WO2002102525A1 - Method for self-deposition type surface treatment coating of microdevice or its component, and microdevice or its parts having selfdeposition type surface treatment coating - Google Patents

Method for self-deposition type surface treatment coating of microdevice or its component, and microdevice or its parts having selfdeposition type surface treatment coating Download PDF

Info

Publication number
WO2002102525A1
WO2002102525A1 PCT/JP2002/005712 JP0205712W WO02102525A1 WO 2002102525 A1 WO2002102525 A1 WO 2002102525A1 JP 0205712 W JP0205712 W JP 0205712W WO 02102525 A1 WO02102525 A1 WO 02102525A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
surface treatment
resin
type surface
coating method
Prior art date
Application number
PCT/JP2002/005712
Other languages
French (fr)
Japanese (ja)
Inventor
Mayumi Yamamoto
Hiroshi Nagae
Ryosuke Sako
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Publication of WO2002102525A1 publication Critical patent/WO2002102525A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • B05D3/108Curing

Definitions

  • the present invention relates to an autodeposition type surface treatment coating method for a micro device or a component thereof, and a micro device having an auto deposition type surface treatment coating or a component thereof.
  • the present invention relates to a micro-motor core, a microphone opening device such as a magnet ring for a stepping motor, or a method for coating a self-deposition type surface treatment of a component thereof, a micro device having a self-deposition type surface treatment coating, or a component thereof.
  • Electrodeposition coating, powder coating, solvent spray coating, and the like have been applied to microdevices and their components for the purpose of insulation, corrosion resistance, and design.
  • these devices and parts became more microminiaturized, it became difficult to apply a uniform coating film to the details of complicated shapes and the edges of these coating methods, making it difficult to respond.
  • electrodeposition coating is performed several times overcoating due to poor coverage such as edges, but the defect rate is still high at present.
  • large-scale facilities were required, and the cost was high.
  • powder coating a film thickness of 100 m or more is required to have sufficient insulation properties, which is fatal for motors that require ultra-thin, such as motors for flip-flop disk drives.
  • the surface hardness was insufficient to withstand the core winding.
  • Japanese Unexamined Patent Publication No. 5-300681 discloses a method in which a liquid insulating agent is coated on the core surface in a multi-layered manner, which proposes to reduce the thickness of the motor core.
  • a liquid insulating agent is coated on the core surface in a multi-layered manner, which proposes to reduce the thickness of the motor core.
  • the time and labor required for coating were extremely low and productivity was poor, and that the working environment was poor due to the use of a solvent-based insulating agent.
  • Japanese Unexamined Patent Publication No. Hei 9-9144521 discloses that an aqueous coating composition having a water-insoluble release plasticizer and having a glass transition point of 55 ° C. can be used to prepare a skin with simple equipment and processes. Although it is proposed that the coating can be provided, the water resistance and corrosion resistance of the obtained coating are insufficient, and the balance between surface hardness and brittleness is also insufficient. There is a drawback that tends to occur. In addition, although it was water-based, it contained organic solvents and had problems with pot life and workability.
  • Japanese Unexamined Patent Application Publication No. 9-233700 discloses a motor core obtained by bringing a surface of a laminated motor core into contact with a self-extending type aqueous coating composition containing a resin emulsion, an acid, an oxidizing agent, metal ions and water. A method of forming an insulating film on the surface has been proposed. C The film obtained by this method has insufficient surface hardness and is poor in durability due to winding.
  • the present invention uses an environmentally-friendly surface treatment system, which has not been achieved by the conventional technology, and has excellent workability, productivity, and economic efficiency, and has excellent insulation properties, throwing power, corrosion resistance, heat resistance, solvent resistance, And a method for forming a film having a high surface hardness, a micro device having a film treated by the method, and a component thereof.
  • the surface of a microphone opening device or the surface of a component thereof contains at least one water-soluble or water-dispersible organic polymer resin (a).
  • a self-deposition type surface treatment liquid (A) to form an organic film on the surface, and containing at least one curing agent (e) capable of hardening the surface of the formed organic film.
  • the invention has been completed.
  • a self-deposition type surface treatment for forming an organic film on the surface of the micro device or its parts by a surface treatment process including an air pro process and a heat drying process The inventors found that the coating method was effective, and completed the present invention.
  • the self-deposition type surface treatment liquid (A) more preferably contains an acid component (b) in addition to the water-soluble or water-dispersible organic polymer resin (a), and the oxidizing agent (c) )), And more preferably a metal ion (d).
  • the organic polymer resin (a) used in the self-precipitation treatment liquid (A) is more preferably at least one selected from an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and a polyamide resin. Further, at least one of them is more preferably an anionic polyester, and particularly preferably an anionic polyester resin obtained by condensing a polyhydric alcohol and an acid compound.
  • the curing agent (e) of the post-treatment liquid (B) is more preferably at least one selected from melamine resin, guanamine resin, urea resin, phenol resin, epoxy resin, and isocyanate compound. It is more preferable that the treating agent (B) contains a lubricant, and the surface lubricant (f) is at least one selected from the group consisting of a force S, a fluororesin-based lubricant, a polyolefin-based wax, melamine cyanurate, and molybdenum disulfide. Particularly preferred is one lubricant.
  • the present invention provides an autodeposition-type surface treatment coating method for forming an organic coating on the surface of the above-mentioned micro device or a component thereof, and a micro device having a coating formed by the method, or a component thereof. Is provided.
  • the micro devices or parts thereof to which the present invention can be applied include a cellular phone piebrator, a floppy disk, a node disk, a compact disk, and a micro disk.
  • Micro motor cores used in drive motors such as discs and CD ROMs, or stepping motors used in OA equipment, AV equipment, and home appliances, etc.
  • the material is steel, silicon steel, or ferrite, neodymium It is a ferrous material such as a sintered material obtained by powder metallurgy such as boron.
  • the autodeposition type surface treatment solution (A) used in the present invention is an aqueous treatment solution containing a resin as a main component, and contains a water-soluble or water-dispersible organic polymer resin (a) and an acid component (b). It is more preferable to contain the oxidizing agent (c), and it is particularly preferable to contain the metal ion (d).
  • the water-soluble or water-dispersible organic polymer resin (a) is at least one selected from an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and a polyamide resin.
  • Forced emulsification type organic polymer resin which is water-based using an emulsifier, or a part of the structure of which is modified with an anionic functional group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group; Alternatively, it is a self-emulsifying organic polymer resin.
  • at least one selected from these resins is more preferably an anionic polyester resin, and particularly preferably an anionic polyester resin obtained by condensing a polyhydric alcohol and an acid compound. preferable.
  • the polyhydric alcohol and the oxidized compound as the monomer components of the polyester resin are a polyhydric alcohol (ml) and an acid compound (m2). It is at least one selected from aliphatic polyhydric alcohol derivatives (ml) -1 represented by 1) and aromatic polyhydric alcohol derivatives (ml) -2 represented by general formula (2).
  • R represents a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms, an unsaturated alkylene, a hydroxy group, and a group containing no amino or halogen element. Or alkylene or unsaturated alkylene.
  • (ml) — 1 is ethylene glycol, neopentyl glycol, dibromoneopentyl glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6 monohexanediol, 3-methinolepentanediol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 2-methylinole 1,3-propanediol, 2,2 'single Jechiru 1, 3-Purono ⁇ 0 Njioru, glycerin, Pentaeri scan Lithol, preparative Increment Chiro Honoré ethane, etc. preparative Rimechiro trimethylolpropane and the like.
  • n and ri are integers of 1 or more and 2 ⁇ m + n6.
  • R 2 , R 3 , R 4 , and R 5 are each independently at least one selected from hydrogen and methyl groups.
  • Examples of (ml) -2 include bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, bisphenol F ethylene oxide adduct, and bisphenol F propylene oxide adduct.
  • the acid compound (m 2) is an aliphatic carboxylic acid derivative (m 2) —1 represented by the general formula (3), and an aromatic carboxylic acid derivative (m 2) —2—2 represented by the general formula (4).
  • X and X 2 are independently at least one selected from hydrogen and an alkyl group having 1 to 10 carbon atoms.
  • R 6 is a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms, unsaturated alkylene, C 1 OX 3 (where X 3 is hydrogen, a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms) ), Or unsaturated alkylene.
  • (m 2) 1 is succinic acid, methyl succinic acid, ethyl succinic acid, butinolesuccinic acid, monoethylenoestenolate succinate, getinoleestenole succinate, monobutyl ester oxalate , Dibutynoleestenolate succinate, glutanoleic acid, methinolegnoletanoleic acid, ethyl glutanoleic acid, butyl glutaric acid, monomethyl enoestenolate gnoolelate, dimethyl enoester gnoolelate, monoethyl ester glutarate, getyl monobutyl glutarate Ester, dibutyl glutarate, adipic acid, monomethyl adipic acid, dimethyl adipic acid, monoethyl adipic acid, dioctynoestenoate adipate, sebacic acid, getinoleestenole sebacate, se Examples
  • X 4 and X 5 are each independently at least one selected from hydrogen and an alkyl group having 1 to 3 carbon atoms.
  • Y l, ⁇ 2, ⁇ 3 and ⁇ 4 are each independently hydrogen, C ⁇ OX 6 (where X 6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, Li, NH 4 ), -SO 3 Z x (where Z 1 is hydrogen, Na, K, Ca, Ba, Li, NH 4 ).
  • m 2 One of the two is terephthalic acid, terephthalic acid monomethyl ester, terephthalenoic acid dimethynoleestenole, terephthalic acid / monoethyl ester, terephthalic acid getyl ester, isofphthalic acid, isofphthalic acid monomethyl ester, isofphthalic acid Dimethyl ester, dimethyl disophthalate 5-sodium sulfonate, trimellitic acid, 1,4-dimethyl trimellitate, tetramethyl pyromellitate, tetraethyl pyromellitate And the like.
  • Y 5 and ⁇ 6 are each independently hydrogen, COOX 7
  • X 7 is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, L i, NH 4 ), -SO 3 Z 2 (where Z 2 is hydrogen, N a, K, is a C a, B a, L i , at least one selected from NH 4).
  • Examples of (m 2) 13 include phthalic anhydride, trimellitic anhydride, and ethyl methacrylate trimellitate.
  • (m 2) 14 is an anhydride of pyromellitic acid
  • X 8 and X 9 are each independently at least one selected from hydrogen and an alkyl group having 1 to 3 carbon atoms.
  • Y 7, Y s, Y 9 , ⁇ Pi Upsilon i. are independently of each other hydrogen, one COOX 1 Q (where X 1 Q is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, Li, NH 4 ), S 0 3 Z 3 (where Z 3 is hydrogen, Na, K, Ca, Ba, Li, NH 4 ).
  • (m 2) 15 is 1,2-naphthalenedicarboxylic acid, 1,2-naphthalenedicarboxylic acid dimethyl ester, 1,3-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid dimethyl ester 1,4-naphthalene dicarboxylic acid, 1,4-naphthalenedicarboxylic acid dimethyl ester, 1,5-naphthalenedicarboxylic acid olevonic acid, 1,5-naphthalenedicarboxylic acid dimethinoester, 1,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid dimethyl ester, 1,7-naphthalenedicarboxylic acid, .1,7-naphthalene Dicanolevonic acid dimethyl ester, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid dimethyl ester, 2,6-naphthalenedicarboxylic acid, 2,6-na
  • At least one selected from (m 2) —2, (m 2) 13 and (m 2) 14 must contain at least 6 Omo 1% of the total acid compound. Are more preferable in terms of corrosion resistance, adhesion and heat resistance.
  • At least one is a carboxyl group or a sulfonate group, i.e., from one COOX 6, one so 3 z, one C OOX 7 , one so 3 z 2 , one COOX 8 , one SO 3 Z 3 It is more preferable that at least one selected from the total acid components be contained in an amount of 1 to 40 m 0 1%, more preferably 2 to 30 mo 1%.
  • the molecular weight of the polyester resin used in the present invention is not particularly limited, but those having a number average molecular weight of 2000 to 500,000 can be used.
  • the method for synthesizing the polyester resin used in the present invention is not particularly limited.
  • the polyhydric alcohol component and the acid compound component may be combined with dibutyltin oxide, lead acetate, calcium acetate, N — Can be obtained by esterification or transesterification at 140 to 3 ° C. under a reduced pressure of 10 mmHg or less in the presence of a catalyst such as butyl titanate and polycondensation.
  • the acid component (b) used in the self-deposition type surface treatment solution (A) used in the present invention includes, for example, fluorodiconic acid, fluorotitanic acid, ky hydrofluoric acid, hydrofluoric acid, hydrofluoric acid, At least one selected from phosphoric acid and nitric acid, and more preferably hydrofluoric acid.
  • the oxidizing agent (c) may be any oxidizing agent capable of oxidizing trivalent iron ions eluted from the iron-based material to be treated into trivalent.
  • oxidizing agent capable of oxidizing trivalent iron ions eluted from the iron-based material to be treated into trivalent.
  • potassium permanganate is used.
  • Hydrogen peroxide, sodium nitrite, etc. More preferably, it is hydrogen peroxide.
  • the compound capable of supplying the metal ion (d) is not particularly limited as long as it is stable in the processing solution, and examples thereof include ferric nitrate, ferric fluoride, ferrous phosphate, and cobalt nitrate. Although fisting, ferric fluoride is more preferred.
  • the water-soluble or water-dispersible organic polymer resin (a) preferably has a resin solid content concentration of 5 to 550 g / L, 0 to 200 g / L is more preferred.
  • the concentration of the acid component (b) is preferably from 0.1 to 5.0 gZL, more preferably from 0.5 to 3.0 gZL.
  • the concentration of the oxidizing agent (c) is preferably from 0.01 to 3.0 g ZL, more preferably from 0.03 to L.OgL.
  • the concentration of the metal ion (d) as a metal in the compound capable of supplying the metal ion is preferably 0.1 to 50 g / L, and more preferably 0.5 to 5.0 g 7 L.
  • the self-deposition type surface treatment liquid (A) may be used as an optional component in addition to the above components, for example, a film-forming auxiliary such as trialkylpentanediol isobutylate or alkyl carbitol, for example, carbon black, phthalocyanine blue, Color pigments such as Hansa Yellow can be contained to such an extent that the object of the present invention is not impaired.
  • a film-forming auxiliary such as trialkylpentanediol isobutylate or alkyl carbitol, for example, carbon black, phthalocyanine blue
  • Color pigments such as Hansa Yellow can be contained to such an extent that the object of the present invention is not impaired.
  • the self-deposited organic film is a wet film containing a large amount of water.
  • the post-treatment liquid (B) diffuses this water into the film and hardens it when heated and dried to increase the surface hardness and solvent resistance. There is action.
  • the post-treatment liquid (B) does not harden the entire self-precipitating organic film uniformly, but has a higher concentration near the film surface than the metal interface and has a large effect, so it is excellent without hindering the adhesion to the material. Surface hardness and solvent resistance can be imparted. Therefore, even if the components of the post-treatment agent (B) can be added to the autodeposition-type treatment solution (A) at a high concentration, the same effect cannot be obtained.
  • the post-treatment agent (B) will be described in detail.
  • the curing agent used for the post-treatment agent (B) is an amino resin such as a melamine resin, a guanamine resin, a urea resin, a phenol resin, an epoxy resin, or an isocyanate. It is preferable that at least one selected from compounds is used.
  • Melamine resins include methylated melamine, alkoxylated melamine such as butylated melamine, imino-type alkoxymethylated melamine, imino-type methylol melamine, methylol melamine and the like, for example, trimethylol melamine, tetramethylol.
  • Examples of the guanamine resin include a benzoguanamine resin and a methyldanamin resin.
  • the phenol resin include a phenol-formalin resin and a bisphenol-formalin resin, and include a resole type, a novolak type, and an amino group-modified novolak.
  • Epoxy resins are resins having at least one glycidyl group in the molecule, and include bisphenol-type and pentaerythritol glycidyl ether.
  • the isocyanate compound examples include a block isocyanate prepolymer (eg, Elastron, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) blocked with bisulfite, oxime, etc., and urea obtained by condensing urea with formalin Resins can also be applied.
  • the concentration of the curing agent (e) in the post-treatment liquid (B) is preferably from 5 to 200 gZL, more preferably from 100 to 100 gZL, as the nonvolatile component.
  • the post-treatment agent (B) more preferably contains a lubricant (f), and the lubricant is at least one selected from a fluororesin-based lubricant, a polyolefin-based wax, melamine cyanurate, and molybdenum disulfide. It is particularly preferred that it is a seed.
  • Aqueous dispersions such as polytetrafluoroethylene (PTFE) and polytrifluoroethylene at the mouth are used as fluororesin lubricants, and aqueous dispersions such as polyethylene wax and polypropylene pettas are used as polyolefine lubricants. Dispersion is mentioned.
  • the surface lubricant (f) reduces the surface frictional resistance, It has the effect of relieving the stress when external stress is applied, such as winding the tercore, and preventing the coating from being scratched or damaged. It also has the effect of improving the water resistance of the coating.
  • the concentration of the lubricant (f) in the post-treatment liquid (B) is preferably from 0.5 to 100 gZL, more preferably from 1 to 50 gZL, as a nonvolatile component.
  • the curing agent (e) in the post-treatment liquid (B) is an amino resin such as a melamine resin
  • alkylamines such as ethylamine, getinoleamine, and triethylamine are used to improve the stability in the processing agent.
  • an amine compound such as alkanolamine such as monoethanolamine, diethanolamine and triethanolamine, and to maintain the post-treatment pH at 7 to 10.
  • the treatment method of the present invention is a method in which an object to be treated, that is, a surface of a microphone device or a component thereof is brought into contact with an autodeposition type surface treatment solution (A) to deposit and form an organic film on the surface.
  • the means for bringing the immersion treatment liquid (A) into contact with the surface of the object to be treated is not particularly limited, but in order to form a uniform film on a complex surface, the object to be treated is immersed in the treatment liquid (A). Is more preferable.
  • the processing temperature is preferably 5 to 50 ° C, more preferably 10 to 40 ° C. If the treatment temperature is lower than 5 ° C, the deposition efficiency is poor and a sufficient amount of coating cannot be obtained. If the processing temperature is higher than 50 ° C, the film surface appearance tends to deteriorate due to excessive reaction, which is not preferable.
  • the processing time is preferably from 10 to 500 seconds, more preferably from 20 to 300 seconds.
  • the time is less than 10 seconds, a sufficient film cannot be formed due to insufficient precipitation reaction. If the time exceeds 500 seconds, the dissolution of the object to be treated proceeds, the Fe ion concentration in the film increases, the appearance tends to be poor, and the corrosion resistance decreases, which is not preferable.
  • the means for bringing the surface of the object to be treated into contact with the post-treatment liquid (B) is not particularly limited. However, immersing the object to be treated in the post-treatment liquid (B) may contact the entire surface. It is preferable because it is possible.
  • the treatment temperature is not specified, it is preferably 5 to 60 ° C, more preferably 10 to 40 ° C.
  • the processing time is preferably from 2 to 500 seconds, more preferably from 5 to 200 seconds. If the processing temperature is below 5 ° C or the processing time is below 5 seconds, the penetration of the post-treatment components into the deposited film is insufficient.
  • the post-treatment components are localized on the outermost surface, and as a result, the surface tends to become brittle. If the treatment temperature exceeds 60 ° C or the treatment time exceeds 200 seconds, the deposited film is dissolved. This is not preferred because of the tendency to end up.
  • removing excess post-treatment adhering liquid by an air processor may improve the appearance and corrosion resistance. preferable.
  • Air blowing without regard if remove excess aftertreatment deposition solution by using a conventional air gun is not particularly limited, the pressure of the workpiece surface, 0. 3 ⁇ 1 0 K cm 2 to become so It is more preferable to adjust the nozzle diameter of the gun and the distance to the object to be processed. If heating and drying is performed with excess post-treatment liquid adhering to areas where liquid pools are likely to accumulate, the film at that area tends to boil, impairing the appearance and increasing the defect rate.
  • the heating means is not specified in the heating and drying process, and a hot-air circulation drying oven using electricity or gas as a heat source, a heating oven using far-infrared rays, high-frequency heating, induction heating, or the like can be used.
  • the heating temperature is preferably 6 0 ⁇ 3 0 0 ° C, and more preferably 8 0 ⁇ 2 5 0 D C. If the temperature is lower than 60 ° C, the film formation becomes poor and the corrosion resistance and insulation properties are insufficient. If the temperature exceeds 250 ° C, the resin film is thermally decomposed, which is not preferable.
  • Fig. 1 shows the material I: motor core (silicon steel sheet) used in the examples.
  • Rhoplex WL-91 N V C. 41.5%)
  • the polyester resins a1 to a5 having the monomer compositions shown in Table 1 were synthesized by the following method. In a 1000 ml round bottom flask equipped with a Claisen tube and an air cooler, put 1 mol of total acid component (or ester component), 2 mol of total alcohol component, 0.25 g of calcium acetate and 0.1 g of N-butyl titanate as a catalyst. Was replaced with nitrogen and heated to 180 ° C. to melt the contents.
  • the bath temperature was raised to 200 ° C, and the mixture was heated and stirred for about 2 hours (esterification or ester exchange reaction).
  • the bath temperature was raised to 260 ° C, and after about 15 minutes, the pressure in the system was reduced to 0.5 mmHg, and the reaction was carried out for about 3 hours (polycondensation reaction).
  • the content was taken out by cooling under nitrogen.
  • the acid component (b) used is shown below.
  • the oxidizing agent (c) used was hydrogen peroxide.
  • the used metal ion (d) is shown below.
  • Table 2 shows the composition of the autodeposition type surface treatment solution (A).
  • the components and components used in the post-treatment liquid of the present invention (B) are as follows. '
  • e 1 Partially methylated melamine resin manufactured by Mii Cytec Co., Ltd.
  • Daiyuon TM PTFE 50 3.5 (NV C. 60 %> f 2: molybdenum disulfide
  • the film was immersed in a self-deposition type surface treatment solution (A) to deposit a film.
  • Tap water was stored in a 10-liter stainless steel container, immersed for 2 minutes in a flushing tub that was overflowed with a flow rate of 2 liters, and the object was gently rocked up and down (once / second). .
  • the test was performed under the following conditions using an air gun W77 manufactured by Anest Iwata Co., Ltd.
  • Condition 5 to adjust the distance between the air by sea urchin nozzle diameter and the object to be treated that the pressure is. 4 to 5 k gZ cm 2 which corresponds to the object to be processed, from directly above the object to be treated, (2 seconds blanking opening 3 5 seconds intermittent cycle)
  • the drying was performed under the following conditions using a hot-air circulation drying oven (Perfect Oven PS 112 made by Tabai Co., Ltd.).
  • Table 4 shows the contents of Examples and Comparative Examples.
  • the polyester resin is mainly used. Powder coating (Polyester V—PET # 400000 (Dai Nippon Paint Co., Ltd.)) was applied so that the film thickness on the flat part became 20 ⁇ m, and the powder was placed in a hot air drying oven. Dry at 0 ° C for 20 minutes. Comparative Example 7
  • an epoxy-based cationic electrodeposition coating (Electron 9400: manufactured by Kansai Paint Co., Ltd.) was applied at a voltage of 200 V and a film thickness of 20 / m on a flat surface portion. It was painted and dried in a hot-air drying oven at 175 ° C for 20 minutes.
  • the film properties, film performance tests, and evaluations of the test materials prepared in Examples and Comparative Examples were performed according to the following criteria.
  • test material was subjected to a saltwater mist test (JIS-Z2371) for 500 hours, and evaluated by estimating the emission area.
  • test material was allowed to stand at 220 ° C. for 30 minutes, and the weight loss rate before and after was evaluated.
  • the winding edge of the motor core (Fig. 1) that had been subjected to the self-deposition type surface treatment was evaluated. Peel off the film at the center of the painted test material and connect the negative electrode of the test needle. The positive electrode of the test needle was scanned with respect to the winding part of the motor core, and the number (n) of edges where current leaked was checked.
  • ri force S less than 3 ⁇ : ⁇ is 3 or more and less than 10
  • the object to be processed was set, and the volume resistivity ( ⁇ ⁇ cm) of the coating film was measured by the following procedure.
  • Table 5 shows the evaluation results of the examples and the comparative examples.
  • micro motor core of (I) was used as the material to be treated, but the SPC C-SD of (I I I) was used for the heat resistance test and the pencil hardness measurement. Table 5
  • Examples 1 to 16 which are the processing methods of the present invention, It shows that the film has the properties of covering around edges, corrosion resistance, heat resistance, solvent resistance, and insulation, and has a high film surface hardness and can withstand the pressure of the winding wire. .
  • Comparative Examples 1 to 4 in which the post-treatment step specified in the treatment method of the present invention was not performed, had insufficient film hardness and extremely poor solvent resistance. In Example 4, the heat resistance was also inferior.
  • the self-precipitation type surface treatment coating method of the microphone opening device or the component thereof according to the present invention is an environmental type surface treatment system with high workability, productivity, and economic efficiency. It is possible to impart excellent peripheral properties to edges, corrosion resistance, heat resistance, solvent resistance, and insulation to micro devices or components thereof.
  • the micro devices of the present invention or the components thereof can be used for micro devices, In addition, the requirements for miniaturization and thinning of the parts can be sufficiently satisfied, and it can be said that the present invention is extremely useful in practical use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A method for self-deposition type surface treatment coating of a microdevice or a component thereof, which comprises a step of contacting the surface of a microdevice or a component thereof with a self-deposition type surface treatment fluid (A) containing at least one water-soluble or water-dispersible organic polymer resin (a) to thereby effect deposition and form an organic coating, a step of contacting the formed organic coating with a post-treatment fluid (B) containing at least one curing agent (e) capable of curing the organic coating and a step of heating and drying, to thereby form an organic coating film on the surface of a microdevice or a component thereof; and a microdevice or a component thereof having a self-deposition type surface treatment coating.

Description

明細書 マイクロ機器、 又はその部品の自己析出型表面処理被覆方法、 及び自己析出 型表面処理被膜を有するマイクロ機器、 又はその部品 技術分野  TECHNICAL FIELD The present invention relates to an autodeposition type surface treatment coating method for a micro device or a component thereof, and a micro device having an auto deposition type surface treatment coating or a component thereof.
本発明は、 マイクロモーターコア、 ステッピングモーター用のマグネッ ト リングなどのマイク口機器、 又はその部品の自己析出型表面処理被覆方法、 及び自己析出型表面処理皮膜を有するマイクロ機器、又はその部品に関する。 背景技術  TECHNICAL FIELD The present invention relates to a micro-motor core, a microphone opening device such as a magnet ring for a stepping motor, or a method for coating a self-deposition type surface treatment of a component thereof, a micro device having a self-deposition type surface treatment coating, or a component thereof. Background art
マイクロ機器、 又はその部品は、 その絶縁性、 耐食性、 意匠性などの目的 で、 電着塗装、 粉体塗装、 溶剤吹き付け塗装などが適用されてきた。 しかし ながら、 これら機器、 部品のマイクロ化が進むにつれ、 これらの塗装方法で は、 複雑な形状の細部、 エッジ部に均一な塗膜を設けるのが難しく対応が困 難となった。 例えば、 厳しい絶縁性が要求されるマイクロモーターコアにお いて、 電着塗装ではエッジ部などの付き廻り性 劣るため、 数回の重ね塗り を行っているが、 それでも不良率が高いのが現状で、 また大がかりな設備が 必要でコス ト高であり、 また、 通電作業などの手間もかかっていた。 粉体塗 装では、 十分な絶縁性を持たすためには 1 0 0 m以上の膜厚が必要で、 フ 口ッピーディスク ドライブモーター等のように超薄型が要求されるモーター においては致命的であり、 また表面硬度が不十分でコアの卷線に耐えること ができなかつた。  Electrodeposition coating, powder coating, solvent spray coating, and the like have been applied to microdevices and their components for the purpose of insulation, corrosion resistance, and design. However, as these devices and parts became more microminiaturized, it became difficult to apply a uniform coating film to the details of complicated shapes and the edges of these coating methods, making it difficult to respond. For example, in a micro motor core that requires strict insulation, electrodeposition coating is performed several times overcoating due to poor coverage such as edges, but the defect rate is still high at present. In addition, large-scale facilities were required, and the cost was high. In powder coating, a film thickness of 100 m or more is required to have sufficient insulation properties, which is fatal for motors that require ultra-thin, such as motors for flip-flop disk drives. In addition, the surface hardness was insufficient to withstand the core winding.
また、 スプレー等による吹き付け塗装では、 細部に渡って均一に塗装する のに非常に手間がかかりまた、 塗着効率が悪いとの問題があった。  In addition, in the case of spray coating using a spray or the like, there is a problem that it takes a lot of time to uniformly coat the details, and the coating efficiency is poor.
これらの問題を解決しよう とした提案がいくつかある。 特開平 5— 3 0 0 6 8 1号報は、 液状の絶縁剤をコアの表面に多層コーティングする方法で、 モーターコアの薄膜化を図ることを提案している力 S、塗膜を薄くできる反面、 コーティングの手間が非常にかかり生産性が悪く、 また溶剤系の絶縁剤を使 用しており作業環境が悪いとの問題もあった。 There are several proposals to solve these problems. Japanese Unexamined Patent Publication No. 5-300681 discloses a method in which a liquid insulating agent is coated on the core surface in a multi-layered manner, which proposes to reduce the thickness of the motor core. On the other hand, There was also a problem that the time and labor required for coating were extremely low and productivity was poor, and that the working environment was poor due to the use of a solvent-based insulating agent.
特開平 9一 9 4 5 2 1号報は、 水不溶性の離脱性可塑剤を有し 5 5 °Cのガ ラス転移点を有する水系コーティング組成物を用い、 簡単な設備、 工程で皮 膜を設けることができることを提案しているが、 得られた皮膜の耐水性、 耐 食性が不十分である他、 表面硬度と脆さのバランスも不十分で、 実際にモー ターコアに卷線するとヮレを生じやすい欠点があった。 また、 水系ではある ものの有機溶剤を含むものでポッ トライフ、 作業性の問題があった。  Japanese Unexamined Patent Publication No. Hei 9-9144521 discloses that an aqueous coating composition having a water-insoluble release plasticizer and having a glass transition point of 55 ° C. can be used to prepare a skin with simple equipment and processes. Although it is proposed that the coating can be provided, the water resistance and corrosion resistance of the obtained coating are insufficient, and the balance between surface hardness and brittleness is also insufficient. There is a drawback that tends to occur. In addition, although it was water-based, it contained organic solvents and had problems with pot life and workability.
特開平 9一 2 3 3 7 8 0号報は、 積層モーターコアの表面に樹脂エマルシ ヨン、 酸、 酸化剤、 金属イオン及び水を含有する自己折出型水性被覆組成物 を接触させてモーターコア表面に絶縁被膜を形成させる方法を提案している c この方法で得られた皮膜は表面硬度が不十分で、 卷線による耐久性が劣る欠 点カ あつ 。 Japanese Unexamined Patent Application Publication No. 9-233700 discloses a motor core obtained by bringing a surface of a laminated motor core into contact with a self-extending type aqueous coating composition containing a resin emulsion, an acid, an oxidizing agent, metal ions and water. A method of forming an insulating film on the surface has been proposed. C The film obtained by this method has insufficient surface hardness and is poor in durability due to winding.
ここ数年、 携帯電話の普及とともにその小型化が進み、 パイブレーター用 モーターの超小型化が必要となっており、 これらに用いられるモーターコア への適用において、 前記した従来技術での対応はより難しくなっている。 発明の開示  In recent years, with the spread of mobile phones, miniaturization has progressed, and it has become necessary to miniaturize motors for piebrators. It's getting harder. Disclosure of the invention
本発明は、 従来技術では達し得なかった高い作業性、 生産性、 経済性に富 んだ環境型表面処理システムを用いて優れた絶縁性、 付き廻り性、 耐食性、 耐熱性、 耐溶剤性、 及び高い表面硬度を有する皮膜を形成する方法、 及ぴ該 方法で処理された皮膜を有するマイクロ機器、 及びその部品を提供するもの である。  The present invention uses an environmentally-friendly surface treatment system, which has not been achieved by the conventional technology, and has excellent workability, productivity, and economic efficiency, and has excellent insulation properties, throwing power, corrosion resistance, heat resistance, solvent resistance, And a method for forming a film having a high surface hardness, a micro device having a film treated by the method, and a component thereof.
本発明者らは、 従来技術の抱える問題に鑑みて鋭意検討した結果、 マイク 口機器表面、 又はその部品表面を少なく とも 1種の水溶性、 若しくは水分散 性有機高分子樹脂 (a ) を含有する自己析出型表面処理液 (A ) に接触させ て該表面に有機皮膜を析出形成させる工程と、 析出形成した有機皮膜の表面 を硬化し得る少なく とも 1種の硬化剤 (e ) を含有する後処理液 (B ) に接 触させる工程と、 加熱乾燥を行う行程とを含む表面処理工程によって、 マイ クロ機器表面、 又はその部品表面に有機皮膜を形成させる自己析出型表面処 理被覆方法が有効であることを見いだし、 本発明を完成させるに至った。 また、 後処理液 (B ) に接触させる工程の後、 エアプロ一工程、 次いで加 熱乾燥工程を含む表面処理工程によって、 マイクロ機器表面、 又はその部品 表面に有機皮膜を形成させる自己析出型表面処理被覆方法が有効であること を見いだし、 本発明を完成させるに至った。 The present inventors have conducted intensive studies in view of the problems of the prior art, and have found that the surface of a microphone opening device or the surface of a component thereof contains at least one water-soluble or water-dispersible organic polymer resin (a). Contacting with a self-deposition type surface treatment liquid (A) to form an organic film on the surface, and containing at least one curing agent (e) capable of hardening the surface of the formed organic film. Contact with post-treatment liquid (B) A self-deposition type surface treatment and coating method for forming an organic film on the surface of a micro device or its components by a surface treatment process including a contacting step and a heating and drying step was found to be effective. The invention has been completed. In addition, after the step of contacting with the post-treatment liquid (B), a self-deposition type surface treatment for forming an organic film on the surface of the micro device or its parts by a surface treatment process including an air pro process and a heat drying process The inventors found that the coating method was effective, and completed the present invention.
自己析出型表面処理液 (A ) は、 水溶性、 若しくは水分散性有機高分子榭 脂 ( a ) の他に、 さらに酸成分 (b ) とを含有することがより好ましく、 酸 化剤 ( c ) を含有することがさらに好ましく、 さらには、 金属イオン (d ) を含有することが特に好ましい。 自己析出型処理液 (A ) に用いられる有機 高分子樹脂 ( a ) は、 アクリル樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリエ ステル樹脂、 ポリアミ ド樹脂から選ばれる少なく とも 1種であることがより 好ましく、 さらにはその少なく とも 1種がァニオン性ポリエステルであるこ とがより好ましく、 多価アルコールと酸化合物が縮合して得られるァニオン 性のポリエステル樹脂であることが特に好ましい。  The self-deposition type surface treatment liquid (A) more preferably contains an acid component (b) in addition to the water-soluble or water-dispersible organic polymer resin (a), and the oxidizing agent (c) )), And more preferably a metal ion (d). The organic polymer resin (a) used in the self-precipitation treatment liquid (A) is more preferably at least one selected from an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and a polyamide resin. Further, at least one of them is more preferably an anionic polyester, and particularly preferably an anionic polyester resin obtained by condensing a polyhydric alcohol and an acid compound.
後処理液 (B ) の硬化剤 ( e ) は、 メラ ミ ン樹脂、 グアナミン樹脂、 尿素 樹脂、 フエノール樹脂、 エポキシ樹脂、 イソシァネート化合物から選ばれる 少なく とも 1種であることがより好ましく、 さらに、 後処理剤 (B ) が潤滑 剤を含有していることがさらに好ましく、 表面潤滑剤 ( f ) 力 S、 フッ素樹脂 系潤滑剤、 ポリオレフイン系ワックス、 メラミンシァヌレート、 二硫化モリ ブデンから選ばれる少なく とも 1種の潤滑剤であることが特に好ましい。 すなわち、 本発明は、 上記のマイクロ機器表面、 又はその部品表面に有機皮 膜を形成させる自己析出型表面処理被覆方法、 およぴ該方法によって形成さ れた皮膜を有するマイクロ機器、 又はその部品を提供するものである。  The curing agent (e) of the post-treatment liquid (B) is more preferably at least one selected from melamine resin, guanamine resin, urea resin, phenol resin, epoxy resin, and isocyanate compound. It is more preferable that the treating agent (B) contains a lubricant, and the surface lubricant (f) is at least one selected from the group consisting of a force S, a fluororesin-based lubricant, a polyolefin-based wax, melamine cyanurate, and molybdenum disulfide. Particularly preferred is one lubricant. That is, the present invention provides an autodeposition-type surface treatment coating method for forming an organic coating on the surface of the above-mentioned micro device or a component thereof, and a micro device having a coating formed by the method, or a component thereof. Is provided.
以下、 本発明の構成について詳述する。  Hereinafter, the configuration of the present invention will be described in detail.
本発明を適用できるマイクロ機器、 またはその部品は、 携帯電話のパイブ レータ—、 フロ ッピーディスク、 ノヽー ドディスク、 コンパク トディスク、 ミ 二ディスク、 CD ROMなどのドライブモーターに用いられるマイクロモー ターコア、 または OA機器、 AV機器、 家電製品に搭載されるステッピング モーターなどで、 素材は、 鋼板、 珪素鋼板、 またはフェライ ト系、 ネオジゥ ム鉄ボロン系等の粉末冶金で得られる焼結素材など鉄系素材である。 The micro devices or parts thereof to which the present invention can be applied include a cellular phone piebrator, a floppy disk, a node disk, a compact disk, and a micro disk. Micro motor cores used in drive motors such as discs and CD ROMs, or stepping motors used in OA equipment, AV equipment, and home appliances, etc. The material is steel, silicon steel, or ferrite, neodymium It is a ferrous material such as a sintered material obtained by powder metallurgy such as boron.
本発明で用いる自己析出型表面処理液 (A) は、 樹脂を主成分とする水系 処理液で、 水溶性、 若しくは水分散性有機高分子榭脂 ( a) と酸成分 (b) とを含有することが好ましく、 酸化剤 (c) を含有することがさらに好まし く、 金属イオン (d) を含有することが特に好ましい。  The autodeposition type surface treatment solution (A) used in the present invention is an aqueous treatment solution containing a resin as a main component, and contains a water-soluble or water-dispersible organic polymer resin (a) and an acid component (b). It is more preferable to contain the oxidizing agent (c), and it is particularly preferable to contain the metal ion (d).
水溶性、 若しく は水分散性有機高分子樹脂 (a) は、 アク リル樹脂、 ェポ キシ樹脂、 ウレタン樹脂、 ポリエステル樹脂、 ポリアミ ド樹脂から選ばれる 少なく とも 1種で、 界面活性剤などの乳化剤を用いて水系化した強制乳化型 有機高分子榭脂、若しくはその構造の一部がカルボキシル基、 スルホン酸基、 リン酸基、 ホスホン酸基等のァニオン性官能基で変性された水溶性、 又は自 己乳化性の有機高分子樹脂である。 さらに、 これらの樹脂から選ばれる少な く とも 1種が、 ァニオン性のポリエステル樹脂であることがより好ましく、 多価アルコールと酸化合物が縮合して得られるァニオン性のポリェステル樹 脂であることが特に好ましい。  The water-soluble or water-dispersible organic polymer resin (a) is at least one selected from an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and a polyamide resin. Forced emulsification type organic polymer resin which is water-based using an emulsifier, or a part of the structure of which is modified with an anionic functional group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group; Alternatively, it is a self-emulsifying organic polymer resin. Further, at least one selected from these resins is more preferably an anionic polyester resin, and particularly preferably an anionic polyester resin obtained by condensing a polyhydric alcohol and an acid compound. preferable.
前記ポリエステル樹脂のモノマー成分である多価アルコール、 及び酸化合 物は、 多価アルコール (ml)、 及び酸化合物 (m2) であることが特に好ま しく、 多価アルコール (ml ) は、 一般式 ( 1 ) で表せる脂肪族多価アルコ ール誘導体 (m l ) — 1、 および一般式 (2) で表せる芳香族多価アルコー ル誘導体 (m l ) — 2から選ばれる少なく とも 1種である。  It is particularly preferable that the polyhydric alcohol and the oxidized compound as the monomer components of the polyester resin are a polyhydric alcohol (ml) and an acid compound (m2). It is at least one selected from aliphatic polyhydric alcohol derivatives (ml) -1 represented by 1) and aromatic polyhydric alcohol derivatives (ml) -2 represented by general formula (2).
(m1)-1 (m1) -1
HO-R-,-ΟΗ ")  HO-R-,-ΟΗ ")
一般式 ( 1 ) において、 R は炭素数 1〜 1 0の直鎖または分岐鎖のアルキ レン、 不飽和アルキレン、 ヒ ドロキシル基及ぴノ又はハロゲン元素を含む前 記アルキレン、 又は不飽和アルキレンである。 In the general formula (1), R represents a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms, an unsaturated alkylene, a hydroxy group, and a group containing no amino or halogen element. Or alkylene or unsaturated alkylene.
(m l ) — 1 と しては、 エチレングリコール、 ネオペンチルグリコール、 ジ ブロムネオペンチルグリ コール、 1 , 2一プロパンジオール、 1 , 3—ブタ ンジオール、 1, 4一ブタンジオール、 1, 5—ペンタンジオール、 1 , 6 一へキサンジオール、 3—メチノレペンタンジオール、 1, 4—シクロへキサ ンジメタノール、 3—メチルー 1 , 5—ペンタンジオール、 2—メチノレー 1, 3—プロパンジオール、 2 , 2 ' 一ジェチルー 1, 3—プロノヽ0ンジオール、 グリセリン、 ペンタエリ ス リ トール、 ト リメチローノレエタン、 ト リメチロー ルプロパンなどが挙げられる。 (ml) — 1 is ethylene glycol, neopentyl glycol, dibromoneopentyl glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6 monohexanediol, 3-methinolepentanediol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 2-methylinole 1,3-propanediol, 2,2 'single Jechiru 1, 3-Puronoヽ0 Njioru, glycerin, Pentaeri scan Lithol, preparative Increment Chiro Honoré ethane, etc. preparative Rimechiro trimethylolpropane and the like.
(m)1-2 (2)
Figure imgf000007_0001
(m) 1-2 (2)
Figure imgf000007_0001
一般式 (2) において、 m、 riは 1以上の整数で、 且つ 2≤m+ n 6である。  In the general formula (2), m and ri are integers of 1 or more and 2 ≦ m + n6.
R2、 R3、 R4、 R5は、 互いに独立して水素、 メチル基から選ばれる少なくとも 1種 である。 R 2 , R 3 , R 4 , and R 5 are each independently at least one selected from hydrogen and methyl groups.
(ml) —2としては、 ビスフエノール Aエチレンオキサイド付加物、 ビスフエノ —ル Aプロピレンォキサイ ド付加物、 ビスフエノール Fエチレンォキサイド付加物、 ビスフエノール Fプロピレンォキサイド付加物が挙げられる。  Examples of (ml) -2 include bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, bisphenol F ethylene oxide adduct, and bisphenol F propylene oxide adduct.
酸化合物 (m 2) は、 一般式 ( 3) で表せる脂肪族カルボン酸誘導体 (m 2) — 1、 一般式 (4) で表せる芳香族カルボン酸誘導体 (m 2) — 2、 ― 般式 ( 5) で表せる芳香族酸無水物誘導体 (m 2) — 3、 一般式 (6) で表 せるピロメ リ ッ ト酸の無水物 (m 2) — 4、 一般式 ( 7) で表せるナフタレ ン誘導体 (m 2) — 5から選ばれる少なく とも 1種である。 (m2)-1 The acid compound (m 2) is an aliphatic carboxylic acid derivative (m 2) —1 represented by the general formula (3), and an aromatic carboxylic acid derivative (m 2) —2—2 represented by the general formula (4). Aromatic acid anhydride derivative (m 2) — 3 represented by 5), pyromellitic anhydride (m 2) — 4 represented by general formula (6), naphthalene derivative represented by general formula (7) ( M 2) — at least one selected from 5 (m2) -1
XiOOC-Rg— COOX2XiOOC-Rg—COOX 2 )
—般式 (3 ) において、 Xい X 2は互いに独立して、 水素、 炭素数 1〜 1 0のアルキル基から選ばれる少なく とも 1種である。 R 6は炭素数 1〜 1 0 の直鎖または分岐鎖のアルキレン、 不飽和アルキレン、 一 C〇 O X 3 (ここ で X 3は、 水素、 炭素数 1〜 1 0の直鎖、 若しくは分岐鎖アルキレン) を含 む前記アルキレン、 又は不飽和アルキレンである。 —In the general formula (3), X and X 2 are independently at least one selected from hydrogen and an alkyl group having 1 to 10 carbon atoms. R 6 is a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms, unsaturated alkylene, C 1 OX 3 (where X 3 is hydrogen, a straight-chain or branched-chain alkylene having 1 to 10 carbon atoms) ), Or unsaturated alkylene.
(m 2 ) 一 1 と しては、 コハク酸、 メチルコハク酸、 ェチルコハク酸、 ブ チノレコハク酸、 コ ノヽク酸モノェチノレエステノレ、 コハク酸ジェチノレエステノレ、 コ ノヽク酸モノプチルエステル、 コハク酸ジブチノレエステノレ、 グルタノレ酸、 メ チノレグノレタノレ酸、 ェチルグルタノレ酸、 プチルグルタル酸、 グノレタル酸モノメ チノレエステノレ、 グノレタル酸ジメチルエステノレ、 グルタル酸モノェチルエステ ル、 グルタル酸ジェチルエステル、 グルタル酸モノブチルエステル、 グルタ ル酸ジブチルエステル、 アジピン酸、 アジピン酸モノメチルエステル、 アジ ピン酸ジメチルエステル、 アジピン酸モノェチルエステル、 アジピン酸ジォ クチノレエステノレ、 セバシン酸、 セバシン酸ジェチノレエステノレ、 セバシン酸ジ ブチノレエステル、 セバシン酸ジォクチルエステル、 トリカルバリル酸、 ブテ ンテ トラカルボン酸などが挙げられる。 (m 2) 1 is succinic acid, methyl succinic acid, ethyl succinic acid, butinolesuccinic acid, monoethylenoestenolate succinate, getinoleestenole succinate, monobutyl ester oxalate , Dibutynoleestenolate succinate, glutanoleic acid, methinolegnoletanoleic acid, ethyl glutanoleic acid, butyl glutaric acid, monomethyl enoestenolate gnoolelate, dimethyl enoester gnoolelate, monoethyl ester glutarate, getyl monobutyl glutarate Ester, dibutyl glutarate, adipic acid, monomethyl adipic acid, dimethyl adipic acid, monoethyl adipic acid, dioctynoestenoate adipate, sebacic acid, getinoleestenole sebacate, se Examples include dibutynole bacinate, dioctyl sebacate, tricarballylic acid, butenetracarboxylic acid, and the like.
(m2)-2
Figure imgf000008_0001
一般式 (4) において、 X4、 X 5は互いに独立して、 水素、 炭素数 1〜 3 のアルキル基から選ばれる少なく とも 1種である。 Y l、 Υ 2、 Υ 3及び Υ 4は、 互いに独立して水素、 一 C〇OX6 (ここで、 X6は水素、 炭素数 1〜 3のアルキル基、 N a、 K、 C a、 B a、 L i、 NH4)、 - S O 3 Z x (ここ で Z 1は、 水素、 N a、 K、 C a、 B a、 L i、 NH4) から選ばれる少なく とも 1種である。
(m2) -2
Figure imgf000008_0001
In the general formula (4), X 4 and X 5 are each independently at least one selected from hydrogen and an alkyl group having 1 to 3 carbon atoms. Y l, Υ 2, Υ 3 and Υ 4 are each independently hydrogen, C 一 OX 6 (where X 6 is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, Li, NH 4 ), -SO 3 Z x (where Z 1 is hydrogen, Na, K, Ca, Ba, Li, NH 4 ).
(m 2 ) 一 2としては、 テレフタル酸、 テレフタル酸モノメチルエステル、 テレフタノレ酸ジメチノレエステノレ、 テレフタ/レ酸モノェチルエステル、 テレフ タル酸ジェチルエステル、 ィソフタル酸、 ィソフタル酸モノメチルエステル、 ィソフタル酸ジメチルエステル、 ィソフタル酸ジメチルー 5—スルホン酸ナ トリ ウム塩、 トリメ リ ッ ト酸、 トリメ リ ッ ト酸 1, 4ージメチルエステル、 ピロメ リ ッ ト酸テトラメチルエステル、 ピロメ リ ッ ト酸テトラエチルエステ ルなどが挙げられる。 一般式 ( 5 ) において、 Y5、 Υ6は互いに独立して、 水素、 一 COOX7 (m 2) One of the two is terephthalic acid, terephthalic acid monomethyl ester, terephthalenoic acid dimethynoleestenole, terephthalic acid / monoethyl ester, terephthalic acid getyl ester, isofphthalic acid, isofphthalic acid monomethyl ester, isofphthalic acid Dimethyl ester, dimethyl disophthalate 5-sodium sulfonate, trimellitic acid, 1,4-dimethyl trimellitate, tetramethyl pyromellitate, tetraethyl pyromellitate And the like. In the general formula (5), Y 5 and Υ 6 are each independently hydrogen, COOX 7
(m2)-3  (m2) -3
Figure imgf000009_0001
Figure imgf000009_0001
(ここで、 X7は水素、 炭素数 1〜 3のアルキル基、 N a、 K、 C a、 B a、 L i 、 NH4)、 - S O 3 Z 2 (ここで Z 2は、 水素、 N a、 K、 C a、 B a、 L i、 NH4) から選ばれる少なく とも 1種である。 (Where X 7 is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, L i, NH 4 ), -SO 3 Z 2 (where Z 2 is hydrogen, N a, K, is a C a, B a, L i , at least one selected from NH 4).
(m 2 ) 一 3 と しては、 無水フタル酸、 無水ト リメ リ ッ ト酸、 無水トリメ リ ッ ト酸ェチルエステルなどが挙げられる。 Examples of (m 2) 13 include phthalic anhydride, trimellitic anhydride, and ethyl methacrylate trimellitate.
(m2)-4 (m2) -4
Figure imgf000010_0001
Figure imgf000010_0001
(m 2 ) 一 4は、 ピロメ リ ッ ト酸の無水物である (m 2) 14 is an anhydride of pyromellitic acid
Figure imgf000010_0002
Figure imgf000010_0002
—般式 (7) において、 X8、 X9は互いに独立して、 水素、 炭素数 1〜 3 のアルキル基から選ばれる少なく とも 1種である。 Y7、 Ys、 Y9、 及ぴ Υ i。は互いに独立して、 水素、 一 COOX1 Q (ここで、 X1 Qは水素、 炭素数 1〜 3のアルキル基、 N a、 K、 C a、 B a、 L i、 NH4)、 一 S 03 Z3 (ここで Z 3は、 水素、 N a、 K、 C a、 B a、 L i、 NH4) から選ばれる 少なく とも 1種である。 —In the general formula (7), X 8 and X 9 are each independently at least one selected from hydrogen and an alkyl group having 1 to 3 carbon atoms. Y 7, Y s, Y 9 ,及Pi Upsilon i. Are independently of each other hydrogen, one COOX 1 Q (where X 1 Q is hydrogen, an alkyl group having 1 to 3 carbon atoms, Na, K, Ca, Ba, Li, NH 4 ), S 0 3 Z 3 (where Z 3 is hydrogen, Na, K, Ca, Ba, Li, NH 4 ).
(m 2 ) 一 5と しては、 1, 2—ナフタレンジカルボン酸、 1 , 2—ナフ タレンジカルボン酸ジメチルエステル、 1, 3—ナフタレンジカルボン酸、 1, 3—ナフタレンジ力ノレボン酸ジメチルエステノレ、 1, 4——ナフタレン ジカルボン酸、 1, 4一ナフタレンジカルボン酸ジメチルエステル、 1, 5 一ナフタレンジ力ノレボン酸、 1 , 5—ナフタレンジ力ノレボン酸ジメチノレエス テル、 1, 6—ナフタレンジカルボン酸、 1 , 6—ナフタレンジカルボン酸 ジメチルエステル、 1, 7—ナフタレンジカルボン酸、. 1, 7—ナフタレン ジカノレボン酸ジメチルエステル、 2, 3—ナフタレンジカルボン酸、 2, 3 一ナフタレンジカルボン酸ジメチルエステル、 2, 6—ナフタレンジカルボ ン酸、 2, 6—ナフタレンジ力ノレボン酸ジメチルエステノレ、 2, 7—ナフタ レンジ力ノレボン酸、 2 , 7—ナフタレンジ力ノレボン酸ジメチノレエステルなど が挙げられる。 (m 2) 15 is 1,2-naphthalenedicarboxylic acid, 1,2-naphthalenedicarboxylic acid dimethyl ester, 1,3-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid dimethyl ester 1,4-naphthalene dicarboxylic acid, 1,4-naphthalenedicarboxylic acid dimethyl ester, 1,5-naphthalenedicarboxylic acid olevonic acid, 1,5-naphthalenedicarboxylic acid dimethinoester, 1,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid dimethyl ester, 1,7-naphthalenedicarboxylic acid, .1,7-naphthalene Dicanolevonic acid dimethyl ester, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid dimethyl ester, 2,6-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic olevonic acid dimethyl ester, 2,7- Naphthalene diolenoic acid and 2,7-naphthalene diolenoic acid dimethinoleate.
酸化合物 (m 2) において、 (m2) — 2、 (m 2 ) 一 3、 (m 2 ) 一 4から 選ばれる少なく とも 1種が全酸化合物中の 6 Omo 1 %以上含有しているこ とが、 耐食性、 密着性及び耐熱性の面からより好ましい。  In the acid compound (m 2), at least one selected from (m 2) —2, (m 2) 13 and (m 2) 14 must contain at least 6 Omo 1% of the total acid compound. Are more preferable in terms of corrosion resistance, adhesion and heat resistance.
(m 2 ) — 2、 (m2) — 3、 ( m 2 ) — 5、 が一般式( 4 )、 ( 5)、及び( 7) において、 Y 〜Y i。の少なく とも 1つが、 カルボキシル基、 またはスルホ ン酸基であること、 すなわち、 一 COOX 6、 一 so3zい 一 C OOX7、 一 so3z2、 一 COOX8、 一 S O 3 Z 3から選ばれる少なく とも 1種を全酸 成分中に 1〜 4 0 m 0 1 %で含有することがより好ましく、 さらに 2〜 3 0 m o 1 %であることが特に好ましい。 本発明に使用するポリエステル樹脂の 分子量は特に限定しないが、 数平均分子量で 2 0 0 0〜 5 0 00 0のものを 用いることができる。 (m 2) — 2, (m 2) — 3, (m 2) — 5, where Y to Y i in the general formulas (4), (5), and (7). At least one is a carboxyl group or a sulfonate group, i.e., from one COOX 6, one so 3 z, one C OOX 7 , one so 3 z 2 , one COOX 8 , one SO 3 Z 3 It is more preferable that at least one selected from the total acid components be contained in an amount of 1 to 40 m 0 1%, more preferably 2 to 30 mo 1%. The molecular weight of the polyester resin used in the present invention is not particularly limited, but those having a number average molecular weight of 2000 to 500,000 can be used.
本発明に使用するポリエステル樹脂の合成方法は特に限定するものではな いが、 例えば、 前記の多価アルコール成分と酸化合物成分とを、 必要に応じ てジブチル錫ォキシド、 酢酸鉛、 酢酸カルシウム、 N—プチルチタネートな どの触媒存在下、 1 0 mmH g以下の減圧下、 1 4 0〜 3 ◦ ◦ °Cにてエステ ル化、 若しくはエステル交換反応を行って重縮合させて得ることができる。 本発明で用いる自己析出型表面処理液 (A) に用いる酸成分 (b ) は、 例 えば、 フルォロジルコニウム酸、 フルォロチタン酸、 ケィフッ化水素酸、 ホ ゥフッ化水素酸、 フッ化水素酸、 リン酸、 硝酸から選ばれる少なく とも 1種 で、 フッ化水素酸であることがより好ましい。  The method for synthesizing the polyester resin used in the present invention is not particularly limited. For example, the polyhydric alcohol component and the acid compound component may be combined with dibutyltin oxide, lead acetate, calcium acetate, N — Can be obtained by esterification or transesterification at 140 to 3 ° C. under a reduced pressure of 10 mmHg or less in the presence of a catalyst such as butyl titanate and polycondensation. The acid component (b) used in the self-deposition type surface treatment solution (A) used in the present invention includes, for example, fluorodiconic acid, fluorotitanic acid, ky hydrofluoric acid, hydrofluoric acid, hydrofluoric acid, At least one selected from phosphoric acid and nitric acid, and more preferably hydrofluoric acid.
酸化剤 ( c ) としては、 鉄系素材の被処理物から溶出してくる 2価の鉄ィ オンを 3価に酸化する能力を有する酸化剤であればよく、 例えば、 過マンガ ン酸カ リ ウム、 過酸化水素、 亜硝酸ナトリ ウムなどを使用することができ、 過酸化水素であることがより好ましい。 The oxidizing agent (c) may be any oxidizing agent capable of oxidizing trivalent iron ions eluted from the iron-based material to be treated into trivalent. For example, potassium permanganate is used. , Hydrogen peroxide, sodium nitrite, etc. More preferably, it is hydrogen peroxide.
金属イオン ( d) を供給しうる化合物としては、 処理液中で安定であれば 特に限定はなく、 硝酸第二鉄、 フッ化第二鉄、 リン酸第一鉄、 硝酸第一コバ ルトなどが拳げられるが、 フッ化第二鉄を用いるのがより好ましい。  The compound capable of supplying the metal ion (d) is not particularly limited as long as it is stable in the processing solution, and examples thereof include ferric nitrate, ferric fluoride, ferrous phosphate, and cobalt nitrate. Although fisting, ferric fluoride is more preferred.
本発明で使用する自己析出型表面処理液 (A) において、 水溶性、 若しく は水分散性有機高分子樹脂 (a) は、 樹脂固形分濃度として 5〜5 50 g/ Lが好ましく、 5 0〜2 00 g/Lがより好ましい。 酸成分 (b) のの濃度 は 0. 1〜5. O gZLが好ましく、 0. 5〜 3. 0 gZLがより好ましレヽ。 酸化剤 ( c ) の濃度は、 0. 0 1〜 3. 0 g ZLが好ましく、 0. 0 3〜; L . O g Lがより好ましい。 金属イオン ( d) の濃度は、 金属イオンを供給し うる化合物中の金属と して、 0. 1〜 5 0 g /Lが好ましく、 0. 5~5. 0 g 7Lがより好ましい。  In the self-deposition type surface treatment liquid (A) used in the present invention, the water-soluble or water-dispersible organic polymer resin (a) preferably has a resin solid content concentration of 5 to 550 g / L, 0 to 200 g / L is more preferred. The concentration of the acid component (b) is preferably from 0.1 to 5.0 gZL, more preferably from 0.5 to 3.0 gZL. The concentration of the oxidizing agent (c) is preferably from 0.01 to 3.0 g ZL, more preferably from 0.03 to L.OgL. The concentration of the metal ion (d) as a metal in the compound capable of supplying the metal ion is preferably 0.1 to 50 g / L, and more preferably 0.5 to 5.0 g 7 L.
自己析出型表面処理液 (A) は、 上記成分のほかに任意成分として、 例え ばト リ アルキルペンタンジオールィソプチレー ト、 アルキルカルビ トール等 の造膜助剤、 例えばカーボンブラック、 フタロシアニンブルー、 ハンザイエ ローなどの着色顔料など本発明の目的を損なわない程度に含有させることが できる。  The self-deposition type surface treatment liquid (A) may be used as an optional component in addition to the above components, for example, a film-forming auxiliary such as trialkylpentanediol isobutylate or alkyl carbitol, for example, carbon black, phthalocyanine blue, Color pigments such as Hansa Yellow can be contained to such an extent that the object of the present invention is not impaired.
自己析出した有機皮膜は、 多量の水を含んだウエッ ト膜であり、 後処理液 (B) は、 この水を媒体に皮膜に拡散し加熱乾燥時に硬化させて表面硬度、 耐溶剤性を高める作用がある。 後処理液 (B) は、 自己析出有機皮膜全体を 均一に硬化させるのでなく、 金属界面より皮膜表面近傍の濃度が高くその作 用も大きいため、 素材との密着性を阻害することなく優れた表面硬度、 耐溶 剤性を付与することができるのである。 従って、 たとえ本後処理剤 (B) の 成分を自己析出型処理液 (A) に高濃度に添加することができたとしても同 様の効果を得ることはできない。  The self-deposited organic film is a wet film containing a large amount of water.The post-treatment liquid (B) diffuses this water into the film and hardens it when heated and dried to increase the surface hardness and solvent resistance. There is action. The post-treatment liquid (B) does not harden the entire self-precipitating organic film uniformly, but has a higher concentration near the film surface than the metal interface and has a large effect, so it is excellent without hindering the adhesion to the material. Surface hardness and solvent resistance can be imparted. Therefore, even if the components of the post-treatment agent (B) can be added to the autodeposition-type treatment solution (A) at a high concentration, the same effect cannot be obtained.
後処理剤 (B) について詳述する。  The post-treatment agent (B) will be described in detail.
後処理剤 (B) に用いられる硬化剤は、 メラミン樹脂、 グアナミン樹脂、 尿素樹脂等のアミノ樹脂、 フエノール樹脂、 エポキシ樹脂、 イソシァネート 化合物から選ばれる少なく とも 1種であることが好ましい。メラミン榭脂は、 メチル化メラミン、 プチル化メラミン等のアルコキシメチル化メラミン、 ィ ミ ノ型アルコキシメチル化メ ラミ ン、 イ ミノ型メチロールメ ラミン、 メチロ ールメラミンなどで、 例えば、 トリメチロールメラミン、 テ トラメチロール メラミン、 へキノチローノレメラミン、 トリメ トキシメチルジメチロールメラ ミン、 ジブトキシメチルトリメチロールメラミンなどが挙げられる。 この中 で、 一分子内にメチロール基、 ィミノ基から選ばれる少なく とも 1種の官能 基を含んでいることが表面高度を高める効果が大きく より好ましい。 The curing agent used for the post-treatment agent (B) is an amino resin such as a melamine resin, a guanamine resin, a urea resin, a phenol resin, an epoxy resin, or an isocyanate. It is preferable that at least one selected from compounds is used. Melamine resins include methylated melamine, alkoxylated melamine such as butylated melamine, imino-type alkoxymethylated melamine, imino-type methylol melamine, methylol melamine and the like, for example, trimethylol melamine, tetramethylol. Melamine, hekinothyrono remelamine, trimethoxymethyl dimethylol melamine, dibutoxymethyl trimethylol melamine and the like. Among them, it is more preferable that at least one functional group selected from a methylol group and an imino group is contained in one molecule, because the effect of increasing the surface height is large.
グアナミン樹脂としては、 ベンゾグアナミン樹脂、 メチルダアナミン樹脂 等が挙げられ、 フエノール樹脂は、 フ-ノール一ホルマリン樹脂、 ビスフエ ノール一ホルマリ ン樹脂などで、 レゾール型、 ノボラック型、 アミノ基変性 ノボラックなどが挙げられる。 エポキシ樹脂は、 分子内に少なく とも 1つの グリシジル基を有する樹脂で、 ビスフエノール型、 ペンタエリスリ トールグ リシジルエーテルなどが挙げられる。 イソシァネー ト化合物としては、 重亜 硫酸塩、 ォキシムなどでプロックしたブロックイソシァネートプレポリマー (例えば第一工業製薬 (株) 製、 エラス トロン) などが挙げられ、 尿素をホ ルマリ ンで縮合した尿素樹脂も適用できる。 後処理液 (B ) 中の硬化剤 ( e ) 濃度は、 不揮発成分と して、 5〜 2 0 0 g Z Lが好ましく、 1 0〜: 1 0 0 g Z Lがより好ましい。  Examples of the guanamine resin include a benzoguanamine resin and a methyldanamin resin. Examples of the phenol resin include a phenol-formalin resin and a bisphenol-formalin resin, and include a resole type, a novolak type, and an amino group-modified novolak. Epoxy resins are resins having at least one glycidyl group in the molecule, and include bisphenol-type and pentaerythritol glycidyl ether. Examples of the isocyanate compound include a block isocyanate prepolymer (eg, Elastron, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) blocked with bisulfite, oxime, etc., and urea obtained by condensing urea with formalin Resins can also be applied. The concentration of the curing agent (e) in the post-treatment liquid (B) is preferably from 5 to 200 gZL, more preferably from 100 to 100 gZL, as the nonvolatile component.
後処理剤 (B ) は潤滑剤 ( f ) を含有していることがさらに好ましく、 潤 滑剤が、 フッ素樹脂系潤滑剤、 ポリオレフイ ン系ワックス、 メラミンシァヌ レー ト、 二硫化モリブデンから選ばれる少なく とも 1種であることが特に好 ましい。  The post-treatment agent (B) more preferably contains a lubricant (f), and the lubricant is at least one selected from a fluororesin-based lubricant, a polyolefin-based wax, melamine cyanurate, and molybdenum disulfide. It is particularly preferred that it is a seed.
フッ素樹脂系潤滑剤と しては、 ポリテトラフルォロエチレン (P T F E )、 ポリ トリフルオルタ口口エチレンなどの水系分散液、 ポリオレフィン系ヮッ タスとしては、 ポリエチレンワックス、 ポリプロピレンヮッタス等の水系分 散体が挙げられる。  Aqueous dispersions such as polytetrafluoroethylene (PTFE) and polytrifluoroethylene at the mouth are used as fluororesin lubricants, and aqueous dispersions such as polyethylene wax and polypropylene pettas are used as polyolefine lubricants. Dispersion is mentioned.
表面潤滑剤 ( f ) は、 表面摩擦抵抗を低下させることによって、 特にモー ターコアに巻き線を施すなど外的応力がかかる際の応力を緩和し、 皮膜に傷 が付いたり破損することを防ぐ効果がある。 また、 被膜の耐水性を向上させ る効果がある。 The surface lubricant (f) reduces the surface frictional resistance, It has the effect of relieving the stress when external stress is applied, such as winding the tercore, and preventing the coating from being scratched or damaged. It also has the effect of improving the water resistance of the coating.
後処理液 (B) 中の潤滑剤 ( f ) 濃度は、 不揮発成分として、 0. 5〜 1 0 0 g Z Lが好ましく、 1〜 5 0 gZLがより好ましい。  The concentration of the lubricant (f) in the post-treatment liquid (B) is preferably from 0.5 to 100 gZL, more preferably from 1 to 50 gZL, as a nonvolatile component.
このほ力 \ 後処理液 (B) 中の硬化剤 ( e) がメラミン樹脂などのアミノ 樹脂であるときは、 処理剤中の安定性を向上するため、 ェチルァミン、 ジェ チノレアミン、 トリェチルァミン等のアルキルァミン、 モノエタノールァミン、 ジエタノールァミン、 トリエタノールァミン等のアル力ノールァミンなどの ァミン化合物を有し、後処理 p Hを 7〜 1 0に保持することがより好ましい。 本発明の処理方法は、 自己析出型表面処理液 (A) に被処理物、 すなわち マイク口機器、 若しくはその部品の表面を接触させて該表面に有機皮膜を析 出形成させる方法であって、 浸漬処理液 (A) と被処理物表面を接触させる 手段を特に限定するものではないが、 複雑な表面に均一に皮膜を形成させる ためには、 被処理物を処理液 (A) に浸漬することがより好ましい。 処理温 度は 5〜 5 0°Cが好ましく、 1 0〜40°Cがより好ましい。 処理温度が 5°C を下回ると、 折出効率が悪く十分な皮膜量を得ることができず、 5 0°Cを越 えると反応多過で皮膜表面外観が低下する傾向にあり好ましくない。  When the curing agent (e) in the post-treatment liquid (B) is an amino resin such as a melamine resin, alkylamines such as ethylamine, getinoleamine, and triethylamine are used to improve the stability in the processing agent. It is more preferable to have an amine compound such as alkanolamine such as monoethanolamine, diethanolamine and triethanolamine, and to maintain the post-treatment pH at 7 to 10. The treatment method of the present invention is a method in which an object to be treated, that is, a surface of a microphone device or a component thereof is brought into contact with an autodeposition type surface treatment solution (A) to deposit and form an organic film on the surface. The means for bringing the immersion treatment liquid (A) into contact with the surface of the object to be treated is not particularly limited, but in order to form a uniform film on a complex surface, the object to be treated is immersed in the treatment liquid (A). Is more preferable. The processing temperature is preferably 5 to 50 ° C, more preferably 10 to 40 ° C. If the treatment temperature is lower than 5 ° C, the deposition efficiency is poor and a sufficient amount of coating cannot be obtained. If the processing temperature is higher than 50 ° C, the film surface appearance tends to deteriorate due to excessive reaction, which is not preferable.
処理時間は 1 0〜 5 0 0秒が好ましく、 2 0〜 3 0 0秒がより好ましい。  The processing time is preferably from 10 to 500 seconds, more preferably from 20 to 300 seconds.
1 0秒を下回ると析出反応不足で十分な皮膜が形成されない。 5 0 0秒を越 えると被処理物の溶解が進み、 皮膜中の F eイオン濃度が高くなり、 外観不 良となり易く耐食性も低下するので好ましくない。 If the time is less than 10 seconds, a sufficient film cannot be formed due to insufficient precipitation reaction. If the time exceeds 500 seconds, the dissolution of the object to be treated proceeds, the Fe ion concentration in the film increases, the appearance tends to be poor, and the corrosion resistance decreases, which is not preferable.
後処理液 (B) についても同様に被処理物表面を接触させる手段を特に限 定するものではないが、 被処理物を後処理液 (B) に浸漬することが全表面 に接触することができるため好ましい。処理温度は特定しないが、 5〜 6 0°C であることが好ましく、 1 0〜 4 0°Cがより好ましい。 処理時間は 2〜 5 0 0秒が好ましく、 5〜 2 0 0秒がより好ましい。 処理温度が 5 °Cを下回る、 あるいは処理時間が 5秒を下回ると析出皮膜への後処理成分の浸透が不十分 で最表面に後処理成分が局在化し、 その結果表面が脆くなる傾向にあり、 処 理温度が 6 0 °Cを越える、 あるいは処理時間が 2 0 0秒を越えると析出皮膜 を溶解してしまう傾向にあるので好ましくない。 Similarly, the means for bringing the surface of the object to be treated into contact with the post-treatment liquid (B) is not particularly limited. However, immersing the object to be treated in the post-treatment liquid (B) may contact the entire surface. It is preferable because it is possible. Although the treatment temperature is not specified, it is preferably 5 to 60 ° C, more preferably 10 to 40 ° C. The processing time is preferably from 2 to 500 seconds, more preferably from 5 to 200 seconds. If the processing temperature is below 5 ° C or the processing time is below 5 seconds, the penetration of the post-treatment components into the deposited film is insufficient. After treatment, the post-treatment components are localized on the outermost surface, and as a result, the surface tends to become brittle.If the treatment temperature exceeds 60 ° C or the treatment time exceeds 200 seconds, the deposited film is dissolved. This is not preferred because of the tendency to end up.
本発明の処理方法において、 加熱乾燥を行う前、 すなわち、 後処理液 (B ) に接触させた後、 エアープロ一により余剰の後処理付着液を除去することが 外観、 耐食性を向上させるためにより好ましい。  In the treatment method of the present invention, before performing heating and drying, that is, after contacting with the post-treatment liquid (B), removing excess post-treatment adhering liquid by an air processor may improve the appearance and corrosion resistance. preferable.
エアブローは、 通常のエアーガンなどを用いて余剰の後処理付着液を除去 できれば構わず、 特に限定するものではないが、 被処理物表面の圧力が、 0 . 3〜 1 0 K cm2になるようにガンのノズル径、被処理物との距離を調整する ことがより好ましい。 余剰の後処理液が液溜まり し易い部位に付着したまま 加熱乾燥すると、 その部位の皮膜に沸きが生じやすく外観を損ね不良率が高 くなる。 Air blowing, without regard if remove excess aftertreatment deposition solution by using a conventional air gun is not particularly limited, the pressure of the workpiece surface, 0. 3~ 1 0 K cm 2 to become so It is more preferable to adjust the nozzle diameter of the gun and the distance to the object to be processed. If heating and drying is performed with excess post-treatment liquid adhering to areas where liquid pools are likely to accumulate, the film at that area tends to boil, impairing the appearance and increasing the defect rate.
加熱乾燥工程において加熱手段は特定せず、 電気、 またはガスを熱源とし た熱風循環式乾燥炉、 遠赤外線を利用した加熱炉、 高周波加熱、 誘導加熱な どが使用できる。 加熱温度は 6 0〜 3 0 0 °Cが好ましく、 8 0〜 2 5 0 DCが より好ましい。 6 0 °Cを下回ると造膜不良となり耐食性、絶縁性が不十分で、 2 5 0 °Cを越えると樹脂皮膜が熱分解し好ましくない。 加熱乾燥工程におけ る皮膜外観をさらに向上させるためには、 6 0〜 1 0 0 °Cの温度で付着水分 を十分乾燥した後にそれ以上の温度で加熱することが効果的でより好ましい。 図面の簡単な説明 The heating means is not specified in the heating and drying process, and a hot-air circulation drying oven using electricity or gas as a heat source, a heating oven using far-infrared rays, high-frequency heating, induction heating, or the like can be used. The heating temperature is preferably 6 0~ 3 0 0 ° C, and more preferably 8 0~ 2 5 0 D C. If the temperature is lower than 60 ° C, the film formation becomes poor and the corrosion resistance and insulation properties are insufficient. If the temperature exceeds 250 ° C, the resin film is thermally decomposed, which is not preferable. In order to further improve the appearance of the film in the heating and drying step, it is effective and more preferable to sufficiently dry the adhered water at a temperature of 60 to 100 ° C. and then heat it at a temperature higher than that. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例に用いた素材 I : モーターコア (珪素鋼板) を示す。 発明を実施するための最良の形態  Fig. 1 shows the material I: motor core (silicon steel sheet) used in the examples. BEST MODE FOR CARRYING OUT THE INVENTION
次に実施例及び比較例により本発明を説明するが、 本実施例は単なる一例 に過ぎず、 本発明を限定するものではない。 実施例、 及び比較例で用いた被処理材料は以下の通りである。 I : マイクロモーターコア (珪素鋼板) (図 1 ) Next, the present invention will be described with reference to examples and comparative examples. However, the present examples are merely examples, and do not limit the present invention. The materials to be treated used in Examples and Comparative Examples are as follows. I: Micro motor core (silicon steel plate) (Fig. 1)
I I I : S P C C— S D ( 7 0 X 1 5 0 mm 板厚 0. 8 mm) 自己析出型表面処理液 (A) に用いた成分は以下の通りである。  I I I: SPC C—S D (70 X 150 mm, plate thickness 0.8 mm) The components used in the self-deposition type surface treatment solution (A) are as follows.
水溶性、 若しくは水分散性有機高分子樹脂 (a ) Water-soluble or water-dispersible organic polymer resin (a)
a 1〜 a 5 : 表 1に示したモノマー組成のポリエステル樹脂 a1 to a5: Polyester resin with the monomer composition shown in Table 1
Figure imgf000016_0001
a 6 油化シェル:!ホ。キシ (株) 製エポキシ樹脂
Figure imgf000016_0001
a 6 Yuka Shell:! Epoxy resin manufactured by Kishi Corporation
ェピレッツ 3 5 2 2W6 0 (N V C . 6 0%)  Epilet 3 5 2 2W6 0 (N V C. 60%)
a 7 Rohm&Hass社製ァク リル樹脂 a 7 Rohm & Hass acrylic resin
ロープレックス WL— 9 1 (N V C . 4 1. 5 %)  Rhoplex WL-91 (N V C. 41.5%)
a 8 W.R.Grace社製 ポリ塩化ビニリデン樹脂 a 8 W.R.Grace polyvinylidene chloride resin
D a r a n S L 1 4 3 (N V C. 5 5 %) 表 1に示したモノマー組成からなる a 1〜 a 5のポリエステル樹脂は、 以 下の方法で合成した。 クライゼン管、 空気冷却器を取り付けた 1000ml の丸底フラスコに、 全酸 成分 (若しくはエステル成分) 1 mol、 全アルコール成分 2mol、 触媒として酢酸 カルシウム 0.25g、 N-ブチルチタネート 0.1g を収め、 系内を窒素置換し、 180°Cに加熱して内容物を融解させた。 Daran SL143 (NV C. 55%) The polyester resins a1 to a5 having the monomer compositions shown in Table 1 were synthesized by the following method. In a 1000 ml round bottom flask equipped with a Claisen tube and an air cooler, put 1 mol of total acid component (or ester component), 2 mol of total alcohol component, 0.25 g of calcium acetate and 0.1 g of N-butyl titanate as a catalyst. Was replaced with nitrogen and heated to 180 ° C. to melt the contents.
浴温 200°Cに上げ、 約 2時間加熱撹拌した (エステル化、 若しくはエステ ル交換反応)。 次に、 浴温を 260°Cに上げ、 約 15分後に系内を 0.5mmHgま で減圧し約 3 時間反応させた (重縮合反応)。 反応終了後、 窒素導入下放冷 し内容物を取り出した。取り出した樹脂に最終 pHが 6〜7になる適当量のァ ンモニァ水を加え(水は、固形分 2 5 %になる量)、ォートクレープ中で 100°C、 2時間加熱撹拌し水系エマルジョン樹脂とした。 酸成分 (b)  The bath temperature was raised to 200 ° C, and the mixture was heated and stirred for about 2 hours (esterification or ester exchange reaction). Next, the bath temperature was raised to 260 ° C, and after about 15 minutes, the pressure in the system was reduced to 0.5 mmHg, and the reaction was carried out for about 3 hours (polycondensation reaction). After the completion of the reaction, the content was taken out by cooling under nitrogen. Add an appropriate amount of ammonia water to a final pH of 6 to 7 to the extracted resin (water becomes an amount of 25% solids), and heat and stir at 100 ° C for 2 hours in an autoclave. And Acid component (b)
使用した酸成分 (b) を以下に示す。 The acid component (b) used is shown below.
b 1 H F  b 1 H F
b 2 H2 Z r F 6 b 2 H 2 Z r F 6
b 3 H3 P 04 酸化剤 ( c ) b 3 H 3 P 0 4 oxidizing agent (c)
使用した酸化剤 (c ) は過酸化水素を用いた。 The oxidizing agent (c) used was hydrogen peroxide.
c :過酸化水素 金属イオン (d)  c: hydrogen peroxide metal ion (d)
使用した金属イオン (d) を以下に示す。 The used metal ion (d) is shown below.
d 1 : フッ化第二鉄  d 1: Ferric fluoride
d 2 :硝酸第二鉄 その他成分 (g)  d 2: Ferric nitrate Other components (g)
顔料: 山陽色素社製 「エマコールブラック D 3 05 j 自己析出型表面処理液 (A) の処理液組成を表 2に示す。 表 2 Pigment: Sanyo Dye Co., Ltd. “Emacol Black D 3 05 j Table 2 shows the composition of the autodeposition type surface treatment solution (A). Table 2
Figure imgf000018_0001
Figure imgf000018_0001
本発明後処理液. (B) に用いた成、分は以下の通りである。 ' The components and components used in the post-treatment liquid of the present invention (B) are as follows. '
硬化剤 ( e) . Curing agent (e).
e 1 : ミ井サイテック (株) 製 部分メチル化メラミン樹脂  e 1: Partially methylated melamine resin manufactured by Mii Cytec Co., Ltd.
サイメル 730 (N V C . 88%)  Cymel 730 (N V C. 88%)
e 2 : 三井サイテック (株) 製 高メチル化メラミン樹脂  e 2: Highly methylated melamine resin manufactured by Mitsui Cytec Co., Ltd.
サイメル 300 (N V C . .100%)  Cymel 300 (N VC ... 100%)
e 3 : 群栄化学工業 (株) 製 フユノール樹脂  e 3: Fuyunol resin manufactured by Gunei Chemical Industry Co., Ltd.
レヂト ップ P L 46 6 4 (N V C . 50%)  Laptop P L 46 6 4 (N V C. 50%)
e 4 : 第一工業製薬 (株) 製 プロ ックイソシァネートプレポリマ. エラス トロン BN 5 (N V C . 1 5 %) 潤滑剤 ( f )  e4: Daiichi Kogyo Seiyaku Co., Ltd. block isocyanate prepolymer. Elastron BN5 (NVC 15%) lubricant (f)
f 1 : 住友 3M (株) 製 フッ素樹脂系潤滑剤 f 1 : Fluororesin lubricant made by Sumitomo 3M Co., Ltd.
ダイユオン TMP T F E 50 3.5 (N V C. 60%〉 f 2 : 二硫化モリプデン Daiyuon TM PTFE 50 3.5 (NV C. 60 %> f 2: molybdenum disulfide
f 3 : 三井化学 (株) 製 ポリオレフイ ン系ワックス  f 3: Polyolefin wax manufactured by Mitsui Chemicals, Inc.
ケミ ノくール W9 0 0 (N VC. 4 0 %) その他の添加剤 (h)  Cheminocle W900 (NVC. 40%) Other additives (h)
1 アンモニア水  1 Ammonia water
h 2 ト リエタノールァミ ン  h 2 Triethanolamine
h 3 ト リェチルァミ ン 後処理液 (B) の処理液内容を表 3示す c h 3 DOO Ryechiruami emissions post-treatment liquid (B) c treatment liquid contents shown in Table 3
表 3  Table 3
Figure imgf000019_0001
Figure imgf000019_0001
次に処理工程、 処理条件について説明する。 下記に示した工程を以下の順 で行った。  Next, processing steps and processing conditions will be described. The following steps were performed in the following order.
1. 脱脂  1. Degreasing
日本パーカライジング (株) 製: アル力リ脱脂剤ファインクリーナー Manufactured by Nippon Parkerizing Co., Ltd .: Fine cleaner
4 3 6 0 ( 2 0 g /L建浴、 6 0°C、 5分浸漬) を用いて脱脂を行ったDegreasing was performed using 4360 (20 g / L bath, 60 ° C, 5 minute immersion)
2. 水洗① 2. Washing water
水道水スプレーを 3 0秒行つた。  Tap water spray was given for 30 seconds.
3. 水洗②  3. Washing water
脱イオン水に 3 0秒浸漬した。  It was immersed in deionized water for 30 seconds.
4. 自己析出型処理  4. Autodeposition type treatment
自己析出型表面処理液 (A) に浸漬して皮膜を析出させた。  The film was immersed in a self-deposition type surface treatment solution (A) to deposit a film.
[条件①] 処理液温度 2 2 ± 2。C、 1 8 0秒浸漬。 処理液中で被処理物を 上下に静かに揺動した ( 1回ノ秒)。 [条件②] 処理液温度 3 0 ± 2°C、 1 2 0秒浸漬。 1 Lポリ ビーカー中の 処理液( 1 L)をマグネチックスターラーで攪拌(チップ 30mm、速度 200rpm) した。 [Condition 1] Processing solution temperature 2 2 ± 2. C, soak for 180 seconds. The object was gently swung up and down in the processing solution (one second). [Condition ②] Immersion for 120 seconds at a processing solution temperature of 30 ± 2 ° C. The treatment liquid (1 L) in a 1 L polybeaker was stirred with a magnetic stirrer (tip 30 mm, speed 200 rpm).
5. 水洗③  5. Rinse ③
1 0 Lのステンレス容器に水道水を貯め、 2 Lノ分の流量補給でォー バーフローさせた水洗浴槽に 2分間浸潰し被処理物を上下に静かに揺動した ( 1 回/秒)。  Tap water was stored in a 10-liter stainless steel container, immersed for 2 minutes in a flushing tub that was overflowed with a flow rate of 2 liters, and the object was gently rocked up and down (once / second). .
6. 後処理  6. Post-processing
後処理薬剤 (B) に下記の条件で浸漬した。  It was immersed in the post-treatment agent (B) under the following conditions.
[条件③] 処理液温度 2 2 ± 2°C、 2 0秒浸漬。 処理液中で被処理物を上 下に静かに揺動した (1回/秒)。  [Condition ③] Immersion for 20 seconds at a processing solution temperature of 2 2 ± 2 ° C. The object was gently swung up and down in the processing solution (once / second).
[条件④] 処理液温度 4 0 ± 2°C、 1 0秒浸漬。 処理液中で被処理物を上 下に静かに揺動した ( 1回7秒)  [Condition 1] Immersion for 10 seconds at a temperature of 40 ± 2 ° C. The workpiece was gently swung up and down in the processing solution (1 time 7 seconds)
7. 了一一ブ π—  7. Ryoichibu π—
ァネス ト岩田 (株)製エアーガン W 7 7を用いて以下の条件で行った。  The test was performed under the following conditions using an air gun W77 manufactured by Anest Iwata Co., Ltd.
[条件⑤] 被処理物に当たるエアーの圧力が 4〜 5 k gZ c m2になるよ うにノズル径と被処理物との距離を調整し、被処理物の真上から、 ( 2秒間ブ 口 3秒間停止) の間欠サイクルを 5回行った Condition ⑤] to adjust the distance between the air by sea urchin nozzle diameter and the object to be treated that the pressure is. 4 to 5 k gZ cm 2 which corresponds to the object to be processed, from directly above the object to be treated, (2 seconds blanking opening 3 5 seconds intermittent cycle)
[条件⑥] 被処理物に当たるエアーの圧力が 3〜 4 k g Z c m2になるよ うにノズル径と被処理物との距離を調整し、 被処理物の真上から連続して 1 0秒間プロ一した。 Condition ⑥] to adjust the distance between the air pressure 3~ 4 kg Z cm 2 becomes due urchin nozzle diameter and the processing object that corresponds to the object to be processed 1 0 sec Pro continuously from directly above the object to be treated I did.
8. 加熱乾燥  8. Heat drying
熱風循環式乾燥炉((株)タバイ製 パーフヱク トオーブン P S 1 1 2) を用いて下記条件で行った。  The drying was performed under the following conditions using a hot-air circulation drying oven (Perfect Oven PS 112 made by Tabai Co., Ltd.).
[条件⑦] 8 0°Cで 5分間加熱乾燥した後、 炉内の温度を 1 0分間で 1 8 0°Cまで昇温させ、 1 8 0°Cに昇温してからさらに 5分間炉内に放置した (風速: 2 mZ分)。  [Condition ⑦] After heating and drying at 80 ° C for 5 minutes, raise the temperature in the furnace to 180 ° C in 10 minutes, and then raise the temperature to 180 ° C, and then heat the furnace for another 5 minutes. (Wind speed: 2 mZ min).
[条件⑧] 1 0 0°Cで 5分間加熱乾燥した後、 炉内の温度を 1 0分間で 2 0 0 °Cまで昇温させ、 2 0 0 °Cに昇温してから さ らに 5分間炉内 に放置した風速: 2 mZ分)。 [Condition ⑧] After heating and drying at 100 ° C for 5 minutes, the temperature in the furnace was raised for 10 minutes. The temperature was raised to 200 ° C, and the temperature was raised to 200 ° C, and then left in the furnace for another 5 minutes. Wind speed: 2 mZ).
[条件⑨] 1 1 0°Cで 2 0分間加熱乾燥した (風速: 2mZ分)。  [Condition ⑨] Heat drying was performed at 110 ° C for 20 minutes (wind speed: 2 mZ minute).
実施例と比較例の内容を表 4に示す。  Table 4 shows the contents of Examples and Comparative Examples.
表 4 Table 4
Figure imgf000021_0001
比較例 5
Figure imgf000021_0001
Comparative Example 5
自己析出型処理液 (A 1 ) に硬化剤 (e l ) を 3 g/L添加したこと以外 は、 比較例 1 と同様に行った。 比較例 6  The procedure was performed in the same manner as in Comparative Example 1 except that 3 g / L of the curing agent (el) was added to the autodeposition treatment liquid (A 1). Comparative Example 6
前記した処理工程に従い水洗②まで行った後、 ポリエステル系樹脂を主成 分とした粉体塗料 (ポリエステル V— P E T # 4 0 0 0 (大日本塗料 (株) 製)) を平面部における膜厚を 2 0 μ m になるように塗装し、 熱風乾燥炉中 1 8 0°Cに 2 0分間乾燥した。 比較例 7 After the washing process according to the above-mentioned processing steps, the polyester resin is mainly used. Powder coating (Polyester V—PET # 400000 (Dai Nippon Paint Co., Ltd.)) was applied so that the film thickness on the flat part became 20 μm, and the powder was placed in a hot air drying oven. Dry at 0 ° C for 20 minutes. Comparative Example 7
前記した処理工程に従い水洗②まで行った後、 エポキシ系カチオン電着塗 料 (エレクロン 9400: 関西ペイント (株) 製)、 電圧 200Vで、 平面部での 膜厚を 2 0 / m となるように塗装し、 熱風乾燥炉 1 7 5 °Cに 2 0分間乾燥し た。 実施例おょぴ比較例で作製した供試材の皮膜物性、 皮膜性能試験、 及び評 価は以下の基準に従って行った。  After performing the washing process according to the above-described processing steps, an epoxy-based cationic electrodeposition coating (Electron 9400: manufactured by Kansai Paint Co., Ltd.) was applied at a voltage of 200 V and a film thickness of 20 / m on a flat surface portion. It was painted and dried in a hot-air drying oven at 175 ° C for 20 minutes. The film properties, film performance tests, and evaluations of the test materials prepared in Examples and Comparative Examples were performed according to the following criteria.
外観 Appearance
目視にて皮膜膨れ、 ヮレ、 シヮ、 はじき等を下記に示す凡例にて評価。 ◎:膨れ、 ヮレ、 シヮ、 ハジキなし  The film swelling, bleeding, bleeding, repelling, etc. were visually evaluated using the legends shown below. ◎: No swelling, no blemishes, no blemishes, no cissing
〇 :膨れ、 ヮレ、 シヮ、 ハジキほとんどなし :: swelling, blemishes, seaweed, almost no cissing
Δ:膨れ、 ヮレ、 シヮ、 ハジキあり Δ: swelling, blemishes, blemishes, cissing
X :膨れ、 ヮレ、 シヮ、 ハジキかなりあり 膜厚測定 X: swelling, blemishes, blemishes, cissing considerably
供試材の平面部とエッジ部の断面を顕微鏡観察し、 皮膜厚を測定した 耐食性  Microscopic observation of the cross section of the flat part and the edge part of the test material and measurement of the film thickness Corrosion resistance
供試材について、 塩水嘖霧試験 ( J I S— Z 2 3 7 1 ) を 5 0 0 h r行い、 発鲭面積を見積もつて評価した。  The test material was subjected to a saltwater mist test (JIS-Z2371) for 500 hours, and evaluated by estimating the emission area.
◎: 0 % ◎: 0%
〇 : 5 %未満 〇: less than 5%
△: 5 %以上 2 0 %未満 X : 2 0。/。以上 △: 5% or more and less than 20% X: 20. /. that's all
鉛筆ひっかき試験方法 (J I S— K 5 4 0 0) で評価した。 耐熱性 Evaluation was made by the pencil scratch test method (JIS—K540). Heat-resistant
供試材を 2 2 0°Cに 3 0分間放置し、 前後の重量減少率%で評価した。 The test material was allowed to stand at 220 ° C. for 30 minutes, and the weight loss rate before and after was evaluated.
〇 : 1 %未満 〇: less than 1%
△ : 1 %以上 5。/。未満  Δ: 1% or more5. /. Less than
X : 5 %以上  X: 5% or more
また、 耐熱試験 (2 2 0°Cに 3 0分間放置) 後の供試材について碁盤目テー プ剥離試験 (1mmマス、 100個) を行った。 After the heat resistance test (left at 220 ° C for 30 minutes), a cross cut tape test (1mm square, 100 pieces) was performed on the test material.
テープ剥離後の皮膜残存数  Number of films remaining after tape peeling
◎ : 1 0 0  ◎: 1 0 0
〇 : 9 0〜 9 9  〇: 90-99
Δ : 8 0〜 8 9  Δ: 80 to 89
X : 7 9以下 絶縁特性試験  X: 79 or less Insulation property test
自己析出型表面処理を行ったモーターコア (図 1 ) の卷線部となるエッジ 部を評価した。 塗装した試験材の中心部の皮膜を剥離し、 試験針の負極を接 続する。 モーターコア卷線部について試験針の正極を走査し、 電流がリーク (漏れ) するエッジ部の数 (n) を調査し、 不良率 = n/3 6.にて評価した。 測定機器:絶縁抵抗計 F I — 9 0 1 ((株) 日本テクナード社製) 印加電圧: 5 0 0 V  The winding edge of the motor core (Fig. 1) that had been subjected to the self-deposition type surface treatment was evaluated. Peel off the film at the center of the painted test material and connect the negative electrode of the test needle. The positive electrode of the test needle was scanned with respect to the winding part of the motor core, and the number (n) of edges where current leaked was checked. Measuring equipment: Insulation resistance meter F I-910 (Nippon Technard Co., Ltd.) Applied voltage: 500 V
評価基準  Evaluation criteria
◎: nが 0  ◎: n is 0
〇 : ri力 S 3未満 Δ : ηが 3以上 1 0未満 〇: ri force S less than 3 Δ: η is 3 or more and less than 10
X : η力 S 1 0以上 体積抵抗率測定  X: η force S 10 or more Volume resistivity measurement
1 ) 測定方法; J I S— K 6 9 1 1による  1) Measurement method: According to JIS-K6911
2 ) 測定装置; Advantest R8340A Ultra High Resistance Meter 2) Measuring device: Advantest R8340A Ultra High Resistance Meter
電極; Advantest R12704 Resistivity Chamber  Electrode: Advantest R12704 Resistivity Chamber
3) 方法と条件;  3) Methods and conditions;
被処理物をセッ トし、 次の手順で塗膜の体積抵抗率 (Ω · c m) を測定 した。  The object to be processed was set, and the volume resistivity (Ω · cm) of the coating film was measured by the following procedure.
① O V X 3 0秒の d i s c h a r g e  ① O V X 30 seconds d i s c h a r g e
② 5 0 0 V X 6 0秒の c h a r g e  ② 500 V X 60 seconds of ch a r g e
③ O VX 3 0秒の d i s c h a r g e  ③ O VX 30 seconds d i s c h a r g e
4) 評価基準  4) Evaluation criteria
◎: 1 06 Ω · cm以上 ◎: 1 0 6 Ω · cm or more
0 : 1 05以上 1 06 Ω - cm未満 0: 1 0 5 or more 1 0 6 Ω - less than cm
△ : 1 04以上 1 05 Ω · cm未満 △: 1 0 4 or more 1 0 less than 5 Ω · cm
X : 1 04 Ω · cm未満 耐溶剤性 X: 1 0 4 Ω · cm less than solvent resistance
1 c m角のシリコンゴムにガーゼを巻き付け、 ガーゼに ME K (メチルェ チルケトン) を十分染み込ませ、 往復 5 0回ラビングした (荷重 5 0 0 g)、 その後の表面外観を評価した。  Gauze was wound around silicone rubber of 1 cm square, the gauze was sufficiently impregnated with MEK (methyl ethyl ketone), and rubbed 50 times back and forth (load: 500 g), and then the surface appearance was evaluated.
◎ :全く変化なし ◎: No change
〇 :やや痕跡あり  〇: Some traces
明らかにダメージあり (皮膜が半分近く脱落)  Clearly damaged (coating almost half dropped off)
X :素地が見える (皮膜脱落) 実施例及び比較例の評価結果を表 5に示す。 X: Substrate is visible (film detachment) Table 5 shows the evaluation results of the examples and the comparative examples.
被処理材料は、 前記 ( I ) のマイクロモーターコアを用いたが、 耐熱試験 用、 鉛筆硬度測定用においては、 前記 ( I I I ) の S P C C— S Dを使用し た。 表 5  The micro motor core of (I) was used as the material to be treated, but the SPC C-SD of (I I I) was used for the heat resistance test and the pencil hardness measurement. Table 5
Figure imgf000025_0001
表 5から、 明らかなように本発明の処理方法である実施例 1〜 1 6は、 れたエッジへの付き廻り性、 耐食性、 耐熱性、 耐溶剤性、 絶縁性を有し、 ま た、 皮膜表面硬度が高く、 卷線の圧力に十分耐えられる皮膜であることを示 している。
Figure imgf000025_0001
From Table 5, it is clear that Examples 1 to 16, which are the processing methods of the present invention, It shows that the film has the properties of covering around edges, corrosion resistance, heat resistance, solvent resistance, and insulation, and has a high film surface hardness and can withstand the pressure of the winding wire. .
これに比較して、 本発明の処理方法に特定した後処理工程を行わなかった 比較例 1〜4は、 皮膜硬度が不十分で、 また耐溶剤性が著しく劣った。 また、 実施例 4においては、 耐熱性も劣った。  In comparison, Comparative Examples 1 to 4, in which the post-treatment step specified in the treatment method of the present invention was not performed, had insufficient film hardness and extremely poor solvent resistance. In Example 4, the heat resistance was also inferior.
本発明の方法で後処理液 (B ) に用いる硬化剤 (e ) を、 自己析出処理液 ( A ) に添加した比較例 5では、 十分な表面硬度、 耐溶剤性を得ることはで きなかった。  In Comparative Example 5 in which the curing agent (e) used in the post-treatment liquid (B) was added to the autodeposition treatment liquid (A) by the method of the present invention, sufficient surface hardness and solvent resistance could not be obtained. Was.
また、 粉体塗装を行った比較例 6、 及ぴ電着塗装を行った比較例 7は、 ェ ッジ部への付き廻り性が悪く、 十分な絶縁特性を得ることはできなかった。 また、 耐食性も不十分であった。 産業上の利用可能性  Further, in Comparative Example 6 where powder coating was performed and Comparative Example 7 where electrodeposition coating was performed, the covering property to the edge portion was poor, and sufficient insulating properties could not be obtained. The corrosion resistance was also insufficient. Industrial applicability
本発明のマイク口機器、 又はその部品の自己析出型表面処理被覆方法は、 高い作業性、 生産性、 経済性に富んだ環境型表面処理システムであって、 本 発明の方法によって、 従来にない優れたエッジへの付き廻り性、 耐食性、 耐' 熱性、 耐溶剤性、 絶縁性をマイクロ機器、 又はその部品に付与することがで き、 本発明のマイクロ機器、 又はその部品は、 マイクロ機器、 またその部品 の小型化、 薄膜化の要求の十分応えることができ、 本発明は実用上極めて有 用であるといえる。  The self-precipitation type surface treatment coating method of the microphone opening device or the component thereof according to the present invention is an environmental type surface treatment system with high workability, productivity, and economic efficiency. It is possible to impart excellent peripheral properties to edges, corrosion resistance, heat resistance, solvent resistance, and insulation to micro devices or components thereof.The micro devices of the present invention or the components thereof can be used for micro devices, In addition, the requirements for miniaturization and thinning of the parts can be sufficiently satisfied, and it can be said that the present invention is extremely useful in practical use.

Claims

請求の範囲 The scope of the claims
1. マイクロ機器表面、 又はその部品表面を、 少なく とも 1種の水溶性、 若 しくは水分散性有機高分子樹脂 (a ) を含有する自己析出型表面処理液 (A) に接触させて該表面に有機皮膜を析出形成させる工程と、 析出形成した有機 皮膜の表面を硬化し得る少なく とも 1種の硬化剤 ( e ) を含有する後処理液1. Contact the surface of the micro-device or its component with the autodeposition type surface treatment solution (A) containing at least one water-soluble or water-dispersible organic polymer resin (a). A step of depositing an organic film on the surface, and a post-treatment liquid containing at least one curing agent (e) capable of curing the surface of the deposited organic film.
(B) に接触させる工程と、 加熱乾燥を行う工程とを含む表面処理工程によ つて、 マイクロ機器表面、 又はその部品表面に有機皮膜を形成させる自己祈 出型表面処理被覆方法。 (B) A self-praying type surface treatment coating method in which an organic film is formed on the surface of a micro device or its components by a surface treatment step including a step of contacting with (B) and a step of heating and drying.
2. 自己析出型表面処理液 (A) 力 S、 さらに、 酸成分 (b) とを含有するこ とを特徴とする請求の範囲 1記載の自己析出型表面処理被覆方法。  2. The self-precipitation type surface treatment coating method according to claim 1, further comprising an autodeposition type surface treatment solution (A), a force S, and an acid component (b).
3. 自己析出型表面処理液 (A) 力 S、 さらに、 酸化剤 ( c ) を含有すること を特徴とする請求の範囲 1、 または 2記載の自己析出型表面処理被覆方法。 3. The self-deposition type surface treatment coating method according to claim 1 or 2, further comprising an autodeposition type surface treatment solution (A), a force S, and an oxidizing agent (c).
4. 自己析出型表面処理液 (A) 、 さらに、 金属イオン ( d) を含有する ことを特徴とする請求の範囲 1〜 3記載の自己析出型表面処理被覆方法。4. The self-deposition type surface treatment coating method according to any one of claims 1 to 3, wherein the self-deposition type surface treatment solution (A) further contains a metal ion (d).
5. 自己析出型処理液 (A) に用いられる有機高分子樹脂 ( a ) 、 アタリ ル樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリエステル樹脂、 ポリアミ ド樹脂 から選ばれる少なく とも 1種であることを特徴とする請求の範囲 1〜4記載 の自己析出型処理被覆方法。 5. It is characterized in that it is at least one selected from the group consisting of an organic polymer resin (a), an acryl resin, an epoxy resin, a urethane resin, a polyester resin, and a polyamide resin used in the self-precipitation treatment liquid (A). The self-precipitation treatment coating method according to any one of claims 1 to 4.
6. 自己析出型処理液 (A) に用いられる有機高分子樹脂 ( a ) の少なく と も 1種がァニオン性ポリエステルであることを特徴とした請求の範囲 1〜 5 記載の自己析出型表面処理被覆方法  6. The self-precipitation surface treatment according to claims 1 to 5, wherein at least one of the organic polymer resins (a) used in the self-precipitation treatment liquid (A) is an anionic polyester. Coating method
7. 自己析出型処理液 (A) に用いられる有機高分子樹脂 ( a ) の少なく と も 1種のァニオン性ポリエステル樹脂が、 多価アルコールと酸化合物が縮合 して得られるァニオン性のポリエステル樹脂であることを特徴とする請求の 範囲 1〜 6記載の自己析出型処理被覆方法。  7. Anionic polyester resin obtained by condensing a polyhydric alcohol and an acid compound with at least one kind of anionic polyester resin (a) used in the organic deposition resin (A) The autodeposition treatment coating method according to any one of claims 1 to 6, wherein:
8. 後処理液 (B) の硬化剤 ( e) 、 メラミン樹脂、 グアナミン樹脂、 尿 素樹脂、 フエノール樹脂、 エポキシ樹脂、 イソシァネート化合物から選ばれ る少なく とも 1種である請求の範囲 1〜 7記載の自己析出型表面処理被覆方 法。 8. The curing agent (e) of the post-treatment liquid (B) is selected from melamine resin, guanamine resin, urea resin, phenol resin, epoxy resin, and isocyanate compound. The autodeposition type surface treatment coating method according to any one of claims 1 to 7, which is at least one kind.
9. 後処 a液 (B) 少なく とも 1種の表面潤滑剤 ( f ) を含有すること を特徴とする請求の範囲 1〜 8記載の自己析出型表面処理被覆方法。  9. The post-treatment liquid a) (B) The self-precipitation type surface treatment coating method according to claims 1 to 8, comprising at least one type of surface lubricant (f).
1 0. 後処理剤 (B) の表面潤滑剤 ( f ) 力 フッ素樹脂系潤滑剤、 ポリオ レフイン系ワックス、 メラミンシァヌレート、 二硫化モリブデンから選ばれ る少なく とも 1種の潤滑剤である請求の範囲 1〜 9記載の自己析出型表面処 理被覆方法。  10 0. Surface lubricant of post-treatment agent (B) (f) Power At least one lubricant selected from fluororesin-based lubricant, polyolefin-based wax, melamine cyanurate, and molybdenum disulfide 9. The self-deposition type surface treatment / coating method according to range 1-9.
1 1. マイクロ機器表面、 又はその部品表面を請求の範囲 1〜 8記載の自己 析出型表面処理液 (A) に接触させて該表面に有機皮膜を析出形成させるェ 程と、 析出形成した有機皮膜の表面を硬化し得る請求の範囲 1〜 1 0に記載 の後処理液 (B) に接触させる工程と、 エアブローにより余剰の付着液を除 去する行程と、 加熱乾燥を行う行程とを含む表面処理工程によって、 マイク 口機器表面、 又はその部品表面に有機皮膜を形成させる自己析出型表面処理 被覆方法。  1 1. contacting the surface of the micro device or its component with the self-deposition type surface treatment solution (A) according to claims 1 to 8 to deposit and form an organic film on the surface; The method according to any one of claims 1 to 10, which includes a step of contacting with a post-treatment liquid (B) capable of curing the surface of the film, a step of removing excess adhesion liquid by air blowing, and a step of heating and drying. A self-deposition type surface treatment coating method in which an organic film is formed on the surface of a microphone or a component thereof by a surface treatment step.
1 2. 請求の範囲 1〜 1 1の何れかの方法で形成された自己析出型表面処理 被膜を有するマイクロ機器、 又はその部品。  1 2. A micro device having a self-deposition type surface treatment film formed by any one of claims 1 to 11, or a component thereof.
PCT/JP2002/005712 2001-06-18 2002-06-10 Method for self-deposition type surface treatment coating of microdevice or its component, and microdevice or its parts having selfdeposition type surface treatment coating WO2002102525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-222302 2001-06-18
JP2001222302 2001-06-18

Publications (1)

Publication Number Publication Date
WO2002102525A1 true WO2002102525A1 (en) 2002-12-27

Family

ID=19055802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005712 WO2002102525A1 (en) 2001-06-18 2002-06-10 Method for self-deposition type surface treatment coating of microdevice or its component, and microdevice or its parts having selfdeposition type surface treatment coating

Country Status (3)

Country Link
CN (1) CN1286578C (en)
TW (1) TW565983B (en)
WO (1) WO2002102525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103662292A (en) * 2013-11-20 2014-03-26 青岛天人环境股份有限公司 Manufacturing method of organic polymer anticorrosive assembled tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148269A (en) * 2014-08-20 2014-11-19 国家电网公司 Coating method for RTV anti-contamination flashover coating of suspension insulator
CN115571728B (en) * 2022-12-07 2023-03-10 中科摩通(常州)智能制造股份有限公司 Finished product end-sealing equipment for winding machine and end-sealing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268240A (en) * 1975-12-03 1977-06-06 Nippon Paint Co Ltd Method for metallic coating
JPH07132574A (en) * 1993-11-09 1995-05-23 Nippon Parkerizing Co Ltd Method for coating metal surface
JPH09233780A (en) * 1996-02-21 1997-09-05 Nippon Parkerizing Co Ltd Method for coating surface of laminated motor core with electrically insulating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268240A (en) * 1975-12-03 1977-06-06 Nippon Paint Co Ltd Method for metallic coating
JPH07132574A (en) * 1993-11-09 1995-05-23 Nippon Parkerizing Co Ltd Method for coating metal surface
JPH09233780A (en) * 1996-02-21 1997-09-05 Nippon Parkerizing Co Ltd Method for coating surface of laminated motor core with electrically insulating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103662292A (en) * 2013-11-20 2014-03-26 青岛天人环境股份有限公司 Manufacturing method of organic polymer anticorrosive assembled tank

Also Published As

Publication number Publication date
CN1516626A (en) 2004-07-28
TW565983B (en) 2003-12-11
CN1286578C (en) 2006-11-29

Similar Documents

Publication Publication Date Title
KR950015151B1 (en) Aqueous epoxy resin compositions and metal substrates coated therewith
JP5854505B2 (en) Metal surface treatment agent and metal surface treatment method
RU2524937C1 (en) Metal sheet with previously applied coating with superb conductivity and corrosion resistance
TWI414633B (en) Galvanized steel plate
US5624978A (en) Conductive, internally lubricated barrier coating for metal
JP2011157586A (en) Surface treatment film, metal surface treatment agent and metal surface treatment method
JP3872998B2 (en) Painted metal plate and squeezed iron can using the same
JP2523204B2 (en) Precoat coating composition for metallic materials
JP2003145034A (en) Self-deposition type surface treatment coating method of surface of electronic part and micro-equipment part and electronic part and micro-equipment part having self-deposition type surface treatment coating film
JP2001226640A (en) Cationic electrodeposition paint composition
JP5259041B2 (en) Resin composition and aqueous electrodeposition coating
WO2002102525A1 (en) Method for self-deposition type surface treatment coating of microdevice or its component, and microdevice or its parts having selfdeposition type surface treatment coating
JP2012126131A (en) Chromate-free coating plated steel sheet
JPH09324148A (en) Composition for aqueous coating material and corrosion resistant metal board using the same
JP3860693B2 (en) Self-depositing type coating composition, method for coating metal surface, and coated metal material
JP3471258B2 (en) Powder coating method for metal materials
JP2002275688A (en) Cation electrodeposition coating method and coated material obtainable therefrom
US20020175082A1 (en) Method of cationic electrodeposition coating and coated article obtained thereby
JPS61162563A (en) Highly corrosion proof steel plate and production thereof
JP3227168B2 (en) Water-based rust preventive paint composition
JP2003268235A (en) Resin composition and water electrodeposition paint
JP2012121323A (en) Chromate-free colored coated metal sheet
JPH0794637B2 (en) Method of applying coating with improved corrosion resistance to metal substrate
JP2002275689A (en) Cation electrodeposition coating method and coated material obtainable therefrom
WO2019163833A1 (en) Coating method for cationic electrodeposition coating material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 028122410

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase