WO2002097083A1 - Method of extending long-chain dna - Google Patents

Method of extending long-chain dna Download PDF

Info

Publication number
WO2002097083A1
WO2002097083A1 PCT/JP2001/007522 JP0107522W WO02097083A1 WO 2002097083 A1 WO2002097083 A1 WO 2002097083A1 JP 0107522 W JP0107522 W JP 0107522W WO 02097083 A1 WO02097083 A1 WO 02097083A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
dna
frequency
gel
nucleic acid
Prior art date
Application number
PCT/JP2001/007522
Other languages
French (fr)
Japanese (ja)
Inventor
Noritada Kaji
Masanori Ueda
Yoshinobu Baba
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2002097083A1 publication Critical patent/WO2002097083A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to a method for extending a nucleic acid molecule. More specifically, the present invention relates to a method for extending a nucleic acid molecule using a gel and a low-frequency AC electric field.
  • Sequencing of the human genome has ended much faster than originally planned. With the advance of such DNA analysis technology, the ultimate single-molecule genome analysis technology that reads the information from only one chromosomal DNA molecule will be important in the future.
  • Technology for freely manipulating DNA with one molecule to realize single-molecule genome analysis is required.
  • Traditional single DNA molecule manipulation methods have used optical tweezers, atomic force microscopy, and high-frequency AC electric fields, but these methods require pretreatment or manipulation of DNA. It has drawbacks such as difficulty in recovering DNA and using it as a new sample, and inability to extend long-chain DNA such as chromosomal DNA.
  • the total size of human chromosomal DNA is 3.5 billion salt pairs (3.5 gigabase pairs: Gbp), and the smallest chromosome 21 has 48 million base pairs (48 megabase pairs: Mbp).
  • Gbp gigabase pairs
  • Mbp 48 megabase pairs
  • the present invention relates to a method for extending a long-chain nucleic acid using a gel and a low-frequency AC electric field, as a method for recovering and reusing the long-chain DNA analyzed by extension in a simple and rapid manner. It is an object to provide a nucleic acid molecule extended by the method. That is, the gist of the present invention is:
  • (1) a method for extending a nucleic acid molecule comprising the steps of: placing a nucleic acid molecule in a gel; and applying a low-frequency AC electric field to the nucleic acid molecule in the gel.
  • Fig. 1 is a schematic diagram of the experimental device. Two Pt electrodes were placed in a miniature cell at a distance of 1.00111 or 0.5 cm. The AC electric field generated by the arbitrary waveform generator was increased to an appropriate intensity by a high-speed power amplification bipolar power supply, and applied between Pt electrodes.
  • the symbols in the figure represent the following:
  • FIG. 2 is a diagram showing the extension process of T 4 DNA in 1% agarose gel under an alternating electric field. Continuous fluorescence image of T4 DNA stained with YOYO 1. At 0 s, an AC electric field (200 VZcm, 10 Hz) was applied horizontally to T4DNA in a random coil-like state. B) Plot of the maximum diameter 1 ⁇ of T4DNA (indicated by A) after the application of an AC electric field.
  • FIG. 3 is a diagram showing a plot of the average maximum diameter 1 ⁇ with respect to the frequency f of the external electric field of T4DNA.
  • the maximum diameter 1 ⁇ of each molecule was also time-averaged for 10 seconds (black circles) and about 7 seconds (open circles) for 1 to 5 different molecules at each frequency.
  • the horizontal dashed line The figure shows the equilibrium value of T4 DNA in a random coil-like state in the absence of an external electric field.
  • FIG. 4 is a diagram showing a time series of the average maximum diameter of 1 ⁇ and the center of gravity of the X component G x of T4 DNA at 200 VZcm under different external frequency. The dark line indicates, and the light line indicates G x .
  • FIG. 5 is a diagram showing the average maximum diameter 1 ⁇ and the X component G x of the center of gravity of T 4 DNA expanded at different electric field intensities. A) 1 5 0 V / cm . 50VZcm, and 25 0 VZcm plots of R! And G x under electric field.
  • FIG. 6 is a diagram showing a plot of the average maximum diameter 1 ⁇ against the intensity of the external electric field of T 4 DNA. Dashed lines indicate the boundaries between stretched and unstretched regions.
  • FIG. 7 is a view to view the time series of the average maximum diameter R, and T4DNA of the center of gravity of the X component G x.
  • the dark line indicates, and the light line indicates G x .
  • Figure 8 shows the average maximum diameter 1 ⁇ for the agarose gel concentration of T4 DNA. It is a figure showing a plot. The dashed line is in low molecular solution.
  • FIG. 9 shows the extension of Saccharomyces' Celepiche DNA having a length of about 285 kbp under an alternating electric field (200 V / cm, 1 OHz).
  • the method for extending a nucleic acid molecule of the present invention includes a step of arranging a nucleic acid molecule in a gel and a step of applying a low-frequency AC electric field to the nucleic acid molecule in the gel.
  • the nucleic acid molecule is The term “stretch” means that a nucleic acid molecule having a higher-order structure (for example, a coil, a bent structure, or the like) is oriented parallel to the direction of an electric field to be in an extended state.
  • nucleic acid molecule applied to the extension method of the present invention examples include double-stranded DNA, the length of which is preferably 23 to 5700 kbp, more preferably 48 to 2200 kbp. According to the method described above, the present invention can also be applied to long chains such as 2200 to 5570 kbp.
  • the amount of the nucleic acid molecule applied to the extension method is preferably from 6.25 to 394 ngZml, more preferably from 20 to 394 ngZml, from the viewpoint of one-molecule observation.
  • the gel used in the nucleic acid extension method of the present invention may be any gel, such as agarose gel or acrylamide gel, as long as it can introduce nucleic acid molecules.
  • the gel concentration to be used is preferably 0.5 to 3.0% by weight, more preferably 0.5 to 2.5% by weight, and particularly preferably 1.0 to 2.0% by weight from the viewpoint of maintaining the gel structure. .
  • the size of the gel to be used is appropriately determined without any particular limitation. Generally, a gel of 1 to 100 mm X I to 100 mm x l to 100 mm is used.
  • a buffer for example, TBE (tris-borate, EDTA), TB (tris-borate), TAE (tris-borate).
  • -Acetate, EDTA buffer solutions such as FI SH buffer SSC (sodium chloride monosodium chloride), denaturing buffer (formamido SSC, dextran sulfate-formamide SS) are used.
  • FI SH buffer SSC sodium chloride monosodium chloride
  • denaturing buffer formamido SSC, dextran sulfate-formamide SS
  • a method for disposing the sample solution is to drop the sample solution onto a pre-made gel on a DNA extension gel and introduce the DNA solution into the DNA extension gel by a DC electric field. If the sample DNA is contained in the gel plug, prepare a DNA extension gel around the gel plug and introduce it into the DNA extension gel with a DC electric field. If that And the like.
  • the term “low-frequency AC electric field” means that when a voltage is applied in one direction to a positive direction such as a sine wave, a rectangular wave, or a triangular wave having a frequency of 1 to 10 OHz, the waveform has the same intensity as the waveform.
  • the low frequency alternating electric field can be generated, for example, by using a conventional frequency generator.
  • the frequency of the low-frequency AC electric field is preferably from 1 to 10 OHz, more preferably from 1 to 20 Hz, and particularly preferably from 5 to 15 Hz, from the viewpoint of drawing out the entanglement effect between the DNA and the gel and effectively driving the DNA. preferable.
  • the intensity of the low-frequency AC electric field is preferably from 1101 to 11000001 V / cm from the viewpoint of drawing out the entanglement effect between DNA and the gel and effectively driving DNA, and I10I to I1.
  • 000 IV / cm is more preferable
  • I10I to I450IV / cm is more preferable
  • I200I to I300Icm is particularly preferable.
  • the intensity of the low-frequency AC electric field should be low to prevent irreversible entanglement between the DNA molecule and the gel fiber. It is more preferable to increase from.
  • the intensity of the low-frequency AC electric field from 110001 V / cm to 13001 V / cm from the viewpoint of preventing irreversible entanglement between the DNA molecules and the gel fibers. It is more preferable to gradually increase from I 50 I cm to I 300 I VZ cm, particularly preferably from I 10 I VZ cm to I 300 I cm.
  • the rate of gradually increasing the strength of the low-frequency AC electric field is preferably from I 1 I to I 100 I VZcm ⁇ s, and from 15 to IV / cm ⁇ s is more preferable, and 110 to 1101 VZ em's is particularly preferable.
  • the nucleic acid molecule to be extended is long DNA having a length exceeding 500 kbp
  • a low loop is used from the viewpoint of preventing irreversible entanglement between the DNA molecule and the gel fiber. It is preferable that the frequency of the wave AC electric field is gradually increased.
  • the frequency of the low-frequency AC electric field is preferably gradually increased from 1 Hz to 20 Hz, preferably from 1 Hz to 10 Hz, from the viewpoint of preventing irreversible entanglement between the DNA molecules and the gel fibers. Is particularly preferred.
  • the rate of gradually increasing the frequency of the low-frequency AC electric field is preferably 0.01 to 1 HzZs, and more preferably 0.01 to 0.5 Hz / s. Preferably, 0.01 to 0.1 HzZs is particularly preferred.
  • the method for extending nucleic acid molecules of the present invention comprises disposing nucleic acid molecules in a gel, applying a low-frequency AC electric field to the nucleic acid molecules in the gel to extend the nucleic acid molecules, and then detecting the elongated nucleic acid molecules.
  • the method further includes the step of collecting.
  • Means for observing the extension state of the nucleic acid molecule include an inverted fluorescence microscope, an upright fluorescence microscope, and a laser confocal microscope.
  • Means for detecting nucleic acid molecules include laser-induced fluorescence detector, ultraviolet / visible absorption detection, fluorescence detection, differential refractive index detection, thermo-optical detection, circular dichroism detection, electrochemical detection, and electrical conductivity. Detection and the like.
  • Means for recovering extended nucleic acid molecules include (1) re-melting the gel, (2) recovering the gel as it is, and (3) preparing a new gel around the gel containing the extended nucleic acid molecule.
  • a method of recovering a new gel by an electrophoretic method (4) a method of enzymatically or chemically cleaving the gel and then recovering the gel by an electrophoretic method, etc. These methods are performed by a conventional method.
  • the present invention further relates to a nucleic acid molecule extended by the extension method of the present invention.
  • nucleic acid molecules are also effectively used for the development of single-molecule genome analysis technology that reads information from only one DNA molecule, and such single-molecule genome analysis technology.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • a miniature cell for electrophoresis on an inverted fluorescence microscope was used for direct observation of the behavior of DNA molecules.
  • Two Pt electrodes were placed on the miniature cell at a distance of 10111 or 0.5 cm.
  • the AC electric field generated by the arbitrary waveform generator (1942, NF circuit design block) is increased to an appropriate intensity by the high-speed power amplification bipolar power supply (4020, NF circuit design block) and applied between the Pt electrodes. did.
  • an inverted fluorescent microscope equipped with a high-pressure mercury lamp (Ax i 0 Vert 135 TV, Carrl Ze iss) were used. .
  • agarose gel (Agarose NA, manufactured by Amersham Pharmacia Biotech) (5 mm ⁇ 5 mm ⁇ 2 mm) was injected under a steady electric field (5 V / cm) for 5 minutes. To remove oxygen from the gel before observing the DNA, agarose gel was added to 4% (v / v) 2-mercaptoethanol, 2. It was subjected to a solution containing 3 mg / ml glucose, 0.1 mgZm1 glucose oxidase, and 0.01 SmgZm1 force codase.
  • FIG. 2A shows a fluorescent image extending a T4 DNA molecule.
  • an AC electric field (10 Hz, 200 V / cm) was applied for a time of 0 to 70 seconds.
  • FIG. 2B shows the change in the maximum diameter of DNA [R, ( ⁇ m)].
  • the maximum diameter refers to the longest diameter passing through the center of gravity of the target DNA fluorescence image.
  • R gradually increased and reached an asymptotic value after about 20 seconds.
  • the value of Ri fluctuates around 40 m, while the natural length of a double-stranded T4 DNA molecule is about 55 m.
  • FIG. 3 shows the mean maximum diameter [R, (/ m)] as a function of electric field frequency.
  • the black circles indicate the frequencies (1, 5, 6, 7, 8, 9, 1 0, 1 1, 1 2, 1 3, 1 5, 20, 30, 40, 50, 75, 100 (Hz) at 10 seconds with 1-5 different molecules at 10 seconds, then shows the averaged R between molecules, with open circles for 2 seconds (0.1 Hz) and 7 seconds (0.5 Hz) R, which was averaged between molecules after time averaging, is shown.
  • FIG. 4 A), B) and C) shows 1 Hz, the time course of 10Hz and 1 00Hz (200 V / cm) R at each frequency, and G x.
  • G x has been recalculated so that the time average is zero.
  • G x simply correlates with an external electric field, while R, varies in a more complex manner as shown in Figure 4A).
  • R varies in a more complex manner as shown in Figure 4A).
  • both R, and are constant, as shown in Figure 4B).
  • the DNA molecule extends under these conditions, but its position does not change.
  • 100 Hz both R, and G x are constant, as shown in FIG. 4C). Under these conditions, the DNA molecules are oriented but do not stretch.
  • the average maximum diameter 1 ⁇ has a maximum value near 10 Hz.
  • FIGS. 5A) shows the mean maximum diameter 1 ⁇ and the horizontal component G x of the center of gravity of the T 4 DNA molecule at different electric field strengths (150 VZcm, 50 V / cm, and 250 V / cm).
  • FIG. 5B) shows a fluorescence image corresponding to FIG. 5A). The bright spot at the left end of the DNA in Fig. 5B) indicates a coiled or bent structure. As shown in Fig.
  • the average maximum diameter of DNA molecules is almost proportional to the strength of the external electric field up to about SO OVZcm, and is 40 OV / cn! It gradually decreases in the region up to 60 OVZcm.
  • the vertical dashed line in FIG. 6 indicates the boundary between the stretched and unstretched regions.
  • A), B) and C) show the time variation of the mean maximum diameter 1 ⁇ at 10 ⁇ ! 2 and the horizontal component G x of the center of gravity of the T4DN A molecule. In the stretch region, and G x both fluctuate slightly regardless of the frequency of the external electric field, as shown in Figs. 7A) and B).
  • the average value for 10 seconds is 5 OVZcm each
  • FIG. 8 shows the dependence of the average maximum diameter of DNA on agarose concentration.
  • the average maximum diameter of DNA is essentially constant over a wide range of 0.5-3% agarose concentrations.
  • the pore size of the gel corresponding to this concentration is between 800 and 260 nm. At low concentrations (as low as 0.5%), the gels are very soft and cannot create a practical gel system for DNA extension.
  • FIG. 8 shows that even the pore size of the 0.5% agarose gel (800 nm) is small enough to constrain the molecular motion of T 4 DNA to tube-like motion.
  • Saccharomyces cerevisiae chromosomal DNA molecules Stretching of Saccharomyces cerevisiae chromosomal DNA molecules was performed using low-frequency alternating electric fields of increasing strength and frequency.
  • Saccharomyces cerevisiae chromosome DNA 225-2,200 kbp, BioRad Laboratories
  • Saccharomyces cerevisiae chromosome DNA 225-2,200 kbp, BioRad Laboratories
  • the gel is cut into small pieces (approximately 3 mm x 2 mm x 1 mm) with a razor and placed in 0.5 XT BE buffer containing 0.1 MYOYO-1 and 4% (vZv) 2-mercaptoethanol. Saved at 4 for 1 week.
  • the gel slice was then incubated in a molten agarose solution on a mini-electrophoresis cell.
  • the agarose gel was treated with 4% (v / v) 2-mercaptoethanol, 2.3 mg / ml glucose, 0.1 mg / m1 glucose oxidase, and 0.018 mgZm1
  • the solution was added to a solution containing lipstick.
  • Chromosomal DNA molecules were injected from a gel plug into agarose gel for extension under a 1 hour steady electric field (1-2 V / cm). Then replace the buffer in the reservoir with a new buffer Then, he began experimenting with DNA molecule extension.
  • the preferred conditions for extension of the T4 DNA molecule are 1% agarose gel, 10 Hz and 200 VZcm electric field strength.
  • the Saccharomyces cerevisiae chromosome DNA molecule is prevented while preventing irreversible trapping of DNA molecules on gel fibers.
  • Stretched. First, a 1 Hz sine-wave AC electric field (I100IVZcm) is applied for 1 minute to orient the chromosomal DNA molecules in the direction of the electric field, and then the frequency is increased up to 10 Hz at a rate of 0.5 HzZs.
  • the sine wave type AC electric field was applied for 1 minute while the electric field strength was gradually increased to 200 VZcm at the rate of I 10 I VZcm ⁇ s.
  • FIG. 9A shows a fluorescence image of a Saccharomyces cerevisiae chromosome DNA molecule (about 285 kb P) when extended using a low-frequency AC electric field.
  • This fluorescent image consists of three images, and the maximum diameter of the stretched DNA molecule is about 100 ⁇ m.
  • Figure 9B) is a trace of the fluorescence image.
  • the arrow in the “coil” part of FIG. 9B) indicates the coil part of the DNA molecule. This part is not fully extended.
  • the “vent” arrow in Fig. 9B) indicates a bent structure, and such a structure may appear near the end of DNA. From FIGS. 9A) and B), it can be seen that a long-chain DNA molecule of about 285 kbp was successfully extended by the nucleic acid molecule extension method of the present invention.
  • nucleic acid molecule extension method of this invention it becomes possible to extend a nucleic acid molecule more easily, and it has the outstanding effect that the extended nucleic acid molecule can be collect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of extending a long-chain nucleic acid by using a gel and a low frequency AC electric field which makes it possible to conveniently and quickly collect and re-use an extended and analyzed long-chain DNA; nucleic acid molecules extended by this method; and a method of extending nucleic acid molecules involving the step of providing the nucleic acid molecules in a gel and the step of applying a low-frequency AC electric field to the nucleic acid molecules in the gel.

Description

明細書 長鎖 DNAを伸張する方法  Description Method for extending long-chain DNA
技術分野 Technical field
本発明は、 核酸分子の伸張方法に関する。 より詳細には、 本発明は、 ゲルと低 周波交流電場を用いた核酸分子の伸張方法に関する。 背景技術  The present invention relates to a method for extending a nucleic acid molecule. More specifically, the present invention relates to a method for extending a nucleic acid molecule using a gel and a low-frequency AC electric field. Background art
ヒト ·ゲノムのシークェンシングが当初の予定を大幅に上回るスピードで終了 した。 このような DNA解析技術の進歩に伴って、 今後はたった 1つの染色体 D N A分子からその情報を読み取る究極の 1分子ゲノム解析技術が重要になる。 1 分子ゲノム解析を実現するための DNAを 1分子で自由にマニピユレ一トする技 術が要求される。 従来の単一 DNA分子マニピュレーション '解析法には、 光ピ ンセット、 原子間力顕微鏡、 高周波交流電場が用いられてきたが、 これらの方法 では、 DN Aの前処理が必要であったり、 マニピュレートした DNAを回収して 新たなサンプルとして利用することが困難であったり、 染色体 DN Aのような長 鎖 DNAを伸張させることができない等の欠点を有していた。  Sequencing of the human genome has ended much faster than originally planned. With the advance of such DNA analysis technology, the ultimate single-molecule genome analysis technology that reads the information from only one chromosomal DNA molecule will be important in the future. Technology for freely manipulating DNA with one molecule to realize single-molecule genome analysis is required. Traditional single DNA molecule manipulation methods have used optical tweezers, atomic force microscopy, and high-frequency AC electric fields, but these methods require pretreatment or manipulation of DNA. It has drawbacks such as difficulty in recovering DNA and using it as a new sample, and inability to extend long-chain DNA such as chromosomal DNA.
ヒト染色体 DNAのサイズは、 全体で 35億塩棊対 (3. 5 ギガ塩基対: G bp) もあり、 最も小さい第 21染色体でも 4千 800万塩基対 (48メガ塩基 対: Mb p) を有する。 従って、 染色体 DNAを切断して得た断片を分離 ·同定 し、 もとの配列を再構成する過程では、 染色体 DNAをなるベく細切れにしない で大きいままで扱う方が有利である。 それゆえに、 Mb pオーダ一の巨大断片を 迅速かつ精密に解析する技術が望まれている。 発明の開示 The total size of human chromosomal DNA is 3.5 billion salt pairs (3.5 gigabase pairs: Gbp), and the smallest chromosome 21 has 48 million base pairs (48 megabase pairs: Mbp). Have. Therefore, in the process of separating and identifying fragments obtained by cutting chromosomal DNA and reconstructing the original sequence, it is advantageous to treat the chromosomal DNA as it is, without breaking it into pieces. Therefore, a technique for rapidly and precisely analyzing a large fragment of the order of Mbp is desired. Disclosure of the invention
本発明は、 簡便で迅速な、 伸張させて解析した長鎖 DNAを回収して再利用す ることが可能な方法として、 ゲルと低周波交流電場を用いた長鎖核酸を伸張させ る方法および該方法によって伸張された核酸分子を提供することを目的とする。 即ち、 本発明の要旨は、  The present invention relates to a method for extending a long-chain nucleic acid using a gel and a low-frequency AC electric field, as a method for recovering and reusing the long-chain DNA analyzed by extension in a simple and rapid manner. It is an object to provide a nucleic acid molecule extended by the method. That is, the gist of the present invention is:
( 1 ) 核酸分子をゲル中に配置する工程およびゲル中の核酸分子に低周波交流電 場を印加する工程を含む、 核酸分子の伸張方法、  (1) a method for extending a nucleic acid molecule, comprising the steps of: placing a nucleic acid molecule in a gel; and applying a low-frequency AC electric field to the nucleic acid molecule in the gel.
(2)核酸分子の長さが、 23〜570 Okbpである、 前記 ( 1 ) 記載の方法 ο  (2) The method according to (1) above, wherein the length of the nucleic acid molecule is 23 to 570 Okbp.
(3)低周波交流電場の周波数が、 1〜1 00Hzである、 前記 (1) または ( 2 ) 記載の方法、  (3) The method according to (1) or (2), wherein the frequency of the low-frequency AC electric field is 1 to 100 Hz.
(4)低周波交流電場の強度が、 I 1 0 I〜 I 1 0000 I (絶対値) VZcm である、 前記 (1)〜 (3) いずれかに記載の方法、  (4) The method according to any one of (1) to (3), wherein the intensity of the low-frequency AC electric field is I 10 I to I 10000 I (absolute value) VZcm.
(5)低周波交流電場の強度を漸増させる、 前記 (1)〜 (3) いずれかに記載 の方法、  (5) The method according to any one of (1) to (3), wherein the intensity of the low-frequency AC electric field is gradually increased.
(6)低周波交流電場の強度を、 I 10 I VZ cmから I 300 I (絶対値) V cmまで漸増させる、 前記 (5)記載の方法、  (6) The method according to (5), wherein the intensity of the low-frequency AC electric field is gradually increased from I 10 I VZ cm to I 300 I (absolute value) V cm.
(7)低周波交流電場の強度を漸増する速度が、 I 1 I〜 I 1 00 I (絶対値) V/cm · sである、 前記 (5) または (6)記載の方法、  (7) The method according to (5) or (6), wherein the rate of gradually increasing the intensity of the low-frequency AC electric field is I 1 I to I 100 I (absolute value) V / cm · s.
(8)低周波交流電場の周波数を漸増させる、 前記 (1)〜 (7)記載の方法、  (8) The method according to (1) to (7), wherein the frequency of the low-frequency AC electric field is gradually increased.
(9)低周波交流電場の周波数を 1 Hzから 20 Hzまで漸増させる、 前記 (8 ) 記載の方法、 (9) The method according to (8), wherein the frequency of the low-frequency AC electric field is gradually increased from 1 Hz to 20 Hz.
(1 0)低周波交流電場の周波数を漸増する速度が 0. 01〜1HZZSである 、 前記 (8) または (9)記載の方法、  (10) The method according to (8) or (9), wherein the speed of gradually increasing the frequency of the low-frequency AC electric field is 0.01-1HZZS.
(1 1)伸張した核酸分子を検出し、 回収する工程をさらに含む、 前記 (1)〜 (1 0) いずれかに記載の方法、 (11) The method according to (1), further comprising a step of detecting and recovering the extended nucleic acid molecule. (10) The method according to any of the above,
(12)前記 (1) 〜 (1 1) いずれかに記載の方法により伸張されてなる核酸 分子、  (12) a nucleic acid molecule stretched by the method according to any of (1) to (11),
に関する。 図面の簡単な説明 About. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実験装置の模式図である。 2つの P t電極をミニチュアセルに 1. 00111または0. 5 cmの距離をもってに配置した。 任意波形発生装置により生 じた交流電場を、 高速電力増幅双極性パワーサプラィにより適切な強度に増強し 、 P t電極間に印加した。 なお、 図中の符号は以下を表す:  Fig. 1 is a schematic diagram of the experimental device. Two Pt electrodes were placed in a miniature cell at a distance of 1.00111 or 0.5 cm. The AC electric field generated by the arbitrary waveform generator was increased to an appropriate intensity by a high-speed power amplification bipolar power supply, and applied between Pt electrodes. The symbols in the figure represent the following:
1 高速電力増幅双極性パワーサプライ ;  1 High-speed power amplification bipolar power supply;
2 任意波形発生装置; 2 Arbitrary waveform generator;
3 100倍油浸対物レンズ;  3 100x oil immersion objective lens;
4 30 mmx 40 mmカバーガラス;  4 30 mm x 40 mm cover glass;
5 P t電極;  5 Pt electrode;
6 ァガロースゲル;  6 agarose gel;
7 0. 5 XT BE緩衝液;  7 0.5 XT BE buffer;
8 DNAサンプル。  8 DNA samples.
第 2図は、 交流電場下における 1 %ァガロースゲル中の T 4 DN Aの伸張プロ セスを示す図である。 YOYO 1で染色した T4DNAの連続蛍光イメージ。 0 秒において、 交流電場 (200 VZcm, 10Hz) を水平方向にランダムコィ ル様状態の T4DNAに印加した。 B)交流電場を印加後の T4DNA (Aで示 したもの) の最大径1^ のプロット。  FIG. 2 is a diagram showing the extension process of T 4 DNA in 1% agarose gel under an alternating electric field. Continuous fluorescence image of T4 DNA stained with YOYO 1. At 0 s, an AC electric field (200 VZcm, 10 Hz) was applied horizontally to T4DNA in a random coil-like state. B) Plot of the maximum diameter 1 ^ of T4DNA (indicated by A) after the application of an AC electric field.
第 3図は、 T 4 DN Aの外部電場の周波数 f に対する平均最大径1^ のプロッ トを示す図である。 各分子の最大径1^ を 10秒間 (黒丸) および約 7秒間 (白 丸) 、 1〜5個の異なる分子も各々の周波数で時間平均した。 水平方向の破線は 、 外部電場非存在下におけるランダムコィル様状態の T 4 D N Aの平衡状態の値 を示す。 FIG. 3 is a diagram showing a plot of the average maximum diameter 1 ^ with respect to the frequency f of the external electric field of T4DNA. The maximum diameter 1 ^ of each molecule was also time-averaged for 10 seconds (black circles) and about 7 seconds (open circles) for 1 to 5 different molecules at each frequency. The horizontal dashed line The figure shows the equilibrium value of T4 DNA in a random coil-like state in the absence of an external electric field.
第 4図は、 異なる外部周波数下での 200 VZcmでの T4 DNAの平均最大 径1^ および重心の X成分 Gx の時系列を示す図である。 濃い線は、 を示し 、 薄い線は、 Gx をそれぞれ示す。 A) 1 Hzo B) 1 OHZo C) 1 0 OHz 第 5図は、 異なる電場強度で伸張した T 4 DNAの平均最大径1^ および重心 の X成分 Gx を示す図である。 A) 1 5 0 V/cm. 50VZcm、 および 25 0 VZcmの電場下での R! および Gx のプロット。 B) 1 5 0 V/cm, 5 0 V/cm. および 25 0 VZcmの電場下での T4 DNAの蛍光イメージ。 第 6図は、 T 4 DN Aの外部電場の強度に対する平均最大径1^ のプロットを 示す図である。 破線は、 伸張および非伸張領域の間の境界を示す。 4 is a diagram showing a time series of the average maximum diameter of 1 ^ and the center of gravity of the X component G x of T4 DNA at 200 VZcm under different external frequency. The dark line indicates, and the light line indicates G x . A) 1 Hzo B) 1 OHZo C) 10 OHz FIG. 5 is a diagram showing the average maximum diameter 1 ^ and the X component G x of the center of gravity of T 4 DNA expanded at different electric field intensities. A) 1 5 0 V / cm . 50VZcm, and 25 0 VZcm plots of R! And G x under electric field. B) Fluorescence images of T4 DNA under electric fields of 150 V / cm, 50 V / cm. And 250 VZcm. FIG. 6 is a diagram showing a plot of the average maximum diameter 1 ^ against the intensity of the external electric field of T 4 DNA. Dashed lines indicate the boundaries between stretched and unstretched regions.
第 7図は、 平均最大径 R, および T4DNAの重心の X成分 Gx の時系列を示 す図である。 濃い線は、 を示し、 薄い線は、 Gx を示す。 A) 5 0 V/cm 、 1 OHZo B) 200 V/cm, 1 0 Hz0 C) 600 V/cm, 1 0 Hz0 第 8図は、 T 4 DNAのァガロースゲル濃度に対する平均最大径1^ のプロッ トを示す図である。 破線は低分子溶液中の である。 FIG. 7 is a view to view the time series of the average maximum diameter R, and T4DNA of the center of gravity of the X component G x. The dark line indicates, and the light line indicates G x . A) 50 V / cm, 1 OHZo B) 200 V / cm, 10 Hz 0 C) 600 V / cm, 10 Hz 0 Figure 8 shows the average maximum diameter 1 ^ for the agarose gel concentration of T4 DNA. It is a figure showing a plot. The dashed line is in low molecular solution.
第 9図は、 交流電場 ( 200 V/ c m、 1 OHz) 下での、 約 28 5 k b pの 長さを有する、 サッカロミセス 'セレピシェ DNAの伸張を示す図である。 A) 伸張したサッカロミセス ·セレビシェ染色体 DNAの蛍光イメージ。 B) 蛍光ィ メ一ジのトレース。 発明を実施するための最良の形態  FIG. 9 shows the extension of Saccharomyces' Celepiche DNA having a length of about 285 kbp under an alternating electric field (200 V / cm, 1 OHz). A) Fluorescence image of expanded Saccharomyces cerevisiae chromosomal DNA. B) Fluorescence image trace. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の核酸分子の伸張方法は、 核酸分子をゲル中に配置する工程およびゲル 中の核酸分子に低周波交流電場を印加する工程を含む。 ここで、 核酸分子を 「伸 張する」 とは、 高次構造 (例えば、 コイル、 屈曲構造など) を有する核酸分子を 電場方向に平行に配向させ、 伸張させた状態にすることをいう。 The method for extending a nucleic acid molecule of the present invention includes a step of arranging a nucleic acid molecule in a gel and a step of applying a low-frequency AC electric field to the nucleic acid molecule in the gel. Here, the nucleic acid molecule is The term “stretch” means that a nucleic acid molecule having a higher-order structure (for example, a coil, a bent structure, or the like) is oriented parallel to the direction of an electric field to be in an extended state.
本発明の伸張方法に適用される核酸分子としては、 二本鎖 DNAが挙げられ、 その長さは、 23〜5 70 0 kbpが好ましく、 48〜 220 0 k b pがさらに 好ましいが、 特に、 本発明の方法によれば、 2200〜570 0 kbpのような 長鎖のものに対しても適用できる。 伸張方法に適用される核酸分子の量は、 1分 子観察の観点から、 6. 25〜394 ngZmlが好ましく、 20〜 394 ng Zmlがさらに好ましい。  Examples of the nucleic acid molecule applied to the extension method of the present invention include double-stranded DNA, the length of which is preferably 23 to 5700 kbp, more preferably 48 to 2200 kbp. According to the method described above, the present invention can also be applied to long chains such as 2200 to 5570 kbp. The amount of the nucleic acid molecule applied to the extension method is preferably from 6.25 to 394 ngZml, more preferably from 20 to 394 ngZml, from the viewpoint of one-molecule observation.
本発明の核酸の伸張方法に使用されるゲルとしては、 ァガロースゲル、 ァクリ ルアミ ドゲル等の核酸分子を導入することができるものであれば、 いかなるもの であってもよい。 使用するゲル濃度は、 ゲル構造保持の観点から、 0. 5〜3. 0重量%が好ましく、 0. 5〜2. 5重量%がさらに好ましく、 1. 0〜2. 0 重量%が特に好ましい。 使用されるゲルの大きさは、 特に限定されることなく適 宜決められるが、 一般には、 1〜1 00 mm X I〜1 00mmx l〜l 00 mm のゲルが使用される。  The gel used in the nucleic acid extension method of the present invention may be any gel, such as agarose gel or acrylamide gel, as long as it can introduce nucleic acid molecules. The gel concentration to be used is preferably 0.5 to 3.0% by weight, more preferably 0.5 to 2.5% by weight, and particularly preferably 1.0 to 2.0% by weight from the viewpoint of maintaining the gel structure. . The size of the gel to be used is appropriately determined without any particular limitation. Generally, a gel of 1 to 100 mm X I to 100 mm x l to 100 mm is used.
ゲル中の核酸分子に低周波交流電場を印加する工程では、 一般に緩衝液を使用 することが好ましく、 例えば、 TBE (トリス—ホウ酸、 EDTA)、 TB (ト リス一ホウ酸) 、 TAE (トリス-酢酸、 EDTA)、 F I SH用バッファー S SC (塩化ナトリウム一クェン酸ナトリウム) 、 変性用バッファー (ホルムアミ ドー SSC、 硫酸デキストラン—ホルムアミ ドー SS)等の緩衝液が使用される 核酸分子をゲル中に配置する手段としては、 例えば、 サンプルとする DNAが 溶液である場合には、 サンプル溶液を DN A伸張用ゲルにあらかじめ作成したゥ ルに滴下し、 直流電場により D N A伸張用ゲルに導入する方法等が挙げられ、 サンプルとする DNAがゲルプラグ中に包含されている場合には、 ゲルプラグ周 辺に DNA伸張用ゲルを作製し、 直流電場により DN A伸張用ゲルに導入する方 法等が挙げられる。 In the step of applying a low-frequency AC electric field to the nucleic acid molecules in the gel, it is generally preferable to use a buffer, for example, TBE (tris-borate, EDTA), TB (tris-borate), TAE (tris-borate). -Acetate, EDTA), buffer solutions such as FI SH buffer SSC (sodium chloride monosodium chloride), denaturing buffer (formamido SSC, dextran sulfate-formamide SS) are used. For example, when the DNA to be sampled is a solution, a method for disposing the sample solution is to drop the sample solution onto a pre-made gel on a DNA extension gel and introduce the DNA solution into the DNA extension gel by a DC electric field. If the sample DNA is contained in the gel plug, prepare a DNA extension gel around the gel plug and introduce it into the DNA extension gel with a DC electric field. If that And the like.
本発明において、 「低周波交流電場」 とは、 1〜1 0 OHzの周波数をもつ正 弦波、 矩形波、 三角波等の +方向と一方向への電圧の印加において、 その波形と 強度の等しい電場をいう。 低周波交流電場は、 例えば、 慣用の周波発生器を用い ることにより発生させることができる。  In the present invention, the term “low-frequency AC electric field” means that when a voltage is applied in one direction to a positive direction such as a sine wave, a rectangular wave, or a triangular wave having a frequency of 1 to 10 OHz, the waveform has the same intensity as the waveform. Electric field. The low frequency alternating electric field can be generated, for example, by using a conventional frequency generator.
低周波交流電場の周波数は、 DNAとゲルとの絡み合い効果を引出し、 効果的 に DNAを駆動する観点から、 1〜1 0 OHzが好ましく、 l〜20Hzがさら に好ましく、 5〜1 5Hzが特に好ましい。  The frequency of the low-frequency AC electric field is preferably from 1 to 10 OHz, more preferably from 1 to 20 Hz, and particularly preferably from 5 to 15 Hz, from the viewpoint of drawing out the entanglement effect between the DNA and the gel and effectively driving the DNA. preferable.
低周波交流電場の強度は、 DNAとゲルとの絡み合い効果を引出し、 効果的に DNAを駆動させる観点から、 1 1 0 1〜 1 1 0000 1 V/cmが好ましく、 I 1 0 I〜 I 1 000 I V/cmがさらに好ましく、 I 1 0 I〜 I 45 0 I V/ cmがさらに好ましく、 I 200 I〜 I 300 I c mが特に好ましい。 伸張対象の核酸分子が 500 kb pを越える長さを有する長鎖 DNAである場 合には、 DNA分子とゲル繊維との不可逆的な絡み合いを防ぐ観点から、 低周波 交流電場の強度を低強度から増加させる方が好ましい。  The intensity of the low-frequency AC electric field is preferably from 1101 to 11000001 V / cm from the viewpoint of drawing out the entanglement effect between DNA and the gel and effectively driving DNA, and I10I to I1. 000 IV / cm is more preferable, I10I to I450IV / cm is more preferable, and I200I to I300Icm is particularly preferable. If the nucleic acid molecule to be extended is a long-chain DNA having a length exceeding 500 kbp, the intensity of the low-frequency AC electric field should be low to prevent irreversible entanglement between the DNA molecule and the gel fiber. It is more preferable to increase from.
この場合、 低周波交流電場の強度は、 DNA分子とゲル繊維との不可逆的な絡 み合いを防ぐ観点から、 1 1 00 1 V/cmから 1 300 1 V/cmまで漸増さ せることが好ましく、 I 50 I cmから I 300 I VZ cmまで漸増させる ことがさらに好ましく、 I 1 0 I VZcmから I 300 I cmまで漸増させ ることが特に好ましい。  In this case, it is preferable to gradually increase the intensity of the low-frequency AC electric field from 110001 V / cm to 13001 V / cm from the viewpoint of preventing irreversible entanglement between the DNA molecules and the gel fibers. It is more preferable to gradually increase from I 50 I cm to I 300 I VZ cm, particularly preferably from I 10 I VZ cm to I 300 I cm.
低周波交流電場の強度の漸増速度は、 D N A分子とゲル繊維との不可逆的な絡 み合いを防ぐ観点から、 I 1 I〜 I 1 00 I VZcm · sが好ましく、 1 5 |〜 I 1 00 I V/cm · sがさらに好ましく、 1 1 0 1〜 1 1 0 0 1 VZ em ' s が特に好ましい。  From the viewpoint of preventing irreversible entanglement between DNA molecules and gel fibers, the rate of gradually increasing the strength of the low-frequency AC electric field is preferably from I 1 I to I 100 I VZcm · s, and from 15 to IV / cm · s is more preferable, and 110 to 1101 VZ em's is particularly preferable.
伸張対象の核酸分子が、 500 kbpを越える長さを有する長鏆 DNAである 場合には、 DNA分子とゲル繊維との不可逆的な絡み合いを防ぐ観点から、 低周 波交流電場の周波数を漸増させて印加することが好ましい。 When the nucleic acid molecule to be extended is long DNA having a length exceeding 500 kbp, a low loop is used from the viewpoint of preventing irreversible entanglement between the DNA molecule and the gel fiber. It is preferable that the frequency of the wave AC electric field is gradually increased.
この場合、 低周波交流電場の周波数は、 DNA分子とゲル繊維との不可逆的な 絡み合いを防ぐ観点から、 1 H zから 20 H zまで漸増させることが好ましく、 1 Hzから 1 0 Hzまで漸増させることが特に好ましい。  In this case, the frequency of the low-frequency AC electric field is preferably gradually increased from 1 Hz to 20 Hz, preferably from 1 Hz to 10 Hz, from the viewpoint of preventing irreversible entanglement between the DNA molecules and the gel fibers. Is particularly preferred.
低周波交流電場の周波数の漸増速度は、 D N A分子とゲル繊維との不可逆的な 絡み合いを防ぐ観点から、 0. 0 1〜1 HzZsが好ましく、 0. 0 1〜0. 5 Hz/sがさらに好ましく、 0. 0 1〜0. 1 HzZsが特に好ましい。  From the viewpoint of preventing the irreversible entanglement of the DNA molecules and the gel fibers, the rate of gradually increasing the frequency of the low-frequency AC electric field is preferably 0.01 to 1 HzZs, and more preferably 0.01 to 0.5 Hz / s. Preferably, 0.01 to 0.1 HzZs is particularly preferred.
本発明の核酸分子の伸張方法を行なう際には、 ゲルの融解を防ぐ観点から、 全 操作を 0〜8 0°C、 好ましくは 1 0〜35 、 より好ましくは 1 5〜25 °Cで行 なうことが望ましい。  When performing the nucleic acid molecule extension method of the present invention, from the viewpoint of preventing gel melting, all operations are performed at 0 to 80 ° C, preferably 10 to 35, more preferably 15 to 25 ° C. Is desirable.
本発明の核酸分子の伸張方法は、 ゲル中に核酸分子を配置し、 ゲル中の核酸分 子に低周波交流電場を印加して核酸分子を伸張させた後に、 伸張した核酸分子を 検出し、 回収する工程をさらに含む。  The method for extending nucleic acid molecules of the present invention comprises disposing nucleic acid molecules in a gel, applying a low-frequency AC electric field to the nucleic acid molecules in the gel to extend the nucleic acid molecules, and then detecting the elongated nucleic acid molecules. The method further includes the step of collecting.
核酸分子の伸張状態を観察する手段としては、 倒立型蛍光顕微鏡、 正立型蛍光 顕微鏡、 レーザー共焦点顕微鏡等が挙げられる。  Means for observing the extension state of the nucleic acid molecule include an inverted fluorescence microscope, an upright fluorescence microscope, and a laser confocal microscope.
核酸分子を検出する手段としては、 レーザー誘起蛍光検出器、 紫外 ·可視部吸 収検出、 蛍光検出、 示差屈折率検出、 熱光学的検出、 円二色性検出、 電気化学的 検出、 電気伝導度検出等が挙げられる。  Means for detecting nucleic acid molecules include laser-induced fluorescence detector, ultraviolet / visible absorption detection, fluorescence detection, differential refractive index detection, thermo-optical detection, circular dichroism detection, electrochemical detection, and electrical conductivity. Detection and the like.
伸張した核酸分子を回収する手段としては、 ( 1) ゲルの再融解、 (2) ゲル の状態のまま回収、 (3) 伸張した核酸分子を含むゲルの周辺に新たなゲルを調 製し、 電気泳動的手法により新たなゲルに回収する、 (4) ゲルを酵素的、 化学 的に切断した後、 電気泳動的手法により回収する等の方法が挙げられ、 これらは 慣用の方法により行われる。  Means for recovering extended nucleic acid molecules include (1) re-melting the gel, (2) recovering the gel as it is, and (3) preparing a new gel around the gel containing the extended nucleic acid molecule. A method of recovering a new gel by an electrophoretic method, (4) a method of enzymatically or chemically cleaving the gel and then recovering the gel by an electrophoretic method, etc. These methods are performed by a conventional method.
本発明はさらに、 本発明の伸張方法により伸張された核酸分子に関する。 かか る核酸分子は、 たった 1つの DNA分子からその情報を読みとる 1分子ゲノム解 析技術、 またそのような 1分子ゲノム解析技術の開発にも有効に使用される。 以下、 実施例により本発明をさらに詳しく説明するが、 本発明はこれらの実施 例によりなんら限定されるものではない。 The present invention further relates to a nucleic acid molecule extended by the extension method of the present invention. Such nucleic acid molecules are also effectively used for the development of single-molecule genome analysis technology that reads information from only one DNA molecule, and such single-molecule genome analysis technology. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例に先立ち、 下記の装置を準備し、 各実施例で使用した。  Prior to the examples, the following devices were prepared and used in each example.
第 1図に示すように倒立型蛍光顕微鏡上の電気泳動用ミニチュアセルを DNA 分子の挙動の直接的な観察のために使用した。 2つの P t電極をミニチュアセル 上に 10111または0. 5 cmの距離をおいて配置した。 任意波形発生装置 (1 9 42, ェヌエフ回路設計ブロック) により生成する交流電場を、 高速電力増幅双 極性パワーサプライ ( 4020, ェヌエフ回路設計ブロック) により適切な強度 に増強し、 P t電極間に印加した。 100倍油浸対物レンズ (P 1 an— NEO FLUAR、 N. A. =1. 3) および高圧水銀ランプを備えた倒立型蛍光顕微 鏡 (Ax i 0 V e r t 1 35 TV, Ca r l Ze i s s) を用いた。 蛍光ィ メージを、 S I T (シリコン増感標的) カメラ (C 2400— 08、 浜松ホトニ クス) を用いて観察した。 DNAのイメージおよび電場の電圧を、 イメージキヤ プチヤーボード (ひまわり、 株式会社ライブラリ一) によりパーソナルコンビュ 一夕のメモリーに直接記録した。 DNA分子の最大径および重心を、 イメージプ ロセシングソフトウェア (Co smos 32, 株式会社ライブラリー) により計 算した。 実施例 1  As shown in FIG. 1, a miniature cell for electrophoresis on an inverted fluorescence microscope was used for direct observation of the behavior of DNA molecules. Two Pt electrodes were placed on the miniature cell at a distance of 10111 or 0.5 cm. The AC electric field generated by the arbitrary waveform generator (1942, NF circuit design block) is increased to an appropriate intensity by the high-speed power amplification bipolar power supply (4020, NF circuit design block) and applied between the Pt electrodes. did. A 100x oil immersion objective lens (P 1 an — NEO FLUAR, NA = 1.3) and an inverted fluorescent microscope equipped with a high-pressure mercury lamp (Ax i 0 Vert 135 TV, Carrl Ze iss) were used. . The fluorescence image was observed using a SIT (silicon sensitized target) camera (C2400-08, Hamamatsu Photonics). The DNA image and electric field voltage were recorded directly to the memory of a personal computer using an image capture board (Himawari, Library 1). The maximum diameter and the center of gravity of the DNA molecule were calculated using image processing software (Cosmos 32, Library, Inc.). Example 1
1 5. 5 £の丁40 八 (1 65. 6 kbp, 二ツボンジーン社製) を、 蛍 光色素、 YOYO— 1 (モルキュラープローブ株式会社製) で染色し、 0. 5x TBE緩衝液中の 1. 0重量%ァガロースゲル (Ag a r 0 s e NA, アマシ ャムフアルマシアバイオテク社製) (5mmx 5mmx 2mm) に定常電場下 ( 5 V/cm) で 5分間かけて注入した。 DNA観察の前にゲル中から酸素を除去 するために、 ァガロースゲルを 4% (v/v) 2—メルカプトエタノール、 2. 3mg/mlグルコース、 0. 1 mgZm 1グルコースォキシダーゼ、 および 0 . 01 SmgZm 1力タラ一ゼを含有する溶液に供した。 15.5 pounds of cloves (165.6 kbp, manufactured by Futatsu Gene Co., Ltd.) were stained with a fluorescent dye, YOYO-1 (Molecular Probes Co., Ltd.). 1.0% by weight agarose gel (Agarose NA, manufactured by Amersham Pharmacia Biotech) (5 mm × 5 mm × 2 mm) was injected under a steady electric field (5 V / cm) for 5 minutes. To remove oxygen from the gel before observing the DNA, agarose gel was added to 4% (v / v) 2-mercaptoethanol, 2. It was subjected to a solution containing 3 mg / ml glucose, 0.1 mgZm1 glucose oxidase, and 0.01 SmgZm1 force codase.
第 2図 A) は、 T 4 DNA分子を伸張する蛍光イメージを示す。 ここで、 AC 電場 ( 1 0Hz、 200 V/cm) を時間 0秒から 70秒間印加した。 第 2図 B ) は、 DNAの最大径 [R, (^m) ] における変化を示す。 ここで、 最大径と は、 対象となる DNA蛍光像の重心を通る径のうち、 最長のものをいう。 第 2図 B) に示されるように、 R, は、 徐々に増大し、 約 20秒後に漸近値に達した。 ここで、 Ri の値は 40 m付近を変動し、 一方、 2本鎖の T4DNA分子の自 然長は約 5 5 mである。 ァガロースゲルの細孔サイズの不均一性のために、 D NA分子は、 ときどき、 かかる中間状態で第 2図 B) の 1 0秒付近でトラップさ れた。 ァガロースゲル中での伸張プロセスの間、 DNA分子は、 この中間状態で のトラッピングと、 脱出とを繰り返した。 この試行の後、 DNA分子は、 最大径 の漸近値に到達するための効果的なァガロースゲル中のパスを見出し得た。 実施例 2  FIG. 2A) shows a fluorescent image extending a T4 DNA molecule. Here, an AC electric field (10 Hz, 200 V / cm) was applied for a time of 0 to 70 seconds. FIG. 2B) shows the change in the maximum diameter of DNA [R, (^ m)]. Here, the maximum diameter refers to the longest diameter passing through the center of gravity of the target DNA fluorescence image. As shown in Fig. 2B), R, gradually increased and reached an asymptotic value after about 20 seconds. Here, the value of Ri fluctuates around 40 m, while the natural length of a double-stranded T4 DNA molecule is about 55 m. Due to the pore size heterogeneity of the agarose gel, the DNA molecules were sometimes trapped in such an intermediate state around 10 seconds in Figure 2B). During the extension process in the agarose gel, the DNA molecules repeatedly trapped and escaped in this intermediate state. After this trial, the DNA molecules could find an effective path through the agarose gel to reach the asymptotic maximum diameter. Example 2
DNA分子の伸張に対する電場の周波数の影響を解析した。 種々の周波数の電 場を印加した以外は、 実施例 1と同様の条件下で T 4 DNA分子を伸張させた。 結果を第 3図に示す。 第 3図は、 電場の周波数の関数としての平均最大径 [R, ( /m) ] を示す。 第 3図では、 黒丸は、 各周波数 ( 1, 5, 6, 7, 8, 9, 1 0, 1 1, 1 2, 1 3, 1 5, 20, 30, 40, 50, 75, 1 00 Hz) における 1〜5個の異なる分子での 1 0秒間について時間平均した後、 分子間で 平均した R, を示し、 白丸は、 2秒 (0. 1 Hz) および 7秒 (0. 5Hz) に ついて時間平均した後、 分子間で平均した R, を示す。  The effect of electric field frequency on DNA molecule extension was analyzed. T4 DNA molecules were expanded under the same conditions as in Example 1 except that electric fields of various frequencies were applied. The results are shown in FIG. FIG. 3 shows the mean maximum diameter [R, (/ m)] as a function of electric field frequency. In Fig. 3, the black circles indicate the frequencies (1, 5, 6, 7, 8, 9, 1 0, 1 1, 1 2, 1 3, 1 5, 20, 30, 40, 50, 75, 100 (Hz) at 10 seconds with 1-5 different molecules at 10 seconds, then shows the averaged R between molecules, with open circles for 2 seconds (0.1 Hz) and 7 seconds (0.5 Hz) R, which was averaged between molecules after time averaging, is shown.
ゲル中での DN A分子の運動はポリマー溶液中で観察されたような領域 (例え ば、 直線状運動、 反共鳴、 伸張、 配向) に周波数を分類しえないが、 運動中の D NA分子の平均最大径1^ と重心の X成分 Gx を用いて第 3図の周波数領域を特 徵づけることができる。 Gx の変動レベルが、 時間平均した R, よりも小さい場 合、 DNA分子は、 ァガロースゲル中でもチューブ様運動 (Uedaら、 (1 997 ) Stretching of Long DNA under Alternating Current Electric Fields in a Concentrated Polymer Solution, Polymer Journal, Vol.29. No.12. ppl040-104 3参照) を行うことが予測される。 一方、 よりも大きな Gx の変動は、 チュ ―ブ様運動より複雑な動きを示す。 The motion of DNA molecules in a gel cannot be classified into frequencies such as those observed in polymer solutions (eg, linear motion, anti-resonance, stretching, orientation), but DNA molecules in motion JP frequency domain of FIG. 3 with an average maximum diameter of 1 ^ and the center of gravity of the X component G x Can be established. Fluctuation level of G x is, time-averaged R, small case than, DNA molecules, tube-like movement even during Agarosugeru (Ueda et al., (1 997) Stretching of Long DNA under Alternating Current Electric Fields in a Concentrated Polymer Solution, Polymer Journal, Vol.29. No.12. See ppl040-104 3). On the other hand, larger G x variations indicate more complex movements than tube-like movements.
第 4図 A)、 B) および C) は、 1 Hz、 10Hzおよび 1 00Hz (200 V/cm) それぞれの周波数での R, および Gx の時間経過を示す。 ここで、 G x は、 時間平均がゼロになるように再計算されている。 1 Hzの場合、 およ び Gx の両方が、 平均値付近を変動する。 Gx は、 外部電場と単純に相関し、 一 方、 R, は、 第 4図 A) に示されるようなより複雑な様式で変動する。 1 0 Hz の場合、 R, および の両方が、 第 4図 B) に示されるように一定である。 D NA分子は、 この条件で伸張するが、 その位置は変化しない。 1 00Hzの場合 、 R, および Gx の両方が、 第 4図 C) に示されるように一定である。 この条件 において、 DNA分子は配向するが、 伸張しない。 低周波数 (0. 1 Hz付近) において、 DNA分子の直線状運動はァガロースゲルでは現れない。 このように 、 平均最大径1^ は 1 0 Hz付近で最大値を有することが理解される。 実施例 3 Figure 4 A), B) and C) shows 1 Hz, the time course of 10Hz and 1 00Hz (200 V / cm) R at each frequency, and G x. Here, G x has been recalculated so that the time average is zero. At 1 Hz, and G x both fluctuate around the mean. G x simply correlates with an external electric field, while R, varies in a more complex manner as shown in Figure 4A). At 10 Hz, both R, and are constant, as shown in Figure 4B). The DNA molecule extends under these conditions, but its position does not change. At 100 Hz, both R, and G x are constant, as shown in FIG. 4C). Under these conditions, the DNA molecules are oriented but do not stretch. At low frequencies (around 0.1 Hz), linear motion of DNA molecules does not appear on agarose gels. Thus, it is understood that the average maximum diameter 1 ^ has a maximum value near 10 Hz. Example 3
DNA分子の伸張に対する電場強度の影響を解析した。 種々の電場強度を印加 した以外は、 実施例 1と同様にして T 4 DN A分子を伸張させた。 結果を第 5図 および 6に示す。 第 5図 A) は、 異なる電場強度 (1 50VZcm、 50 V/c m、 および 250 V/cm) での平均最大径1^ および T 4 DN A分子の重心の 水平方向成分 Gx を示す。 第 5図 B) は、 第 5図 A) に対応する蛍光イメージを 示す。 第 5図 B) の DNAの左端の明るいスポットは、 コイル構造または曲折構 造を示す。 第 6図に示されるように、 DNA分子の平均最大径は、 約 S O OVZcmまで は外部電場の強度にほぼ比例し、 40 OV/cn!〜 60 OVZcmまでの領域で 徐々に減少する。 第 6図の鉛直方向の破線は、 伸張領域および非伸張領域の間の 境界を示す。 The effect of electric field strength on the extension of DNA molecules was analyzed. Except that various electric field strengths were applied, the T4DNA molecule was elongated in the same manner as in Example 1. The results are shown in FIGS. FIG. 5A) shows the mean maximum diameter 1 ^ and the horizontal component G x of the center of gravity of the T 4 DNA molecule at different electric field strengths (150 VZcm, 50 V / cm, and 250 V / cm). FIG. 5B) shows a fluorescence image corresponding to FIG. 5A). The bright spot at the left end of the DNA in Fig. 5B) indicates a coiled or bent structure. As shown in Fig. 6, the average maximum diameter of DNA molecules is almost proportional to the strength of the external electric field up to about SO OVZcm, and is 40 OV / cn! It gradually decreases in the region up to 60 OVZcm. The vertical dashed line in FIG. 6 indicates the boundary between the stretched and unstretched regions.
第 7図 A)、 B) および C) は、 1 0^!2での平均最大径1^ および T4DN A分子の重心の水平方向成分 Gx の時間変化を示す。 伸張領域において、 お よび Gx の両方が、 第 7図 A) および B) に示されるように外部電場の周波数に 関係なくわずかに変動する。 1 0秒間の平均値は、 それぞれ 5 OVZcmで 7) A), B) and C) show the time variation of the mean maximum diameter 1 ^ at 10 ^! 2 and the horizontal component G x of the center of gravity of the T4DN A molecule. In the stretch region, and G x both fluctuate slightly regardless of the frequency of the external electric field, as shown in Figs. 7A) and B). The average value for 10 seconds is 5 OVZcm each
= 36. 4±0. 9 ( /m) および Gx =0. 0± 0. 7 ( zm) であり、 20 ひ !!!で!^ =4 3. 6± 1. 1 (〃m) および G = 0. 0 ±2. 4 ( / m) である。 本質的に、 R, および Gx は、 伸張領域で一定である。 Gx の変動= 36.4 ± 0.9 (/ m) and G x = 0.0 ± 0.7 (zm). ! ! And ^ = 4 3.6 ± 1.1 (〃m) and G = 0.0 ± 2.4 (/ m). In essence, R, and G x are constant in the stretch region. G x variation
(0. および 2. 4 /m) は、 平均最大径よりも 20倍小さく (3 6. 4 mおよび 4 3. 6 ^m)、 DNA分子の伸張した状態を攪乱しない。 他方で、 60 OVZcmの場合には、 および G の両方の大きさにおける変動は、 第 7図 C) に示される通りである。 1 0秒間の平均値は、 = 2 1. 0±4. 4(0. and 2.4 / m) are 20 times smaller than the average maximum diameter (36.4 m and 43.6 ^ m) and do not disturb the stretched state of DNA molecules. On the other hand, in the case of 60 OVZcm, the variation in the magnitude of both and G is as shown in Figure 7C). The average value for 10 seconds is = 21.0 ± 4.4
(〃m) および Gx = 0. 0 ± 9. 9 (〃m) それぞれである。 Gx (9. 9 fx m) の標準偏差は、 平均最大径 (2 1. O zm) と比較して、 DNA分子の高次 構造を攪乱するのに十分に大きい。 それゆえ、 本発明者らは、 45 OVZcm以 下の領域での DNA挙動と 4 50 V/cm以上の領域での DNA分子挙動との質 的違いを指摘しうる。 高電場 (50 OVZcmおよび 600 v/cm) において 、 DNA分子は、 DNAの平均最大径に匹敵する幅広い距離を移動する。 この結 果として、 DNA分子の高次構造は、 常にァガロースゲルの架橋点で攪乱される 。 それゆえ、 この領域において、 DNAは、 伸張され得ない。 実施例 4 (〃M) and G x = 0.0 ± 9.9 (〃m), respectively. The standard deviation of G x (9.9 fx m) is large enough to disrupt the conformation of the DNA molecule compared to the mean maximum diameter (2 1. O zm). Therefore, the present inventors can point out a qualitative difference between DNA behavior in a region of 45 OVZcm or less and DNA molecule behavior in a region of 450 V / cm or more. In high electric fields (50 OVZcm and 600 v / cm), DNA molecules travel a wide distance, comparable to the average largest diameter of DNA. As a result, the higher order structure of the DNA molecule is always disrupted at the agarose gel cross-link points. Therefore, in this region, the DNA cannot be stretched. Example 4
DNA分子の伸張に対するゲル濃度の影響を解析した。 種々の濃度のァガロー スゲルを用いた以外は、 実施例 1と同様にして T 4 DN A分子を伸張させた。 結 果を第 8図に示す。 第 8図は、 DNAの平均最大径のァガロース濃度依存性を示 す。 DNAの平均最大径は、 0. 5〜3%ァガロース濃度の広範な範囲で本質的 に一定である。 この濃度に対応するゲルの細孔サイズは、 800〜260 nmで ある。 低濃度 (く 0. 5%)では、 ゲルは非常に柔らかく、 DN A分子伸張のた めの実用的なゲルシステムを作成することはできない。 第 8図の破線は、 約 3. 5 tzmを示し、 同じ電場条件における 58%ショ糖溶液中での T4DNAの平均 最大径である。 このように、 DNA分子は、 低分子量溶液では決して伸張しない ことに留意されたい。 それゆえ、 ゲル繊維との絡み合い効果による DNA分子挙 動の拘束が DN A分子伸張に必要であることを意味する。 第 8図は、 0. 5%ァ ガロースゲル ( 800 nm) の細孔サイズでさえも、 チューブ様運動に T 4 DN Aの分子運動を拘束するのに十分に小さいことを示す。 実施例 5 The effect of gel concentration on DNA molecule extension was analyzed. Agarose of various concentrations The T4DNA molecule was extended in the same manner as in Example 1 except that Sgel was used. Fig. 8 shows the results. FIG. 8 shows the dependence of the average maximum diameter of DNA on agarose concentration. The average maximum diameter of DNA is essentially constant over a wide range of 0.5-3% agarose concentrations. The pore size of the gel corresponding to this concentration is between 800 and 260 nm. At low concentrations (as low as 0.5%), the gels are very soft and cannot create a practical gel system for DNA extension. The dashed line in FIG. 8 indicates about 3.5 tzm, which is the average maximum diameter of T4 DNA in a 58% sucrose solution under the same electric field conditions. Thus, it should be noted that DNA molecules never extend in low molecular weight solutions. Therefore, it means that restriction of DNA molecule movement by the entanglement effect with gel fiber is necessary for DNA molecule extension. FIG. 8 shows that even the pore size of the 0.5% agarose gel (800 nm) is small enough to constrain the molecular motion of T 4 DNA to tube-like motion. Example 5
漸増する強度および周波数の低周波交流電場を用いてサッカロミセス ·セレビ シェ染色体 DNA分子の伸張を行った。 サッカロミセス ·セレピシェ染色体 DN A ( 225 - 2, 200 kb p, バイオラッドラボラトリーズ社製) をゲルプ ラグとして購入した。 ゲルを剃刀で小片 (約 3 mm X 2 mm X 1 mm) にカット し、 0. 1〃M YOYO— 1および 4% (vZv) 2—メルカプトエタノール を含有する 0. 5 XT BE緩衝液中に 4 で 1週間、 保存した。 次いで、 ゲル切 片をミニ電気泳動セル上の溶融したァガロース溶液中でィンキュベ一トした。 ァ ガロースのゲル化の後、 ァガロースゲルを、 4% (v/v) 2—メルカプトエタ ノール、 2. 3mg/mlグルコース、 0. 1 mg/m 1グルコースォキシダ一 ゼ、 および 0. 01 8mgZm 1力タラ一ゼを含有する溶液に供した。 染色体 D NA分子を、 1時間の定常電場 (l〜2V/cm)下でゲルプラグから伸張用ァ ガロースゲルに注入した。 次いで、 リザーバー中の緩衝液を新しい緩衝液に交換 し、 DNA分子伸張の実験を始めた。 Stretching of Saccharomyces cerevisiae chromosomal DNA molecules was performed using low-frequency alternating electric fields of increasing strength and frequency. Saccharomyces cerevisiae chromosome DNA (225-2,200 kbp, BioRad Laboratories) was purchased as a gel plug. The gel is cut into small pieces (approximately 3 mm x 2 mm x 1 mm) with a razor and placed in 0.5 XT BE buffer containing 0.1 MYOYO-1 and 4% (vZv) 2-mercaptoethanol. Saved at 4 for 1 week. The gel slice was then incubated in a molten agarose solution on a mini-electrophoresis cell. After gelation of agarose, the agarose gel was treated with 4% (v / v) 2-mercaptoethanol, 2.3 mg / ml glucose, 0.1 mg / m1 glucose oxidase, and 0.018 mgZm1 The solution was added to a solution containing lipstick. Chromosomal DNA molecules were injected from a gel plug into agarose gel for extension under a 1 hour steady electric field (1-2 V / cm). Then replace the buffer in the reservoir with a new buffer Then, he began experimenting with DNA molecule extension.
実施例 1〜4から理解されるように、 T 4 DN A分子の伸張の好ましい条件は 、 1%ァガロースゲル、 1 0Hzおよび 200 VZcm電場強度である。 この条 件に加えて、 電場の周波数および強度を低周波数、 低電場強度より漸増させるこ とにより、 ゲル織維への D N A分子の不可逆的なトラップを防ぎながらサッカロ ミセス ·セレピシェ染色体 DN A分子を伸張させた。 まず 1 H zの正弦波型交流 電場 ( I 1 00 I VZcm) を 1分間印加することにより染色体 DNA分子を概 ね電場方向に配向させた後、 0. 5HzZsの割合で、 1 0Hzまで周波数を漸 増させ、 同時に I 1 0 I VZcm · sの割合で 200 VZc mまで電場強度を漸 増させながら正弦波型交流電場を 1分間印加することにより伸張させた。  As can be seen from Examples 1-4, the preferred conditions for extension of the T4 DNA molecule are 1% agarose gel, 10 Hz and 200 VZcm electric field strength. In addition to this condition, by gradually increasing the frequency and intensity of the electric field from the low frequency and low electric field intensity, the Saccharomyces cerevisiae chromosome DNA molecule is prevented while preventing irreversible trapping of DNA molecules on gel fibers. Stretched. First, a 1 Hz sine-wave AC electric field (I100IVZcm) is applied for 1 minute to orient the chromosomal DNA molecules in the direction of the electric field, and then the frequency is increased up to 10 Hz at a rate of 0.5 HzZs. The sine wave type AC electric field was applied for 1 minute while the electric field strength was gradually increased to 200 VZcm at the rate of I 10 I VZcm · s.
第 9図 A) は、 サッカロミセス 'セレビシェ染色体 DN A分子 (約 285 kb P) を低周波交流電場を用いて伸張させたときの蛍光イメージを示す。 この蛍光 イメージは、 3つのイメージからなり、 伸張した DNA分子の最大径は、 約 1 0 0〃mである。 第 9図 B) は、 蛍光イメージのトレースである。 第 9図 B) の 「 コイル」 部分の矢印は、 DNA分子のコイル部分を示す。 この部分は完全に伸張 していない。 第 9図 B) の 「ベント」 の矢印は、 屈曲した構造を示し、 この様な 構造は DNAの末端付近に現れることがある。 第 9図 A) および B) から、 約 2 85 kbpの長鎖 DNA分子が本発明の核酸分子の伸長方法により良好に伸張さ れたことがわかる。 産業上の利用可能性  FIG. 9A) shows a fluorescence image of a Saccharomyces cerevisiae chromosome DNA molecule (about 285 kb P) when extended using a low-frequency AC electric field. This fluorescent image consists of three images, and the maximum diameter of the stretched DNA molecule is about 100 μm. Figure 9B) is a trace of the fluorescence image. The arrow in the “coil” part of FIG. 9B) indicates the coil part of the DNA molecule. This part is not fully extended. The “vent” arrow in Fig. 9B) indicates a bent structure, and such a structure may appear near the end of DNA. From FIGS. 9A) and B), it can be seen that a long-chain DNA molecule of about 285 kbp was successfully extended by the nucleic acid molecule extension method of the present invention. Industrial applicability
本発明の核酸分子の伸張方法によれば、 より簡便に核酸分子を伸張することが 可能になり、 さらに伸張させた核酸分子を回収して再利用することが可能になる という優れた効果を奏する。  ADVANTAGE OF THE INVENTION According to the nucleic acid molecule extension method of this invention, it becomes possible to extend a nucleic acid molecule more easily, and it has the outstanding effect that the extended nucleic acid molecule can be collect | recovered and reused. .

Claims

請求の範囲 The scope of the claims
1. 核酸分子をゲル中に配置する工程およびゲル中の核酸分子に低周波交流電 場を印加する工程を含む、 核酸分子の伸張方法。 1. A method for elongating a nucleic acid molecule, comprising the steps of placing a nucleic acid molecule in a gel and applying a low-frequency AC electric field to the nucleic acid molecule in the gel.
2. 核酸分子の長さが、 2 3〜5 70 0 kb pである、 請求項 1記載の方法。 2. The method of claim 1, wherein the length of the nucleic acid molecule is 23-5700 kbp.
3. 低周波交流電場の周波数が、 1〜1 0 0Hzである、 請求項 1または 2記 載の方法。 3. The method according to claim 1, wherein the frequency of the low-frequency AC electric field is 1 to 100 Hz.
4. 低周波交流電場の強度が、 I 1 0 I ~ I 1 0 0 0 0 I (絶対値) VZcm である、 請求項 1〜3いずれかに記載の方法。 4. The method according to any one of claims 1 to 3, wherein the intensity of the low-frequency AC electric field is I10I to I10000I (absolute value) VZcm.
5. 低周波交流電場の強度を漸増させる、 請求項 1〜 3いずれかに記載の方法 o 5. The method according to any one of claims 1 to 3, wherein the intensity of the low-frequency AC electric field is gradually increased.
6. 低周波交流電場の強度を、 I 1 0 I VZcmから I 3 0 0 I (絶対値) V Zcmまで漸増させる、 請求項 5記載の方法。  6. The method of claim 5, wherein the intensity of the low frequency alternating electric field is gradually increased from I 10 I VZcm to I 300 I (absolute value) V Zcm.
7. 低周波交流電場の強度を漸増する速度が、 I 1 l〜l 1 0 0 I (絶対値) VZcm * sである、 請求項 5または 6記載の方法。 7. The method according to claim 5, wherein the rate at which the intensity of the low-frequency alternating electric field is gradually increased is I 1 l to l 100 I (absolute value) VZcm * s.
8. 低周波交流電場の周波数を漸増させる、 請求項 1〜7記載の方法。 8. The method of claims 1 to 7, wherein the frequency of the low frequency alternating electric field is gradually increased.
9. 低周波交流電場の周波数を 1 Hzから 20 Hzまで漸増させる、 請求項 8 記載の方法。 9. The method of claim 8, wherein the frequency of the low frequency alternating electric field is gradually increased from 1 Hz to 20 Hz.
1 0. 低周波交流電場の周波数を漸増する速度が 0. 0 1〜l HzZsである 、 請求項 8または 9記載の方法。 10. The method according to claim 8, wherein the rate at which the frequency of the low-frequency AC electric field is gradually increased is 0.01 to 1 HzZs.
1 1. 伸張した核酸分子を検出し、 回収する工程をさらに含む、 請求項 1〜1 0いずれかに記載の方法。 11. The method according to any one of claims 1 to 10, further comprising a step of detecting and recovering the extended nucleic acid molecule.
1 2. 請求項 1〜1 1いずれかに記載の方法により伸張されてなる核酸分子。 1 2. A nucleic acid molecule elongated by the method according to any one of claims 1 to 11.
PCT/JP2001/007522 2001-05-29 2001-08-31 Method of extending long-chain dna WO2002097083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-161033 2001-05-29
JP2001161033A JP2003018985A (en) 2001-05-29 2001-05-29 Method for elongating long chain dna

Publications (1)

Publication Number Publication Date
WO2002097083A1 true WO2002097083A1 (en) 2002-12-05

Family

ID=19004368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007522 WO2002097083A1 (en) 2001-05-29 2001-08-31 Method of extending long-chain dna

Country Status (2)

Country Link
JP (1) JP2003018985A (en)
WO (1) WO2002097083A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083429A1 (en) * 2003-03-18 2004-09-30 Nec Corporation Dna fragment amplification method, reaction apparatus for amplifying dna fragment and process for producing the same
WO2008056816A1 (en) * 2006-11-07 2008-05-15 Kyoto University Suspension support for linear nucleic acid molecule, method of extending linear nucleic acid molecule and linear nucleic acid molecule specimen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765402B2 (en) * 2005-05-23 2011-09-07 ソニー株式会社 Method for producing poly (A) RNA by applying electric field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317047A (en) * 1992-05-14 1993-12-03 Hamamatsu Photonics Kk Device for continuous decomposition of polymeric substance
JPH08322569A (en) * 1995-05-31 1996-12-10 Shimadzu Corp Duplication of dna
JPH11206373A (en) * 1998-01-21 1999-08-03 Atoo Kk Extension of dna specimen and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317047A (en) * 1992-05-14 1993-12-03 Hamamatsu Photonics Kk Device for continuous decomposition of polymeric substance
JPH08322569A (en) * 1995-05-31 1996-12-10 Shimadzu Corp Duplication of dna
JPH11206373A (en) * 1998-01-21 1999-08-03 Atoo Kk Extension of dna specimen and device therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Masanori UEDA, "Genshi-kan ryoku Kenbikyou (AFM) ni yoru Tan-itsu DNA Bunshi-nai no Bunshi-kanryoku Keisaku-hou no Kaihatsu", Shimazu Kagaku Gijutsu Shinkou Zaidan Kenkyuu Houkoku, (2000), Vol. 1998, pages 11 to 17. *
Masao WASHAZU, "DNA no Bunshiryou wo Nagasa de hakaru", Saibou Kougaku, (1989), Vol. 8, No. 11, pages 1011 to 1015. *
Ronald M. Kantor et al., "Dynamics of DNA Molecules in Gel Studied by Fluorescence Microscopy", Biochemical and Biophysical Research Communications, March 1999, Vol. 258, No. 1, pages 102 to 108. *
Thomas A. J. Duke et al., "Pulsed-field electrophoresis in microlithographic arrays", Electrophoresis, (1996), Vol. 17, No. 6, pages 1075 to 1079. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083429A1 (en) * 2003-03-18 2004-09-30 Nec Corporation Dna fragment amplification method, reaction apparatus for amplifying dna fragment and process for producing the same
WO2008056816A1 (en) * 2006-11-07 2008-05-15 Kyoto University Suspension support for linear nucleic acid molecule, method of extending linear nucleic acid molecule and linear nucleic acid molecule specimen

Also Published As

Publication number Publication date
JP2003018985A (en) 2003-01-21

Similar Documents

Publication Publication Date Title
Clarke et al. Trapping of proteins under physiological conditions in a nanopipette
WO2006005111A1 (en) Fibre sensor production
Hjertén et al. High-performance displacement electrophoresis in 0.025-to 0.050-mm capillaries coated with a polymer to suppress adsorption and electroendosmosis
Wu et al. An improvement of the on-line electrophoretic concentration method for capillary electrophoresis of proteins and experimental factors affecting the concentration effect
Kubáň et al. Preconcentration in micro-electromembrane extraction across free liquid membranes
Hahn et al. Size-dependent detachment of DNA molecules from liquid–liquid interfaces
WO2002097083A1 (en) Method of extending long-chain dna
US20150191717A1 (en) Simultaneous extraction and separation of rna and dna from single cells using electrophoretic techniques
WO2002059273A3 (en) Particle sizer and dna sequencer
CN101718746B (en) Method for detecting sarcosine
McGregor et al. Detection of DNA fragments separated by capillary electrophoresis based on their native fluorescence inside a sheath flow
JPH04232457A (en) Neutral and positive charged dye for electrophoresis-sample loading solution
JP5438777B2 (en) Aqueous transfer buffer
Ueda et al. Stretching of long DNA under alternating current electric fields in a concentrated polymer solution
JP4668123B2 (en) Gel dyeing and decoloring method, gel electrophoresis decoloring device and gel dyeing and decoloring kit
Kitagawa et al. One-step immobilization of cationic polymer onto a poly (methyl methacrylate) microchip for high-performance electrophoretic analysis of proteins
JP2017529522A (en) Method and apparatus for concentrating molecules or objects dissolved in a solution
Mizuno et al. Opto-electrostatic micromanipulation of single cell and DNA molecule
JP2712058B2 (en) Entrapment of a nucleic acid sequencing template in a sample mixture by an entangled polymer network
Salomo et al. Kinetics of TmHU binding to DNA as observed by optical tweezers
JP3916879B2 (en) Manufacturing method of iridium probe for scanning tunneling microscope observation
Todorov et al. Electric light scattering from single‐stranded DNA in linear polyacrylamide solutions
Suzuki et al. Separation of Plasmodium berghei-parasitized rat erythrocytes by means of carrier-free electrophoresis
Noolandi Development and application of a new pulsed-field gel-electrophoresis process based on molecular dynamics
CN117210451A (en) Enrichment method of fast long fragment nucleic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application