WO2002101914A1 - Servo actuator and position detecting device therefor - Google Patents

Servo actuator and position detecting device therefor Download PDF

Info

Publication number
WO2002101914A1
WO2002101914A1 PCT/JP2002/005772 JP0205772W WO02101914A1 WO 2002101914 A1 WO2002101914 A1 WO 2002101914A1 JP 0205772 W JP0205772 W JP 0205772W WO 02101914 A1 WO02101914 A1 WO 02101914A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotation
rotation position
unit
absolute
Prior art date
Application number
PCT/JP2002/005772
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Ishii
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2002101914A1 publication Critical patent/WO2002101914A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a multi-axis drive system such as a robot, a general-purpose assembly device, a robot / hand device, and other multi-axis control devices. More particularly, the present invention relates to a servo actuator capable of detecting a posture position of a rotating shaft with high accuracy and a position detecting device therefor.
  • the present invention relates to a servo actuator unit having a drive circuit built in the same module and a position detecting device therefor, and more particularly, to the influence of a temperature change in the module.
  • the present invention relates to a servo actuator for detecting the attitude position of a rotating shaft with high accuracy without receiving the same, and a position detecting device therefor.
  • Robots that perform movements that resemble human movements using electric or magnetic action are called “robots”. It is said that the root of the robot comes from the Slavic word “ROBOTA” (robot machine).
  • ROBOTA robot machine
  • robots began to spread in the late 1960s, but most of them were industrial robots such as manipulators and transport robots for the purpose of automation of factory production operations-unmanned operations. It was an industrial robot.
  • a stationary type robot such as an arm-type robot, which is planted and used in a specific place, operates only in a fixed / local work space such as assembling and sorting parts.
  • the mobile robot has a work space that is not limited, and can freely move on a predetermined route or on a non-route to perform a predetermined or arbitrary human task, or to perform human or human tasks.
  • a wide variety of services can be provided to replace dogs or other living beings.
  • the legged mobile robot is a crawler type Posture control and walking control are more difficult and difficult to control than robots of the robot type.However, P It is excellent in that it can be realized.
  • This type of legged mobile robot generally has a large number of degrees of freedom of joints, and joint movement is realized by an actuator motor. Also, by taking out the rotation position, rotation amount, etc. of each motor and performing servo control, a desired operation pattern is reproduced and attitude control is performed.
  • servo motors are used to achieve the robot's freedom of joints. This is based on the fact that it is easy to handle, small, has high torque, and has excellent responsiveness.
  • the AC servos have no brushes and are maintenance-free, so automatic machines that are desired to operate in an unmanned work space, such as legs that can walk freely, are used. It can be applied to robot joints and other events.
  • a permanent magnet is arranged on the rotor (lower) side, and a coil is arranged on the stator (stationary) side. It is designed to generate torque.
  • Legged mobile robots are generally composed of a large number of joints. Therefore, it is necessary to manufacture a servo 'designing a compact and high-performance motor' that constitutes the degree of freedom of joints.
  • Japanese Unexamined Patent Application Publication No. Hei 12-29664 Japanese Unexamined Patent Application Publication No. Hei 12-29664 (Japanese Patent Application No. Hei 11-333886), which has already been assigned to the present applicant, discloses a joint-type mobile robot with a joint actuator.
  • a compact AC servo actuator that is directly connected to a gear and has a single-chip servo control system and is built into a motor unit is disclosed.
  • a multi-axis drive system such as a legged mobile robot
  • the robot autonomously checks its own posture position immediately after turning on the power to the aircraft and moves each axis to a stable posture position. Need to be moved.
  • a sensor is attached to the rotor, and an element (Hall element) for detecting the magnitude of magnetic flux density is placed at the origin of the pole axis. Then, position detection is performed based on the output signal from the Hall element.
  • the magnetic flux density of the sensor magnet is determined by the maximum magnetization and the rotational position, but the magnitude of the maximum magnetization is easily affected by temperature (generally, the maximum magnetization changes in inverse proportion to temperature).
  • the drive circuit is built into the actuator-unit and integrally formed.
  • the temperature rise inside the unit greatly affects the position sensor signal. For this reason, sufficient measurement accuracy cannot be obtained with conventional sensors, and a sensor and a sensor output detection circuit that take into account the effect of the external environment temperature are required, but this increases equipment costs and increases equipment size. And other problems.
  • a legged mobile robot cannot maintain posture stability and may even fall. If the aircraft falls, the robot itself will be damaged, and other unforeseen events will occur, such as damage to workers near the aircraft and destruction of collision objects.
  • An object of the present invention is to provide an excellent servomotor that can be applied to mechanical devices of a multi-axis drive system such as a robot, a general-purpose assembly device, a robot, a hand device, and many other multi-axis control devices. The act is to provide an evening.
  • a further object of the present invention is to provide an excellent position detecting device which can be applied to a servo-actuating unit configured by incorporating a drive circuit in the same motor unit. It is in.
  • a further object of the present invention is to provide an excellent servo actuator and a position detecting device capable of detecting the position of the rotating shaft with high accuracy without being affected by a temperature change in the motor unit. To provide.
  • the present invention has been made in consideration of the above problems, and a first aspect thereof is as follows.
  • the present invention has been made in consideration of the above problems, and a first aspect of the present invention is to dispose a permanent magnet on the rotor side and a coil on the stator side to disperse the magnetic flux distribution and the passing current of the coil.
  • a first rotation position detection unit that detects a rotation position of the rotor
  • a second rotation position detection unit that detects a rotation position of an output shaft of the speed reduction unit; and a process of calculating a rotation position of the rotor based on each detection output of the first and second rotation position detection units.
  • the absolute rotation position of the rotor detected by the first rotation position detection unit is> ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ ), the reduction ratio of the reduction unit is Gn, and the second rotation position detection is
  • the processing unit calculates 0 n + N x 2 ⁇
  • the absolute rotational position of the rotor Can be calculated.
  • the value obtained by converting [rad] to a digital value by arithmetic processing by a circuit or the like is defined as 0 Bd
  • the value obtained by converting 0 g [rad] to a digital value by arithmetic processing by a circuit or the like is expressed as S gd .
  • the resolution of the absolute rotation position of the servo unit is the resolution obtained by multiplying the gear ratio G n of the resolution of the detection signal d of the position detection system on the rotation axis of the rotor. For this reason , the detection value 0 gd of the rotational position 0 g of the output shaft in the deceleration unit is sufficient if it has a resolution enough to identify the number of rotations of the rotor per rotation of the output shaft. You.
  • the accuracy of the absolute rotational position of the rotor obtained in this way is actually determined by the resolution of the A / D conversion circuit, and the value of the rotational position S gd obtained by the equation described below is affected by the temperature. Detection is possible without depending on the maximum magnetization of the magnet / sensor sensitivity. That is, it is possible to suppress the influence of the temperature change on the rotation position detection accuracy.
  • the speed reducer may be directly connected to a rotation shaft of the rotor, and may be integrally formed with a unit accommodating the stator and the rotor.
  • the first and / or second rotational position detecting section includes a sensor magnet magnetized on the surface thereof and having a sine wave magnetized thereon and coaxially mounted on a rotating shaft, and the sensor magnetnet magnetized.
  • a sensor magnet magnetized on the surface thereof and having a sine wave magnetized thereon and coaxially mounted on a rotating shaft and the sensor magnetnet magnetized.
  • two rotational position sensors such as two Hall elements, that detect the magnitude of the magnetic flux density and are disposed at a position facing the surface with a phase difference of about 90 degrees around the rotation axis. And at a low cost.
  • the second aspect of the present invention relates to a method of arranging a permanent magnet on the rotor side and arranging a coil on the stator side to generate torque by magnetic flux distribution and current passing through the coil.
  • a first rotation position detection unit that detects a rotation position of the rotor
  • a second rotation position detection unit that detects a rotation position on an output shaft of a reduction unit that reduces the rotation of the rotor
  • a processing unit that calculates a rotation position of the rotor based on each detection output of the first and second rotation position detection units;
  • a position detecting device comprising:
  • the resolution of the absolute rotational position of the servo factory is the resolution obtained by multiplying the gear ratio Gn of the resolution of the detection signal d of the position detection system on the rotation axis of the rotor. From this, it is sufficient that the detected value of the rotational position of the output shaft in the deceleration section » gd has a resolution enough to identify the number of rotations of the rotor per rotation of the output shaft.
  • the accuracy of the absolute rotational position of the rotor obtained in this way is actually determined by the resolution of the A / D conversion circuit, and is detected independently of the maximum magnetized sensor sensitivity of the magnet affected by temperature. can do. That is, it is possible to suppress the influence of the temperature change on the detection accuracy of the rotational position.
  • the speed reducer may be directly connected to a rotation shaft of the rotor, and may be integrally formed with a unit accommodating the stator and the rotor.
  • the first and / or second rotational position detecting section may include a sensor magnet whose surface is subjected to a sine wave magnetizing process and which is coaxially mounted on a rotating shaft, and a magnetizing of the sensor magnet.
  • a sensor magnet whose surface is subjected to a sine wave magnetizing process and which is coaxially mounted on a rotating shaft, and a magnetizing of the sensor magnet.
  • two rotational position sensors such as two Hall elements, that detect the magnitude of the magnetic flux density and are disposed at a position facing the surface with a phase difference of about 90 degrees around the rotation axis. And at a low cost.
  • FIG. 1 is a diagram showing a cross-sectional configuration in the axial direction of a servo factory 10 used for carrying out the present invention.
  • FIG. 2 is a diagram illustrating a state in which the surface of the rotor sensor / magnet 15 is subjected to a sine wave magnetizing process.
  • FIG. 3 shows that two rotation position sensors 16 A and 16 B are arranged on the surface of the control circuit board 13 on the side of the rotor 11 with a phase difference of 90 degrees with respect to the rotation axis.
  • FIG. 4 is a diagram showing the configuration of the speed reducer sensor / magnet 25 and the speed reducer rotational position sensor 26A / 26B.
  • FIG. 5 is a block diagram showing a servo control configuration of the servo factory 10.
  • FIG. 6 is a chart showing a relationship between a temperature change and a sensor signal.
  • FIG. 7 is a chart showing a change in the output of each rotation position sensor when the rotor 11 is driven to rotate.
  • FIG. 8 is a block diagram in which the arithmetic processing for converting the rotational position ⁇ of the rotor 11 into the detection value d of the position detection system is realized by a digital circuit.
  • FIG. 9 is a block diagram in which a calculation circuit for converting the rotation position on the output shaft side in the reduction unit to the detection value 0 gd of the position detection system is realized by a digital circuit.
  • FIG. 1 shows an axial cross-sectional configuration of a servo factory 10 used in the embodiment of the present invention.
  • the servo factory 10 has, for example, a three-phase stator 12 arranged circumferentially around a rotor 11 having a predetermined rotation axis.
  • a permanent magnet is arranged on the rotor 11 side, and a coil is arranged on the stator 12 side, and a sine wave current is supplied to the coil to form a desired sine wave magnetic flux distribution.
  • a rotating torque can be applied.
  • the rotor 11 and the stator 12 are housed in a substantially cylindrical casing, and constitute a single servo unit.
  • the rotor 11 is rotatably supported around a predetermined rotation axis.
  • Servo • Use a magnet with high magnetic flux density on the rotor side to achieve a smaller motor and higher output.
  • a polar anisotropic magnet has a high magnetic flux density, and is therefore excellent in increasing output.
  • Japanese Patent Application Laid-Open Publication No. 2001-314150 Japanese Patent Application No. 2000-2012
  • Japanese Patent Application No. 2000-2012 already assigned to the present applicant discloses miniaturization and high output.
  • a semiconductor device using a polar anisotropic magnet for the rotor is disclosed.
  • the winding density on the stator side will be increased in order to realize the miniaturization and high output of servos and motors.
  • a split core method is adopted for the stator.
  • the split core method is to divide the iron core, that is, the core in the circumferential direction, wind the windings in an externally aligned manner, and then assemble each iron core to form a stator. Enables high-density winding and space savings in the practice.
  • Japanese Patent Application Laid-Open Publication No. 2000-95192 Japanese Patent Application Laid-Open Publication No. 2000-95192 (Japanese Patent Application No. 2000-1982), which has already been assigned to the present applicant, discloses that a coil is attached to a stator. It discloses a servo factory that employs a split core system for suitable winding.
  • the servo amplifier 10 is a small amplifier that incorporates the drive circuit 13A in the same housing.
  • printed wiring of a predetermined pattern is laid on the control circuit board 13 and peripheral circuits for controlling supply of a sine wave current to the drive circuit 13 A and the stator coil are provided.
  • a circuit chip is mounted.
  • the control circuit board 13 is formed in a substantially disk shape. Approximately in the center of control circuit board 13 An opening for penetrating the rotating shaft of the rotor 11 is provided.
  • a ring-shaped rotor sensor 'magnet 15' is attached to an end face of the rotor 11 on the control circuit board 13 side.
  • the surface of the ring-shaped rotor sensor / magnet 15 is subjected to a sine wave magnetizing process as shown in FIG.
  • the surface of the ring-shaped rotor sensor and magnet 15 is sine-wave magnetized (described above), and its magnetic flux density ⁇ is expressed as a function of the rotational position 6> n of the rotor 11.
  • the magnetic flux density ⁇ ( ⁇ ⁇ ) of the rotor sensor / magnet 15 changes according to the following equation.
  • X sir (0 w ) [T] where the absolute rotational position of rotor 11 is from 0 to 27r x Gn every time a reducer with a reduction ratio Gn (described later) makes one rotation. Change.
  • 0 ⁇ ⁇ is defined as an origin position of the polar axis at the output the magnet Bok of the rotary shaft the rotor 1 1.
  • ⁇ . (T) is the magnitude of the maximum magnetic flux density of the magnet and depends on the temperature t [° C].
  • the maximum magnetic flux density 00 (t) of a magnet changes in inverse proportion to the temperature t. That is, the magnitudes of the amplitudes of the outputs of the rotation position sensors 168 and 16B change with the temperature t.
  • two rotation position sensors 16 A and 16 B They are arranged with a phase difference of degrees.
  • Each of the rotation position sensors 16A and 16B is composed of an element (Hall element) for detecting the magnitude of the magnetic flux density at the origin position of the magnetic pole axis.
  • the rotation position sensors 168 and 16B are arranged to face the magnetized surface of the rotor sensor / magnet 15.
  • One rotational position sensor 16A outputs a Hall sensor signal SIN according to a magnetic field generated by a rotor sensor and a magnet, and the other rotational position sensor 16B similarly outputs a Hall sensor signal COS. . See Figure 7 for details.
  • the SIN signal and the COS signal as these sensor outputs are input to the drive circuit 13A.
  • the [pulse] obtained in this manner represents the absolute rotational position of the rotor 11 of the servo actuator 10. That is, the driving circuit 13 A, as that Itasu position command and absolute rotational position 0 nd guard from the outside (for example, a central controller) performs feedback control of Akuchiyue Isseki 'mode evening rotary drive.
  • a reduction gear unit 20 for reducing the rotational drive of the rotor 11 is directly connected to the rotational shaft of the rotor 11.
  • the reduction gear unit 20 includes a plurality of reduction gear planetary gears 21-1, 21-2, and 21-3.
  • connection section 28 that is connected to a member outside the servo mechanism 10 is attached so as to rotate substantially coaxially with the rotation axis of the rotor 11.
  • the ring-shaped reducer sensor 'magnet 25 is attached to the connecting portion 28 so as to rotate substantially coaxially with the rotation axis of the rotor 11.
  • the surface of the speed reducer sensor magnet 25 is subjected to a sine wave magnetizing process as shown in FIG.
  • two reducer rotational position sensors 26A and 26B are disposed so as to face the reducer sensor 'magnet 25 with a phase difference of 90 degrees with respect to the rotation axis.
  • the rotation position sensors 26A and 26B are configured by elements (Hall elements) that detect the magnitude of the magnetic flux density at the origin position of the magnetic pole axis.
  • the rotation position sensors 26 A and 26 B are arranged to face the magnetized surface of the rotor sensor / magnet 25.
  • One rotational position sensor 16A outputs a hall sensor signal SIN corresponding to the magnetic field generated by the rotor sensor magnet, and the other rotational position sensor 26B similarly outputs a hall sensor signal COS. See Figure 7 for details.
  • the signal is input to the 3 A absolute position detection circuit (reference number 30 in Fig.
  • the drive circuit 13A performs feedback control of the rotational drive of the actuator so that the position command from the outside (for example, the central controller) and the absolute rotational position match.
  • Fig. 5 shows the servo control configuration of the servo actuator.
  • the feedback control of the actuator is significantly related to the attitude stabilization control of the aircraft.
  • the absolute position detection circuit 30 is a circuit module for detecting the absolute rotation position 0 g of the output shaft of the servo actuator 10, in the present embodiment, the absolute position of the rotation shaft of the rotor 11 is Rotary position sensor that measures position 0 B In addition to the SIN signal and COS signal that are the outputs of 16 A and 16 B, a reducer rotational position sensor that measures the absolute position 0 g on the output shaft on the reduction gear section 20 side 26 A and 26 B, the output of AB S—S IN signal and ABS—COS signal are input, and the absolute position on the rotor 11 side and the absolute position on the output shaft side> g Detects high-resolution absolute position of output shaft based on
  • GD (t) is a sensitivity coefficient of the Hall element constituting each rotation position sensor, and depends on the temperature t [° C].
  • G. (T) varies inversely with temperature t.
  • Figure 6 shows the relationship between the temperature change and the sensor signal.
  • the output 0 S of the Hall element has a large amplitude at low temperatures, but has a small amplitude at high temperatures. That is, the sensitivity of the sensor decreases as the temperature rises.
  • the sensor signals ABS-SIN and ABS_C0S of the speed reducer rotation position sensors 26A and 26B are input to the drive circuit 13A built in the servo actuator 10.
  • the A / D conversion circuit converts the sensor signals ABS-SIN and ABS-COS to digital-format data.
  • FIG. 9 shows a block diagram in which the above operation is realized by a circuit.
  • the accuracy of the gd value obtained in this way is actually determined by the resolution of the A / D converter, and is affected by temperature G. (T) and ⁇ (t) can be detected. That is, it is possible to suppress the influence of the temperature change on the rotation position detection accuracy.
  • a relatively low-resolution circuit and a circuit using an analog signal having a normal SN ratio can be used to achieve a high-precision and high-resolution absolute position on the output shaft of a servomotor. Can easily be detected.
  • the integer value of the operation result of 0 g x G 11 / 27r is N, then when the output shaft rotates by, ⁇ is the number of times the rotating shaft of the rotor 11 has rotated.
  • the absolute position of the rotation axis of the rotor 11 can be calculated from 0 n + Nx 2 ⁇ . Therefore, the resolution of the absolute rotation position of the servo factory 10 is the resolution obtained by multiplying the resolution of the detection signal ⁇ of the position detection system on the rotation axis of the rotor 11 by the gear ratio Gn . From this, it is sufficient for the detection system of the rotation position 6 g on the output shaft of the reduction gear unit 20 to have a resolution enough to identify the number of rotations of the rotor 11 per rotation of the output shaft. .
  • FIG. 7 shows a change in the output of each rotation position sensor when the rotor 11 is driven to rotate.
  • the detection value> gd rotational position> g on the output shaft side of the reduction gear unit 20 is sufficient only provides a resolution of 4 pulses / rotation.
  • Fig. 7 shows an example when the detection value is 0 gd and the resolution is 1024 pulses / rotation.
  • the present invention can be applied to mechanical devices of a multi-axis drive system such as a robot, a general-purpose assembly device, a robot's hand device, and other multi-axis control devices. Able to provide excellent servos.
  • an excellent servo actuator capable of detecting a posture position of a rotating shaft with high accuracy and a position detecting device therefor.
  • an excellent position detecting device which can be applied to a servo-actuating unit having a driving circuit built in the same motor unit. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A rotational position detector is mounted both on the rotational shaft of a rotor (11) and on the output shaft of a speed-reduction gear section (20). If the detected value of the rotational position (θm) of the rotor (11) is 1024 pulses/revolution and the speed-reduction ratio (Gn) is 4, then that of the speed-reduction gear section (20) is 1024 × 4 = 4096 pulses/revolution of the output shaft; thus, the absolute rotational position can be detected with high accuracy. Since the integer portion (N) of θg × Gn/2 π is the number of revolutions the rotor (11) makes when the output shaft has rotated by θg, the absolute rotational position of the rotor (11) can be calculated by θm + N × 2 π. Therefore, the position of the rotational shaft can be detected with high accuracy without being influenced by temperature change.

Description

明 細 書 サ一ボ .ァクチユエ一夕並びにその位置検出装置 [技術分野] 本発明は、 ロボットや汎用組立機器、 ロボット ·ハンド機器、 その他の多軸制 御装置などのような多軸駆動系の機械装置に対して適用されるサ一ボ ·ァクチュ エー夕に係り、特に、回転軸の姿勢位置を高精度に検出することができるサーボ · ァクチユエ一夕並びにその位置検出装置に関する。  TECHNICAL FIELD The present invention relates to a multi-axis drive system such as a robot, a general-purpose assembly device, a robot / hand device, and other multi-axis control devices. More particularly, the present invention relates to a servo actuator capable of detecting a posture position of a rotating shaft with high accuracy and a position detecting device therefor.
さらに詳しくは、本発明は、駆動回路を同一のモー夕'ュニットに内蔵して構成 されたサーボ 'ァクチユエ一夕並びにその位置検出装置に係り、 特に、 モ一夕- ュニット内の温度変化の影響を受けることなく回転軸の姿勢位置を高精度に検出 するサーボ ·ァクチユエ一夕並びにその位置検出装置に関する。  More specifically, the present invention relates to a servo actuator unit having a drive circuit built in the same module and a position detecting device therefor, and more particularly, to the influence of a temperature change in the module. The present invention relates to a servo actuator for detecting the attitude position of a rotating shaft with high accuracy without receiving the same, and a position detecting device therefor.
[背景技術] 電気的若しくは磁気的な作用を用いて人間の動作に似せた運動を行う機械装置 のことを 「ロボット」 という。 ロボットの語源は、 スラブ語の" R O B O T A (奴 隸機械)"に由来すると言われている。 わが国では、 ロボットが普及し始めたのは 1 9 6 0年代末からであるが、 その多くは、 工場における生産作業の自動化 -無 人化などを目的としたマニピュレータや搬送ロボッ トなどの産業用ロボット ( industrial robot) であった。 [Background Art] Machines that perform movements that resemble human movements using electric or magnetic action are called “robots”. It is said that the root of the robot comes from the Slavic word "ROBOTA" (robot machine). In Japan, robots began to spread in the late 1960s, but most of them were industrial robots such as manipulators and transport robots for the purpose of automation of factory production operations-unmanned operations. It was an industrial robot.
アーム式ロボッ卜のように、 ある特定の場所に植設して用いるような据置き夕 ィプのロボットは、 部品の組立 ·選別作業など固定的 ·局所的な作業空間でのみ 活動する。 これに対し、 移動式のロボットは、 作業空間は非限定的であり、 所定 の経路上または無経路上を自在に移動して、 所定の若しくは任意の人的作業を代 行したり、 ヒトゃィヌあるいはその他の生命体に置き換わる種々の幅広いサービ スを提供することができる。 なかでも脚式の移動ロボットは、 クローラ式ゃタイ ャ式のロボットに比し不安定で姿勢制御や歩行制御が難しくなるが、 P皆段や梯子 の昇降や障害物の乗り越えや、 整地 ·不整地の区別を問わない柔軟な歩行 ·走行 動作を実現できるという点で優れている。 A stationary type robot, such as an arm-type robot, which is planted and used in a specific place, operates only in a fixed / local work space such as assembling and sorting parts. On the other hand, the mobile robot has a work space that is not limited, and can freely move on a predetermined route or on a non-route to perform a predetermined or arbitrary human task, or to perform human or human tasks. A wide variety of services can be provided to replace dogs or other living beings. Among them, the legged mobile robot is a crawler type Posture control and walking control are more difficult and difficult to control than robots of the robot type.However, P It is excellent in that it can be realized.
最近では、 ィヌゃネコのように 4足歩行の動物の身体メカニズムやその動作を 模したペット型ロボット、 あるいは、 ヒトのような 2足直立歩行を行う動物の身 体メカニズムや動作をモデルにしてデザィンされた「人間形」若しくは「人間型」 と呼ばれるロボット (humanoid robot) など、 脚式移動ロボットに関する研究開 発が進展し、 実用化への期待も高まってきている。 例えば、 ソニー株式会社は、 平成 1 2年 1 1月 2 1日に 2足歩行を行う人間型ロボット" S D R— 3 X"を公表 した。  Recently, a pet-type robot that simulates the body mechanism and movement of a four-legged animal such as a cat, or the body mechanism and movement of an animal that walks two-legged upright, such as a human, has been modeled. Research and development on legged mobile robots, such as the “humanoid” or “humanoid” robots designed in advance, has advanced, and expectations for their practical use are increasing. For example, Sony Corporation announced a humanoid robot "SDR-3X" that can walk on two legs on January 21, 2002.
この種の脚式移動ロボットは、 一般に、 多数の関節自由度を備え、 関節の動き をァクチユエ一夕'モータで実現するようになっている。また、各モ一夕の回転位 置、 回転量などを取り出して、 サーボ制御を行なうことにより、 所望の動作パ夕 —ンを再現するとともに、 姿勢制御を行うようになっている。  This type of legged mobile robot generally has a large number of degrees of freedom of joints, and joint movement is realized by an actuator motor. Also, by taking out the rotation position, rotation amount, etc. of each motor and performing servo control, a desired operation pattern is reproduced and attitude control is performed.
ロボッ卜の関節自由度を実現するためにサーボ ·モー夕を用いるのが一般的で ある。 これは、 取扱いが容易で、 小型 ·高トルクで、 しかも応答性に優れている という理由に依拠する。 特に、 A Cサ一ボ 'モ一夕は、 ブラシがなく、 メンテナ ンス ·フリーであることから、 無人化された作業空間で稼動することが望まれる ような自動機械、 例えば自由歩行を行う脚式ロボッ卜の関節ァクチユエ一夕など に適用することができる。 A Cサーボ ·モー夕は、 回転子 (ロー夕) 側に永久磁 石を、 固定子 (ステ一夕) 側にコイルを配置して、 正弦波磁束分布と正弦波電流 により回転子に対して回転トルクを発生させるようになつている。  In general, servo motors are used to achieve the robot's freedom of joints. This is based on the fact that it is easy to handle, small, has high torque, and has excellent responsiveness. In particular, the AC servos have no brushes and are maintenance-free, so automatic machines that are desired to operate in an unmanned work space, such as legs that can walk freely, are used. It can be applied to robot joints and other events. In the AC servo motor, a permanent magnet is arranged on the rotor (lower) side, and a coil is arranged on the stator (stationary) side. It is designed to generate torque.
脚式移動ロボットは、 一般に多、 数の関節で構成されている。 したがって、 関 節自由度を構成するサーボ 'モ一夕を小型且つ高性能に設計'製作しなければなら ない。 例えば、 本出願人に既に譲渡されている特開平 1 2— 2 9 6 4 8 4号公報 (特願平 1 1— 3 3 3 8 6号) には、 脚式移動ロボットの関節ァクチユエ一夕と して適用することができる、 ギア直結型で且つサーボ制御系をワンチップ化して モータ .ュニットに内蔵したタイプの小型 A Cサーボ ·ァクチユエ一夕について 開示されている。 脚式移動ロボットのような多軸駆動系の機械装置においては、 各軸の回転位置 を高精度に安定に検出して、 位置指令により正確に動作させる必要がある。 例え ば、 人間型ロボットのような 2足直立型の脚式移動ロボットにおいては、 機体に 電源を投入した直後からロボットは自分の姿勢位置を自律的に確認して、 安定な 姿勢位置に各軸を移動させる必要がある。 Legged mobile robots are generally composed of a large number of joints. Therefore, it is necessary to manufacture a servo 'designing a compact and high-performance motor' that constitutes the degree of freedom of joints. For example, Japanese Unexamined Patent Application Publication No. Hei 12-29664 (Japanese Patent Application No. Hei 11-333886), which has already been assigned to the present applicant, discloses a joint-type mobile robot with a joint actuator. A compact AC servo actuator that is directly connected to a gear and has a single-chip servo control system and is built into a motor unit is disclosed. In a multi-axis drive system such as a legged mobile robot, it is necessary to detect the rotational position of each axis with high accuracy and stability, and to operate accurately by a position command. For example, in a bipedal legged mobile robot such as a humanoid robot, the robot autonomously checks its own posture position immediately after turning on the power to the aircraft and moves each axis to a stable posture position. Need to be moved.
したがって、 各関節の回転自由度を与える A Cサーボ ·ァクチユエ一夕におい ては、 このような姿勢位置の安定化を実現するためには、 より高精度の回転位置 検出器を装備していなければならない。  Therefore, in the AC servo factory that gives the degree of freedom of rotation of each joint, a more accurate rotation position detector must be equipped to realize such a stable posture. .
しかしながら、サ一ボ'ァクチユエ一夕が適用される機械装置においては、不定 な外部環境に基因する温度変化が存在するため、 各軸における絶対位置を高精度 に検出することは困難である。 通常、 モ一夕の回転位置を測定するためには、 回 転子にセンザ-マグネットを取り付けるとともに、その磁極軸の原点位置に磁束密 度の大きさを検出する素子 (ホール素子) を配設して、 ホール素子からの出力信 号に基づいて位置検出を行う。 センサ ·マグネッ卜の磁束密度は最大着磁と回転 位置で定まるが、 最大着磁の大きさは温度の影響を受け易い (一般には、 最大着 磁は温度に反比例して変化する)。  However, it is difficult to detect the absolute position of each axis with high accuracy in a mechanical device to which the servo actuator is applied because there is a temperature change due to an uncertain external environment. Normally, to measure the rotational position of a motor, a sensor is attached to the rotor, and an element (Hall element) for detecting the magnitude of magnetic flux density is placed at the origin of the pole axis. Then, position detection is performed based on the output signal from the Hall element. The magnetic flux density of the sensor magnet is determined by the maximum magnetization and the rotational position, but the magnitude of the maximum magnetization is easily affected by temperature (generally, the maximum magnetization changes in inverse proportion to temperature).
とりわけ、 上述したような脚式移動ロボット用のサ一ボ ·ァクチユエ一夕にお いては、 駆動回路をァクチユエ一夕 ·ュニッ卜に内蔵して一体的に構成されてい るため、ァクチユエ一夕'ュニット内部での温度上昇が大きく、位置センサ信号に 悪影響を及ぼすという問題がある。 このため、 従来のセンサでは充分な測定精度 を得ることができず、 外部環境温度の作用を考慮したセンサ並びにセンサ出力の 検出回路が必要となるが、 これは装置コストの増大と装置の肥大化などの問題を 招来する。  In particular, in the above-mentioned servo-actuator for a legged mobile robot, the drive circuit is built into the actuator-unit and integrally formed. There is a problem that the temperature rise inside the unit greatly affects the position sensor signal. For this reason, sufficient measurement accuracy cannot be obtained with conventional sensors, and a sensor and a sensor output detection circuit that take into account the effect of the external environment temperature are required, but this increases equipment costs and increases equipment size. And other problems.
例えば、 ノイズにより回転軸の測定精度に誤差が生じた結果として、 脚式移動 ロボットは姿勢安定性を保つことができなくなり、転倒してしまうことさえある。 機体が転倒すると、 ロボット自身が破損する他、 機体の傍らに居る作業員の損傷 や衝突物の破壊など、 不測の事態を招来する。  For example, as a result of errors in the measurement accuracy of the rotation axis due to noise, a legged mobile robot cannot maintain posture stability and may even fall. If the aircraft falls, the robot itself will be damaged, and other unforeseen events will occur, such as damage to workers near the aircraft and destruction of collision objects.
[発明の開示] 本発明の目的は、 ロボットゃ汎用組立機器、 ロボット 'ハンド機器、 その多の 多軸制御装置などのような多軸駆動系の機械装置に対して適用することができる、 優れたサ一ボ ·ァクチユエ一夕を提供することにある。 [Disclosure of the Invention] An object of the present invention is to provide an excellent servomotor that can be applied to mechanical devices of a multi-axis drive system such as a robot, a general-purpose assembly device, a robot, a hand device, and many other multi-axis control devices. The act is to provide an evening.
本発明のさらなる目的は、回転軸の姿勢位置を高精度に検出することができる、 優れたサーボ ·ァクチユエ一夕並びにその位置検出装置を提供することにある。 本発明のさらなる目的は、駆動回路を同一のモー夕 'ュ二ットに内蔵して構成さ れたサーボ ·ァクチユエ一夕に対して適用することができる、 優れた位置検出装 置を提供することにある。  It is a further object of the present invention to provide an excellent servo-actuator and a position detecting device capable of detecting a posture position of a rotating shaft with high accuracy. A further object of the present invention is to provide an excellent position detecting device which can be applied to a servo-actuating unit configured by incorporating a drive circuit in the same motor unit. It is in.
本発明のさらなる目的は、モー夕'ュニット内の温度変化の影響を受けることな く回転軸の姿勢位置を高精度に検出することができる、 優れたサーボ ·ァクチュ エー夕並びにその位置検出装置を提供することにある。 本発明は、 上記課題を参酌してなされたものであり、 その第 1の側面は、 であ る。  A further object of the present invention is to provide an excellent servo actuator and a position detecting device capable of detecting the position of the rotating shaft with high accuracy without being affected by a temperature change in the motor unit. To provide. The present invention has been made in consideration of the above problems, and a first aspect thereof is as follows.
本発明は、 上記課題を参酌してなされたものであり、 その第 1の側面は、 回転 子側に永久磁石を配置するとともに固定子側にコィルを配置して磁束分布とコィ ルの通過電流によりトルクを発生させるタイプのサーボ ·ァクチユエ一夕であつ て、  The present invention has been made in consideration of the above problems, and a first aspect of the present invention is to dispose a permanent magnet on the rotor side and a coil on the stator side to disperse the magnetic flux distribution and the passing current of the coil. A type of servo actuator that generates torque by
前記回転子の回転位置を検出する第 1の回転位置検出部と、  A first rotation position detection unit that detects a rotation position of the rotor,
前記回転子の回転を減速する減速部と、  A deceleration unit for decelerating the rotation of the rotor,
前記減速部の出力軸における回転位置を検出する第 2の回転位置検出部と、 前記第 1及び第 2の回転位置検出部における各検出出力を基に前記回転子の回 転位置を算出する処理部と、  A second rotation position detection unit that detects a rotation position of an output shaft of the speed reduction unit; and a process of calculating a rotation position of the rotor based on each detection output of the first and second rotation position detection units. Department and
を具備することを特徴とするサ一ボ'ァクチユエ一夕である。 A feature of the present invention.
前記第 1の回転位置検出部で検出した前記回転子の絶対回転位置を >Β ( 0 < θ Μ< 2 π) とし、 前記減速部の減速比を Gnとし、 前記第 2の回転位置検出部で検 出した絶対回転位置を (0く 0s< 2 TT) とし、 6>g x Gn/ 2 7Tの整数部分を N としたとき、 前記処理部は、 0n+ N x 2 ΤΓによって前記回転子の絶対回転位置を 算出することができる。 ここで、 [rad] を回路などによる演算処理でデジ夕 ル値に変換した値を 0 Bdとし、 また、 0 g [rad] を回路などによる演算処理でデ ジ夕ル値に変換した値を S gdとする。 The absolute rotation position of the rotor detected by the first rotation position detection unit is> Β (0 <θ Μ < ), the reduction ratio of the reduction unit is Gn, and the second rotation position detection is When the absolute rotational position detected by the unit is (0 <0 s <2 TT) and the integer part of 6> g x G n / 27T is N, the processing unit calculates 0 n + N x 2 ΤΓ The absolute rotational position of the rotor Can be calculated. Here, the value obtained by converting [rad] to a digital value by arithmetic processing by a circuit or the like is defined as 0 Bd, and the value obtained by converting 0 g [rad] to a digital value by arithmetic processing by a circuit or the like is expressed as S gd .
よって、サ一ボ 'ァクチユエ一夕の絶対回転位置の分解能は、回転子の回転軸に おける位置検出系の検出信号 dの分解能のギア比 Gnを掛けた分解能になる。こ のことから、 減速部における出力軸の回転位置 0 gの検出値 0 gdは、 出力軸の 1回 転当りに回転子が回転した数を識別できる程度の分解能を備えていれば充分であ る。 Therefore, the resolution of the absolute rotation position of the servo unit is the resolution obtained by multiplying the gear ratio G n of the resolution of the detection signal d of the position detection system on the rotation axis of the rotor. For this reason , the detection value 0 gd of the rotational position 0 g of the output shaft in the deceleration unit is sufficient if it has a resolution enough to identify the number of rotations of the rotor per rotation of the output shaft. You.
例えば、 回転子の回転位置 ( aの検出値 dを 1回転で 1 0 2 4パルス/回転と し、減速比 Gnを 4とすると、減速部における出力軸の 1回転では 1 0 2 4 x 4 = 4 0 9 6パルス Z回転となるので、 高精度の絶対回転位置を検出することができ る。 このとき、 減速部の出力軸側における回転位置 の検出値 >gdは、 4パルス /回転の分解能を備えているだけで充分である。 実際には、 演算による丸め誤差 を考慮して、 8パルス/回転の分解能により高精度、 高分解能の絶対回転位置検 出を実現することができる。 For example, a 1 0 2 4 pulses / rotation detection value d of the rotational position (a rotor in one revolution, when 4 the speed reduction ratio G n, 1 0 2 4 x in one rotation of the output shaft in the deceleration section 4 = 4 0 9 6 pulses Z rotation, so high-precision absolute rotation position can be detected, where the detection value of the rotation position on the output shaft side of the reduction unit> gd is 4 pulses / rotation In practice, it is possible to realize high-precision, high-resolution absolute rotation position detection with a resolution of 8 pulses / rotation, taking into account the rounding error caused by the calculation.
このようにして得られた回転子の絶対回転位置の精度は、 実際には A/D変換 回路の分解能により定められ、 後述する数式により求めた回転位置 S gdの値は、 温度の影響を受けるマグネッ卜の最大着磁ゃセンサ感度に依存しないで検出する ことができる。 すなわち、 回転位置の検出精度への温度変化の影響を抑えること ができる。 The accuracy of the absolute rotational position of the rotor obtained in this way is actually determined by the resolution of the A / D conversion circuit, and the value of the rotational position S gd obtained by the equation described below is affected by the temperature. Detection is possible without depending on the maximum magnetization of the magnet / sensor sensitivity. That is, it is possible to suppress the influence of the temperature change on the rotation position detection accuracy.
前記減速部は、 前記回転子の回転軸に直結され、 前記固定子及び回転子を収容 するュニッ卜と一体的に構成されていてもよい。  The speed reducer may be directly connected to a rotation shaft of the rotor, and may be integrally formed with a unit accommodating the stator and the rotor.
また、 前記第 1及び/又は第 2の回転位置検出部は、 表面に正弦波着磁処理が 施され回転軸に同軸状に取り付けられたセンサ ·マグネットと、 前記センサ ·マ グネッ卜の着磁面と対向する部位に該回転軸回りに略 9 0度の位相差を以つて配 設された、 磁束密度の大きさを検出する 2個のホール素子などの回転位置センサ とを用いて、 簡素で且つ安価に構成することができる。  Further, the first and / or second rotational position detecting section includes a sensor magnet magnetized on the surface thereof and having a sine wave magnetized thereon and coaxially mounted on a rotating shaft, and the sensor magnetnet magnetized. Using two rotational position sensors, such as two Hall elements, that detect the magnitude of the magnetic flux density and are disposed at a position facing the surface with a phase difference of about 90 degrees around the rotation axis. And at a low cost.
また、 本発明の第 2の側面は、 回転子側に永久磁石を配置するとともに固定子 側にコィルを配置して磁束分布とコィルの通過電流により トルクを発生させる夕 イブのサ一ボ ·ァクチユエ一夕における回転子の絶対回転位置を検出する位置検 出装置であって、 Further, the second aspect of the present invention relates to a method of arranging a permanent magnet on the rotor side and arranging a coil on the stator side to generate torque by magnetic flux distribution and current passing through the coil. A position detecting device for detecting an absolute rotational position of a rotor in a sub-vehicle of the Eve,
前記回転子の回転位置を検出する第 1の回転位置検出部と、  A first rotation position detection unit that detects a rotation position of the rotor,
前記回転子の回転を減速する減速部の出力軸における回転位置を検出する第 2 の回転位置検出部と、  A second rotation position detection unit that detects a rotation position on an output shaft of a reduction unit that reduces the rotation of the rotor;
前記第 1及び第 2の回転位置検出部における各検出出力を基に前記回転子の回 転位置を算出する処理部と、  A processing unit that calculates a rotation position of the rotor based on each detection output of the first and second rotation position detection units;
を具備することを特徴とする位置検出装置である。 A position detecting device comprising:
前記第 1の回転位置検出部で検出した前記回転子の絶対回転位置を^ ( 0 < θ „< 2 7Γ ) とし、 前記減速部の減速比を Gnとし、 前記第 2の回転位置検出部で検 出した絶対回転位置を (0く 6>κ< 2 ττ) とし、 6>g x Gn/ 2 7Tの整数部分を Ν としたとき、 前記処理部は、 0m+ N x 2 7Tによって前記回転子の絶対回転位置を 算出することができる。 Absolute rotational position ^ (0 <θ "<2 7Γ) of the rotor detected by the first rotational position detecting unit and to the reduction ratio of the reduction unit and G n, the second rotational position detecting unit When the absolute rotational position detected in is set to (0 <6> κ <2ττ) and the integer part of 6> g x G n / 27T is set to Ν, the processing unit calculates 0 m + N x 27T Thus, the absolute rotational position of the rotor can be calculated.
よって、サーボ 'ァクチユエ一夕の絶対回転位置の分解能は、回転子の回転軸に おける位置検出系の検出信号 dの分解能のギア比 Gnを掛けた分解能になる。 こ のことから、 減速部における出力軸の回転位置 の検出値 » gdは、 出力軸の 1回 転当りに回転子が回転した数を識別できる程度の分解能を備えていれば充分であ る。 Therefore, the resolution of the absolute rotational position of the servo factory is the resolution obtained by multiplying the gear ratio Gn of the resolution of the detection signal d of the position detection system on the rotation axis of the rotor. From this, it is sufficient that the detected value of the rotational position of the output shaft in the deceleration section » gd has a resolution enough to identify the number of rotations of the rotor per rotation of the output shaft.
このようにして得られた回転子の絶対回転位置の精度は、 実際には A/D変換 回路の分解能により定められ、 温度の影響を受けるマグネットの最大着磁ゃセン サ感度に依存しないで検出することができる。 すなわち、 回転位置の検出精度へ の温度変化の影響を抑えることができる。  The accuracy of the absolute rotational position of the rotor obtained in this way is actually determined by the resolution of the A / D conversion circuit, and is detected independently of the maximum magnetized sensor sensitivity of the magnet affected by temperature. can do. That is, it is possible to suppress the influence of the temperature change on the detection accuracy of the rotational position.
前記減速部は、 前記回転子の回転軸に直結され、 前記固定子及び回転子を収容 するュニッ卜と一体的に構成されていてもよい。  The speed reducer may be directly connected to a rotation shaft of the rotor, and may be integrally formed with a unit accommodating the stator and the rotor.
また、 前記第 1及び/又は第 2の回転位置検出部は、 表面に正弦波着磁処理が 施され回転軸に同軸状に取り付けられたセンサ ·マグネッ卜と、 前記センサ ·マ グネットの着磁面と対向する部位に該回転軸回りに略 9 0度の位相差を以つて配 設された、 磁束密度の大きさを検出する 2個のホール素子などの回転位置センサ とを用いて、 簡素で且つ安価に構成することができる。 本発明のさらに他の目的、 特徴や利点は、 後述する本発明の実施例や添付する 図面に基づくより詳細な説明によって明らかになるであろう。 Further, the first and / or second rotational position detecting section may include a sensor magnet whose surface is subjected to a sine wave magnetizing process and which is coaxially mounted on a rotating shaft, and a magnetizing of the sensor magnet. Using two rotational position sensors, such as two Hall elements, that detect the magnitude of the magnetic flux density and are disposed at a position facing the surface with a phase difference of about 90 degrees around the rotation axis. And at a low cost. Further objects, features, and advantages of the present invention will become apparent from the more detailed description based on the embodiments of the present invention described below and the accompanying drawings.
[図面の簡単な説明] 図 1は、 本発明の実施に供されるサーボ ·ァクチユエ一夕 1 0の軸方向の断面 構成を示した図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a cross-sectional configuration in the axial direction of a servo factory 10 used for carrying out the present invention.
図 2は、 回転子センサ ·マグネット 1 5の表面に正弦波着磁処理が施されてい る様子を描写した図である。  FIG. 2 is a diagram illustrating a state in which the surface of the rotor sensor / magnet 15 is subjected to a sine wave magnetizing process.
図 3は、 制御回路基板 1 3の回転子 1 1側の表面上に 2個の回転位置センサ 1 6 A及び 1 6 Bが回転軸に対して 9 0度の位相差を以つて配設されている様子を 示した図である。  FIG. 3 shows that two rotation position sensors 16 A and 16 B are arranged on the surface of the control circuit board 13 on the side of the rotor 11 with a phase difference of 90 degrees with respect to the rotation axis. FIG.
図 4は、 減速器センサ ·マグネット 2 5並びに減速器回転位置センサ 2 6 A/ 2 6 Bの構成を示した図である。  FIG. 4 is a diagram showing the configuration of the speed reducer sensor / magnet 25 and the speed reducer rotational position sensor 26A / 26B.
図 5は、 サーボ ·ァクチユエ一夕 1 0のサーボ制御構成を示したブロック図で ある。  FIG. 5 is a block diagram showing a servo control configuration of the servo factory 10.
図 6は、 温度変化とセンサ信号の関係を示したチャートである。  FIG. 6 is a chart showing a relationship between a temperature change and a sensor signal.
図 7は、 回転子 1 1を回転駆動させたときの各回転位置センサの出力の変化を 示したチャートである。  FIG. 7 is a chart showing a change in the output of each rotation position sensor when the rotor 11 is driven to rotate.
図 8は、 回転子 1 1の回転位置^を位置検出系の検出値 dに変換する演算処 理をデジタル回路により実現したプロヅク図である。 FIG. 8 is a block diagram in which the arithmetic processing for converting the rotational position ^ of the rotor 11 into the detection value d of the position detection system is realized by a digital circuit.
図 9は、減速部における出力軸側の回転位置 を位置検出系の検出値 0gdに変 換する演算処理をデジタル回路により実現したプロック図である。 FIG. 9 is a block diagram in which a calculation circuit for converting the rotation position on the output shaft side in the reduction unit to the detection value 0 gd of the position detection system is realized by a digital circuit.
[発明を実施するための最良の形態] 以下、 図面を参照しながら本発明の実施形態について詳解する。 図 1には、 本発明の実施に供されるサーボ ·ァクチユエ一夕 1 0の軸方向の断 面構成を示している。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an axial cross-sectional configuration of a servo factory 10 used in the embodiment of the present invention.
図示の通り、 サーボ ·ァクチユエ一夕 1 0は、 所定の回転軸を持った回転子 1 1の周囲に、 例えば 3相の固定子 1 2が円周方向に配設されている。 回転子 1 1 側に永久磁石を、 固定子 1 2側にコイルを配置して、 コイルに正弦波電流を供給 して所望の正弦波磁束分布を形成することにより、 回転子 1 1に対して回転トル クを印加することができる。 これら回転子 1 1並びに固定子 1 2は、 略円筒形状 の筐体に収容されており、 単一のサ一ボ'ァクチユエ一夕 ·ュニットを構成する。 そして、 回転子 1 1は、 所定の回転軸回りに回転可能となるように軸支されてい る。  As shown in the figure, the servo factory 10 has, for example, a three-phase stator 12 arranged circumferentially around a rotor 11 having a predetermined rotation axis. A permanent magnet is arranged on the rotor 11 side, and a coil is arranged on the stator 12 side, and a sine wave current is supplied to the coil to form a desired sine wave magnetic flux distribution. A rotating torque can be applied. The rotor 11 and the stator 12 are housed in a substantially cylindrical casing, and constitute a single servo unit. The rotor 11 is rotatably supported around a predetermined rotation axis.
サーボ ·モー夕の小型化 ·高出力化を実現するために、 回転子側に磁束密度の 高いマグネットを使用する。 例えば、 極異方性マグネットは、 磁束密度が高いの で、 高出力化の点で優れている。 例えば、 本出願人に既に譲渡されている特開 2 0 0 1 - 3 1 4 0 5 0号公報 (特願 2 0 0 0— 1 2 8 4 0 9号) には、 小型化 · 高出力化のために回転子に極異方性マグネットを使用したサ一ボ ·ァクチユエ一 夕について開示されている。  Servo • Use a magnet with high magnetic flux density on the rotor side to achieve a smaller motor and higher output. For example, a polar anisotropic magnet has a high magnetic flux density, and is therefore excellent in increasing output. For example, Japanese Patent Application Laid-Open Publication No. 2001-314150 (Japanese Patent Application No. 2000-2012) already assigned to the present applicant discloses miniaturization and high output. For example, a semiconductor device using a polar anisotropic magnet for the rotor is disclosed.
また、 サーボ ·モー夕の小型化 ·高出力化を実現するために、 固定子側の卷線 密度を高密度化する。 例えば、 固定子に分割コア方式が採用される。 分割コア方 式とは、 鉄心すなわちコアをその周方向に分割するとともに、 卷線を外部で整列 状に巻き込んだ後、 各鉄心を組み立てることによって固定子を構成するものであ り、 コアへの高密度な卷線とァクチユエ一夕の省スペース化を可能にする。 例え ば、 本出願人に既に譲渡されている特開 2 0 0 2 - 9 5 1 9 2号公報 (特願 2 0 0 0 - 2 8 1 0 7 2号) には、 固定子にコイルを好適に巻設するため分割コア方 式を採用したサーボ ·ァクチユエ一夕について開示されている。  In addition, the winding density on the stator side will be increased in order to realize the miniaturization and high output of servos and motors. For example, a split core method is adopted for the stator. The split core method is to divide the iron core, that is, the core in the circumferential direction, wind the windings in an externally aligned manner, and then assemble each iron core to form a stator. Enables high-density winding and space savings in the practice. For example, Japanese Patent Application Laid-Open Publication No. 2000-95192 (Japanese Patent Application No. 2000-1982), which has already been assigned to the present applicant, discloses that a coil is attached to a stator. It discloses a servo factory that employs a split core system for suitable winding.
本実施形態に係るサ一ボ ·ァクチユエ一夕 1 0は、 駆動回路 1 3 Aを同一筐体 に内蔵した小型ァクチユエ一夕である。図示の例では、制御回路基板 1 3上には、 所定パターンの印刷配線が敷設されているとともに、 駆動回路 1 3 Aや固定子コ ィルへの正弦波電流の供給を制御するための周辺回路チップが搭載されている。 制御回路基板 1 3は、 略円盤状に形設されている。 制御回路基板 1 3の略中央に は、 回転子 1 1の回転シャフトを挿通させるための開口が穿設されている。 The servo amplifier 10 according to the present embodiment is a small amplifier that incorporates the drive circuit 13A in the same housing. In the illustrated example, printed wiring of a predetermined pattern is laid on the control circuit board 13 and peripheral circuits for controlling supply of a sine wave current to the drive circuit 13 A and the stator coil are provided. A circuit chip is mounted. The control circuit board 13 is formed in a substantially disk shape. Approximately in the center of control circuit board 13 An opening for penetrating the rotating shaft of the rotor 11 is provided.
回転子 1 1の制御回路基板 1 3側の端面には、 リング状の回転子センサ 'マグ ネット 1 5が取り付けられている。 このリング状の回転子センサ ·マグネット 1 5の表面は、 図 2に示すように正弦波着磁処理が施されている。  A ring-shaped rotor sensor 'magnet 15' is attached to an end face of the rotor 11 on the control circuit board 13 side. The surface of the ring-shaped rotor sensor / magnet 15 is subjected to a sine wave magnetizing process as shown in FIG.
リング状の回転子センサ ·マグネット 1 5の表面は正弦波着磁されており (上 述)、 その磁束密度 øは回転子 1 1の回転位置 6> nの関数として表される。 本実施 形態では、 回転子センサ ·マグネット 1 5の磁束密度 ø ( Θ Β) は下式に従って変 化するものとする。 = り x sir(0w) [T] ここで、 回転子 1 1の絶対回転位置 は、 減速比 Gnを持つ減速器 (後述) が 1回転する度に、 0から 2 7r x Gnまで変化する。 また、 0 Π= Οは回転子 1 1の 回転軸の出力用マグネッ卜における磁極軸の原点位置と定義する。 ø。(t )はマ グネットの最大磁束密度の大きさであり、 温度 t [°C] に依存する。 一般に、 マ グネッ卜の最大磁束密度 00 ( t ) は温度 tに反比例して変化する。 すなわち、 回 転位置センサ 1 6八及び1 6 Bの出力の振幅の大きさは、 温度 tにより変化する 訳である。 The surface of the ring-shaped rotor sensor and magnet 15 is sine-wave magnetized (described above), and its magnetic flux density ø is expressed as a function of the rotational position 6> n of the rotor 11. In the present embodiment, it is assumed that the magnetic flux density ΒΒ ) of the rotor sensor / magnet 15 changes according to the following equation. X sir (0 w ) [T] where the absolute rotational position of rotor 11 is from 0 to 27r x Gn every time a reducer with a reduction ratio Gn (described later) makes one rotation. Change. Further, 0 Π = Ο is defined as an origin position of the polar axis at the output the magnet Bok of the rotary shaft the rotor 1 1. ø. (T) is the magnitude of the maximum magnetic flux density of the magnet and depends on the temperature t [° C]. In general, the maximum magnetic flux density 00 (t) of a magnet changes in inverse proportion to the temperature t. That is, the magnitudes of the amplitudes of the outputs of the rotation position sensors 168 and 16B change with the temperature t.
一方、 制御回路基板 1 3の回転子 1 1側の表面上には、 図 1並びに図 3に示す ように、 2個の回転位置センサ 1 6 A及び 1 6 Bが回転軸に対して 9 0度の位相 差を以つて配設されている。  On the other hand, on the surface of the control circuit board 13 on the rotor 11 side, as shown in FIGS. 1 and 3, two rotation position sensors 16 A and 16 B They are arranged with a phase difference of degrees.
回転位置センサ 1 6 A及び 1 6 Bは、 磁極軸の原点位置に磁束密度の大きさを 検出する素子(ホール素子)で構成される。回転位置センサ 1 6八及び1 6 Bは、 回転子センサ ·マグネット 1 5の着磁面に対向して配置されている。 一方の回転 位置センサ 1 6 Aは、 回転子センサ ·マグネットが発する磁界に応じたホール · センサ信号 S I Nを出力し、 他方の回転位置センサ 1 6 Bは同様にホール ·セン サ信号 C O Sを出力する。 詳しくは、 図 7を参照されたい。 これらセンサ出力と しての S I N信号及び C O S信号は駆動回路 1 3 Aに入力される。  Each of the rotation position sensors 16A and 16B is composed of an element (Hall element) for detecting the magnitude of the magnetic flux density at the origin position of the magnetic pole axis. The rotation position sensors 168 and 16B are arranged to face the magnetized surface of the rotor sensor / magnet 15. One rotational position sensor 16A outputs a Hall sensor signal SIN according to a magnetic field generated by a rotor sensor and a magnet, and the other rotational position sensor 16B similarly outputs a Hall sensor signal COS. . See Figure 7 for details. The SIN signal and the COS signal as these sensor outputs are input to the drive circuit 13A.
これらホール 'センサ信号 S I N及び C O Sは、 駆動回路 1 3 Aの絶対位置検 出回路 (図 5中の参照番号 30) に入力され、 図 8に示すように、 デジタル値 0 Bdに変換される。この検出値 0Bdは、図 8に示すデジタル回路により 0B=0xQとな るように制御されているため、 センサ信号 S IN及び COSの温度 tにより変化 する振幅 A。に依存しない結果となる。 このようにして求められた [パルス] は、 サーボ 'ァクチユエ一夕 10の回転子 11の絶対回転位置を表す。すなわち、 駆動回路 13 Aは、 外部 (例えば中央コントローラ) からの位置指令と絶対回転 位置 0ndがー致するように、 ァクチユエ一夕 'モー夕の回転駆動のフィードバッ ク制御を行う。 The Hall sensor signals SIN and COS are used to detect the absolute position of the drive circuit 13 A. It is input to the output circuit (reference number 30 in FIG. 5) and is converted to a digital value 0 Bd as shown in FIG. Since the detected value 0 Bd is controlled by the digital circuit shown in FIG. 8 so that 0 B = 0 × Q , the amplitude A changes depending on the temperature t of the sensor signals S IN and COS. Is independent of. The [pulse] obtained in this manner represents the absolute rotational position of the rotor 11 of the servo actuator 10. That is, the driving circuit 13 A, as that Itasu position command and absolute rotational position 0 nd guard from the outside (for example, a central controller) performs feedback control of Akuchiyue Isseki 'mode evening rotary drive.
また、 図 1の紙面左側には、 回転子 11の回転駆動を減速するための減速ギア 部 20が、 回転子 11の回転シャフ卜に直結されている。 本実施形態では、 減速 ギア部 20は、 複数の減速器遊星ギア 21— 1, 21-2, 21-3で構成され る。  Further, on the left side in FIG. 1, a reduction gear unit 20 for reducing the rotational drive of the rotor 11 is directly connected to the rotational shaft of the rotor 11. In the present embodiment, the reduction gear unit 20 includes a plurality of reduction gear planetary gears 21-1, 21-2, and 21-3.
減速ギア部 20の端面には、サーボ 'ァクチユエ一夕 10外の部材と接合する連 結部 28が、 回転子 11の回転軸と略同軸状に回転するように、 取り付けられて いる。そして、 リング状の減速器センサ'マグネット 25は、 回転子 11の回転軸 と略同軸状に回転するように、 連結部 28に取り付けられている。 この減速器セ ンサ 'マグネット 25の表面は、図 4に示すように正弦波着磁処理が施されている (同上)。  On an end face of the reduction gear section 20, a connection section 28 that is connected to a member outside the servo mechanism 10 is attached so as to rotate substantially coaxially with the rotation axis of the rotor 11. The ring-shaped reducer sensor 'magnet 25 is attached to the connecting portion 28 so as to rotate substantially coaxially with the rotation axis of the rotor 11. The surface of the speed reducer sensor magnet 25 is subjected to a sine wave magnetizing process as shown in FIG.
一方、 この減速器センサ'マグネヅト 25に対向するように、 2個の減速器回転 位置センサ 26 A及び 26 Bが回転軸に対して 90度の位相差を以つて配設され ている。  On the other hand, two reducer rotational position sensors 26A and 26B are disposed so as to face the reducer sensor 'magnet 25 with a phase difference of 90 degrees with respect to the rotation axis.
回転位置センサ 26A及び 26Bは、 磁極軸の原点位置に磁束密度の大きさを 検出する素子(ホール素子)で構成される。回転位置センサ 26 A及び 26Bは、 回転子センサ ·マグネット 25の着磁面に対向して配置されている。 一方の回転 位置センサ 16 Aは、 回転子センサ ·マグネッ卜が発する磁界に応じたホール · センサ信号 SINを出力し、 他方の回転位置センサ 26 Bは同様にホール 'セン サ信号 COSを出力する。 詳しくは図 7を参照されたい。 これらセンサ出力とし ての ABS— S I N信号及び A BS— COS信号は駆動回路 13 Aに入力される c これらホール 'センサ信号 ABS SIN及び ABS COSは、 駆動回路 1 3 Aの絶対位置検出回路 (図 5中の参照番号 30) に入力されて、 図 9に示すよ うなデジタル回路によって 0g=6»xとなるように制御されているため、 センサ信 号 ABS_S I N及び AB S— COSの温度 tにより変化する振幅 A ,に依存し ない結果となる。 こうして得られた 6>gd [パルス] は、 サーボ 'ァクチユエ一夕 10の減速器の主軸側における絶対回転位置を表わす。 駆動回路 13 Aは、 外部 (例えば中央コントローラ) からの位置指令と絶対回転位置が一致するように、 ァクチユエ一夕 .モー夕の回転駆動のフィードバック制御を行う。 The rotation position sensors 26A and 26B are configured by elements (Hall elements) that detect the magnitude of the magnetic flux density at the origin position of the magnetic pole axis. The rotation position sensors 26 A and 26 B are arranged to face the magnetized surface of the rotor sensor / magnet 25. One rotational position sensor 16A outputs a hall sensor signal SIN corresponding to the magnetic field generated by the rotor sensor magnet, and the other rotational position sensor 26B similarly outputs a hall sensor signal COS. See Figure 7 for details. ABS-SIN signal and A BS- COS signal of by these sensor output c thereof Hall 'sensor signals ABS SIN and ABS COS inputted to the drive circuit 13 A, the driving circuit 1 The signal is input to the 3 A absolute position detection circuit (reference number 30 in Fig. 5) and is controlled by a digital circuit as shown in Fig. 9 so that 0 g = 6 x , so that the sensor signal ABS_S IN and ABS — The result is independent of the amplitude A, which varies with the temperature t of COS. The 6> gd [pulse] thus obtained represents the absolute rotational position of the reducer of the servo actuator 10 on the main shaft side. The drive circuit 13A performs feedback control of the rotational drive of the actuator so that the position command from the outside (for example, the central controller) and the absolute rotational position match.
サ—ボ .ァクチユエ一夕 10のサーボ制御構成を図 5に示しておく。 例えば、 サ一ボ ·ァクチユエ一夕 10が脚式移動ロボッ卜の関節ァクチユエ一夕に適用さ れている場合においては、 ァクチユエ一夕 'モー夕のフィードバック制御は機体 の姿勢安定制御に大いに関わる。  Fig. 5 shows the servo control configuration of the servo actuator. For example, in the case where the servo actuator 10 is applied to the joint actuator of a legged mobile robot, the feedback control of the actuator is significantly related to the attitude stabilization control of the aircraft.
絶対位置検出回路 30は、サ一ボ'ァクチユエ一夕 10の出力軸の絶対回転位置 0gを検出するための回路モジュールであるが、本実施形態では、回転子 1 1側の 回転軸の絶対位置 0Bを測定する回転位置センサ 16 A及び 16 Bの各出力であ る S I N信号並びに CO S信号以外に、 減速ギア部 20側の出力軸における絶対 位置 0gを測定する減速器回転位置センサ 26 A及び 26 Bの各出力である AB S— S IN信号並びに ABS— COS信号を入力して、 これら回転子 1 1側の絶 対位置 及び出力軸側の絶対位置 >gの双方の検出信号に基づいて、 高分解能な 出力軸の絶対位置を検出する。 Although the absolute position detection circuit 30 is a circuit module for detecting the absolute rotation position 0 g of the output shaft of the servo actuator 10, in the present embodiment, the absolute position of the rotation shaft of the rotor 11 is Rotary position sensor that measures position 0 B In addition to the SIN signal and COS signal that are the outputs of 16 A and 16 B, a reducer rotational position sensor that measures the absolute position 0 g on the output shaft on the reduction gear section 20 side 26 A and 26 B, the output of AB S—S IN signal and ABS—COS signal are input, and the absolute position on the rotor 11 side and the absolute position on the output shaft side> g Detects high-resolution absolute position of output shaft based on
回転センサ 26 A及び 26 Bから、下式の関係で表される出力軸回転角 とホ ール素子のセンサ信号が得られる。 詳しくは、 図 7を参照されたい。  From the rotation sensors 26A and 26B, the output shaft rotation angle and the sensor signal of the hall element, which are expressed by the following equation, are obtained. See Figure 7 for details.
Figure imgf000013_0001
M
Figure imgf000013_0001
M
ここで、 GD (t ) は、 各回転位置センサを構成するホール素子の感度係数であ り、 温度 t [°C] に依存する。 一般に、 G。(t) は、 温度 tに反比例して変化す る。 図 6には、 温度変化とセンサ信号の関係を示している。 同図からも分るよう に、 ホール素子の出力 0Sは、低温では振幅は大きいが、 高温では振幅が小さくな る。 すなわち、 温度上昇とともにセンサの感度は低下してしまう。 Here, GD (t) is a sensitivity coefficient of the Hall element constituting each rotation position sensor, and depends on the temperature t [° C]. In general, G. (T) varies inversely with temperature t. Figure 6 shows the relationship between the temperature change and the sensor signal. As you can see from the figure In addition, the output 0 S of the Hall element has a large amplitude at low temperatures, but has a small amplitude at high temperatures. That is, the sensitivity of the sensor decreases as the temperature rises.
マグネットの最大磁束密度の大きさ ø。 (t) と、 ホール素子の感度 G。 (t) は、 最大使用範囲の温度において、 下式に示すような特性を持つ。  Maximum magnetic flux density of the magnet ø. (T) and the sensitivity G of the Hall element. (t) has the characteristics shown in the following equation at the maximum operating temperature range.
0。(り =0ox(l— xi) [丁] 0. (R = 0 o x (l— xi) [cho]
G0{t) = Gox{l-kv xt) ここで、 φϋ、 G。は t = 0での最大磁束密度、 感度それそれの大きさである。 また、 k kgは正の定数であり、 下式に示す関係式に近似される。 G 0 {t) = G o x {lk v xt) where φ ϋ , G. Is the maximum magnetic flux density at t = 0, the sensitivity and the magnitude of each. Also, kk g is a positive constant, which is approximated by the relational expression shown below.
0 < l,0< (k, xt)< 0 <l, 0 <(k, xt) <
この 2つの信号からサーボ 'ァクチユエ一夕の出力軸の回転位置 >gを求める手 順について、 以下に説明する。 The procedure for determining the rotational position> g of the output shaft of the servo actuator from these two signals will be described below.
サーボ 'ァクチユエ一夕 10に内蔵された駆動回路 13 Aに、各減速器回転位置 センサ 26A及び 26 Bのセンサ信号 AB S— S I N及び AB S_C 0 Sを入力 する。センサ信号 ABS— S IN及び ABS— COSは、 A/D変換回路により、 デジ夕ル形式のデータに変換される。  The sensor signals ABS-SIN and ABS_C0S of the speed reducer rotation position sensors 26A and 26B are input to the drive circuit 13A built in the servo actuator 10. The A / D conversion circuit converts the sensor signals ABS-SIN and ABS-COS to digital-format data.
駆動回路 13 Aは、センサ信号 AB S— S IN及びABS—COSの関係ょり、 下式に基づいて回転位置 6»gの概値を判断する。 Drive circuit 13 A, the sensor signal AB S- S IN and ABS-COS relationship Yori, determines the approximate value of the rotational position 6 »g according to the following equation.
(1) ABS SIN 0且つ ABS COS≥0のとき、 0≤ (1) When ABS SIN 0 and ABS COS≥0, 0≤
' 一 8≤12 '' One 8 ≤12
(2) ABS SiN≥0且つ ABS COS < 0のとき、丄 π≤ >。 r  (2) ABSπ≤> when ABS SiN≥0 and ABS COS <0. r
、 ' - - 2 g , ' --2 g
(3) ABS SIN < 0且つ ABS COS < 0のとき、 r < (。 <  (3) When ABS SIN <0 and ABS COS <0, r <(. <
' 一 g 2 '' One g 2
(4) ABS SIN < OR-DABS COS≥0のとき、 ; r≤ <  (4) When ABS SIN <OR-DABS COS≥0,; r≤ <
' 一 2 s 'One 2 s
ここで、 Sgの値は、 (1) 〜 (4) の各領域が決定される。 次いで、 ^並びに ΘΡを、 Here, the value of S g is determined in each of the regions (1) to (4). Then, ^ and Θ 、,
(1 7)領域のとき、 6»s =0,θε =-π (2 7)領域のとき、 =-π,θεIn the (17) region, 6 » s = 0, θ ε = -π (27) In the region, = -π, θ ε = π
(3) 0領域のとき、 θ5 =π,θε = π (3) In the 0 region, θ 5 = π, θ ε = π
(4) C 領域のとき、(4) In the C area,
Figure imgf000015_0001
Figure imgf000015_0001
として、 下式の演算を行う。 θχ$ Then, the calculation of the following equation is performed. θ χ = θ $
ί式 1) £( Χ = (ABS_SIN ) x cos θχ一 (ABS_C S ) x sin6> ί formula 1) £ (Χ = (ABS_SIN ) x cos θ χ one (ABS_C S) x sin6>
= G。(i)x0o(i)xsin (^ 一 ) もし、 E0X=Oでない場合には、 0Xを下式のように更新して、 ΕΘχ=0に収 束するまで 0Χを変化させて、 上記の式から再計算する。 (式 2) θχχ0 = G. (i) x0 o (i) xsin (^ I) If, in case it is not E0 X = O is, 0 X to be updated as the following equation, by changing the 0 Χ until convergence to ΕΘχ = 0 Recalculate from the above formula. (Equation 2) θ χ = θ χ + θ 0
但し、 θχ≤θε. は AZD変換回路の最小ビット値の位置変位量 However, θ χ ≤θ ε. Positional displacement amount of the minimum bit value of AZD converter
Ε 6»χ=0となるときは、 θεχである。 よって、 この Χ値がサ一ボ'ァクチ ユエ一夕 10の出力軸の絶対位置 0gdとなる。 図 9には、 上記の演算を回路によ り実現したブロック図を示している。 When the Ε 6 »χ = 0 is a θ ε = θ χ. Therefore, this Χ value becomes the absolute position 0 gd of the output shaft of the servo unit 10. FIG. 9 shows a block diagram in which the above operation is realized by a circuit.
このようにして得られた gd値の精度は、 実際には A/D変換回路の分解能に より定められ、 温度の影響を受ける G。 (t)、 Ό (t) に依存しないで検出する ことができる。 すなわち、 回転位置の検出精度への温度変化の影響を抑えること ができる。 The accuracy of the gd value obtained in this way is actually determined by the resolution of the A / D converter, and is affected by temperature G. (T) and Ό (t) can be detected. That is, it is possible to suppress the influence of the temperature change on the rotation position detection accuracy.
本発明によれば、 比較的低分解能の回路、 通常の SN比のアナログ信号による 回路を用いることによつても、サ一ボ'ァクチユエ一夕の出力軸における高精度且 つ高分解能な絶対位置の検出を容易に実現することができる。  According to the present invention, a relatively low-resolution circuit and a circuit using an analog signal having a normal SN ratio can be used to achieve a high-precision and high-resolution absolute position on the output shaft of a servomotor. Can easily be detected.
サーボ 'ァクチユエ一夕 10の回転子 1 1側における各回転位置センサ 1 6 A 及び 16 Bから検出した絶対回転位置を 6>π (0<θα<2π) とし、 減速器の減 速比を Gnとし、 また、減速ギア部 20の出力軸側に取り付けられた各減速器回転 位置センサ 26 A及び 26 Bから検出した絶対回転位置を 6>g (0<θε<2π) とする。 このとき、 0gxG11/27rの演算結果の値の整数値をNとすれば、 出力 軸が だけ回転したときに Νは回転子 1 1の回転軸が回転した回数となる。 この結果、 0n+Nx 2ΤΓによって、 回転子 1 1の回転軸の絶対位置を算出する ことができる。よって、サーボ 'ァクチユエ一夕 10の絶対回転位置の分解能は、 回転子 11の回転軸における位置検出系の検出信号^の分解能にギア比 Gnを掛 けた分解能になる。 このことから、減速ギア部 20の出力軸における回転位置 6g の検出系は、 出力軸の 1回転当りに回転子 1 1が回転した数を識別できる程度の 分解能を備えていれば充分である。 The absolute rotational position detected from the rotation position sensor 1 6 A and 16 B in the rotor 1 1 side of the servo 'Akuchiyue Isseki 10 6> [pi and (0 <θ α <2π) , the reduction ratio of the decelerator Gn, and the absolute rotation position detected by each reduction gear rotation position sensor 26A and 26B attached to the output shaft side of the reduction gear unit 20 is 6> g (0 < θε <2π). At this time, if the integer value of the operation result of 0 g x G 11 / 27r is N, then when the output shaft rotates by, Ν is the number of times the rotating shaft of the rotor 11 has rotated. As a result, the absolute position of the rotation axis of the rotor 11 can be calculated from 0 n + Nx 2ΤΓ. Therefore, the resolution of the absolute rotation position of the servo factory 10 is the resolution obtained by multiplying the resolution of the detection signal ^ of the position detection system on the rotation axis of the rotor 11 by the gear ratio Gn . From this, it is sufficient for the detection system of the rotation position 6 g on the output shaft of the reduction gear unit 20 to have a resolution enough to identify the number of rotations of the rotor 11 per rotation of the output shaft. .
また、 減速器のバックラッシュにより、 0Πと ( gのゼロ点のズレ量、 及び、 セ ンサの配置の公差による 0Bと のゼロ点のズレ量は、 既知であれば、 そのズレ 量の大きさを補正することにより、 0Bと 0gのゼロ点を調整することができるの で、 と 6>gのゼロ点が一致しなくてもよい。 図 7には、 回転子 11を回転駆動させたときの各回転位置センサの出力の変化 を示している。回転子 1 1の回転位置^の検出値 dを 1回転で 1024パルス /回転とし、減速比 Gnを 4とすると、減速ギア部 20における出力軸の 1回転で は 1024 x4 = 4096パルス/回転となるので、 高精度の絶対回転位置を検 出することができる。このとき、減速ギア部 20の出力軸側の回転位置 >gの検出 値 >gdは 4パルス/回転の分解能を備えているだけで充分である。 図 7では、 検 出値 0gdの分解能 1024パルス/回転としたときの例を示している。この場合、 0≤dsi< 256のとき N=0となり、 256≤0gd<512のとき N= lとなり、 512≤θ< 768のとき Ν=2となり、 768≤6>gd< 1024のとき N=3 となる。 Further, the backlash of the reduction gear, 0 [pi and (deviation amount of zero point of g, and the deviation amount of zero point of the 0 B by the tolerance of the arrangement of the sensor, if known, the shift amount By correcting the magnitude, the zeros of 0 B and 0 g can be adjusted, so that the zeros of and 6> g do not have to match. FIG. 7 shows a change in the output of each rotation position sensor when the rotor 11 is driven to rotate. Assuming that the detected value d of the rotation position ^ of the rotor 1 1 is 1024 pulses / revolution in one revolution and the reduction ratio Gn is 4, 1024 x 4 = 4096 pulses / revolution in one revolution of the output shaft in the reduction gear unit 20 Therefore, a highly accurate absolute rotational position can be detected. At this time, the detection value> gd rotational position> g on the output shaft side of the reduction gear unit 20 is sufficient only provides a resolution of 4 pulses / rotation. Fig. 7 shows an example when the detection value is 0 gd and the resolution is 1024 pulses / rotation. In this case, N = 0 when 0≤d si <256, N = l when 256≤0 gd <512, Ν = 2 when 512≤θ <768, and 768≤6> gd <1024 Then N = 3.
このようにして、 比較的低分解能の 2つの内蔵された位置検出器を用いて、 モ —夕の回転軸を高分解能に検出することができる。 追補  In this way, it is possible to detect the rotation axis of the evening sun with high resolution using the two built-in position detectors with relatively low resolution. Supplement
以上、 特定の実施例を参照しながら、 本発明について詳解してきた。 しかしな がら、 本発明の要旨を逸脱しない範囲で当業者が該実施例の修正や代用を成し得 ることは自明である。 すなわち、 例示という形態で本発明を開示してきたのであ り、 限定的に解釈されるべきではない。 本発明の要旨を判断するためには、 冒頭 に記載した特許請求の範囲の欄を参酌すべきである。  The present invention has been described in detail with reference to the specific embodiments. However, it is obvious that those skilled in the art can modify or substitute the embodiment without departing from the gist of the present invention. That is, the present invention has been disclosed by way of example, and should not be construed as limiting. In order to determine the gist of the present invention, the claims described at the beginning should be considered.
[産業上の利用可能性] 本発明によれば、 ロボットや汎用組立機器、 ロボット 'ハンド機器、 その他の 多軸制御装置などのような多軸駆動系の機械装置に対して適用することができる、 優れたサーボ ·ァクチユエ一夕を提供することができる。 [Industrial applicability] According to the present invention, the present invention can be applied to mechanical devices of a multi-axis drive system such as a robot, a general-purpose assembly device, a robot's hand device, and other multi-axis control devices. Able to provide excellent servos.
また、 本発明によれば、 回転軸の姿勢位置を高精度に検出することができる、 優れたサ一ボ'ァクチユエ一夕並びにその位置検出装置を提供することができる。 また、本発明によれば、駆動回路を同一のモー夕'ュニッ卜に内蔵して構成され たサーボ ·ァクチユエ一夕に対して適用することができる、 優れた位置検出装置 を提供することができる。 Further, according to the present invention, it is possible to provide an excellent servo actuator capable of detecting a posture position of a rotating shaft with high accuracy and a position detecting device therefor. Further, according to the present invention, an excellent position detecting device which can be applied to a servo-actuating unit having a driving circuit built in the same motor unit. Can be provided.
また、本発明によれば、モー夕'ュニット内の温度変化の影響を受けることなく 回転軸の姿勢位置を高精度に検出することができる、 優れたサ一ボ ·ァクチユエ 一夕並びにその位置検出装置を提供することができる。  Further, according to the present invention, it is possible to detect an attitude position of a rotating shaft with high accuracy without being affected by a temperature change in a motor unit. An apparatus can be provided.

Claims

請求の範囲 The scope of the claims
1 . 回転子側に永久磁石を配置するとともに固定子側にコイルを配置して磁束分 布とコイルの通過電流により トルクを発生させるタイプのサーボ ·ァクチユエ一 夕であって、 1. A type of servo actuator in which a permanent magnet is arranged on the rotor side and a coil is arranged on the stator side to generate torque by magnetic flux distribution and current passing through the coil.
前記回転子の回転位置を検出する第 1の回転位置検出部と、  A first rotation position detection unit that detects a rotation position of the rotor,
前記回転子の回転を減速する減速部と、  A deceleration unit for decelerating the rotation of the rotor,
前記減速部の出力軸における回転位置を検出する第 2の回転位置検出部と、 前記第 1及び第 2の回転位置検出部における各検出出力を基に前記回転子の回 転位置を算出する処理部と、  A second rotation position detection unit that detects a rotation position of an output shaft of the speed reduction unit; and a process of calculating a rotation position of the rotor based on each detection output of the first and second rotation position detection units. Department and
を具備することを特徴とするサーボ 'ァクチユエ一夕。 The servo is characterized by having the following.
2 . 前記減速部は、 前記回転子の回転軸に直結され、 前記固定子及び回転子を収 容するュニットと一体的に構成されてなることを特徴とする請求項 1に記載のサ ーボ 'ァクチユエ一夕。 2. The servo according to claim 1, wherein the speed reducer is directly connected to a rotation shaft of the rotor, and is integrally formed with a unit accommodating the stator and the rotor. 'Akchi Yue overnight.
3 . 前記第 1及び/又は第 2の回転位置検出部は、 3. The first and / or second rotational position detection unit is:
表面に正弦波着磁処理が施され回転軸に同軸状に取り付けられたセンサ ·マグ ネットと、  A sensor magnet with a sine wave magnetized surface and coaxially mounted on the rotating shaft;
前記センサ ·マグネッ卜の着磁面と対向する部位に該回転軸回りに略 9 0度の 位相差を以つて配設された、 磁束密度の大きさを検出する 2個の回転位置センサ と、  Two rotation position sensors, which are arranged around the rotation axis with a phase difference of about 90 degrees at a position facing the magnetized surface of the sensor magnet and detect a magnitude of a magnetic flux density;
を備えることを特徴とする請求項 1に記載のサ一ボ 'ァクチユエ一夕。 2. The apparatus according to claim 1, further comprising:
4 . 前記処理部は、 前記第 1の回転位置検出部で検出した前記回転子の絶対回転 位置を ( 0 < θ,< 2 π) とし、 前記減速部の減速比を Gnとし、 前記第 2の回 転位置検出部で検出した絶対回転位置を 0g ( 0く く 2 7Γ ) とし、 0 g x Gn/ 2 7Γの整数部分を Nとしたとき、 N X 2 7Γによつて前記回転子の絶対回転位置 を算出することを特徴とする請求項 1に記載のサーボ 'ァクチユエ一夕。 4. The processing unit sets the absolute rotation position of the rotor detected by the first rotation position detection unit to (0 <θ, <2π), sets the reduction ratio of the reduction unit to Gn , When the absolute rotation position detected by the rotation position detection unit 2 is 0 g (0 2 27Γ) and the integer part of 0 g x G n / 27 と し た is N, the rotation is performed by NX27Γ. 2. The servo actuator according to claim 1, wherein the absolute rotational position of the slave is calculated.
5. 回転子側に永久磁石を配置するとともに固定子側にコィルを配置して磁束分 布とコイルの通過電流によりトルクを発生させるタイプのサーボ ·ァクチユエ一 夕における回転子の絶対回転位置を検出する位置検出装置であって、 5. A permanent magnet is arranged on the rotor side, and a coil is arranged on the stator side to detect the absolute rotational position of the rotor in a servo factory that generates torque by magnetic flux distribution and current passing through the coil. A position detecting device,
前記回転子の回転位置を検出する第 1の回転位置検出部と、  A first rotation position detection unit that detects a rotation position of the rotor,
前記回転子の回転を減速する減速部の出力軸における回転位置を検出する第 2 の回転位置検出部と、  A second rotation position detection unit that detects a rotation position on an output shaft of a reduction unit that reduces the rotation of the rotor;
前記第 1及び第 2の回転位置検出部における各検出出力を基に前記回転子の回 転位置を算出する処理部と、  A processing unit that calculates a rotation position of the rotor based on each detection output of the first and second rotation position detection units;
を具備することを特徴とする位置検出装置。 A position detecting device comprising:
6. 前記減速部は、 前記回転子の回転軸に直結され、 前記固定子及び回転子を収 容するユニットと一体的に構成されてなることを特徴とする請求項 5に記載の位 6. The position according to claim 5, wherein the speed reduction portion is directly connected to a rotation shaft of the rotor, and is integrally formed with a unit that accommodates the stator and the rotor.
7. 前記第 1及び/又は第 2の回転位置検出部は、 7. The first and / or second rotational position detection unit includes:
表面に正弦波着磁処理が施され回転軸に同軸状に取り付けられたセンサ ·マグ ネットと、  A sensor magnet with a sine wave magnetized surface and coaxially mounted on the rotating shaft;
前記センサ ·マグネッ卜の着磁面と対向する部位に該回転軸回りに略 90度の 位相差を以つて配設された、 磁束密度の大きさを検出する 2個の回転位置センサ と、  Two rotation position sensors that detect the magnitude of the magnetic flux density and are disposed at a position facing the magnetized surface of the sensor magnet with a phase difference of about 90 degrees around the rotation axis;
を備えることを特徴とする請求項 5に記載の位置検出装置。 6. The position detecting device according to claim 5, comprising:
8. 前記処理部は、 前記第 1の回転位置検出部で検出した前記回転子の絶対回転 位置を 0Β (0<θ,<2π) とし、 前記減速部の減速比を Gnとし、 前記第 2の回 転位置検出部で検出した絶対回転位置を 6>g (0く 0g<27T) とし、 0g Gn/2 7Γの整数部分を Nとしたとき、 0Π+Νχ2ττによって前記回転子の絶対回転位置 を算出することを特徴とする請求項 5に記載の位置検出装置。 8. The processing unit sets an absolute rotation position of the rotor detected by the first rotation position detection unit to (0 <θ, <2π), a reduction ratio of the reduction unit to G n , the absolute rotational position detected by the second rotation position detector 6> and g (0 ° 0 g <27T), 0 when the g G n / 2 integer portion of 7Γ was n, said by 0 Π + Νχ2ττ 6. The position detecting device according to claim 5, wherein an absolute rotational position of the rotor is calculated.
PCT/JP2002/005772 2001-06-11 2002-06-11 Servo actuator and position detecting device therefor WO2002101914A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001175708 2001-06-11
JP2001-175708 2001-06-11
JP2002-148911 2002-05-23
JP2002148911A JP2003070284A (en) 2001-06-11 2002-05-23 Servo actuator and its position detector

Publications (1)

Publication Number Publication Date
WO2002101914A1 true WO2002101914A1 (en) 2002-12-19

Family

ID=26616702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005772 WO2002101914A1 (en) 2001-06-11 2002-06-11 Servo actuator and position detecting device therefor

Country Status (2)

Country Link
JP (1) JP2003070284A (en)
WO (1) WO2002101914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867993A (en) * 2019-12-17 2022-08-05 美蓓亚三美株式会社 Absolute encoder

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304444B2 (en) * 2003-08-07 2009-07-29 株式会社ジェイテクト Steer-by-wire device
JP2006322794A (en) * 2005-05-18 2006-11-30 Hitachi Cable Ltd Steering angle sensor
US7295907B2 (en) * 2005-06-14 2007-11-13 Trw Automotive U.S. Llc Recovery of calibrated center steering position after loss of battery power
JPWO2007055135A1 (en) * 2005-11-14 2009-04-30 株式会社安川電機 Magnetic encoder device
JP5104319B2 (en) * 2007-05-28 2012-12-19 セイコーエプソン株式会社 Electric motor drive control circuit and electric motor provided with the same
US8179126B2 (en) * 2008-12-30 2012-05-15 Shenzhen Academy Of Aerospace Technology Hall rotary transformer and hall rotation angle encoder made of it
JP6032010B2 (en) 2010-10-12 2016-11-24 株式会社ニコン Encoder, drive device and robot device
KR101758916B1 (en) * 2010-12-21 2017-07-17 엘지이노텍 주식회사 EPS Motor having steering angle sensor
JP2012247234A (en) * 2011-05-26 2012-12-13 Tamagawa Seiki Co Ltd Origin position detection mechanism
KR101080826B1 (en) * 2011-07-13 2011-11-07 (주)아모스텍 The magnetic servo actuator
DE102014002670B4 (en) * 2014-02-28 2017-01-19 gomtec GmbH Rotary encoder and method for detecting an angular position
US10029366B2 (en) 2014-11-21 2018-07-24 Canon Kabushiki Kaisha Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device
KR102086357B1 (en) * 2018-02-06 2020-03-09 영남대학교 산학협력단 Using Absolute Encoders for Motor Absolute position and Finding minimum Absolute Encoders Resolution
WO2023100473A1 (en) * 2021-11-30 2023-06-08 ソニーグループ株式会社 Actuator device, method for controlling actuator device, and moving body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201911A (en) * 1978-03-15 1980-05-06 Richard M. Glueck Shaft angle digitizer
US4740690A (en) * 1982-09-02 1988-04-26 Rockwell International Corporation Absolute combinational encoders coupled through a fixed gear ratio
JPH0461020U (en) * 1990-10-04 1992-05-26
JPH0996545A (en) * 1995-09-29 1997-04-08 Harmonic Drive Syst Ind Co Ltd Absolute position detection device of output rotary shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201911A (en) * 1978-03-15 1980-05-06 Richard M. Glueck Shaft angle digitizer
US4740690A (en) * 1982-09-02 1988-04-26 Rockwell International Corporation Absolute combinational encoders coupled through a fixed gear ratio
JPH0461020U (en) * 1990-10-04 1992-05-26
JPH0996545A (en) * 1995-09-29 1997-04-08 Harmonic Drive Syst Ind Co Ltd Absolute position detection device of output rotary shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867993A (en) * 2019-12-17 2022-08-05 美蓓亚三美株式会社 Absolute encoder

Also Published As

Publication number Publication date
JP2003070284A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4552353B2 (en) Servo actuator and its position detector
WO2002101914A1 (en) Servo actuator and position detecting device therefor
JP3431548B2 (en) Robot apparatus and control method therefor
JP6578499B1 (en) General-purpose rotary encoder and servo motor using the same
WO2021062635A1 (en) Joint structure and robot
JP2017159425A (en) robot
WO2021062637A1 (en) Integrated joint and robot
JPH03502507A (en) Modular robot device
JP6842736B1 (en) General-purpose rotary encoder
WO2000048296A1 (en) Actuator
US11876479B2 (en) Motor having integrated actuator with absolute encoder and methods of use
Yano et al. Basic characteristics of the small spherical stepping motor
JP2007024689A (en) Noncontact position detection sensor
US9950430B1 (en) Encoder update by using regenerative power
JP2022086241A (en) Angle sensor for motor control, motor control system, and method for controlling angle sensor for motor control
KR101901167B1 (en) Series Elastic Actuator
JP5132065B2 (en) 3-DOF rotation detection device and method
JP2006141101A (en) Actuator device and planetary reduction gear
JP2015114208A (en) Encoder and electric machinery
JP7494366B1 (en) Rotary encoder and servo controller including the same
US20240217096A1 (en) Robotic Joint Actuator
Ahn et al. A study on digital control of 3-DOF BLDCM using LabVIEW
CN115674161A (en) Full-digital flexible position sensing system for human dexterous finger joint simulation
JPS62126409A (en) Self-traveling robot
Leonhard Digital signal processing for trajectory control of a multi-axis robot with electrical servo drives

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US