WO2002099781A1 - Liquid crystal display unit - Google Patents

Liquid crystal display unit Download PDF

Info

Publication number
WO2002099781A1
WO2002099781A1 PCT/JP2002/005492 JP0205492W WO02099781A1 WO 2002099781 A1 WO2002099781 A1 WO 2002099781A1 JP 0205492 W JP0205492 W JP 0205492W WO 02099781 A1 WO02099781 A1 WO 02099781A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal display
color
display device
Prior art date
Application number
PCT/JP2002/005492
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Nakao
Yoshinori Tanaka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2002099781A1 publication Critical patent/WO2002099781A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones

Definitions

  • the present invention relates to a liquid crystal display device for displaying an image, and more particularly to a liquid crystal display device capable of realizing power saving.
  • color light of three primary colors (red, green, and blue) provided in each pixel is passed through white light emitted from a light source.
  • the color filter system that performs one display is the most widespread. In such a color filter system, when light emitted from a light source passes through a color filter, only light of a specific wavelength is selectively transmitted, and light of other wavelengths is absorbed. Therefore, there was a problem that the light use efficiency was low and the power loss was large.
  • a field-sequential color method has been proposed in which a plurality of light sources each emitting different color light are turned on in a time-division manner to perform color display.
  • a field sequential power system light emitted from each color light source is used for image display without passing through a color filter. Therefore, high light use efficiency can be obtained, and power saving can be achieved.
  • FIG. 1 is a timing chart showing the operation of a conventional field-sequential color liquid crystal display device, in which (a) shows the light emission intensity and light emission time of the light source, and (b) shows the liquid crystal display panel.
  • FIG. 6 is a diagram showing a change in light transmittance.
  • one frame period of an image signal is composed of three sub-frame periods, and the green, blue, and red light sources emit light sequentially at a predetermined emission intensity for each sub-frame period. Emits light of each color.
  • the luminous intensity of the light source is not an instantaneous luminous intensity at a certain point in time, but an integrated value of the luminous intensity from the start to the end of light emission of the light source.
  • the predetermined light emission intensity is usually set to the maximum light emission intensity of the light source. Therefore, FIG. 1 (a) shows an example in which light is emitted at the maximum emission intensity.
  • the light transmittance of the liquid crystal display panel is changed according to the image signal.
  • reference numerals 1A and IB indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel included in the liquid crystal display panel, respectively. Since the light transmittance of the liquid crystal display panel changes as described above, the color intensity of each color in the liquid crystal display panel is adjusted, and an image corresponding to the image signal is displayed.
  • the blue color intensity is low. In extreme cases, the blue color intensity may be zero.
  • each light source emits light of a predetermined luminous intensity no matter what image is displayed. Therefore, there is a problem that power required for light emission of the light source may be wasted.
  • liquid crystal display device is often used as a display device of a small electronic device such as a mobile phone.
  • a small electronic device such as a mobile phone.
  • much of the power consumption is consumed by liquid crystal display devices. That's why I mentioned earlier There is a strong demand to minimize wasteful power consumption and save power.
  • color display in a display device is realized by combining three colors of a color triangle on a chromaticity coordinate as shown in FIG. Therefore, an arbitrary color can be displayed by changing the color intensities of the three colors.
  • the following two methods can be considered for changing the color intensity of the liquid crystal display panel. That is, a means for changing the illumination intensity of an illumination device such as a backlight, and a means for changing the light transmittance of the liquid crystal display panel. From the standpoint of realizing power saving, the present inventors set the illumination intensity of the illumination device as low as possible, and optimized the light transmittance of the liquid crystal display panel correspondingly. I learned what I wanted.
  • the present invention has been made based on such knowledge, and an object of the present invention is to provide a liquid crystal display device capable of realizing power saving.
  • a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal sandwiched between the first substrate and the second substrate.
  • a liquid crystal layer comprising: a plurality of pixel electrodes arranged in a matrix on the first substrate so as to correspond to each of the pixels, and the first substrate or the second
  • a liquid crystal display panel having a counter electrode provided on one of the substrates, a light source having a light source for emitting light of a plurality of colors, and illuminating the liquid crystal display panel with the light of the plurality of colors;
  • a driving unit that adjusts, for each pixel, transmittance of light emitted from the lighting device in the liquid crystal layer by generating a potential difference between each pixel electrode and the counter electrode; Lighting that adjusts the light intensity for each color
  • a degree adjusting means one image signal corresponding to an image to be displayed in a frame period is input, the input image signal Contact Detecting means for detecting, for each color, the maximum color intensity from among the color intens
  • the one frame period includes a plurality of sub-frame periods, and in the sub-frame period, one of the light sources emitting the plurality of colors emits light. It is preferred that
  • the light sources emit red, green, and blue light, respectively.
  • the light sources emit red, green, blue, and white light, respectively.
  • the liquid crystal is a ⁇ CB mode liquid crystal.
  • the light source is a light emitting diode.
  • a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer including a liquid crystal sandwiched between the first substrate and the second substrate.
  • a liquid crystal display panel a light source that emits light of a plurality of colors, respectively, and an illumination device that irradiates the light of the plurality of colors toward the liquid crystal display panel; and Irradiation from the lighting device by generating a potential difference between Driving means for adjusting the transmittance of the emitted light in the liquid crystal layer for each pixel; illumination intensity adjusting means for adjusting the emission time of the light emitted from the illumination device for each color; and displaying during one frame period.
  • An image signal corresponding to an image to be input is input; a detection unit for detecting a maximum color intensity for each color from among the color intensities of the pixels in the input image signal; and a light source for each color sequentially in the one frame period
  • the illumination device is controlled so as to emit light, and the illumination intensity adjusting means is controlled based on the maximum color intensity, and the emission time of light emitted from the illumination device in the frame period is set for each color.
  • control means for controlling the driving means to adjust the transmittance of light emitted from the lighting device in the liquid crystal layer for each pixel.
  • the one frame period includes a plurality of sub-frame periods, and in the sub-frame period, one of the light sources emitting the plurality of colors emits light. It is preferred that
  • the light sources emit red, green, and blue light, respectively.
  • the light source emits red, green, blue, and white light, respectively.
  • the liquid crystal is an OCB (Optically self-Compensated Birefringence) mode liquid crystal.
  • the light source is a light emitting diode.
  • FIG. 1 is a timing chart showing the operation of a conventional field-sequential color liquid crystal display device, in which (a) shows the emission intensity and emission time of each color of red, blue, and green; () Is a diagram showing the transition of the light transmittance of the liquid crystal display panel.
  • FIG. 2 is a diagram illustrating a color triangle on chromaticity coordinates.
  • FIG. 3 is a perspective view showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1.
  • FIG. 4 is a cross-sectional view schematically showing the alignment state of the liquid crystal.
  • FIG. 5 is a block diagram showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1.
  • FIG. 6 is a conceptual diagram showing a case where an image of an apple is displayed on a liquid crystal display panel.
  • FIG. 7 is an evening timing chart showing the operation of the liquid crystal display device of the present invention according to Embodiment 1, wherein (a) shows the light emission intensity and light emission time of the red, blue and green light emitting diodes. (B) is a diagram showing a change in light transmittance of the liquid crystal display panel.
  • FIG. 8 is a diagram showing the correspondence between the light emission intensity of the light source, the light transmittance of a certain pixel, and the color intensity of a certain color in the pixel.
  • FIG. 7 is a diagram showing the correspondence in the case of the liquid crystal display device of the invention, and
  • FIG. 7 (b) is a diagram showing the correspondence in the case of the conventional liquid crystal display device.
  • FIG. 9 is a perspective view showing a configuration of a liquid crystal display device of the present invention according to Embodiment 2.
  • FIG. 10 is a diagram illustrating a color triangle on chromaticity coordinates.
  • FIG. 11 is a timing chart showing the operation of the liquid crystal display device according to the second embodiment of the present invention, wherein (a) shows the light emission intensity and light emission of red, green, blue and white light emitting diodes. Figure showing time, (b) is the LCD panel It is a figure showing transition of light transmittance.
  • FIG. 12 is a timing chart showing the operation of the liquid crystal display device according to the third embodiment of the present invention, wherein (a) shows the emission intensity and emission time of the red, green and blue light emitting diodes. And (b) is a diagram showing the transition of the light transmittance of the liquid crystal display panel.
  • FIG. 3 is a perspective view showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1.
  • the liquid crystal display device 1 includes a liquid crystal display panel 10.
  • the liquid crystal display panel 10 includes two substrates, that is, an upper substrate 11 and a lower substrate 12. The upper substrate 11 and the lower substrate 12 are opposed to each other via a spacer (not shown).
  • the liquid crystal layer 13 is formed by injecting the liquid crystal 14 into a gap formed between the upper substrate 11 and the lower substrate 12.
  • the upper substrate 11 is formed by laminating a counter electrode 6 and an alignment film 4 on the lower surface of a glass substrate 2 and a phase difference compensator 7 and a polarizing plate 8 on the upper surface.
  • the lower substrate 12 is configured such that a pixel electrode 40 and an alignment film 5 described later are laminated on the upper surface of the glass substrate 3 and a polarizing plate 9 is laminated on the lower surface similarly.
  • the lower substrate 12 may be provided with a phase difference compensator.
  • the counter electrode 6 may not be formed on the upper substrate 11 side, but may be formed on the lower substrate 12 side. Therefore, for example, even if the configuration is the same as that of the liquid crystal display device in the IPS (I-P lane-Switch) mode, Good.
  • the liquid crystal display panel 10 configured as described above is configured such that a predetermined voltage is applied between the counter electrode 6 provided on the upper substrate 11 and the pixel electrode 40 provided on the lower substrate 12, and the liquid crystal 14 is provided. Is changed from the splay alignment (FIG. 4 (a)) to the bend alignment (FIG. 4 (b)), and an image is displayed according to the bend alignment state. That is, the liquid crystal display panel 10 is a liquid crystal display panel provided with a so-called CB mode liquid crystal. In the case of the field sequential color system, one frame period of an image signal is composed of a plurality of subframe periods, and it is necessary for the liquid crystal to complete a response in each of the subframe periods.
  • the liquid crystal display panel included in the liquid crystal display device of the present invention be a liquid crystal display panel including a 0 CB mode liquid crystal capable of high-speed response of the liquid crystal.
  • a backlight 20 as an illumination device is arranged below the liquid crystal display panel 10 described above.
  • the backlight 20 includes a light guide plate 21 made of a transparent rectangular synthetic resin plate, and a light source 23 (a light source plate 23) disposed near the one end surface 22 of the light guide plate 21 and facing the end surface 22. 23 R, 23 G, and 23 B).
  • the light sources 23 R, 23 G, and 23 B are light emitting diodes (LEDs) that emit red, green, and blue light, respectively.
  • Light emitting diodes are characterized by excellent responsiveness (rapid rise and fall of light emission) and little afterglow. Therefore, it is a light source suitable for field sequential driving as described later.
  • the light source included in the liquid crystal display device of the present embodiment is not limited to the light emitting diode, and may be, for example, a cold cathode tube.
  • an explanation has been given by taking an example of an edge-light type backlight in which the light source is arranged near one end face 22 of the light guide plate 21.
  • the backlight may be a direct-type backlight in which are arranged and configured.
  • the light emitted from the light emitting diodes 23 R, 23 G, and 23 B of the respective colors enters the light guide plate 21 from the end face 22.
  • the incident light is scattered inside the light guide plate 21 and emitted from the front surface of the upper surface.
  • the entire liquid crystal display panel 10 is irradiated with red, green, or blue light.
  • one set of light sources provided with one red, green, and blue light emitting diode is provided, but a plurality of light emitting diodes of each color are provided.
  • a plurality of sets of light sources may be provided.
  • light-emitting diodes of the same color may emit light at the same time.
  • the screen may be divided into three regions, and one set of light sources may be arranged in each region. In this case, for example, the first light source emits a red light emitting diode, the second light source emits a green light emitting diode, and the third light source emits a blue light emitting diode for a predetermined time.
  • the first set of light sources emits a blue light emitting diode
  • the second set of light sources emits a red light emitting diode
  • the third set of light sources emits a green light emitting diode for a predetermined time.
  • the second light source emits a blue light emitting diode
  • the third light source emits a red light emitting diode for a predetermined time, and thereafter, this operation may be repeated. .
  • FIG. 5 is a block diagram showing a configuration of the liquid crystal display device 1 according to the first embodiment of the present invention.
  • the liquid crystal display panel 10 is a well-known TFT (Thin Film Transistor) type liquid crystal display element, and a counter electrode 6 is formed on the inner surface.
  • the upper substrate (opposite substrate) 11 and the lower substrate (array substrate) 12 on which the pixel electrode 40, the gate line 31, the source line 32 and the switching element 33 are formed on the inner surface are liquid crystal. They are arranged so as to face each other with the layer 13 interposed therebetween. Further, in the array substrate 12, the gate lines 31 and the source lines 32 are alternately crossed.
  • the pixel electrode 40 and the switching element 33 are formed so as to correspond to the pixel partitioned by the gate line 31 and the source line 32 ⁇ the gate line 31 and the source line 32 Are driven by a gate driver 34 and a source driver 35, respectively.
  • the operation of the backlight 20 is controlled by the illumination intensity adjusting means 37. As a result, the illumination intensity of the backlight 20 is adjusted as described later.
  • the liquid crystal display device 1 includes a storage unit 39 for storing an image signal input from an external device, and a detection unit for executing a detection process described later based on the image signal stored in the storage unit 39.
  • this image signal is a signal relating to a color image.
  • control means 36 controls the light emission intensity of the light emitting diodes 23 R, 23 G, and 23 B of each color based on the result of the detection processing by the detection means 25. Is calculated.
  • control means 36 outputs a control signal to the illumination intensity adjusting means 37 in order to cause the light emitting diodes 23 R, 23 G, and 23 B to emit light sequentially in each subframe period.
  • the control signal includes information indicating the calculated light emission intensity. Therefore, the illumination intensity adjusting means 37 causes the light emitting diodes 23 R, 23 G, and 23 B to sequentially emit light at the calculated emission intensity for each subframe period.
  • control means 36 outputs an image signal to the source driver 35 in order to display an image related to each color in synchronization with the light emission of the light emitting diodes 23 R, 23 G, and 23 B.
  • a control signal is output to the gate driver 34 and the source driver 35.
  • the gate driver 34 outputs a scanning signal corresponding to a voltage for turning on the switching element 33 to the gate line 31 so that the switching element 33 of each pixel is sequentially turned on.
  • the source driver 35 The image signal is sequentially written to the pixel electrode 44 of each pixel through the source line 32.
  • the gate driver 34 outputs the above-described scanning signal to the gate line 31 of the first row, so that the switching element 33 connected to the gate line 31 of the first row is output. Turn on. Then, when the switching element 33 is turned on, the image signal output from the source driver 35 to each source line 32 is written to the pixel electrode 4 of the pixel in the first row.
  • the gate driver 34 outputs a signal corresponding to the voltage for turning off the switching element 33 to the gate line 31 of the first row, and connects the gate driver 31 to the gate line 31 of the first row.
  • the switching element 33 is turned off, and the gate driver 34 outputs the scanning signal to the gate line 31 of the second row at the same time. Turn on the switching element 33 connected to 1.
  • the image signal output from the source driver 35 to each source line 32 is written to the pixel electrode 40 of the pixel of the second row.
  • the image signal is sequentially written to the pixel electrodes 40 of the pixels in each row.
  • a potential difference is generated between the counter electrode and the pixel electrode 40 to drive the liquid crystal 14, and the transmittance of light emitted from the backlight 20 in the liquid crystal display panel 10 changes.
  • an image corresponding to the image signal appears in the eyes of the observer.
  • the detection means 38 reads out the image signal for one frame from the storage means 39 at a predetermined timing, and from the read out image signal, the color of each of red, green and blue in each of the three hundred seventy-nine pixels. The intensity is detected individually. Next, the detecting means 38 detects the maximum value of the color intensity of each color in the image represented by the image signal. Then, the detection means 38 outputs a signal indicating the maximum value of the detected color intensity of each color to the control means 36.
  • the control means 36 based on the maximum value of the color intensity of each color indicated in the signal output from the detection means 38, performs light emitting diode 23R, 23G, 23B as follows. Are respectively calculated.
  • the red color intensity at pixel 50 in FIG. 6 is 14 out of 16 levels, and is larger than the red color intensity at any other pixel.
  • the green color intensity at pixel 51 in FIG. 6 is 13 out of 16 levels, which is larger than the green color intensity at any other pixel.
  • the blue color intensity at pixel 52 in FIG. 6 is 5 out of 16 levels, and is a value larger than the blue color intensity at any other pixel.
  • the control means 36 generates a signal indicating the light emission intensity of each of the light emitting diodes 23 R, 23 G, and 23 B determined in this manner, and generates the signal. Output to the illumination intensity adjusting means 37.
  • control means 36 calculates the light transmittance of each pixel of the liquid crystal display panel 10 in each subframe period as follows.
  • the transmittance of the pixel 50 having the maximum red color intensity is maximized.
  • the transmittance is determined according to a value obtained by dividing the color intensity of the pixel by the color intensity of the pixel 50. Specifically, for example, when the red color intensity of the pixel 53 is 13 out of 16 levels, the transmittance of the pixel 53 is set to 13/14 times the maximum transmittance. By calculating the transmittance for the other pixels in the same manner, the transmittance of all the pixels of the liquid crystal display panel 10 is calculated.
  • the control means 36 executes the same processing also in the sub-frame period for displaying the blue and green images, thereby reducing the light transmittance of each pixel of the liquid crystal display panel 10 in each sub-frame period. calculate. Then, the control means 36 generates an image signal to be written to each pixel in order to realize the transmittance calculated as described above, and outputs the image signal to the source driver 35.
  • the gate dryno '34, the source driver 35, and the illumination intensity adjusting means 37 operate synchronously as described above, so that one frame of image is displayed on the liquid crystal display panel 10. Will be displayed.
  • FIG. 7 is a timing chart showing the operation of the liquid crystal display device 1 according to the first embodiment of the present invention, wherein (a) shows the light emission intensity and light emission of the light emitting diodes 23 R, 23 G, and 23 B.
  • FIG. 6B is a diagram showing time
  • FIG. 7B is a diagram showing transition of light transmittance of the liquid crystal display panel 10.
  • reference numerals 2A and 2B indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel of the liquid crystal display panel 10, respectively.
  • the light emitting diode The modes 23R, 23G, and 23B emit light sequentially at the emission intensity calculated as described above. Therefore, unlike the conventional case, the light emitting diodes 23 R, 23 G, and 23 B do not always emit light with the maximum light emission intensity.
  • the transmittance of the liquid crystal display panel 10 changes in accordance with the image signal generated as described above, the transmittance of at least one of the pixels of the liquid crystal display panel 10 is changed. Will be the largest. Therefore, as shown in Fig. 7 (b), the maximum value of the light transmittance of the liquid crystal display panel 10 in the screen always changes at the same value as the maximum transmittance of the liquid crystal display panel 10 .
  • FIG. 8 is a diagram showing the correspondence between the light emission intensity of the light source, the light transmittance of a certain pixel, and the color intensity of a certain color in the pixel.
  • FIG. 7 is a diagram showing the above-mentioned correspondence in the case of the liquid crystal display device 1 of the invention
  • FIG. 7 (b) is a diagram showing the above-mentioned correspondence in the case of a conventional liquid crystal display device.
  • FIG. 8 (a) shows the above-described correspondence when the maximum value of the color intensity is 14 out of 16 levels, such as the red color intensity in the above-described example.
  • the values shown in Fig. 8 (a) and (b) are standardized so that the maximum value is 1. Therefore, for example, when the light emission intensity of the light source is 14 16, the value indicates that the value is 14 16 which is the maximum value of the light emission intensity of the light source.
  • the light emission intensity of the light source is 1 regardless of the color intensity. This is because, as described above, in the conventional liquid crystal display device, while the light source always emits light with the maximum light emission intensity, the color intensity is changed by adjusting the light transmittance of the liquid crystal display panel. . Therefore, even when the color intensity is set to 14 Z 16, the light emission intensity of the light source is 1.
  • the light emission intensity of the light source may be smaller than in the conventional case. Therefore, the power required for light emission of the light source can be reduced, and accordingly, power saving can be achieved.
  • the liquid crystal display device of the present embodiment when a white pixel is present in the screen, each color must be displayed with the maximum color intensity. I can't do it. However, since images generally tend to be biased toward one of the colors, sufficient power savings can be expected. In particular, since the tendency is remarkable in the case of a natural image, the liquid crystal display device of the present embodiment is considered to be suitable for a television receiver or the like that often displays a natural image.
  • the liquid crystal display device of the first embodiment has three light emitting diodes of red, green, and blue as light sources. In this case, as described above, when there are many white displays, power saving cannot be expected so much. Therefore, the liquid crystal display device according to the second embodiment includes a white light emitting diode in addition to the three color light emitting diodes as described later.
  • information indicating a color image is represented by information on three colors, red, green, and blue. This is because a point on chromaticity coordinates can be represented by a combination of at least three colors. In order to extend the range that can be represented by combining the three colors, it is desirable to use colors that are far apart on the chromaticity coordinates, such as red, green, and blue.
  • a point on a chromaticity coordinate to represent a point is not limited to the above three colors. Three colors different from the three colors may be used, or four or more colors may be used.
  • the liquid crystal display device of the present embodiment emits white light in order to save power in electronic devices in which white display is frequently performed, such as a mobile phone.
  • Light emitting diode Light emitting diode.
  • FIG. 9 is a perspective view showing a configuration of a liquid crystal display device of the present invention according to Embodiment 2.
  • a light source 23 (23R, 23G, 23) facing the end face 22 is provided.
  • B, 23 W The light sources 23 R, 23 G, 23 B, and 23 W are light-emitting diodes that emit red, green, blue, and white light, respectively.
  • the other configuration of the liquid crystal display device according to the second embodiment is the same as that of the first embodiment, and a description thereof will not be repeated.
  • one frame period of an image signal is divided into four sub-frame periods for displaying images of red, green, blue, and white, respectively.
  • the liquid crystal display device of the present embodiment in order to represent a certain point on the chromaticity coordinates, three colors close to the point may be selected and expressed using the three colors. Therefore, for example, in order to display light yellow, it is only necessary to combine white, red, and green colors (see FIG. 10). Therefore, when light yellow is displayed on all the pixels of the liquid crystal display panel 10, blue display is unnecessary, and it is necessary to emit the blue light emitting diode 23B during the sub-frame period for displaying the blue image. Is gone. However, even in such a case, it goes without saying that the blue light emitting diode 23B may be made to emit light supplementarily.
  • the liquid crystal display device 1 of the present embodiment determines which of the three colors of red, green, blue, and white should be combined for the display on each pixel of the liquid crystal display panel 10 according to the image signal. select. Then, in the same manner as in the first embodiment, the light emission intensities of the light emitting diodes 23 R, 23 G, 23 B, and 23 W and the light transmittance of the liquid crystal display panel 10 are adjusted, and Is displayed.
  • the liquid crystal display device 1 detects the color intensity of each color of red, green, blue, and white in each pixel, and then detects the maximum value of the color intensity of each color. Next, based on the maximum value of the color intensity, the emission intensity of each of the light emitting diodes 23 R, 23 G, 23 B, and 23 W is determined as described above. In addition, the light transmittance of each pixel is determined based on the color intensity of each pixel as described above. Then, the light emitting diodes 23 R, 23 G, 23 B, and 23 W emit light sequentially at the emission intensity determined in this manner, and in synchronization with the timing, the transmission determined as described above is performed. The liquid crystal is driven so as to obtain the ratio.
  • the light emitting diode 23W emits light and the light transmittance of the liquid crystal display panel 10 is maximized in the subframe period in which a white image is displayed.
  • the red, green, and blue light emitting diodes 23 R, 23 G, and 23 B may be made to emit auxiliary light.
  • the light transmittance of the liquid crystal display panel 10 may be increased in each sub-frame period in which images of red, green, and blue are displayed.
  • FIG. 11 is a timing chart showing the operation of the liquid crystal display device 1 according to the second embodiment of the present invention, in which (a) shows light emitting diodes 23 R, 23 G, 23 B, and 23
  • FIG. 2 is a diagram showing the light emission intensity and light emission time of W
  • FIG. 2 (b) is a diagram showing a change in light transmittance of the liquid crystal display panel 10
  • reference numerals 3A and 3B represent transitions of the maximum value and the minimum value of the light transmittance of each pixel of the liquid crystal display panel 10, respectively.
  • the emission diodes 23R, 23G, 23B, and 23W in each subframe period were calculated in the same manner as in the first embodiment.
  • the light emitting diodes 23R, 23G, 23B, and 23W do not always emit light with the maximum light emission intensity unlike the conventional case. Therefore, in the liquid crystal display device of the present embodiment, the light emission intensity of the light source may be smaller than in the conventional case. Therefore, As in the case of Embodiment 1, the power required for light emission of the light source can be reduced, and power can be saved.
  • the illumination intensity of the backlight is changed by changing the emission intensity of the light emitting diode of the backlight.
  • the liquid crystal display device of the third embodiment changes the illumination intensity of the backlight by changing the light emission time of the light emitting diode.
  • the configuration of the liquid crystal display device of the third embodiment is the same as that of the first embodiment. Therefore, a description will be given below with reference to FIGS. 3 and 5.
  • the liquid crystal display device 1 of the present embodiment calculates the maximum value of the color intensity of each color in each pixel in the same manner as in the first embodiment, and based on the result, the light emitting diode 23 R in each subframe period. , 23G, and 23B emission times are determined.
  • the example of the apple image see FIG. 6 described in the first embodiment.
  • the red color intensity at pixel 50 in FIG. 6 is 14 out of 16 levels and is greater than the red color intensity at any other pixel.
  • the light emitting time of the red light emitting diode 23R during the red subframe period is set to be 14/16 times the normal light emitting time of the light emitting diode 23R.
  • the green color intensity of the pixel 51 in FIG. 6 is 13 out of 16 levels, and is larger than the green color intensity of any other pixel.
  • the light emitting time of the green light emitting diode 23 G during the green subframe period is set to be 13/16 times the normal light emitting time of the light emitting diode 23 G.
  • the blue color intensity at pixel 52 in FIG. 6 is 5 out of 16 levels and is larger than the blue color intensity at any other pixel.
  • the light emitting time of the blue light emitting diode 23 B during the blue sub-frame period is 5 13 times the normal light emitting time of the light emitting diode 23 B.
  • the control means 36 included in the liquid crystal display device 1 of the present embodiment generates a signal indicating the light emission time of each of the light emitting diodes 23 R, 23 G, and 23 B determined as described above. Then, the signal is output to the illumination intensity adjusting means 37.
  • the control unit 36 calculates the light transmittance of each pixel of the liquid crystal display panel 10 in each sub-frame period in the same manner as in the first embodiment. Then, the control means 36 generates an image signal to be written to each pixel in order to realize the transmittance calculated as described above, and outputs the image signal to the source driver 35.
  • the gate driver 34, the source driver 35, and the illumination intensity adjusting means 37 operate in synchronization, whereby an image for one frame is displayed on the liquid crystal display panel 10.
  • FIG. 12 is a timing chart showing the operation of the liquid crystal display device of the present invention according to Embodiment 3, wherein (a) shows the light emission intensity and light emission of the light emitting diodes 23 R, 23 G, and 23 G.
  • FIG. 5B is a diagram showing time
  • FIG. 6B is a diagram showing a change in light transmittance of the liquid crystal display panel 10.
  • reference numerals 4A and 4B indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel included in the liquid crystal display panel 10, respectively.
  • the light emitting diodes 23R, 23G and 23B emit light sequentially in the light emission time calculated as described above in each subframe period. During these light-emitting times, the light-emitting diodes 23R, 23G, and 23B emit light at the maximum light-emitting intensity of the light-emitting diodes.
  • the correspondence between the light emission time of the light source, the light transmittance of one pixel, and the color intensity of one color in the pixel is the same as in FIG. That is, if “light emission intensity of light source” is replaced with “light emission time of light source”, FIG. 8 can be applied to this embodiment as it is.
  • the liquid crystal display device 1 of the present embodiment may have a configuration in which a white light emitting diode is provided in addition to the three color light emitting diodes. Good. In this case, sufficient power saving can be achieved even when there are many white displays.
  • the light emission of the light source is controlled according to the displayed image.
  • the image displayed in this way it is also possible to save power by controlling the light emission of the light source, for example, according to the state of use.
  • Embodiment 2 For example, in the case of a mobile phone, it is only necessary to be able to display the minimum necessary display when waiting. Therefore, color display is often unnecessary. Therefore, when a light source that emits four colors of light is provided as in Embodiment 2, only the light source that emits white light may be emitted during standby. In addition, when a light source that emits three colors of light is provided as in Embodiment 1, If this is the case, only a light source that emits green light with high visibility may be emitted during standby.
  • the liquid crystal display device of the present invention may include a sensor such as a photodiode for detecting ambient brightness, and perform white display or color display based on information output from the sensor. Good.
  • color display may be performed only when displaying a natural image, and white display may be performed in other cases. . In this case, it can be easily realized by including an identification signal indicating whether or not to perform the color display in the image signal in advance.
  • the liquid crystal display device of the present invention can achieve power saving by controlling light emission of the light source in accordance with a displayed image.
  • liquid crystal display device of the present invention uses liquid crystal of the ⁇ CB mode
  • the present invention is not limited to this.
  • a liquid crystal having spontaneous polarization such as a ferroelectric liquid crystal or an antiferroelectric liquid crystal, which can respond at high speed similarly to the OCB mode liquid crystal, may be used.
  • the liquid crystal may be a liquid crystal in a TN (Twisted-Nematic) mode or the like.
  • the maximum value of the color intensity of each pixel is detected for each color with one frame as one unit.
  • similar processing is performed with multiple frames as one unit. Is also good.
  • the image signal input from an external device may be a signal in which the maximum value of the color intensity of each pixel is included in advance.
  • Video provided The pod detects the maximum value of the color intensity of each pixel for each color, and generates an image signal including the detected maximum value of the color intensity.
  • the liquid crystal display device of the present invention simplifies the processing for detecting the maximum value of the color intensity of each pixel, so that the display processing can be sped up.
  • the liquid crystal display device according to the present invention is useful as a display device of a small electronic device such as a liquid crystal television, a liquid crystal monitor, or a portable telephone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A liquid crystal display unit (1) detects the color intensities of red, green and blue in each pixel on a liquid crystal display panel (10) based on one frame of pixel signal, and a maximum color intensity value for each color is detected based on the detected results. The liquid crystal display unit (1) displays the light emission intensities of light emitting diodes (23R, 23G, 23B) in images using a field sequential color system according to the maximum color intensity value of each color, with a light transmittance at each pixel on the panel (10) specified in response to the light emission intensities and an image signal.

Description

明 細  Detail
液晶表示装置 Liquid crystal display
〔技術分野〕 〔Technical field〕
本発明は、 画像を表示する液晶表示装置に関し、 特に省電力化を実現 することができる液晶表示装置に関する。  The present invention relates to a liquid crystal display device for displaying an image, and more particularly to a liquid crystal display device capable of realizing power saving.
〔技術背景〕  [Technical background]
液晶表示装置がカラ一表示を実現するための方式としては、 各画素に 設けられた光の 3原色 (赤、 緑、 青) のカラーフィル夕を光源から発せ られた白色光が通ることによってカラ一表示を行うカラーフィルタ方式 が最も普及している。 このようなカラーフィルタ方式の場合、 光源から 発せられた光がカラ一フィル夕を通過するときに特定の波長の光だけが 選択透過され、それ以外の波長の光は吸収されることになる。そのため、 光利用効率が低く、 電力損失が大きいという課題があった。  As a method for realizing a color display by a liquid crystal display device, color light of three primary colors (red, green, and blue) provided in each pixel is passed through white light emitted from a light source. The color filter system that performs one display is the most widespread. In such a color filter system, when light emitted from a light source passes through a color filter, only light of a specific wavelength is selectively transmitted, and light of other wavelengths is absorbed. Therefore, there was a problem that the light use efficiency was low and the power loss was large.
そのため、 異なった色光をそれぞれ発する複数の光源を時分割で点灯 させることによりカラー表示を行うフィールドシーケンシャルカラー方 式が提案されている。 このようなフィールドシーケンシャル力ラー方式 の場合、 各色の光源から発せられる光がカラーフィル夕を通過すること なくそのまま画像表示に利用されることになる。 そのため、 高い光利用 効率が得られ、 省電力化を達成することができる。  For this reason, a field-sequential color method has been proposed in which a plurality of light sources each emitting different color light are turned on in a time-division manner to perform color display. In the case of such a field sequential power system, light emitted from each color light source is used for image display without passing through a color filter. Therefore, high light use efficiency can be obtained, and power saving can be achieved.
第 1図は、 従来のフィールドシーケンシャルカラ一方式の液晶表示装 置の動作を示すタイミングチャートであって、 ( a ) は光源の発光強度 及び発光時間を示す図、 (b ) は液晶表示パネルの光の透過率の推移を 示す図である。 第 1図 ( a ) に示すとおり、 画像信号の 1 フレーム期間は 3つのサブ フレーム期間から構成されており、 サブフレーム期間ごとに緑、 青、 赤 の光源を所定の発光強度で順次発光させることにより各色光を発する。 ここで、 光源の発光強度とは、 ある時点における瞬間的な発光強度では なく、 光源が発光を開始してから終了するまでの間の発光強度の積分値 のことをいう。 なお、 前記所定の発光強度は光源の最大の発光強度に設 定される場合が通常である。 そのため、 第 1図 ( a ) では、 その最大の 発光強度で発光している例を示している。 FIG. 1 is a timing chart showing the operation of a conventional field-sequential color liquid crystal display device, in which (a) shows the light emission intensity and light emission time of the light source, and (b) shows the liquid crystal display panel. FIG. 6 is a diagram showing a change in light transmittance. As shown in Fig. 1 (a), one frame period of an image signal is composed of three sub-frame periods, and the green, blue, and red light sources emit light sequentially at a predetermined emission intensity for each sub-frame period. Emits light of each color. Here, the luminous intensity of the light source is not an instantaneous luminous intensity at a certain point in time, but an integrated value of the luminous intensity from the start to the end of light emission of the light source. It should be noted that the predetermined light emission intensity is usually set to the maximum light emission intensity of the light source. Therefore, FIG. 1 (a) shows an example in which light is emitted at the maximum emission intensity.
また、 第 1図 (b ) に示すとおり、 画像信号に応じて、 液晶表示パネ ルの光の透過率を変化させる。 ここで、 符号 1 A、 I Bは液晶表示パネ ルが有する各画素における光の透過率のうちの最大値、 最小値の推移を それぞれ示している。 このように液晶表示パネルの光の透過率が変化す るために、 液晶表示パネルにおける各色の色強度が調整されて、 画像信 号に対応した画像が表示されることになる。  Also, as shown in FIG. 1 (b), the light transmittance of the liquid crystal display panel is changed according to the image signal. Here, reference numerals 1A and IB indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel included in the liquid crystal display panel, respectively. Since the light transmittance of the liquid crystal display panel changes as described above, the color intensity of each color in the liquid crystal display panel is adjusted, and an image corresponding to the image signal is displayed.
〔発明の開示〕  [Disclosure of the Invention]
ところで、 表示する画像によっては特定の色の光源については前記所 定の発光強度で発光する必要がない場合がある。 例えば黄色の色強度が 高い画像を表示する場合、 青色の色強度は低い。 極端な場合には青色の 色強度がゼロであることもある。  By the way, depending on an image to be displayed, there is a case where it is not necessary to emit light of a specific color with the above-mentioned emission intensity. For example, when displaying an image with a high yellow color intensity, the blue color intensity is low. In extreme cases, the blue color intensity may be zero.
しかしながら、 第 1図 ( a ) に示すとおり、 前述したような従来のフ ィールドシーケンシャルカラ一方式の液晶表示装置の場合、 どのような 画像を表示するときであっても各光源は所定の発光強度で発光していた, そのため、 光源の発光に要する電力が無駄に消費される場合があるとい う問題があった。  However, as shown in FIG. 1 (a), in the case of the conventional field-sequential color liquid crystal display device as described above, each light source emits light of a predetermined luminous intensity no matter what image is displayed. Therefore, there is a problem that power required for light emission of the light source may be wasted.
近年では携帯型電話機等の小型電子機器の表示装置として液晶表示装 置が用いられる場合が多い。 そのような小型電子機器においてはその消 費電力の多くが液晶表示装置で費やされている。 そのため、 前述したよ うな無駄な電力消費を極力抑え、 省電力化を図ることが強く要求されて いる。 In recent years, a liquid crystal display device is often used as a display device of a small electronic device such as a mobile phone. In such small electronic devices, much of the power consumption is consumed by liquid crystal display devices. That's why I mentioned earlier There is a strong demand to minimize wasteful power consumption and save power.
一般に、 表示装置におけるカラー表示は、 第 2図に示すような色度座 標上の色三角形の 3つの色を合成させることによって実現される。 その ため、 前記 3つの色の色強度を変化させることによって任意の色を表示 することができる。  Generally, color display in a display device is realized by combining three colors of a color triangle on a chromaticity coordinate as shown in FIG. Therefore, an arbitrary color can be displayed by changing the color intensities of the three colors.
液晶表示装置の場合、 液晶表示パネルにおける色強度を変化させる手 段としては次の 2つが考えられる。 すなわち、 バックライ ト等の照明装 置の照明強度を変化させるという手段、 及び液晶表示パネルの光の透過 率を変化させるという手段である。 本発明者等は、 省電力化を実現する という観点に立った場合、 照明装置の照明強度をできる限り低く した上 で、 それに対応して液晶表示パネルの光の透過率を最適化することが望 ましいことを知見した。  In the case of a liquid crystal display device, the following two methods can be considered for changing the color intensity of the liquid crystal display panel. That is, a means for changing the illumination intensity of an illumination device such as a backlight, and a means for changing the light transmittance of the liquid crystal display panel. From the standpoint of realizing power saving, the present inventors set the illumination intensity of the illumination device as low as possible, and optimized the light transmittance of the liquid crystal display panel correspondingly. I learned what I wanted.
本発明はこのような知見に基づいてなされており、 その目的は省電力 化を実現することができる液晶表示装置を提供することにある。  The present invention has been made based on such knowledge, and an object of the present invention is to provide a liquid crystal display device capable of realizing power saving.
この目的を達成するために、 本発明に係る液晶表示装置は、 第 1 の基 板と、 第 2の基板と、 前記第 1の基板と前記第 2の基板との間に挟持さ れた液晶からなる液晶層とを備え、 前記第 1 の基板に各画素ごとにそれ ぞれ対応するようにマトリクス状に配置された複数個の画素電極が備 えられ、 前記第 1の基板または前記第 2の基板のいずれかに対向電極が 備えられた液晶表示パネルと、 複数色の光をそれぞれ発する光源を有し, 前記液晶表示パネルに向けて前記複数色の光を照射する照明装置と、 前 記各画素電極と前記対向電極との間に電位差を生じさせることにより、 前記照明装置から照射される光の前記液晶層における透過率を各画素 ごとに調節する駆動手段と、 前記照明装置から照射される光の強度を各 色ごとに調節する照明強度調節手段と、 1 フレーム期間において表示さ せる画像に対応した画像信号が入力され、 前記入力された画像信号にお ける各画素の色強度の中から最大の色強度を各色ごとに検出する検出 手段と、 前記 1フレーム期間において順次各色の光源を発光させるよう に前記照明装置を制御すると共に、 前記最大の色強度に基づいて、 前記 照明強度調節手段を制御して前記フレーム期間において前記照明装置 から照射される光の強度を各色ごとに調節し、 そして前記駆動手段を制 御して前記照明装置から照射される光の前記液晶層における透過率を 各画素ごとに調節する制御手段とを備える。 In order to achieve this object, a liquid crystal display device according to the present invention includes a first substrate, a second substrate, and a liquid crystal sandwiched between the first substrate and the second substrate. A liquid crystal layer comprising: a plurality of pixel electrodes arranged in a matrix on the first substrate so as to correspond to each of the pixels, and the first substrate or the second A liquid crystal display panel having a counter electrode provided on one of the substrates, a light source having a light source for emitting light of a plurality of colors, and illuminating the liquid crystal display panel with the light of the plurality of colors; A driving unit that adjusts, for each pixel, transmittance of light emitted from the lighting device in the liquid crystal layer by generating a potential difference between each pixel electrode and the counter electrode; Lighting that adjusts the light intensity for each color A degree adjusting means, one image signal corresponding to an image to be displayed in a frame period is input, the input image signal Contact Detecting means for detecting, for each color, the maximum color intensity from among the color intensities of the respective pixels, and controlling the lighting device so as to sequentially emit light of each color in the one frame period; and Controlling the illumination intensity adjusting means to adjust the intensity of light emitted from the illumination device for each color in the frame period, and controlling the driving means to emit light from the illumination device. Control means for adjusting the transmittance of light in the liquid crystal layer for each pixel.
また、 前記発明に係る液晶表示装置において、 前記 1 フレーム期間が 複数のサブフレーム期間からなり、 前記サブフレーム期間においては前 記複数色の色をそれぞれ発する光源のうち、 1色の光源が発光すること が好ましい。  Further, in the liquid crystal display device according to the present invention, the one frame period includes a plurality of sub-frame periods, and in the sub-frame period, one of the light sources emitting the plurality of colors emits light. It is preferred that
また、 前記発明に係る液晶表示装置において、 前記光源が、 それぞれ 赤色、 緑色、 および青色をそれぞれ発光することが好ましい。  In the liquid crystal display device according to the present invention, it is preferable that the light sources emit red, green, and blue light, respectively.
また、 前記発明に係る液晶表示装置において、 前記光源が、 それぞれ 赤色、 緑色、 青色、 および白色をそれぞれ発光することが好ましい。  Further, in the liquid crystal display device according to the present invention, it is preferable that the light sources emit red, green, blue, and white light, respectively.
また、 前記発明に係る液晶表示装置において、 前記液晶は〇 C Bモー ドの液晶であることが好ましい。  Further, in the liquid crystal display device according to the present invention, it is preferable that the liquid crystal is a 〇CB mode liquid crystal.
さらに、 前記発明に係る液晶表示装置において、 前記光源は発光ダイ オードであることが好ましい。  Further, in the liquid crystal display device according to the present invention, it is preferable that the light source is a light emitting diode.
また、 本発明に係る液晶表示装置は、 第 1の基板と、 第 2の基板と、 前記第 1の基板と前記第 2の基板との間に挟持された液晶からなる液晶 層とを備え、 前記第 1の基板に各画素ごとにそれぞれ対応するようにマ トリクス状に配置された複数個の画素電極が備えられ、 前記第 1の基板 または前記第 2の基板のいずれかに対向電極が備えられた液晶表示パネ ルと、 複数色の光をそれぞれ発する光源を有し、 前記液晶表示パネルに 向けて前記複数色の光を照射する照明装置と、 前記各画素電極と前記対 向電極との間に電位差を生じさせることにより、 前記照明装置から照射 される光の前記液晶層における透過率を各画素ごとに調節する駆動手段 と、 前記照明装置から照射される光の発光時間を各色ごとに調節する照 明強度調節手段と、 1フレーム期間において表示させる画像に対応した 画像信号が入力され、 前記入力された画像信号における各画素の色強度 の中から最大の色強度を各色ごとに検出する検出手段と、 前記 1 フレー ム期間において順次各色の光源を発光させるように前記照明装置を制御 すると共に、 前記最大の色強度に基づいて、 前記照明強度調節手段を制 御して前記フレーム期間において前記照明装置から照射される光の発光 時間を各色ごとに調節し、 そして前記駆動手段を制御して前記照明装置 から照射される光の前記液晶層における透過率を各画素ごとに調節する 制御手段とを備える。 Further, a liquid crystal display device according to the present invention includes a first substrate, a second substrate, and a liquid crystal layer including a liquid crystal sandwiched between the first substrate and the second substrate. A plurality of pixel electrodes arranged in a matrix on the first substrate so as to correspond to each pixel, respectively, and a counter electrode is provided on either the first substrate or the second substrate. A liquid crystal display panel, a light source that emits light of a plurality of colors, respectively, and an illumination device that irradiates the light of the plurality of colors toward the liquid crystal display panel; and Irradiation from the lighting device by generating a potential difference between Driving means for adjusting the transmittance of the emitted light in the liquid crystal layer for each pixel; illumination intensity adjusting means for adjusting the emission time of the light emitted from the illumination device for each color; and displaying during one frame period. An image signal corresponding to an image to be input is input; a detection unit for detecting a maximum color intensity for each color from among the color intensities of the pixels in the input image signal; and a light source for each color sequentially in the one frame period The illumination device is controlled so as to emit light, and the illumination intensity adjusting means is controlled based on the maximum color intensity, and the emission time of light emitted from the illumination device in the frame period is set for each color. And control means for controlling the driving means to adjust the transmittance of light emitted from the lighting device in the liquid crystal layer for each pixel. .
また、 前記発明に係る液晶表示装置において、 前記 1 フレーム期間が 複数のサブフレーム期間からなり、 前記サブフレーム期間においては前 記複数色の色をそれぞれ発する光源のうち、 1色の光源が発光すること が好ましい。  Further, in the liquid crystal display device according to the present invention, the one frame period includes a plurality of sub-frame periods, and in the sub-frame period, one of the light sources emitting the plurality of colors emits light. It is preferred that
また、 前記発明に係る液晶表示装置において、 前記光源が、 それぞれ 赤色、 緑色、 および青色をそれぞれ発光することが好ましい。  In the liquid crystal display device according to the present invention, it is preferable that the light sources emit red, green, and blue light, respectively.
また、 前記発明に係る液晶表示措置において、 前記光源が、 それぞれ 赤色、 緑色、 青色、 および白色をそれぞれ発光することが好ましい。  In the liquid crystal display device according to the invention, it is preferable that the light source emits red, green, blue, and white light, respectively.
また、 前記発明に係る液晶表示措置において、 前記液晶は O C B (Optically self-Compensated Birefringence) モードの液晶であるこ とが好ましい。  In the liquid crystal display device according to the present invention, it is preferable that the liquid crystal is an OCB (Optically self-Compensated Birefringence) mode liquid crystal.
さらに、 前記発明に係る液晶表示措置において、 前記光源は発光ダイ オードであることが好ましい。  Further, in the liquid crystal display device according to the present invention, it is preferable that the light source is a light emitting diode.
本発明の前記目的、他の目的、特徴、 及び利点は、 添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる。  The above objects, other objects, features, and advantages of the present invention will be apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
〔図面の簡単な説明〕 第 1図は、 従来のフィールドシーケンシャルカラー方式の液晶表示装 置の動作を示すタイミングチャートであって、 ( a ) は赤、 青、 緑の各 色の発光強度及び発光時間を示す図、 (b ) は液晶表示パネルの光の透 過率の推移を示す図である。 [Brief description of drawings] FIG. 1 is a timing chart showing the operation of a conventional field-sequential color liquid crystal display device, in which (a) shows the emission intensity and emission time of each color of red, blue, and green; () Is a diagram showing the transition of the light transmittance of the liquid crystal display panel.
第 2図は、 色度座標上の色三角形を説明する図である。  FIG. 2 is a diagram illustrating a color triangle on chromaticity coordinates.
第 3図は、 実施の形態 1に係る本発明の液晶表示装置の構成を示す斜 視図である。  FIG. 3 is a perspective view showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1.
第 4図は、 液晶の配向状態を模式的に示す断面図である。  FIG. 4 is a cross-sectional view schematically showing the alignment state of the liquid crystal.
第 5図は、 実施の形態 1に係る本発明の液晶表示装置の構成を示すブ ロック図である。  FIG. 5 is a block diagram showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1.
第 6図は、 液晶表示パネル上にリンゴの画像が表示されている場合を 示した概念図である。  FIG. 6 is a conceptual diagram showing a case where an image of an apple is displayed on a liquid crystal display panel.
第 7図は、 実施の形態 1に係る本発明の液晶表示装置の動作を示す夕 イミングチャートであって、 ( a ) は赤、 青、 緑の各色の発光ダイォー ドの発光強度及び発光時間を示す図、 ( b ) は液晶表示パネルの光の透 過率の推移を示す図である。  FIG. 7 is an evening timing chart showing the operation of the liquid crystal display device of the present invention according to Embodiment 1, wherein (a) shows the light emission intensity and light emission time of the red, blue and green light emitting diodes. (B) is a diagram showing a change in light transmittance of the liquid crystal display panel.
第 8図は、 光源の発光強度、 ある 1つの画素における光の透過率、 及 びその画素におけるある 1色の色強度の対応を示す図であって、 ( a ) は実施の形態 1 に係る本発明の液晶表示装置の場合における前記対応 を示す図、 ( b ) は従来の液晶表示装置の場合における前記対応を示す 図である。  FIG. 8 is a diagram showing the correspondence between the light emission intensity of the light source, the light transmittance of a certain pixel, and the color intensity of a certain color in the pixel. FIG. 7 is a diagram showing the correspondence in the case of the liquid crystal display device of the invention, and FIG. 7 (b) is a diagram showing the correspondence in the case of the conventional liquid crystal display device.
第 9図は、 実施の形態 2に係る本発明の液晶表示装置の構成を示す斜 視図である。  FIG. 9 is a perspective view showing a configuration of a liquid crystal display device of the present invention according to Embodiment 2.
第 1 0図は、 色度座標上の色三角形を説明する図である。  FIG. 10 is a diagram illustrating a color triangle on chromaticity coordinates.
第 1 1図は、 実施の形態 2に係る本発明の液晶表示装置の動作を示す タイミングチャートであって、 ( a ) は赤、 緑、 青、 白の各色の発光ダ ィオードの発光強度及び発光時間を示す図、 (b ) は液晶表示パネルの 光の透過率の推移を示す図である。 FIG. 11 is a timing chart showing the operation of the liquid crystal display device according to the second embodiment of the present invention, wherein (a) shows the light emission intensity and light emission of red, green, blue and white light emitting diodes. Figure showing time, (b) is the LCD panel It is a figure showing transition of light transmittance.
第 1 2図は、 実施の形態 3に係る本発明の液晶表示装置の動作を示す タイミングチャートであって、 ( a ) は赤、 緑、 青の各色の発光ダイォ —ドの発光強度及び発光時間を示す図、 (b ) は液晶表示パネルの光の 透過率の推移を示す図である。  FIG. 12 is a timing chart showing the operation of the liquid crystal display device according to the third embodiment of the present invention, wherein (a) shows the emission intensity and emission time of the red, green and blue light emitting diodes. And (b) is a diagram showing the transition of the light transmittance of the liquid crystal display panel.
〔発明を実施するための最良の形態〕  [Best mode for carrying out the invention]
以下、 本発明の実施の形態について図面を参照しながら詳細に説明す る。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
第 3図は、 実施の形態 1に係る本発明の液晶表示装置の構成を示す斜 視図である。 第 3図に示すとおり、 液晶表示装置 1は、 液晶表示パネル 1 0を備えている。 この液晶表示パネル 1 0は、 第 4図に示すように、 2枚の基板、 すなわち上側基板 1 1及び下側基板 1 2を備えている。 こ れらの上側基板 1 1及び下側基板 1 2は、 スぺーサ (図示せず) を介し て対向して配置されている。 また、 上側基板 1 1 と下側基板 1 2との間 に形成された間隙に液晶 1 4を注入することによって液晶層 1 3が形成 されている。  FIG. 3 is a perspective view showing a configuration of the liquid crystal display device of the present invention according to Embodiment 1. As shown in FIG. 3, the liquid crystal display device 1 includes a liquid crystal display panel 10. As shown in FIG. 4, the liquid crystal display panel 10 includes two substrates, that is, an upper substrate 11 and a lower substrate 12. The upper substrate 11 and the lower substrate 12 are opposed to each other via a spacer (not shown). The liquid crystal layer 13 is formed by injecting the liquid crystal 14 into a gap formed between the upper substrate 11 and the lower substrate 12.
上側基板 1 1は、 ガラス基板 2の下面に対向電極 6及び配向膜 4が、 同じく上面に位相差補償板 7及び偏光板 8がそれぞれ積層されて構成さ れている。 また、 下側基板 1 2は、 ガラス基板 3の上面に後述する画素 電極 4 0及び配向膜 5が、 同じく下面に偏光板 9がそれぞれ積層されて 構成されている。  The upper substrate 11 is formed by laminating a counter electrode 6 and an alignment film 4 on the lower surface of a glass substrate 2 and a phase difference compensator 7 and a polarizing plate 8 on the upper surface. Further, the lower substrate 12 is configured such that a pixel electrode 40 and an alignment film 5 described later are laminated on the upper surface of the glass substrate 3 and a polarizing plate 9 is laminated on the lower surface similarly.
なお、 必要に応じて、 下側基板 1 2側が位相差補償板を備えていても よいことは言うまでもない。 また、 前述したように対向電極 6が上側基 板 1 1側に形成されているのではなく、 下側基板 1 2側に形成されてい る よ う な構成で あ っ て も よ い。 し たがっ て、 例 え ば I P S ( I n-P l ane-Sw i t ch i ng) モードの液晶表示装置と同様の構成であっても よい。 Needless to say, if necessary, the lower substrate 12 may be provided with a phase difference compensator. Further, as described above, the counter electrode 6 may not be formed on the upper substrate 11 side, but may be formed on the lower substrate 12 side. Therefore, for example, even if the configuration is the same as that of the liquid crystal display device in the IPS (I-P lane-Switch) mode, Good.
このように構成された液晶表示パネル 1 0は、 上側基板 1 1が備える 対向電極 6 と下側基板 1 2が備える画素電極 4 0との間に所定の電圧が 印加されることにより液晶 1 4の配向状態をスプレイ配向 (第 4図 ( a ) ) からベンド配向 (第 4図 (b ) ) に転移させ、 このベンド配向 状態により画像を表示する。 すなわち、 液晶表示パネル 1 0は、 いわゆ る〇 C Bモードの液晶を備えた液晶表示パネルである。 フィールドシー ケンシャルカラー方式の場合は、 画像信号の 1 フレーム期間が複数のサ ブフレーム期間から構成されており、 各サブフレーム期間のそれぞれに おいて液晶が応答を完了させる必要がある。 したがって、 液晶の応答が 遅いと良好な画像表示を実現することができない。 そのため、 本発明の 液晶表示装置が備える液晶表示パネルとしては、 液晶の高速応答が可能 な 0 C Bモードの液晶を備えた液晶表示パネルであることが望ましい。 前述した液晶表示パネル 1 0の下方には、 照明装置であるバックライ ト 2 0が配置される。 このバックライ ト 2 0は、 透明な矩形の合成樹脂 板からなる導光板 2 1 と、 該導光板 2 1の一の端面 2 2の近傍に該端面 2 2に臨んで配置された光源 2 3 ( 2 3 R、 2 3 G、 2 3 B ) とを含ん で構成されている。 光源 2 3 R、 2 3 G、 2 3 Bはそれぞれ、 赤、 緑、 青の各色光を発する発光ダイオード (L E D ) である。 発光ダイオード は、 応答性に優れており (発光の立ち上がり及び立ち下がりが速い) 、 しかも残光が少ないという特徴がある。 そのため、 後述するようなフィ —ルドシーケンシャル駆動に適した光源である。 しかし、 本実施の形態 の液晶表示装置が備える光源は発光ダイオードに限られるわけではなく 例えば冷陰極管等であってもよい。 また、 本実施の形態では、 光源が導 光板 2 1の一の端面 2 2の近傍に配置されるエッジライ ト型のバックラ ィ トを例に挙げて説明したが、 導光板 2 2の下方に光源が配置されて構 成されるような直下型のバックライ トでもよい。 このように構成されたバックライ ト 2 0では、 各色の発光ダイォ一ド 2 3 R、 2 3 G、 2 3 Bから発せられた光が端面 2 2から導光板 2 1に 入射する。 この入射した光は、 導光板 2 1の内部で散乱してその上面の 前面から出射される。 これにより、液晶表示パネル 1 0の全体に赤、緑、 又は青色の光が照射される。 The liquid crystal display panel 10 configured as described above is configured such that a predetermined voltage is applied between the counter electrode 6 provided on the upper substrate 11 and the pixel electrode 40 provided on the lower substrate 12, and the liquid crystal 14 is provided. Is changed from the splay alignment (FIG. 4 (a)) to the bend alignment (FIG. 4 (b)), and an image is displayed according to the bend alignment state. That is, the liquid crystal display panel 10 is a liquid crystal display panel provided with a so-called CB mode liquid crystal. In the case of the field sequential color system, one frame period of an image signal is composed of a plurality of subframe periods, and it is necessary for the liquid crystal to complete a response in each of the subframe periods. Therefore, if the response of the liquid crystal is slow, good image display cannot be realized. Therefore, it is desirable that the liquid crystal display panel included in the liquid crystal display device of the present invention be a liquid crystal display panel including a 0 CB mode liquid crystal capable of high-speed response of the liquid crystal. A backlight 20 as an illumination device is arranged below the liquid crystal display panel 10 described above. The backlight 20 includes a light guide plate 21 made of a transparent rectangular synthetic resin plate, and a light source 23 (a light source plate 23) disposed near the one end surface 22 of the light guide plate 21 and facing the end surface 22. 23 R, 23 G, and 23 B). The light sources 23 R, 23 G, and 23 B are light emitting diodes (LEDs) that emit red, green, and blue light, respectively. Light emitting diodes are characterized by excellent responsiveness (rapid rise and fall of light emission) and little afterglow. Therefore, it is a light source suitable for field sequential driving as described later. However, the light source included in the liquid crystal display device of the present embodiment is not limited to the light emitting diode, and may be, for example, a cold cathode tube. Further, in the present embodiment, an explanation has been given by taking an example of an edge-light type backlight in which the light source is arranged near one end face 22 of the light guide plate 21. The backlight may be a direct-type backlight in which are arranged and configured. In the backlight 20 configured as described above, the light emitted from the light emitting diodes 23 R, 23 G, and 23 B of the respective colors enters the light guide plate 21 from the end face 22. The incident light is scattered inside the light guide plate 21 and emitted from the front surface of the upper surface. As a result, the entire liquid crystal display panel 10 is irradiated with red, green, or blue light.
なお、 本実施の形態においては、 前述したとおり赤、 緑、 青の各発光 ダイォードが 1つずつ設けられた 1組の光源を備えているが、 各色の発 光ダイォ一ドが複数個ずつ設けられた複数組の光源を備えるようにして もよい。 複数組の光源を備える場合には、 同一色の発光ダイオードを同 時に発光させるようにしてもよい。 また、 例えば画面を 3つの領域に分 割し、 各領域に 1組の光源をそれぞれ配置するようにしてもよい。 この 場合であれば、 例えば、 1組目の光源が赤の発光ダイオードを、 2組目 の光源が緑の発光ダイォ一ドを、 3組目の光源が青の発光ダイォードを それぞれ所定時間発光させた後、 1組目の光源が青の発光ダイォードを、 2組目の光源が赤の発光ダイオードを、 3組目の光源が緑の発光ダイォ 一ドをそれぞれ所定時間発光させ、 次いで 1組目の光源が緑の発光ダイ オードを、 2組目の光源が青の発光ダイオードを、 3組目の光源が赤の 発光ダイォ一ドをそれぞれ所定時間発光させ、 以降これを繰り返すよう にしてもよい。  Note that, in the present embodiment, as described above, one set of light sources provided with one red, green, and blue light emitting diode is provided, but a plurality of light emitting diodes of each color are provided. A plurality of sets of light sources may be provided. When a plurality of light sources are provided, light-emitting diodes of the same color may emit light at the same time. Further, for example, the screen may be divided into three regions, and one set of light sources may be arranged in each region. In this case, for example, the first light source emits a red light emitting diode, the second light source emits a green light emitting diode, and the third light source emits a blue light emitting diode for a predetermined time. After that, the first set of light sources emits a blue light emitting diode, the second set of light sources emits a red light emitting diode, and the third set of light sources emits a green light emitting diode for a predetermined time. The second light source emits a blue light emitting diode, the third light source emits a red light emitting diode for a predetermined time, and thereafter, this operation may be repeated. .
第 5図は、 実施の形態 1 に係る本発明の液晶表示装置 1の構成を示す ブロック図である。 第 3図及び第 4図をも併せて参照すると、 液晶表示 パネル 1 0は、 周知の T F T ( Th i n F i l m T r ans i s t o r) タイプの液晶表 示素子であり、 内面に対向電極 6が形成された上側基板 (対向基板) 1 1 と、 内面に画素電極 4 0、 ゲート線 3 1、 ソース線 3 2及びスィツチ ング素子 3 3が形成された下側基板 (アレイ基板) 1 2 とが液晶層 1 3 を挟んで対向するよ に配置されて構成されている。 また、 前記アレイ 基板 1 2では、 ゲート線 3 1及びソース線 3 2が交互に交差するように 配設されると共に、 そのゲート線 3 1及びソース線 3 2で区画された画 素に対応して画素電極 4 0及びスイッチング素子 3 3が形成されている < ゲート線 3 1及びソース線 3 2はゲ一ト ドライバ 3 4及びソースドライ ノ 3 5によってそれぞれ駆動される。 FIG. 5 is a block diagram showing a configuration of the liquid crystal display device 1 according to the first embodiment of the present invention. Referring also to FIGS. 3 and 4, the liquid crystal display panel 10 is a well-known TFT (Thin Film Transistor) type liquid crystal display element, and a counter electrode 6 is formed on the inner surface. The upper substrate (opposite substrate) 11 and the lower substrate (array substrate) 12 on which the pixel electrode 40, the gate line 31, the source line 32 and the switching element 33 are formed on the inner surface are liquid crystal. They are arranged so as to face each other with the layer 13 interposed therebetween. Further, in the array substrate 12, the gate lines 31 and the source lines 32 are alternately crossed. The pixel electrode 40 and the switching element 33 are formed so as to correspond to the pixel partitioned by the gate line 31 and the source line 32 <the gate line 31 and the source line 32 Are driven by a gate driver 34 and a source driver 35, respectively.
バックライ ト 2 0は、 照明強度調節手段 3 7によってその動作が制御 される。 その結果、 後述するようにしてバックライ ト 2 0の照明強度が 調節される。  The operation of the backlight 20 is controlled by the illumination intensity adjusting means 37. As a result, the illumination intensity of the backlight 20 is adjusted as described later.
また、 液晶表示装置 1は、 外部の装置から入力される画像信号を記憶 する記憶手段 3 9と、 その記憶手段 3 9に記憶されている画像信号に基 づいて後述する検出処理を実行する検出手段 3 8 とを備えている。 ここ でこの画像信号はカラー画像に関する信号である。  Further, the liquid crystal display device 1 includes a storage unit 39 for storing an image signal input from an external device, and a detection unit for executing a detection process described later based on the image signal stored in the storage unit 39. Means 3 8. Here, this image signal is a signal relating to a color image.
以上のように構成された液晶表示装置 1において、 制御手段 3 6は、 検出手段 2 5による検出処理の結果に基づいて、 各色の発光ダイォード 2 3 R、 2 3 G、 2 3 Bの発光強度を算出する。  In the liquid crystal display device 1 configured as described above, the control means 36 controls the light emission intensity of the light emitting diodes 23 R, 23 G, and 23 B of each color based on the result of the detection processing by the detection means 25. Is calculated.
また、 制御手段 3 6は、 各発光ダイオード 2 3 R、 2 3 G、 2 3 Bを サブフレーム期間ごとに順次発光させるために、 照明強度調節手段 3 7 に制御信号を出力する。 この制御信号には、 前記算出された発光強度を 示す情報が含まれている。 そのため、 照明強度調節手段 3 7は、 各発光 ダイオード 2 3 R、, 2 3 G、 2 3 Bを前記算出された発光強度でサブフ レーム期間ごとに順次発光させる。  Further, the control means 36 outputs a control signal to the illumination intensity adjusting means 37 in order to cause the light emitting diodes 23 R, 23 G, and 23 B to emit light sequentially in each subframe period. The control signal includes information indicating the calculated light emission intensity. Therefore, the illumination intensity adjusting means 37 causes the light emitting diodes 23 R, 23 G, and 23 B to sequentially emit light at the calculated emission intensity for each subframe period.
さらに、 制御手段 3 6は、 発光ダイォード 2 3 R、 2 3 G、 2 3 Bの 発光と同期して各色に係る画像の表示を行うために、 ソースドライバ 3 5に対して画像信号を出力すると共に、 ゲート ドライバ 3 4及びソース ドライバ 3 5に制御信号を出力する。 その結果、 ゲート ドライバ 3 4が スイッチング素子 3 3をオンにするための電圧に対応する走査信号をゲ ート線 3 1に出力することにより各画素のスイッチング素子 3 3を順次 オンにする。 一方、 ソースドライバ 3 5がそのタイミングに合わせてソ ース線 3 2を通じて画像信号を各画素の画素電極 4 4に順次書き込む。 より具体的には、 ゲート ドライバ 3 4が、 前述した走査信号を 1行目 のゲート線 3 1に出力することにより、 その 1行目のゲート線 3 1 と接 続されているスイッチング素子 3 3をオンにする。 そして、 このように スイッチング素子 3 3がオンになったときに、 ソースドライバ 3 5から 各ソース線 3 2に対して出力された画像信号が 1行目の画素の画素電極 4に書き込まれる。 Further, the control means 36 outputs an image signal to the source driver 35 in order to display an image related to each color in synchronization with the light emission of the light emitting diodes 23 R, 23 G, and 23 B. At the same time, a control signal is output to the gate driver 34 and the source driver 35. As a result, the gate driver 34 outputs a scanning signal corresponding to a voltage for turning on the switching element 33 to the gate line 31 so that the switching element 33 of each pixel is sequentially turned on. On the other hand, the source driver 35 The image signal is sequentially written to the pixel electrode 44 of each pixel through the source line 32. More specifically, the gate driver 34 outputs the above-described scanning signal to the gate line 31 of the first row, so that the switching element 33 connected to the gate line 31 of the first row is output. Turn on. Then, when the switching element 33 is turned on, the image signal output from the source driver 35 to each source line 32 is written to the pixel electrode 4 of the pixel in the first row.
次に、 ゲート ドライバ 3 4が、 スイッチング素子 3 3をオフにするた めの電圧に対応する信号を 1行目のゲート線 3 1に出力して、 その 1行 目のゲート線 3 1 と接続されているスィツチング素子 3 3をオフにする, また、 ゲート ドライバ 3 4は、 これと同時に、 前記走査信号を 2行目の ゲート線 3 1に出力することによって、 その 2行目のゲート線 3 1 と接 続されているスイッチング素子 3 3をオンにする。 そして、 1行目の場 合と同様に、 ソースドライバ 3 5から各ソース線 3 2に対して出力され た画像信号が 2行目の画素の画素電極 4 0に書き込まれる。  Next, the gate driver 34 outputs a signal corresponding to the voltage for turning off the switching element 33 to the gate line 31 of the first row, and connects the gate driver 31 to the gate line 31 of the first row. At the same time, the switching element 33 is turned off, and the gate driver 34 outputs the scanning signal to the gate line 31 of the second row at the same time. Turn on the switching element 33 connected to 1. Then, similarly to the case of the first row, the image signal output from the source driver 35 to each source line 32 is written to the pixel electrode 40 of the pixel of the second row.
これ以降も同様に動作することにより、 各行の画素の画素電極 4 0に 画像信号が順次書き込まれる。 その結果、 対向電極と画素電極 4 0との 間に電位差が発生して液晶 1 4が駆動され、 液晶表示パネル 1 0におけ るバックライ ト 2 0から出射される光の透過率が変化する。これにより、 観察者の目に画像信号に対応する画像が映ることになる。  By performing the same operation thereafter, the image signal is sequentially written to the pixel electrodes 40 of the pixels in each row. As a result, a potential difference is generated between the counter electrode and the pixel electrode 40 to drive the liquid crystal 14, and the transmittance of light emitted from the backlight 20 in the liquid crystal display panel 10 changes. As a result, an image corresponding to the image signal appears in the eyes of the observer.
次に、 バックライ ト 2 0の照明強度及び液晶表示パネルの光の透過率 の調節に関する詳細について、 第 6図に示す緑色の葉がついた赤いリン ゴの画像を用いて具体的に説明する。 なお、 説明を容易にするために、 液晶表示パネル 1 0は 6 4 0 X 4 8 0個 (= 3 0 7 2 0 0個) の画素を 有しており、 V G A規格の解像度 ( 6 4 0 X 4 8 0 ) に対応した画像を 表示できることとする。 また、 赤、 緑、 青の各色の色強度はそれぞれ 1 6段階に分かれていると仮定する。 この場合、 液晶表示パネル 1 0は、 1 63色 = 4 0 9 6色を表示することができる。 Next, the details of the adjustment of the illumination intensity of the backlight 20 and the light transmittance of the liquid crystal display panel will be specifically described using an image of a red apple with green leaves shown in FIG. Note that, for ease of explanation, the liquid crystal display panel 10 has 64 × 480 pixels (= 3702 pixels), and has a resolution of VGA standard (640 pixels). It is assumed that an image corresponding to X480) can be displayed. It is also assumed that the color intensities of red, green, and blue are each divided into 16 levels. In this case, the LCD panel 10 16 3 colors = 4 0 9 6 colors can be displayed.
検出手段 3 8は、 記憶手段 3 9から所定のタイミングで 1フレーム分 の画像信号を読み出し、 その読み出した画像信号から 3 0 7 2 0 0個の 各画素における赤、 緑、 青の各色の色強度をそれぞれ検出する。 次に、 検出手段 3 8は、 前記画像信号によって示されている画像における各色 の色強度の最大値を検出する。 そして、 検出手段 3 8は、 検出された各 色の色強度の最大値を示す信号を制御手段 3 6に対して出力する。  The detection means 38 reads out the image signal for one frame from the storage means 39 at a predetermined timing, and from the read out image signal, the color of each of red, green and blue in each of the three hundred seventy-nine pixels. The intensity is detected individually. Next, the detecting means 38 detects the maximum value of the color intensity of each color in the image represented by the image signal. Then, the detection means 38 outputs a signal indicating the maximum value of the detected color intensity of each color to the control means 36.
制御手段 3 6は、 検出手段 3 8から出力された信号に示されている各 色の色強度の最大値に基づいて、次のようにして発光ダイオード 2 3 R、 2 3 G、 2 3 Bの発光強度をそれぞれ算出する。  The control means 36, based on the maximum value of the color intensity of each color indicated in the signal output from the detection means 38, performs light emitting diode 23R, 23G, 23B as follows. Are respectively calculated.
例えば、 第 6図中の画素 5 0における赤色の色強度が 1 6段階中の 1 4であって、 他のどの画素における赤色の色強度よりも大きい値であつ たと仮定する。 この場合、 赤色のサブフレーム期間における赤色の発光 ダイオード 2 3 Rの発光強度を、 その発光ダイオード 2 3 Rの最大の発 光強度の 0. 8 7 5倍 (= 1 4/ 1 6倍) とする。  For example, it is assumed that the red color intensity at pixel 50 in FIG. 6 is 14 out of 16 levels, and is larger than the red color intensity at any other pixel. In this case, the light emission intensity of the red light emitting diode 23 R during the red subframe period is 0.875 times (= 14/16 times) the maximum light emission intensity of the light emitting diode 23 R. I do.
また、 第 6図中の画素 5 1における緑色の色強度が 1 6段階中の 1 3 であって、 他のどの画素における緑色の色強度よりも大きい値であった と仮定する。 この場合、 緑色のサブフレーム期間における緑色の発光ダ ィオード 2 3 Gの発光強度を、 その発光ダイオード 2 3 Gの最大の発光 強度の 0. 8 1 2 5倍 (= 1 3 1 6倍) とする。  It is also assumed that the green color intensity at pixel 51 in FIG. 6 is 13 out of 16 levels, which is larger than the green color intensity at any other pixel. In this case, the light emission intensity of the green light-emitting diode 23 G during the green subframe period is 0.8 1 25 times (= 13 16 times) the maximum light emission intensity of the light-emitting diode 23 G. I do.
さらに、 第 6図中の画素 5 2における青色の色強度が 1 6段階中の 5 であって、 他のどの画素における青色の色強度よりも大きい値であった と仮定する。 この場合、 青色のサブフレーム期間における青色の発光ダ ィオード 2 3 Bの発光強度を、 その発光ダイオード 2 3 Bの最大の発光 強度の 0. 3 1 2 5倍 (= 5 1 6倍) とする。  Further, it is assumed that the blue color intensity at pixel 52 in FIG. 6 is 5 out of 16 levels, and is a value larger than the blue color intensity at any other pixel. In this case, the light emission intensity of the blue light emitting diode 23 B during the blue subframe period is set to 0.31 25 times (= 5 16 times) the maximum light emission intensity of the light emitting diode 23 B. .
制御手段 3 6は、このようにして定められた各発光ダイオード 2 3 R、 2 3 G、 2 3 Bのそれぞれの発光強度を示す信号を生成し、 その信号を 照明強度調節手段 3 7に対して出力する。 The control means 36 generates a signal indicating the light emission intensity of each of the light emitting diodes 23 R, 23 G, and 23 B determined in this manner, and generates the signal. Output to the illumination intensity adjusting means 37.
一方、 制御手段 3 6は、 各サブフレーム期間における液晶表示パネル 1 0の各画素の光の透過率を次のようにして算出する。  On the other hand, the control means 36 calculates the light transmittance of each pixel of the liquid crystal display panel 10 in each subframe period as follows.
まず、 赤サブフレーム期間においては、 赤色の色強度が最大である画 素 5 0における透過率を最大とする。 そして、 画素 5 0以外の他の画素 については、 その画素の色強度を画素 5 0の色強度で除した値に応じて 透過率が定められる。 具体的には、 例えば画素 5 3の赤色の色強度が 1 6段階中の 1 3であった場合、 画素 5 3の透過率を最大透過率の 1 3 / 1 4倍とする。 他の画素についても同様にして透過率を算出することに より液晶表示パネル 1 0が有するすべての画素における透過率を算出す る。  First, in the red sub-frame period, the transmittance of the pixel 50 having the maximum red color intensity is maximized. For the pixels other than the pixel 50, the transmittance is determined according to a value obtained by dividing the color intensity of the pixel by the color intensity of the pixel 50. Specifically, for example, when the red color intensity of the pixel 53 is 13 out of 16 levels, the transmittance of the pixel 53 is set to 13/14 times the maximum transmittance. By calculating the transmittance for the other pixels in the same manner, the transmittance of all the pixels of the liquid crystal display panel 10 is calculated.
制御手段 3 6は、 青色及び緑色の画像を表示するサブフレーム期間の 場合も同様の処理を実行することによって、 各サブフレーム期間におけ る液晶表示パネル 1 0の各画素の光の透過率を算出する。 そして、 制御 手段 3 6は、 前述したようにして算出された透過率を実現するために各 画素に書き込むべき画像信号を生成し、 その画像信号をソースドライバ 3 5に対して出力する。  The control means 36 executes the same processing also in the sub-frame period for displaying the blue and green images, thereby reducing the light transmittance of each pixel of the liquid crystal display panel 10 in each sub-frame period. calculate. Then, the control means 36 generates an image signal to be written to each pixel in order to realize the transmittance calculated as described above, and outputs the image signal to the source driver 35.
以上の処理の結果、 ゲート ドライノ ' 3 4及びソース ドライバ 3 5並び に照明強度調節手段 3 7が前述したようにして同期して動作することに よって、 1 フレーム分の画像が液晶表示パネル 1 0に表示される。  As a result of the above processing, the gate dryno '34, the source driver 35, and the illumination intensity adjusting means 37 operate synchronously as described above, so that one frame of image is displayed on the liquid crystal display panel 10. Will be displayed.
第 7図は、 実施の形態 1に係る本発明の液晶表示装置 1の動作を示す タイミングチャートであって、 ( a )は発光ダイオード 2 3 R、 2 3 G、 2 3 Bの発光強度及び発光時間を示す図、 (b ) は液晶表示パネル 1 0 の光の透過率の推移を示す図である。 なお、 第 7図 ( b ) において、 符 号 2 A、 2 Bは液晶表示パネル 1 0が有する各画素における光の透過率 のうちの最大値、 最小値の推移をそれぞれ示している。  FIG. 7 is a timing chart showing the operation of the liquid crystal display device 1 according to the first embodiment of the present invention, wherein (a) shows the light emission intensity and light emission of the light emitting diodes 23 R, 23 G, and 23 B. FIG. 6B is a diagram showing time, and FIG. 7B is a diagram showing transition of light transmittance of the liquid crystal display panel 10. In FIG. 7 (b), reference numerals 2A and 2B indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel of the liquid crystal display panel 10, respectively.
第 7図 ( a ) に示すとおり、 各サブフレーム期間において発光ダイォ ード 2 3 R 、 2 3 G、 2 3 Bは前述したようにして算出された発光強度 で順次発光する。 そのため、 従来のように発光ダイオード 2 3 R、 2 3 G、 2 3 Bが常に最大の発光強度で発光するようなことはない。 As shown in Fig. 7 (a), the light emitting diode The modes 23R, 23G, and 23B emit light sequentially at the emission intensity calculated as described above. Therefore, unlike the conventional case, the light emitting diodes 23 R, 23 G, and 23 B do not always emit light with the maximum light emission intensity.
また、 前述したようにして生成された画像信号に応じて液晶表示パネ ル 1 0の光の透過率が変化した場合、 液晶表示パネル 1 0が有する画素 のうち少なくとも 1つの画素については透過率が最大となる。そのため、 第 7図 (b ) に示すとおり、 画面内における液晶表示パネル 1 0の光の 透過率の最大値は、 その液晶表示パネル 1 0の最大透過率と常に同じ値 で推移することになる。  When the light transmittance of the liquid crystal display panel 10 changes in accordance with the image signal generated as described above, the transmittance of at least one of the pixels of the liquid crystal display panel 10 is changed. Will be the largest. Therefore, as shown in Fig. 7 (b), the maximum value of the light transmittance of the liquid crystal display panel 10 in the screen always changes at the same value as the maximum transmittance of the liquid crystal display panel 10 .
第 8図は、 光源の発光強度、 ある 1つの画素における光の透過率、 及 びその画素におけるある 1色の色強度の対応を示す図であって、 ( a ) は実施の形態 1 に係る本発明の液晶表示装置 1の場合における前記対応 を示す図、 (b ) は従来の液晶表示装置の場合における前記対応を示す 図である。 なお、 第 8図 ( a ) では、 前述した例の赤色の色強度のよう に、 色強度の最大値が 1 6段階中の 1 4である場合の前記対応を示して いる。 また、 第 8図 ( a ) 及び (b ) において示されている値は、 最大 値が 1 となるように規格されている。 したがって、 例えば光源の発光強 度が 1 4 1 6である場合、 その値は、 前記光源の発光強度の最大値の 1 4 1 6であることを示している。  FIG. 8 is a diagram showing the correspondence between the light emission intensity of the light source, the light transmittance of a certain pixel, and the color intensity of a certain color in the pixel. FIG. 7 is a diagram showing the above-mentioned correspondence in the case of the liquid crystal display device 1 of the invention, and FIG. 7 (b) is a diagram showing the above-mentioned correspondence in the case of a conventional liquid crystal display device. FIG. 8 (a) shows the above-described correspondence when the maximum value of the color intensity is 14 out of 16 levels, such as the red color intensity in the above-described example. The values shown in Fig. 8 (a) and (b) are standardized so that the maximum value is 1. Therefore, for example, when the light emission intensity of the light source is 14 16, the value indicates that the value is 14 16 which is the maximum value of the light emission intensity of the light source.
第 8図 ( b ) に示すとおり、 従来の液晶表示装置の場合、 色強度が何 れの値であっても光源の発光強度は 1である。これは、前述したように、 従来の液晶表示装置は、 光源は常に最大の発光強度で発光する一方で、 液晶表示パネルの光の透過率を調節することによって色強度を変化させ るためである。 そのため、 色強度を 1 4 Z 1 6にする場合であっても、 光源の発光強度は 1 となる。  As shown in FIG. 8 (b), in the case of the conventional liquid crystal display device, the light emission intensity of the light source is 1 regardless of the color intensity. This is because, as described above, in the conventional liquid crystal display device, while the light source always emits light with the maximum light emission intensity, the color intensity is changed by adjusting the light transmittance of the liquid crystal display panel. . Therefore, even when the color intensity is set to 14 Z 16, the light emission intensity of the light source is 1.
これに対して本実施の形態の液晶表示装置 1の場合、 第 8図 ( a ) に 示すように、 色強度を 1 4 1 6にするためには、 光源の発光強度が 1 4 Z 1 6となり、 透過率が 1 となる。 このように、 本実施の形態の液晶 表示装置では、 従来の場合と比べて光源の発光強度が小さくてもよい。 よって、 光源の発光に要する電力を低減することができ、 それに伴い省 電力化を図ることができる。 On the other hand, in the case of the liquid crystal display device 1 of the present embodiment, as shown in FIG. 4 Z 16 and the transmittance is 1. As described above, in the liquid crystal display device of the present embodiment, the light emission intensity of the light source may be smaller than in the conventional case. Therefore, the power required for light emission of the light source can be reduced, and accordingly, power saving can be achieved.
なお、 本実施の形態の液晶表示装置の場合、 画面内に白表示の画素が あるときは各色とも最大の色強度で表示しなければならなレ そのため、 このような場合には省電力化を図ることはできない。 しかしながら、 通 常、 画像は何れかの色に片寄る傾向があるため、 十分な省電力化が期待 できる。 特に自然画の場合は前記傾向が顕著であるため、 本実施の形態 の液晶表示装置は自然画を表示することが多いテレビジョン受像器等に 適していると考えられる。  In the case of the liquid crystal display device of the present embodiment, when a white pixel is present in the screen, each color must be displayed with the maximum color intensity. I can't do it. However, since images generally tend to be biased toward one of the colors, sufficient power savings can be expected. In particular, since the tendency is remarkable in the case of a natural image, the liquid crystal display device of the present embodiment is considered to be suitable for a television receiver or the like that often displays a natural image.
(実施の形態 2 )  (Embodiment 2)
実施の形態 1の液晶表示装置は光源として赤、 緑、 青の 3色の発光ダ ィオードを備えている。 この場合、 前述したように、 白表示が多いとき には省電力化がそれほど期待できない。 そこで、 実施の形態 2の液晶表 示装置は、 後述するように前記 3色の発光ダイオードに加えて白色の発 光ダイオードを備えている。  The liquid crystal display device of the first embodiment has three light emitting diodes of red, green, and blue as light sources. In this case, as described above, when there are many white displays, power saving cannot be expected so much. Therefore, the liquid crystal display device according to the second embodiment includes a white light emitting diode in addition to the three color light emitting diodes as described later.
通常、 カラー画像を示す情報は、 赤、 緑、 青の 3色に係る情報で表現 される。 これは、 色度座標上の点であれば最低限 3つの色の合成で表現 することができるからである。 そして、 そのように 3つの色の合成で表 現できる範囲を広げるためには、 赤、 緑、 青のように色度座標上で大き く離れている色を用いることが望ましい。  Normally, information indicating a color image is represented by information on three colors, red, green, and blue. This is because a point on chromaticity coordinates can be represented by a combination of at least three colors. In order to extend the range that can be represented by combining the three colors, it is desirable to use colors that are far apart on the chromaticity coordinates, such as red, green, and blue.
しかしながら、 色度座標上の点を表現するために用いるのは前記 3色 以外に限定されるわけではない。 前記 3色とは異なる 3色を用いてもよ く、 また 4色以上を用いてもよい。  However, the use of a point on a chromaticity coordinate to represent a point is not limited to the above three colors. Three colors different from the three colors may be used, or four or more colors may be used.
そこで、 本実施の形態の液晶表示装置は、 携帯型電話機のように白表 示が多く行われる電子機器における省電力化を図るために、 白色光を発 する発光ダイオードを備える。 Therefore, the liquid crystal display device of the present embodiment emits white light in order to save power in electronic devices in which white display is frequently performed, such as a mobile phone. Light emitting diode.
第 9図は、 実施の形態 2に係る本発明の液晶表示装置の構成を示す斜 視図である。 第 9図に示すとおり、 ノ ックライ ト 2 0が備える導光板 2 1の一の端面 2 2の近傍には、 該端面 2 2に臨んで光源 2 3 ( 2 3 R、 2 3 G、 2 3 B 、 2 3 W ) が配置されている。 光源 2 3 R、 2 3 G、 2 3 B 、 2 3 Wはそれぞれ、 赤、 緑、 青、 白の各色光を発する発光ダイォ ードである。 なお、 実施の形態 2の液晶表示装置のその他の構成につい ては、 実施の形態 1の場合と同様であるので説明を省略する。  FIG. 9 is a perspective view showing a configuration of a liquid crystal display device of the present invention according to Embodiment 2. As shown in FIG. 9, in the vicinity of one end face 22 of the light guide plate 21 provided in the knock light 20, a light source 23 (23R, 23G, 23) facing the end face 22 is provided. B, 23 W). The light sources 23 R, 23 G, 23 B, and 23 W are light-emitting diodes that emit red, green, blue, and white light, respectively. The other configuration of the liquid crystal display device according to the second embodiment is the same as that of the first embodiment, and a description thereof will not be repeated.
以上のように構成された実施の形態 2の液晶表示装置 1の場合、 画像 信号の 1 フレーム期間を、 赤、 緑、 青及び白のそれぞれの色の画像を表 示する 4つのサブフレーム期間で構成する。  In the case of the liquid crystal display device 1 according to the second embodiment configured as described above, one frame period of an image signal is divided into four sub-frame periods for displaying images of red, green, blue, and white, respectively. Constitute.
本実施の形態の液晶表示装置の場合、 色度座標上のある点を表現する ためには、 その点に近い 3色を選択し、 その 3色を用いて表現すればよ い。 そのため、 例えば薄い黄色を表示するためには、 白、 赤、 緑の各色 を合成することによって実現すればよい(第 1 0図参照)。 したがって、 液晶表示パネル 1 0の全画素で薄い黄色を表示するような場合、 青色表 示は不要であるので、 青色の画像を表示するサブフレーム期間において 青色の発光ダイオード 2 3 Bを発光する必要はなくなる。 しかし、 その ような場合であっても、 青色の発光ダイオード 2 3 Bを補助的に発光さ せてもよいことは言うまでもない。  In the case of the liquid crystal display device of the present embodiment, in order to represent a certain point on the chromaticity coordinates, three colors close to the point may be selected and expressed using the three colors. Therefore, for example, in order to display light yellow, it is only necessary to combine white, red, and green colors (see FIG. 10). Therefore, when light yellow is displayed on all the pixels of the liquid crystal display panel 10, blue display is unnecessary, and it is necessary to emit the blue light emitting diode 23B during the sub-frame period for displaying the blue image. Is gone. However, even in such a case, it goes without saying that the blue light emitting diode 23B may be made to emit light supplementarily.
このように、 本実施の形態の液晶表示装置 1では、 赤、 緑、 青、 白の うちの 3色を用いて色度座標上の点を表現する。 そのため、 本実施の形 態の液晶表示装置 1は、 画像信号に応じて、 液晶表示パネル 1 0の各画 素における表示について赤、 緑、 青、 白のうちのどの 3色を組み合わせ るかを選択する。 そして、 実施の形態 1の場合と同様にして各発光ダイ オード 2 3 R 、 2 3 G、 2 3 B 、 2 3 Wの発光強度及び液晶表示パネル 1 0の光の透過率を調節し、 画像を表示する。 より具体的には、 本実施 の形態の液晶表示装置 1は、 各画素における赤、 緑、 青、 白の各色の色 強度をそれぞれ検出した後、 各色の色強度の最大値を検出する。 次に、 その色強度の最大値に基づいて前述したようにして各発光ダイオード 2 3 R、 2 3 G、 2 3 B、 2 3 Wの発光強度を定める。 また、 各画素の色 強度に基づいて前述したようにして各画素の光の透過率を定める。 そし て、そのようにして定めた発光強度で各発光ダイオード 2 3 R、 2 3 G、 2 3 B、 2 3 Wを順次発光させ、 そのタイミングと同期して、 前述した ようにして定めた透過率となるように液晶を駆動する。 As described above, in the liquid crystal display device 1 of the present embodiment, a point on the chromaticity coordinates is represented using three colors of red, green, blue, and white. Therefore, the liquid crystal display device 1 of the present embodiment determines which of the three colors of red, green, blue, and white should be combined for the display on each pixel of the liquid crystal display panel 10 according to the image signal. select. Then, in the same manner as in the first embodiment, the light emission intensities of the light emitting diodes 23 R, 23 G, 23 B, and 23 W and the light transmittance of the liquid crystal display panel 10 are adjusted, and Is displayed. More specifically, this implementation The liquid crystal display device 1 according to the first embodiment detects the color intensity of each color of red, green, blue, and white in each pixel, and then detects the maximum value of the color intensity of each color. Next, based on the maximum value of the color intensity, the emission intensity of each of the light emitting diodes 23 R, 23 G, 23 B, and 23 W is determined as described above. In addition, the light transmittance of each pixel is determined based on the color intensity of each pixel as described above. Then, the light emitting diodes 23 R, 23 G, 23 B, and 23 W emit light sequentially at the emission intensity determined in this manner, and in synchronization with the timing, the transmission determined as described above is performed. The liquid crystal is driven so as to obtain the ratio.
本実施の形態の液晶表示装置 1の場合、 白色の画像を表示するサブフ レーム期間では、 発光ダイオード 2 3Wを発光すると共に、 液晶表示パ ネル 1 0の光の透過率を最大にする。なお、より高い輝度が必要な場合、 赤、 緑、 青の各色の発光ダイオード 2 3 R、 2 3 G、 2 3 Bを補助的に 発光させてもよい。 また、 赤、 緑、 青の各色の画像を表示する各サブフ レーム期間において液晶表示パネル 1 0の光の透過率を上げるようにし てもよい。  In the case of the liquid crystal display device 1 of the present embodiment, the light emitting diode 23W emits light and the light transmittance of the liquid crystal display panel 10 is maximized in the subframe period in which a white image is displayed. When higher luminance is required, the red, green, and blue light emitting diodes 23 R, 23 G, and 23 B may be made to emit auxiliary light. Further, the light transmittance of the liquid crystal display panel 10 may be increased in each sub-frame period in which images of red, green, and blue are displayed.
第 1 1図は、 実施の形態 2に係る本発明の液晶表示装置 1の動作を示 すタイミングチャートであって、 ( a) は発光ダイオード 2 3 R、 2 3 G、 2 3 B、 2 3 Wの発光強度及び発光時間を示す図、 (b) は液晶表 示パネル 1 0の光の透過率の推移を示す図である。 なお、 第 1 1図 ( b) において、 符号 3 A、 3 Bは液晶表示パネル 1 0が有する各画素におけ る光の透過率のうちの最大値、 最小値の推移をそれぞれ示している。 第 1 1図 ( a ) に示すとおり、 各サブフレーム期間において発光ダイ オード 2 3 R、 2 3 G、 2 3 B、 2 3 Wは実施の形態 1の場合と同様に して算出された発光強度で順次発光する。 そのため、 従来のように発光 ダイオード 2 3 R、 2 3 G、 2 3 B、 2 3 Wが常に最大の発光強度で発 光するようなことはない。 したがって、 本実施の形態の液晶表示装置で は、 従来の場合と比べて光源の発光強度が小さくても済む。 よって、 実 施の形態 1の場合と同様に、 光源の発光に要する電力を低減することが でき、 省電力化を図ることができる。 FIG. 11 is a timing chart showing the operation of the liquid crystal display device 1 according to the second embodiment of the present invention, in which (a) shows light emitting diodes 23 R, 23 G, 23 B, and 23 FIG. 2 is a diagram showing the light emission intensity and light emission time of W, and FIG. 2 (b) is a diagram showing a change in light transmittance of the liquid crystal display panel 10; In FIG. 11 (b), reference numerals 3A and 3B represent transitions of the maximum value and the minimum value of the light transmittance of each pixel of the liquid crystal display panel 10, respectively. As shown in Fig. 11 (a), the emission diodes 23R, 23G, 23B, and 23W in each subframe period were calculated in the same manner as in the first embodiment. Light is emitted sequentially with intensity. Therefore, the light emitting diodes 23R, 23G, 23B, and 23W do not always emit light with the maximum light emission intensity unlike the conventional case. Therefore, in the liquid crystal display device of the present embodiment, the light emission intensity of the light source may be smaller than in the conventional case. Therefore, As in the case of Embodiment 1, the power required for light emission of the light source can be reduced, and power can be saved.
(実施の形態 3 )  (Embodiment 3)
実施の形態 1の液晶表示装置の場合、 バックライ トが有する発光ダイ ォ一ドの発光強度を変化させることによってバックライ トの照射強度を 変化させている。 これに対して、 実施の形態 3の液晶表示装置は、 発光 ダイォードの発光時間を変化させることによってバックライ 卜の照明強 度を変化させる。 なお、 実施の形態 3の液晶表示装置の構成は実施の形 態 1の場合と同様である。 そのため、 以下では第 3図及び第 5図を参照 しながら説明する。  In the case of the liquid crystal display device of Embodiment 1, the illumination intensity of the backlight is changed by changing the emission intensity of the light emitting diode of the backlight. On the other hand, the liquid crystal display device of the third embodiment changes the illumination intensity of the backlight by changing the light emission time of the light emitting diode. The configuration of the liquid crystal display device of the third embodiment is the same as that of the first embodiment. Therefore, a description will be given below with reference to FIGS. 3 and 5.
本実施の形態の液晶表示装置 1は、 実施の形態 1の場合と同様にして 各画素における各色の色強度の最大値を算出し、 その結果に基づいて各 サブフレーム期間における発光ダイオード 2 3 R、 2 3 G、 2 3 Bの発 光時間を定める。 以下、 実施の形態 1で説明したリンゴの画像 (第 6図 参照) の例を用いてより具体的に説明する。  The liquid crystal display device 1 of the present embodiment calculates the maximum value of the color intensity of each color in each pixel in the same manner as in the first embodiment, and based on the result, the light emitting diode 23 R in each subframe period. , 23G, and 23B emission times are determined. Hereinafter, a more specific description will be given using the example of the apple image (see FIG. 6) described in the first embodiment.
第 6図中の画素 5 0における赤色の色強度が 1 6段階中の 1 4であつ て、他のどの画素における赤色の色強度よりも大きいとする。この場合、 赤色のサブフレーム期間における赤色の発光ダイオード 2 3 Rの発光時 間を、 その発光ダイオード 2 3 Rの通常の発光時間の 1 4 / 1 6倍とす る。  Assume that the red color intensity at pixel 50 in FIG. 6 is 14 out of 16 levels and is greater than the red color intensity at any other pixel. In this case, the light emitting time of the red light emitting diode 23R during the red subframe period is set to be 14/16 times the normal light emitting time of the light emitting diode 23R.
また、 第 6図中の画素 5 1における緑色の色強度が 1 6段階中の 1 3 であって、 他のどの画素における緑色の色強度よりも大きいとする。 こ の場合、 緑色のサブフレーム期間における緑色の発光ダイオード 2 3 G の発光時間を、 その発光ダイオード 2 3 Gの通常の発光時間の 1 3 / 1 6倍とする。  It is also assumed that the green color intensity of the pixel 51 in FIG. 6 is 13 out of 16 levels, and is larger than the green color intensity of any other pixel. In this case, the light emitting time of the green light emitting diode 23 G during the green subframe period is set to be 13/16 times the normal light emitting time of the light emitting diode 23 G.
さらに、 第 6図中の画素 5 2における青色の色強度が 1 6段階中の 5 であって、 他のどの画素における青色の色強度よりも大きいとする。 こ の場合、 青色のサブフレーム期間における青色の発光ダイオード 2 3 B の発光時間を、 その発光ダイオード 2 3 Bの通常の発光時間の 5 1 3 倍とする。 Further, it is assumed that the blue color intensity at pixel 52 in FIG. 6 is 5 out of 16 levels and is larger than the blue color intensity at any other pixel. This In the case of, the light emitting time of the blue light emitting diode 23 B during the blue sub-frame period is 5 13 times the normal light emitting time of the light emitting diode 23 B.
本実施の形態の液晶表示装置 1が備える制御手段 3 6は、 このように して定められた各発光ダイオード 2 3 R、 2 3 G、 2 3 Bのそれぞれの 発光時間を示す信号を生成し、 その信号を照明強度調節手段 3 7に対し て出力する。  The control means 36 included in the liquid crystal display device 1 of the present embodiment generates a signal indicating the light emission time of each of the light emitting diodes 23 R, 23 G, and 23 B determined as described above. Then, the signal is output to the illumination intensity adjusting means 37.
また、 制御手段 3 6は、 実施の形態 1の場合と同様にして、 各サブフ レーム期間における液晶表示パネル 1 0の各画素の光の透過率を算出す る。 そして、 制御手段 3 6は、 そのようにして算出された透過率を実現 するために各画素に書き込むべき画像信号を生成し、 その画像信号をソ ースドライバ 3 5に対して出力する。  The control unit 36 calculates the light transmittance of each pixel of the liquid crystal display panel 10 in each sub-frame period in the same manner as in the first embodiment. Then, the control means 36 generates an image signal to be written to each pixel in order to realize the transmittance calculated as described above, and outputs the image signal to the source driver 35.
以上の処理の結果、 ゲート ドライバ 3 4及びソースドライバ 3 5並び に照明強度調節手段 3 7が同期して動作することによって、 1 フレーム 分の画像が液晶表示パネル 1 0に表示される。  As a result of the above processing, the gate driver 34, the source driver 35, and the illumination intensity adjusting means 37 operate in synchronization, whereby an image for one frame is displayed on the liquid crystal display panel 10.
第 1 2図は、 実施の形態 3に係る本発明の液晶表示装置の動作を示す タイミングチャートであって、 ( a)は発光ダイオード 2 3 R、 2 3 G、 2 3 Gの発光強度及び発光時間を示す図、 (b) は液晶表示パネル 1 0 の光の透過率の推移を示す図である。 なお、 第 1 2図 ( b) において、 符号 4 A、 4 Bは液晶表示パネル 1 0が有する各画素における光の透過 率のうちの最大値、 最小値の推移をそれぞれ示している。  FIG. 12 is a timing chart showing the operation of the liquid crystal display device of the present invention according to Embodiment 3, wherein (a) shows the light emission intensity and light emission of the light emitting diodes 23 R, 23 G, and 23 G. FIG. 5B is a diagram showing time, and FIG. 6B is a diagram showing a change in light transmittance of the liquid crystal display panel 10. In FIG. 12 (b), reference numerals 4A and 4B indicate transitions of the maximum value and the minimum value of the light transmittance of each pixel included in the liquid crystal display panel 10, respectively.
第 1 2図 ( a) に示すとおり、 各サブフレーム期間において発光ダイ オード 2 3 R、 2 3 G、 2 3 Bは前述したようにして算出された発光時 間で順次発光する。これらの発光時間において、発光ダイォード 2 3 R、 2 3 G、 2 3 Bは、 それらの発光ダイオードの最大の発光強度で発光す る。  As shown in FIG. 12 (a), the light emitting diodes 23R, 23G and 23B emit light sequentially in the light emission time calculated as described above in each subframe period. During these light-emitting times, the light-emitting diodes 23R, 23G, and 23B emit light at the maximum light-emitting intensity of the light-emitting diodes.
第 1 2図 ( a) と第 1図 ( a ) とを比較して参照すると明らかなよう に、 本実施の形態の液晶表示装置 1の場合、 各サブフレーム期間におけ る発光ダイォードの発光時間が従来の液晶表示装置の場合と比べて短く なっている。 したがって、 本実施の形態の液晶表示装置 1の場合、 従来 と比べて発光ダイォ一ドの発光に要する電力を低減することができる。 なお、 このように発光時間を短く した場合であっても、 液晶表示パネ ル 1 0の各画素の光の透過率を調節することによって所望の色強度によ る画像表示を実現することができることは実施の形態 1の場合と同様で ある。 It is clear from the comparison between Fig. 12 (a) and Fig. 1 (a). In addition, in the case of the liquid crystal display device 1 of the present embodiment, the light emission time of the light emitting diode in each subframe period is shorter than that of the conventional liquid crystal display device. Therefore, in the case of the liquid crystal display device 1 of the present embodiment, the power required for light emission of the light emitting diode can be reduced as compared with the related art. Even when the light emission time is shortened in this manner, an image display with a desired color intensity can be realized by adjusting the light transmittance of each pixel of the liquid crystal display panel 10. Is the same as in the first embodiment.
本実施の形態の液晶表示装置 1 において、 光源の発光時間、 ある 1つ の画素における光の透過率、 及びその画素におけるある 1色の色強度の 対応は第 8図と同様になる。 すなわち、 「光源の発光強度」 を 「光源の 発光時間」 に置き換えれば、 本実施の形態の場合も第 8図をそのまま適 用することができる。  In the liquid crystal display device 1 of the present embodiment, the correspondence between the light emission time of the light source, the light transmittance of one pixel, and the color intensity of one color in the pixel is the same as in FIG. That is, if “light emission intensity of light source” is replaced with “light emission time of light source”, FIG. 8 can be applied to this embodiment as it is.
なお、 本実施の形態の液晶表示装置 1においても、 実施の形態 2の場 合と同様にして、 前記 3色の発光ダイオードに加えて白色の発光ダイォ ードを備えるような構成であってもよい。 この場合には、 白表示が多い ときであっても十分な省電力化を図ることが可能となる。  Note that, similarly to the case of the second embodiment, the liquid crystal display device 1 of the present embodiment may have a configuration in which a white light emitting diode is provided in addition to the three color light emitting diodes. Good. In this case, sufficient power saving can be achieved even when there are many white displays.
(参考事項)  (Reference)
実施の形態 1から実施の形態 3までの液晶表示装置は、 表示される画 像に応じて光源の発光を制御していた。 このように表示される画像の他 に、 例えば使用状況に応じて光源の発光を制御することにより省電力化 を図ることも可能である。  In the liquid crystal display devices according to the first to third embodiments, the light emission of the light source is controlled according to the displayed image. In addition to the image displayed in this way, it is also possible to save power by controlling the light emission of the light source, for example, according to the state of use.
例えば、 携帯型電話機の場合、 待ち受け時等においては必要最低限の 表示ができればよい。 そのため、 カラー表示は不要な場合が多い。 した がって、 実施の形態 2のように 4色の光を発する光源を備えている場合, 待ち受け時には白色の光を発する光源のみを発光するようにしてもよ い。 また、 実施の形態 1のように 3色の光を発する光源を備えている場 合であれば、 視感度の強い緑色の光を発する光源のみを待ち受け時に発 光するようにしてもよい。 For example, in the case of a mobile phone, it is only necessary to be able to display the minimum necessary display when waiting. Therefore, color display is often unnecessary. Therefore, when a light source that emits four colors of light is provided as in Embodiment 2, only the light source that emits white light may be emitted during standby. In addition, when a light source that emits three colors of light is provided as in Embodiment 1, If this is the case, only a light source that emits green light with high visibility may be emitted during standby.
また、 周囲の明るさに応じて光源の発光を制御することも考えられる < 例えば明るいときには白色の光のみを発し、 暗いときにはカラ一表示す るために 3色又は 4色の光を時分割で発するようにしてもよい。 具体的 には、 本発明の液晶表示装置が周囲の明るさを検知するフォ トダイォ一 ド等のセンサを備え、 このセンサから出力される情報に基づいて白表示 又はカラー表示を行うようにしてもよい。  It is also conceivable to control the light emission of the light source according to the brightness of the surroundings. <For example, only white light is emitted when it is bright, and three or four colors of light are time-divided in order to display a full color when it is dark. You may make it emit. Specifically, the liquid crystal display device of the present invention may include a sensor such as a photodiode for detecting ambient brightness, and perform white display or color display based on information output from the sensor. Good.
さらに、 画像の種類に応じて光源の発光を制御することも考えられる < 例えば、 自然画を表示する場合にのみカラー表示を行うようにし、 それ 以外の場合は白表示を行うようにしてもよい。 この場合、 カラ一表示を するか否かを示す識別信号を画像信号に予め含めておく ことにより、 容 易に実現することが可能である。  It is also conceivable to control the light emission of the light source according to the type of image. <For example, color display may be performed only when displaying a natural image, and white display may be performed in other cases. . In this case, it can be easily realized by including an identification signal indicating whether or not to perform the color display in the image signal in advance.
以上のように、 各実施の形態に係る本発明の液晶表示装置は、 表示さ れる画像に応じて光源の発光を制御することにより省電力化を図るこ とができる。  As described above, the liquid crystal display device of the present invention according to each embodiment can achieve power saving by controlling light emission of the light source in accordance with a displayed image.
なお、 本発明の液晶表示装置では、 〇 C Bモードの液晶を用いている が、 これに限られるわけではない。 O C Bモードの液晶と同様に高速応 答が可能な強誘電性液晶又は反強誘電性液晶等の自発分極を有する液 晶を用いてもよい。 また、 T N ( Tw i s t ed-Nema t i c ) モード等の液晶で あってもよい。  Although the liquid crystal display device of the present invention uses liquid crystal of the 〇CB mode, the present invention is not limited to this. A liquid crystal having spontaneous polarization, such as a ferroelectric liquid crystal or an antiferroelectric liquid crystal, which can respond at high speed similarly to the OCB mode liquid crystal, may be used. Further, the liquid crystal may be a liquid crystal in a TN (Twisted-Nematic) mode or the like.
また、 前述した各実施の形態では、 1フレームを 1単位として各画素 の色強度の最大値を色ごとに検出しているが、 複数フレームを 1単位と して同様の処理を行うようにしてもよい。  In each of the above-described embodiments, the maximum value of the color intensity of each pixel is detected for each color with one frame as one unit. However, similar processing is performed with multiple frames as one unit. Is also good.
■ また、 パーソナルコンピュータ等の外部の装置から入力される画像信 号は、 各画素の色強度の最大値が予め含まれている信号であってもよい, そのためには、 例えばパーソナルコンピュー夕に設けられているビデオ ポードが各画素の色強度の最大値を色ごとに検出し、 その検出した色強 度の最大値を含む画像信号を生成することになる。 この場合、 本発明の 液晶表示装置が、 各画素の色強度の最大値を検出するための処理が簡易 化されることになるため、 表示処理の高速化を図ることができる。 ■ Also, the image signal input from an external device such as a personal computer may be a signal in which the maximum value of the color intensity of each pixel is included in advance. Video provided The pod detects the maximum value of the color intensity of each pixel for each color, and generates an image signal including the detected maximum value of the color intensity. In this case, the liquid crystal display device of the present invention simplifies the processing for detecting the maximum value of the color intensity of each pixel, so that the display processing can be sped up.
上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施形 態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべ きであり、 本発明を実行する最良の態様を当業者に教示する目的で提供 されたものである。 本発明の精神を逸脱することなく、 その構造及び 又は機能の詳細を実質的に変更できる。  From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the above description is to be construed as illustrative only, and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
〔産業上の利用の可能性〕  [Possibility of industrial use]
本発明に係る液晶表示装置は、 液晶テレビ、 液晶モニタ、 又は携帯型 電話機等の小型電子機器の表示装置として有用である。  The liquid crystal display device according to the present invention is useful as a display device of a small electronic device such as a liquid crystal television, a liquid crystal monitor, or a portable telephone.

Claims

3冃 求 の 範 囲 3 Range of request
1 . 第 1 の基板と、 第 2の基板と、 前記第 1の基板と前記第 2の基 板との間に挟持された液晶からなる液晶層とを備え、 前記第 1の基板に 各画素ごとにそれぞれ対応するようにマトリクス状に配置された複数 個の画素電極が備えられ、 前記第 1の基板または前記第 2の基板のいず れかに対向電極が備えられた液晶表示パネルと、 1. A first substrate, a second substrate, and a liquid crystal layer including a liquid crystal sandwiched between the first substrate and the second substrate. Each pixel is provided on the first substrate. A plurality of pixel electrodes arranged in a matrix so as to correspond to each other, and a liquid crystal display panel provided with a counter electrode on either the first substrate or the second substrate;
複数色の光をそれぞれ発する光源を有し、 前記液晶表示パネルに向け て前記複数色の光を照射する照明装置と、  An illuminating device having a light source that respectively emits light of a plurality of colors, and illuminating the liquid crystal display panel with the light of the plurality of colors;
前記各画素電極と前記対向電極との間に電位差を生じさせることに より、 前記照明装置から照射される光の前記液晶層における透過率を各 画素ごとに調節する駆動手段と、  A driving unit that adjusts, for each pixel, the transmittance of light emitted from the illumination device in the liquid crystal layer by generating a potential difference between each of the pixel electrodes and the counter electrode;
前記照明装置から照射される光の強度を各色ごとに調節する照明強 度調節手段と、  Illumination intensity adjustment means for adjusting the intensity of light emitted from the illumination device for each color;
1 フレーム期間において表示させる画像に対応した画像信号が入力 され、 前記入力された画像信号における各画素の色強度の中から最大の 色強度を各色ごとに検出する検出手段と、  Detecting means for receiving an image signal corresponding to an image to be displayed in one frame period, and detecting a maximum color intensity for each color from color intensity of each pixel in the input image signal;
前記 1 フレーム期間において順次各色の光源を発光させるように前 記照明装置を制御すると共に、 前記最大の色強度に基づいて、 前記照明 強度調節手段を制御して前記フレーム期間において前記照明装置から 照射される光の強度を各色ごとに調節し、 そして前記駆動手段を制御し て前記照明装置から照射される光の前記液晶層における透過率を各画 素ごとに調節する制御手段と  The illumination device is controlled so as to sequentially emit light of each color in the one frame period, and the illumination intensity adjusting means is controlled based on the maximum color intensity to emit light from the illumination device in the frame period. Control means for adjusting the intensity of the emitted light for each color, and controlling the driving means for adjusting the transmittance of the liquid crystal layer for the light emitted from the illumination device for each pixel.
を備えた液晶表示装置。  The liquid crystal display device provided with.
2 . 前記 1 フレーム期間が複数のサブフレーム期間からなり、 前記 サブフレーム期間においては前記複数色の色をそれぞれ発する光源のう ち、 1色の光源が発光する、 請求の範囲第 1項に記載の液晶表示装置。 2. The one frame period includes a plurality of subframe periods, 2. The liquid crystal display device according to claim 1, wherein, in the sub-frame period, one of the light sources emitting the plurality of colors emits light.
3 . 前記光源が、 それぞれ赤色、 緑色、 および青色をそれぞれ発光 する、 請求の範囲第 1項に記載の液晶表示装置。  3. The liquid crystal display device according to claim 1, wherein the light sources emit red, green, and blue light, respectively.
4 . 前記光源が、 それぞれ赤色、 緑色、 青色、 および白色をそれぞ れ発光する、 請求の範囲第 1項に記載の液晶表示装置。  4. The liquid crystal display device according to claim 1, wherein the light sources emit red, green, blue, and white light, respectively.
5 . 前記液晶は O C Bモードの液晶である、 請求の範囲第 1項に記 載の液晶表示装置。  5. The liquid crystal display device according to claim 1, wherein the liquid crystal is an OCB mode liquid crystal.
6 . 前記光源は発光ダイオードである、 請求の範囲第 1項に記載の 液晶表示装置。  6. The liquid crystal display device according to claim 1, wherein the light source is a light emitting diode.
7 . 第 1の基板と、 第 2の基板と、 前記第 1 の基板と前記第 2の基 板との間に挟持された液晶からなる液晶層とを備え、 前記第 1の基板に 各画素ごとにそれぞれ対応するようにマトリクス状に配置された複数個 の画素電極が備えられ、 前記第 1の基板または前記第 2の基板のいずれ かに対向電極が備えられた液晶表示パネルと、  7. A first substrate, a second substrate, and a liquid crystal layer made of liquid crystal sandwiched between the first substrate and the second substrate, wherein each pixel is provided on the first substrate. A liquid crystal display panel comprising a plurality of pixel electrodes arranged in a matrix so as to correspond to each other, and a counter electrode provided on either the first substrate or the second substrate;
複数色の光をそれぞれ発する光源を有し、 前記液晶表示パネルに向け て前記複数色の光を照射する照明装置と、  An illuminating device having a light source that respectively emits light of a plurality of colors, and illuminating the liquid crystal display panel with the light of the plurality of colors;
前記各画素電極と前記対向電極との間に電位差を生じさせることによ り、 前記照明装置から照射される光の前記液晶層における透過率を各画 素ごとに調節する駆動手段と、  A driving unit that adjusts, for each pixel, a transmittance of light emitted from the lighting device in the liquid crystal layer by generating a potential difference between each of the pixel electrodes and the counter electrode;
前記照明装置から照射される光の発光時間を各色ごとに調節する照明 強度調節手段と、  Illumination intensity adjusting means for adjusting the emission time of light emitted from the illumination device for each color;
1 フレーム期間において表示させる画像に対応した画像信号が入力さ れ、 前記入力された画像信号における各画素の色強度の中から最大の色 強度を各色ごとに検出する検出手段と、  Detecting means for receiving an image signal corresponding to an image to be displayed in one frame period, detecting a maximum color intensity for each color from color intensity of each pixel in the input image signal,
前記 1 フレーム期間において順次各色の光源を発光させるように前記 照明装置を制御すると共に、 前記最大の色強度に基づいて、 前記照明強 度調節手段を制御して前記フレーム期間において前記照明装置から照射 される光の発光時間を各色ごとに調節し、 そして前記駆動手段を制御し て前記照明装置から照射される光の前記液晶層における透過率を各画素 ごとに調節する制御手段と The lighting device is controlled so as to sequentially emit light of each color during the one frame period, and the lighting intensity is controlled based on the maximum color intensity. Controlling the intensity adjustment means to adjust the light emission time of the light emitted from the lighting device in the frame period for each color, and controlling the driving means to control the light emitted from the lighting device in the liquid crystal layer. Control means for adjusting the transmittance for each pixel;
を備えた液晶表示装置。  The liquid crystal display device provided with.
8 . 前記 1 フレーム期間が複数のサブフレーム期間からなり、 前記 サブフレーム期間においては前記複数色の色をそれぞれ発する光源のう ち、 1色の光源が発光する、 請求の範囲第 7項に記載の液晶表示装置。  8. The one frame period according to claim 7, wherein the one frame period includes a plurality of sub-frame periods, and in the sub-frame period, one of the light sources emitting the plurality of colors emits light. Liquid crystal display device.
9 . 前記光源が、 それぞれ赤色、 緑色、 および青色をそれぞれ発光 する、 請求の範囲第 7項に記載の液晶表示装置。  9. The liquid crystal display device according to claim 7, wherein the light sources emit red, green, and blue light, respectively.
1 0 . 前記光源が、 それぞれ赤色、 緑色、 青色、 および白色をそれ ぞれ発光する、 請求の範囲第 7項に記載の液晶表示装置。  10. The liquid crystal display device according to claim 7, wherein the light sources emit red, green, blue, and white light, respectively.
1 1 . 前記液晶は O C Bモードの液晶である、 請求の範囲第 7項に 記載の液晶表示装置。  11. The liquid crystal display device according to claim 7, wherein the liquid crystal is an OCB mode liquid crystal.
1 2 . 前記光源は発光ダイオードである、 請求の範囲第 7項に記載 の液晶表示装置。  12. The liquid crystal display device according to claim 7, wherein the light source is a light emitting diode.
PCT/JP2002/005492 2001-06-04 2002-06-04 Liquid crystal display unit WO2002099781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001167976A JP2005049362A (en) 2001-06-04 2001-06-04 Liquid crystal display device
JP2001-167976 2001-06-04

Publications (1)

Publication Number Publication Date
WO2002099781A1 true WO2002099781A1 (en) 2002-12-12

Family

ID=19010274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005492 WO2002099781A1 (en) 2001-06-04 2002-06-04 Liquid crystal display unit

Country Status (2)

Country Link
JP (1) JP2005049362A (en)
WO (1) WO2002099781A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159987B2 (en) 2003-04-21 2007-01-09 Seiko Epson Corporation Display device, lighting device and projector
JP5228278B2 (en) * 2006-02-08 2013-07-03 セイコーエプソン株式会社 Image display control apparatus and method
JP2007256496A (en) * 2006-03-22 2007-10-04 Fujifilm Corp Liquid crystal display
JP5000203B2 (en) * 2006-06-13 2012-08-15 シチズンホールディングス株式会社 Color display device
JP4841334B2 (en) * 2006-06-30 2011-12-21 シャープ株式会社 Video display device and video display method
EP2065877B1 (en) * 2006-09-28 2012-12-05 Phoenix Electric Co., Ltd. Image projection system by means of direct current type high voltage discharge lamp
JP2009109639A (en) * 2007-10-29 2009-05-21 Tohoku Univ Color display method for field-sequential color liquid crystal display device
JP2009134156A (en) * 2007-11-30 2009-06-18 Univ Of Electro-Communications Signal processing method for image display, and image display device
JP2009229758A (en) * 2008-03-21 2009-10-08 Casio Comput Co Ltd Display, display method, and program
JP2009229923A (en) * 2008-03-24 2009-10-08 Casio Comput Co Ltd Display, display method, and program
US20090322795A1 (en) * 2008-06-30 2009-12-31 Maximino Vasquez Method and apparatus for reducing power consumption for displays
JP5380966B2 (en) * 2008-09-17 2014-01-08 カシオ計算機株式会社 Projector, projector control program, and light source control method
JP2010181694A (en) * 2009-02-06 2010-08-19 Ntt Docomo Inc Image display control apparatus and image display control method
JP2010039495A (en) * 2009-09-25 2010-02-18 Seiko Epson Corp Electro-optical device, driving method therefor, and electronic equipment
US20120327136A1 (en) * 2010-04-20 2012-12-27 Sharp Kabushiki Kaisha Display device
WO2015072213A1 (en) * 2013-11-13 2015-05-21 シャープ株式会社 Field sequential liquid crystal display device and method for driving same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206924A (en) * 1999-01-15 2000-07-28 Sharp Corp Time sequential scanning display
JP2000214827A (en) * 1999-01-21 2000-08-04 Toray Ind Inc Color liquid crystal display device in field sequential drive system
JP2001117078A (en) * 1999-10-21 2001-04-27 Sharp Corp Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206924A (en) * 1999-01-15 2000-07-28 Sharp Corp Time sequential scanning display
JP2000214827A (en) * 1999-01-21 2000-08-04 Toray Ind Inc Color liquid crystal display device in field sequential drive system
JP2001117078A (en) * 1999-10-21 2001-04-27 Sharp Corp Liquid crystal display device

Also Published As

Publication number Publication date
JP2005049362A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
TWI525369B (en) The backlight module and a control method for a backlight module
KR100662161B1 (en) Liquid crystal display and driving method used for same
KR100712471B1 (en) Field Sequential Liquid Crystal Display Device and Method for Color Image Display the same
US7593007B2 (en) Color-sequential display method
JP5792343B2 (en) Backlight with video and content control
JP2008052259A (en) Liquid crystal display device
WO2002099781A1 (en) Liquid crystal display unit
JP2001142409A (en) Video display device and illumination control method in the video display device
KR20030095969A (en) Display device
KR20040053786A (en) Display device and display method
Yamada et al. Sequential‐color LCD based on OCB with an LED backlight
WO2007066435A1 (en) Illumination device and display apparatus provided with the same
Yamada et al. 52.2: invited paper: color sequential LCD based on OCB with an LED backlight
WO2003001495A1 (en) Liquid crystal display and electronic device
US10429693B2 (en) Backlight source based on graphene, field color sequential liquid crystal display device, and driving method for the same
KR20050101060A (en) Field sequential color lcd and driving method thereof
KR101021202B1 (en) Field Sequential color LCD and driving method thereof
KR20050096805A (en) Liquiid crystal display device
US20060017687A1 (en) Liquid crystal display device
JP4020928B2 (en) Liquid crystal display
KR20190083028A (en) Display device having shutter panel and operating method thereof
JP2003270669A (en) Liquid crystal display device
KR20050095443A (en) Field sequential color lcd and driving method thereof
JP2008261944A (en) Liquid crystal display
KR20080096131A (en) Field sequential color driving method of lcd device with built-in image sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP