WO2002102823A1 - Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation - Google Patents

Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation Download PDF

Info

Publication number
WO2002102823A1
WO2002102823A1 PCT/IN2001/000112 IN0100112W WO02102823A1 WO 2002102823 A1 WO2002102823 A1 WO 2002102823A1 IN 0100112 W IN0100112 W IN 0100112W WO 02102823 A1 WO02102823 A1 WO 02102823A1
Authority
WO
WIPO (PCT)
Prior art keywords
same
salts
stable
salt
adenosyl
Prior art date
Application number
PCT/IN2001/000112
Other languages
French (fr)
Inventor
Pandurang Balwant Deshpande
Udayampalam Palanisamy Sethilkumar
Subramaniam Ganesan
Original Assignee
Orchid Chemicals & Pharmaceuticals Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orchid Chemicals & Pharmaceuticals Limited filed Critical Orchid Chemicals & Pharmaceuticals Limited
Priority to PCT/IN2001/000112 priority Critical patent/WO2002102823A1/en
Publication of WO2002102823A1 publication Critical patent/WO2002102823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals

Definitions

  • This invention relates to stable and new salts of S-adenosyl- -methionine, which in turn is synthesized by a novel chemical method.
  • the novel compounds of the invention are found to be more stable compared to the commonly available SAMe disulfate monotosylate and SAMe butane- 1,4-disulfonate salts.
  • the acute toxicity studies on the said salts have been successful and therefore, the salts are potential therapeutic agents.
  • SAMe 5-adenosyl- -methionine
  • SAMe is an important molecule in normal cell function and its survival. SAMe is utilized by three key metabolic pathways: trans-methylation, trans-sulfuration and polyamine synthesis. Given the importance of SAMe in tissue function, it is not surprising that this molecule is being investigated as a possible therapeutic agent for the treatment of various clinical disorders (L t. J. Biochem. Cell Biol. (2000), 32(4), 391-395).
  • US patent 5128249 disclosed the SAMe salts of dioctylsulphosuccinic acid, or of sulphonic acids or esters of sulphuric acids wherein the sulphonic acids or the esters of sulphuric acids are derived from long-chain linear or branched alkyl moiety containing 8-18 carbons atoms, and as a consequence of such a high molecular weight and high mole ratio, the content of these organic acids in the said salt goes upto 62-76%.
  • JP 58049398 has reported the hydrochloride & sulfate salt which are stabilized by using magnesium salts as additive.
  • WO 89/03389 reported SAMe salts with high molecular weight oleyl and arachidonyl derivatives of taurine in a molar ratio of 1: >4.2 which therefore results in a very low content of SAMe in the said salt.
  • JP 59051213 has reported lactose as stabilizer while JP 52048691 has reported the use of lithium salts as stabilizer.
  • JP 60181095 & JP-Sho 61-91125 have reported the use of cyclodextrins as a stabilizer & clearly reported the poor stability of the common haloacid salts of SAMe (like chloride, bromide, iodide, etc.) as well as the SAMe base. It has further disclosed the irritating characteristics of the salts reported so far, their high moisture sensitivity, poor storage stability, cost of the acids and their availability for commercial use, and the manufacturing difficulties due to which none of them are used as a therapeutic agents.
  • SAMe disulfate resorcinol-4,6-disulfonate or its sodium salt SAMe disulfate resorcinol-4,6-disulfonate or its sodium salt
  • SAMe disulfate catechol-3,5-disulfonate or its sodium salt SAMe disulfate phenol-2,4,6-trisulfonate or its sodium salt.
  • SAMe disulfate salt with analogous hydroquinone-2,3-disulphonic acid or its sodium salt was found to have poor stability at accelerated temperatures.
  • the process for the preparation of SAMe is disclosed in the Applicants' co-pending US Patent
  • the said process is a first ever report on the chemical synthesis of SAMe with enrichment of (S,S)-isomer to the extent of 60-65%.
  • the said process comprises the steps of:
  • the required sulfonic acids are prepared by conventional methods and used in situ to react with
  • SAMe The aqueous salt solution obtained thereof is spray-dried to obtain the novel salts of the invention.
  • SAMe disulfate resorcinol-4,6-disulfonate Production of SAMe disulfate resorcinol-4,6-disulfonate:
  • the SAMe obtained by the process described herein above is treated with dil.sulphuric acid and resorcinol-4,6-disulfonic acid or its suitable sodium salt to obtain SAMe disulfate resorcinol-4,6- disulfonate or its sodium salt.
  • the product so obtained is spray-dried.
  • SAMe disulfate catechol-3,5-disulfonate The SAMe obtained by the process described herein above is treated with dilute sulphuric acid and catechol-3,5-disulfonic acid or its suitable sodium salt to obtain SAMe disulfate catechol-3,5- disulfonate or its sodium salt.
  • the product so obtained is spray-dried.
  • SAMe disodium disulfate phenoI-2,4,6-trisulfonate
  • SAMe is treated with dil.sulphuric acid and phenol-2,4,6-trisulfonic acid or its suitable sodium salt to obtain SAMe disulfate phenol-2,4,6-trisulfonate or its sodium salt.
  • the product so obtained is spray-dried.
  • Assessment of stability of the above SAMe salts has been done as per the ICH guidelines at 40°C - 45 °C with 70-75 % Relative Humidity and an improved HPLC method has been employed which resolves all the impurities formed on degrading SAMe (Table I).
  • Buffer A mixture of 0.02 M citric acid & 0.01 M sodium dihydrogen orthophosphate
  • the percentage of SAMe after storage at the specified temperature was determined using the content of SAMe after storage and the content of SAMe before storage, i.e., initial content of SAMe in the corresponding salt using the following equation:
  • the process for producing SAMe salts according to the present investigation is characterized by (i) conversion of S-adenosyl-L-homocysteine into (S.S)-isomer enriched-SAMe, (ii) production of SAMe as SAMe sulphate salt, during product isolation, (iii) finally conversion into the required SAMe mixed sulfate and spray-drying.
  • Example 1 In order to make the process according to the present invention more easily reproducible and to illustrate some of the advantages and simplicity of the process, some practical examples are given hereinafter for purely illustrative purposes, but which in no case limit the scope of the invention.
  • Example 1 In order to make the process according to the present invention more easily reproducible and to illustrate some of the advantages and simplicity of the process, some practical examples are given hereinafter for purely illustrative purposes, but which in no case limit the scope of the invention.
  • S-Adenosyl-L-homocysteine (1.0 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10+2°C. To this solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S- adenosyl-L-homocysteine.
  • S-Adenosyl-L-homocysteine (1 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10 ⁇ 2°C. To the solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was again raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S-adenosyl-L-homocysteine. The solvent was removed under vacuum at ⁇ 30°C until a residue was obtained. Into the residue, chilled dil.sulphuric acid (6%; 2.0 Lit) was added to get a clear solution. Methanol (10.0 Lit) was added and the precipitated product was filtered under nitrogen atmosphere.
  • the filtered solid was dissolved in water (2.0 Lit) at 0-5°C and methanol (10.0 Lit) was added. The precipitate obtained was filtered under nitrogen atmosphere. The solid was dissolved in water (2.0 Lit) at 0-5°C and washed with dichloromethane (2 x 5.0 Lit) at the same temperature. The solution was degassed for 30 rnin and quantified for sulphate content. To the solution, required amount of dil.sulphuric acid and catechol-3,5-disulfonic free acid or its suitable sodium salt were added. The solution was spray-dried with air at 140-160°C. Yield : 1.4 to 1.6 Kg. HPLC Purity : >98.0%.
  • S-Adenosyl-L-homocysteine (1 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10+2°C. To the solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S- adenosyl-L-homocysteine. The solvent was removed under vacuum at ⁇ 30°C until a residue was obtained. Into the residue, chilled dil.sulphuric acid (6%; 2.0 Lit) was added to get a clear solution. Methanol (10.0 Lit) was added and the precipitated product was filtered under nitrogen atmosphere.
  • the filtered solid was dissolved in water (2.0 Lit) at 0-5°C and methanol (10.0 Lit) was added. The precipitate obtained was filtered under nitrogen atmosphere. The solid was dissolved in water (2.0 Lit) at 0-5°C and washed with dichloromethane (2 x 5.0 Lit) at the same temperature. The solution was degassed for 30 rnin and quantified for sulphate content. To the solution, required amount of dil.sulphuric acid and phenol-2,4,6-trisulfonic free or its suitable sodium salt were added. The solution was spray-dried with hot air at 140-160°C. Yield: 1.4 to 1.6 Kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

This invention relates to the production of new and stable salts of S-adenosyl-L-methionine and the source of SAMe used in the salts formation is from a chemical process wherein stereoselective methylation of S-adenosyl-L-homocysteine is achieved, and a simple and efficient process for producing the salts on large scale, which new salts were found to be stable at accelerated temperature for minimum 3 months.

Description

STABLE SALTS OF S-ADENOSYL-L-METHIONINE ( SAME) AND THE PROCESS FOR THEIR PREPAR ATION
Technical Field
5 This invention relates to stable and new salts of S-adenosyl- -methionine, which in turn is synthesized by a novel chemical method. The novel compounds of the invention are found to be more stable compared to the commonly available SAMe disulfate monotosylate and SAMe butane- 1,4-disulfonate salts. The acute toxicity studies on the said salts have been successful and therefore, the salts are potential therapeutic agents.
10 Background Art
5-adenosyl- -methionine, known as SAMe, is the main biological donor of methyl groups and it has several important therapeutic applications. As a substance existing in the living body, SAMe has been found to possess various pharmacological actions such as improvement of energy state of ischemic brain, improvement of cerebral energy metabolism and acidosis of the model with
15 recirculated blood flow following ischemia, etc. SAMe is an important molecule in normal cell function and its survival. SAMe is utilized by three key metabolic pathways: trans-methylation, trans-sulfuration and polyamine synthesis. Given the importance of SAMe in tissue function, it is not surprising that this molecule is being investigated as a possible therapeutic agent for the treatment of various clinical disorders (L t. J. Biochem. Cell Biol. (2000), 32(4), 391-395).
20 The main problem associated with the large-scale use of S-adenosyl-L-methionine is its thermal instability even at ambient temperature, and its preparation and purification complexity. Thus, the said product has been the subject of numerous patents aimed at providing new stable salts as well as process for preparation of these salts.
25 While numerous salts of SAMe have been reported, most of them suffered the disadvantage of stability at accelerated temperature and the practicability for the large scale manufacturing. In some of the disclosures, use of various organic & inorganic stabilizers were reported but most of them could not give the required effect or they are not suitable for the large scale manufacturing. SAMe butane-l,4-disulphonate as disclosed in US Patents 3954726 & 4028183 has shown better
30 stability & is being produced on large scale: Hence it was taken as the referral point for the comparison of stability.
Some of the known salts of SAMe & the stabilizers used in the process are as under. The data published in Res.Disclo. (1991), 332, 927-933 has reported the carboxylic acid salts of SAMe like gallic acid, ascorbic acid & maleic acid. EP 73376 & 72980 discloses the
35 hydrochloride, phosphate, sulfate & methane sulfonate salts. In JP 53107485 salts of SAMe adsorbed on the resin were prepared by eluting with various organic acids originating from ethane, bromoethane, benzene, naphthalene, p-toluene, etc. FR 2275220 discloses the citrate, tartarate, maleate & ascorbate salts of SAMe. US patent 5128249 disclosed the SAMe salts of dioctylsulphosuccinic acid, or of sulphonic acids or esters of sulphuric acids wherein the sulphonic acids or the esters of sulphuric acids are derived from long-chain linear or branched alkyl moiety containing 8-18 carbons atoms, and as a consequence of such a high molecular weight and high mole ratio, the content of these organic acids in the said salt goes upto 62-76%.
JP 58049398 has reported the hydrochloride & sulfate salt which are stabilized by using magnesium salts as additive.
WO 89/03389 reported SAMe salts with high molecular weight oleyl and arachidonyl derivatives of taurine in a molar ratio of 1: >4.2 which therefore results in a very low content of SAMe in the said salt.
JP 59051213 has reported lactose as stabilizer while JP 52048691 has reported the use of lithium salts as stabilizer.
JP 60181095 & JP-Sho 61-91125 have reported the use of cyclodextrins as a stabilizer & clearly reported the poor stability of the common haloacid salts of SAMe (like chloride, bromide, iodide, etc.) as well as the SAMe base. It has further disclosed the irritating characteristics of the salts reported so far, their high moisture sensitivity, poor storage stability, cost of the acids and their availability for commercial use, and the manufacturing difficulties due to which none of them are used as a therapeutic agents. Thus, there exists a need in the prior art to develop non-toxic new salts of SAMe which are stable at accelerated temperatures and further are equally or more stable as compared to butane-1,4- disulfonic acid salt. The applicants of the present invention, therefore, carried out intense investigation on a variety of systems in order to improve the storage stability of S-adenosyl-L- methionine. The study includes the effect of different type of acids, particularly, the sulphuric acids, and sulphonic acids - mono-, di-, tri sulphonic acids on aromatic or aliphatic systems, and the effect of the relative positions between them, like ortho-, meta-, or para-. Also, studies are the effects of the position of these acid functions with respect to other funtional groups in the aromatic ring which could be ortho-, meta- or para-. The applicants also studied the effect of different types of one or more substituents on the aromatic ring at various positions relative to the sulphonic acid functionality. The applicants found the involvement of the nature and type of the substituent pattern of the protonic as well as aprotic functional groups in influencing the stability of the SAMe salt. The extensive study on a wide range of molecular systems led finally to improve the stability of the SAMe, and the features which form the subject matter of the present invention are discussed below. Disclosure of the invention Accordingly, the invention provides three novel salts of SAMe, which are highly stable even at accelerated temperatures. The applicant has identified a group of novel salts of SAMe which are not reported so far and the applicant found that these salts of some have better stability improves the stability of SAMe to a better level. These are i) SAMe disulfate resorcinol-4,6-disulfonate or its sodium salt; ii) SAMe disulfate catechol-3,5-disulfonate or its sodium salt; iii) SAMe disulfate phenol-2,4,6-trisulfonate or its sodium salt. However, the SAMe disulfate salt with analogous hydroquinone-2,3-disulphonic acid or its sodium salt was found to have poor stability at accelerated temperatures. The process for the preparation of SAMe is disclosed in the Applicants' co-pending US Patent
Application No. . The said process is a first ever report on the chemical synthesis of SAMe with enrichment of (S,S)-isomer to the extent of 60-65%. Broadly, the said process comprises the steps of:
(a) reacting adenosine with thionyl chloride and pyridine at a temperature in the range of 30- 35°C to obtain 5'-chloromethyl adenosine hydrochloride,
(b) treating L-methionine with sodium metal in the presence of water and liquid ammonia at - 30 to -40°C to obtain aqueous solution of L-homocysteine sodium salt, (c) condensing 5'-chloromethyl adenosine hydrochloride with L-homocysteine in the presence of water and potassium iodide at 70 to 80°C to obtain S-adenosyl-L-homocysteine (SAH), and
(d) subjecting SAH to methylation using trimethyloxonium tetrafluoroborate (TMOTFB) as a methylating agent in the presence of trifluoroacetic acid (TFA) as a solvent to obtain pure S-adenosyl-L-methionine enriched with (S,S)-isomer in the ratio 60 to 65%.
The required sulfonic acids are prepared by conventional methods and used in situ to react with
SAMe. The aqueous salt solution obtained thereof is spray-dried to obtain the novel salts of the invention. Production of SAMe disulfate resorcinol-4,6-disulfonate:
The SAMe obtained by the process described herein above is treated with dil.sulphuric acid and resorcinol-4,6-disulfonic acid or its suitable sodium salt to obtain SAMe disulfate resorcinol-4,6- disulfonate or its sodium salt. The product so obtained is spray-dried.
Production of SAMe disulfate catechol-3,5-disulfonate The SAMe obtained by the process described herein above is treated with dilute sulphuric acid and catechol-3,5-disulfonic acid or its suitable sodium salt to obtain SAMe disulfate catechol-3,5- disulfonate or its sodium salt. The product so obtained is spray-dried.
Production of SAMe disulfate phenol-2,4,6-trisulfonate
In order to produce SAMe disodium disulfate phenoI-2,4,6-trisulfonate, SAMe is treated with dil.sulphuric acid and phenol-2,4,6-trisulfonic acid or its suitable sodium salt to obtain SAMe disulfate phenol-2,4,6-trisulfonate or its sodium salt. The product so obtained is spray-dried. Assessment of stability of the above SAMe salts has been done as per the ICH guidelines at 40°C - 45 °C with 70-75 % Relative Humidity and an improved HPLC method has been employed which resolves all the impurities formed on degrading SAMe (Table I). This method of HPLC analysis is the best method known so far to study stability of SAMe and has been validated as per the ICH guidelines. The details of the HPLC method followed and the accelerated stability report are as under: Column = YMC-ODS-A, 4.6 mm x 25 cm, C-18, 5 micron
Buffer = A mixture of 0.02 M citric acid & 0.01 M sodium dihydrogen orthophosphate
Mobile phase = using acetonitrile water with citric acid buffer Detector = UV at 254 nm wavelength
Flow rate = 1.5 ml per min.
Column temperature = 25°C
Accelerated Stability
The percentage of SAMe after storage at the specified temperature was determined using the content of SAMe after storage and the content of SAMe before storage, i.e., initial content of SAMe in the corresponding salt using the following equation:
SAMe (%) after storage at specified time and temperature Residual Ratio of SAMe (%) = X 100 SAMe (%) at the time of storage
Table I. Accelerated Stability Data for New SAMe Salts.
Accelerated SAMe Residual Ratio for* Storage Period
Salt I Salt π Salt HI
30 days 97.7 97.5 98.0
60 days 95.5 95.2 96.3
90 days 95.0 94.5 95.8
*Salts I, Tl and m are disulphate salts of SAMe with salts of resorcinol-4,6-disulphonic acid, catechol-3,5-disulphonic acid, and phenol-2,4,6-trisulphonic acid, respectively. It is seen from the table that the extent of degradation is in the downward trend with time. The process for producing SAMe salts according to the present investigation is characterized by (i) conversion of S-adenosyl-L-homocysteine into (S.S)-isomer enriched-SAMe, (ii) production of SAMe as SAMe sulphate salt, during product isolation, (iii) finally conversion into the required SAMe mixed sulfate and spray-drying. These and further characteristics and advantages of the SAMe salts according to the present invention and the relative production process will be more apparent from the detailed description given hereinafter which relates to preferred method of implementing various stages of the process. The hydroxy aromatic sulfonic acids are either available commercially or can be easily prepared from the corresponding aromatic hydrocarbons & used in situ. The process for the manufacture of SAMe and its salts according to the present invention are conducted in the following manner:
In order to make the process according to the present invention more easily reproducible and to illustrate some of the advantages and simplicity of the process, some practical examples are given hereinafter for purely illustrative purposes, but which in no case limit the scope of the invention. Example 1
Preparation of SAMe disulfate resorcinol-4,6-disulfonate or its Sodium Salt S-Adenosyl-L-homocysteine (1.0 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10+2°C. To this solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S- adenosyl-L-homocysteine. The solvent was removed under vacuum at <30°C until a residue was obtained. Into the residue, chilled dil.sulphuric acid (6%; 2.0 Lit) was added to get a clear solution. Methanol (10.0 Lit) was added and the precipitated product was filtered under nitrogen atmosphere. The filtered solid was dissolved in water (2.0 Lit) at 0-5°C and methanol (10.0 Lit) was added. The precipitate obtained was filtered under nitrogen atmosphere. The solid was dissolved in water (2.0 Lit) at 0-5°C and washed with dichloromethane (2 x 5.0 Lit) at the same temperature. The solution was degassed for 30 min and quantified for sulphate content. To the solution, required amount of diLsulphuric acid and resorcinol-4,6-disulfonic free acid or its suitable sodium salt were added. The solution was spray-dried with air at 140-160°C. Yield : 1.4 to 1.6 Kg.
HPLC Purity : 97.5- 98.0 %
Example 2 Preparation of SAMe disulfate catechol-3,5-disulfonate or its Sodium Salt
S-Adenosyl-L-homocysteine (1 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10±2°C. To the solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was again raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S-adenosyl-L-homocysteine. The solvent was removed under vacuum at <30°C until a residue was obtained. Into the residue, chilled dil.sulphuric acid (6%; 2.0 Lit) was added to get a clear solution. Methanol (10.0 Lit) was added and the precipitated product was filtered under nitrogen atmosphere.
The filtered solid was dissolved in water (2.0 Lit) at 0-5°C and methanol (10.0 Lit) was added. The precipitate obtained was filtered under nitrogen atmosphere. The solid was dissolved in water (2.0 Lit) at 0-5°C and washed with dichloromethane (2 x 5.0 Lit) at the same temperature. The solution was degassed for 30 rnin and quantified for sulphate content. To the solution, required amount of dil.sulphuric acid and catechol-3,5-disulfonic free acid or its suitable sodium salt were added. The solution was spray-dried with air at 140-160°C. Yield : 1.4 to 1.6 Kg. HPLC Purity : >98.0%.
Example 3
Preparation of SAMe disulfate phenol-2,4,6-trisulfonate or its Sodium Salt
S-Adenosyl-L-homocysteine (1 Kg) was dissolved in trifluoroacetic acid (9.0 Lit) and cooled to - 10+2°C. To the solution, conc.sulphuric acid (0.4 Lit) was added. Trimethyloxonium tetrafluoroborate (0.45 Kg) was added in 1 h and maintained at this temperature for 3.5 h. The temperature was raised to -5 to 0°C and maintained for 2 h until HPLC indicated the absence of S- adenosyl-L-homocysteine. The solvent was removed under vacuum at <30°C until a residue was obtained. Into the residue, chilled dil.sulphuric acid (6%; 2.0 Lit) was added to get a clear solution. Methanol (10.0 Lit) was added and the precipitated product was filtered under nitrogen atmosphere.
The filtered solid was dissolved in water (2.0 Lit) at 0-5°C and methanol (10.0 Lit) was added. The precipitate obtained was filtered under nitrogen atmosphere. The solid was dissolved in water (2.0 Lit) at 0-5°C and washed with dichloromethane (2 x 5.0 Lit) at the same temperature. The solution was degassed for 30 rnin and quantified for sulphate content. To the solution, required amount of dil.sulphuric acid and phenol-2,4,6-trisulfonic free or its suitable sodium salt were added. The solution was spray-dried with hot air at 140-160°C. Yield: 1.4 to 1.6 Kg.
HPLC Purity : 97.5-98.5%

Claims

1. Novel non-toxic stable salts of SAMe of the formula, SAMe. a R(S03X)b. c H2S04, wherein a can vary between 0.6 and 1.3; b can vary from 2 to 4; c is 1.4 to 2.5; X can be H or sodium; R is selected from a group of aromatics containing one or more hydroxy moieties.
2. Novel non-toxic stable salt as claimed in claim 1 is SAMe disulfate resorcinol-4,6- disulfonate and its sodium salt thereof.
3. Novel non-toxic stable salt as claimed in claim 1 is SAMe disulfate catechol-3,5- disulfonate and its sodium salt thereof.
4. Novel non-toxic stable salt as claimed in claim 1 is SAMe disulfate phenol-2,4,6- trisulfonate and its sodium salt thereof.
5. A process for preparing stable salts of SAMe as defined in claim 1, said process comprising obtaining SAMe, treating the same with sulphuric acid and hydroxy aromatic suplhonic acids or their sodium salts to obtain the corresponding stable SAMe salts.
6. A process for producing stable SAMe salts as claimed in claim 1 in which the source of the SAMe is obtained by a chemical process and wherein the enrichment of (S,S)-isomer is
60 to 65%.
7. A process for producing stable SAMe salts as claimed in claim 1 in which the salt is obtained by spray-drying with an inlet air temperature of 120-200°C.
PCT/IN2001/000112 2001-06-14 2001-06-14 Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation WO2002102823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IN2001/000112 WO2002102823A1 (en) 2001-06-14 2001-06-14 Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2001/000112 WO2002102823A1 (en) 2001-06-14 2001-06-14 Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation

Publications (1)

Publication Number Publication Date
WO2002102823A1 true WO2002102823A1 (en) 2002-12-27

Family

ID=11076355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2001/000112 WO2002102823A1 (en) 2001-06-14 2001-06-14 Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation

Country Status (1)

Country Link
WO (1) WO2002102823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008019A1 (en) * 2007-07-10 2009-01-15 Gnosis Spa Stable salts of s-adenosylmethionine and process for the preparation thereof
US10471088B2 (en) 2006-03-31 2019-11-12 Gnosis Spa Solid oral compositions based on S-adenosyl methionine and/or NADH and process for obtaining them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954726A (en) * 1973-06-27 1976-05-04 Bioresearch Limited Double salts of S-adenosil-L-methionine
US4057686A (en) * 1974-07-12 1977-11-08 Bioresearch Limited Sulphonic acid salts of S-adenosilmethionine
US5128249A (en) * 1984-05-16 1992-07-07 Bioresearch S.P.A. Stable sulpho-adenosyl-l-methionine (same) salts, particularly suitable for oral pharmaceutical use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954726A (en) * 1973-06-27 1976-05-04 Bioresearch Limited Double salts of S-adenosil-L-methionine
US4057686A (en) * 1974-07-12 1977-11-08 Bioresearch Limited Sulphonic acid salts of S-adenosilmethionine
US5128249A (en) * 1984-05-16 1992-07-07 Bioresearch S.P.A. Stable sulpho-adenosyl-l-methionine (same) salts, particularly suitable for oral pharmaceutical use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471088B2 (en) 2006-03-31 2019-11-12 Gnosis Spa Solid oral compositions based on S-adenosyl methionine and/or NADH and process for obtaining them
WO2009008019A1 (en) * 2007-07-10 2009-01-15 Gnosis Spa Stable salts of s-adenosylmethionine and process for the preparation thereof
US8258115B2 (en) 2007-07-10 2012-09-04 Gnosis Spa Stable salts of S-adenosylmethionine and process for the preparation thereof

Similar Documents

Publication Publication Date Title
Bentley et al. Action of nitrogen trichloride on certain proteins II. Synthesis of methionine sulphoximine and other sulphoximines
Maw Thetin–homocysteine transmethylase. A preliminary manometric study of the enzyme from rat liver
JPS61106594A (en) Manufacture of 2&#39;-deoxyadenosine compound
KR20210005071A (en) (Thio)nicotinamide ribofuranoside salt and composition thereof, preparation method, and use
Kikugawa et al. Platelet aggregation inhibitors. 6. 2-Thioadenosine derivatives
CA2078939C (en) Stable salts of 5,10-methylenetetrahydrofolic acid
US6649753B2 (en) Stable salts of S-adenosyl-L-methionine (SAMe) and the process for their preparation
ES2370760T3 (en) METHOD FOR OBTAINING PURE ENANTIOMERS OF A PIRIDAZINONA DERIVATIVE.
US2970165A (en) Sulfate compounds
US6881837B2 (en) Chemical synthesis of S-adenosyl-L-methionine with enrichment of (S,S)-isomer
WO2002102823A1 (en) Stable salts of s-adenosyl-l-methionine (same) and the process for their preparation
Yao-Zhong et al. Synthesis and duplex stability of oligodeoxynucleotides containing 6-mercaptopurine
JPS58146560A (en) Salicyl derivative of n-acetylcystein, manufacture and drug
PT733634E (en) (2,3-B) (1,5) benzodiazepine
BRPI9917911B1 (en) process for the production of p1, p4 - di (uridine) 5&#39;-tetraphosphate or one of its salts
GB2074446A (en) Adenosine derivatives of antiinflammatory and analgesic activity and therapeutic compositions containing them
Yip et al. Syntheses of 2-substituted 1, N6-ethenoadenosines
JPS6147481A (en) Manufacture of lysergol derivative
US5480982A (en) Crystalline potassium salt of thinonicotinamide adenine dinucleotide phosphate
US3903073A (en) 2-Substituted adenosine-5{40 {0 carboxylates
US5171885A (en) L-buthionine-S-sulfoximine and L-buthionine-R-sulfoximine
JP7275053B2 (en) Compounds as GLS1 inhibitors
US7667034B2 (en) Chemical synthesis of S-adenosyl-L-methionine with enrichment of (S,S)-isomer
Ciardelli et al. Synthesis of a carba‐analog of S‐palmitoyl‐coenzyme A, heptadecan‐2‐onyldethio‐CoA, and of S‐Heptadecyl‐CoA; effective inhibitors of citrate synthase and carnitine palmitoyltransferase
US5245077A (en) L-buthionine-s-sulfoximine and methods of making

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1755/CHENP/2003

Country of ref document: IN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP