat shield for a gas turbine engine
US20130081401A1 (en) Impingement cooling of combustor liners
JP4695256B2 (ja) ガスタービンエンジンの燃料ノズル及びその組み立て方法
JP4540792B2 (ja) 内部水噴射を行うガスタービン燃焼器のスワールカップパッケージに使用するベンチュリ管
JP2009085222A (ja) タービュレータ付き後端ライナアセンブリ及びその冷却方法
JP2011064200A (ja) インピンジメント冷却式クロスファイア管組立体
JP2012107855A (ja) 燃焼器を点火燃焼させるための装置及び方法
JP2017166479A (ja) ガスタービンの流れスリーブの取り付け
KR20100061538A (ko) 2차 연료 전달 시스템
EP2230456A2 (en) Combustion liner with mixing hole stub
JP6001854B2 (ja) タービンエンジン用燃焼器組立体及びその組み立て方法
JP5537895B2 (ja) ガスタービン燃焼器
US20100269513A1 (en) Thimble Fan for a Combustion System
JP4652990B2 (ja) ガスタービン燃焼器
JP5718796B2 (ja) シール部材を備えたガスタービン燃焼器
US20180030899A1 (en) Structure for supporting spark plug for gas turbine engine
JP2013190200A (ja) 燃焼器及び燃焼器での熱応力を低減する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 028017277

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002741279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2433402

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10416515

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002741279

Country of ref document: EP