WO2002095792A1 - Cold cathode discharge lamp and method of manufacturing the discharge lamp - Google Patents

Cold cathode discharge lamp and method of manufacturing the discharge lamp Download PDF

Info

Publication number
WO2002095792A1
WO2002095792A1 PCT/JP2002/003892 JP0203892W WO02095792A1 WO 2002095792 A1 WO2002095792 A1 WO 2002095792A1 JP 0203892 W JP0203892 W JP 0203892W WO 02095792 A1 WO02095792 A1 WO 02095792A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
discharge lamp
cold cathode
electrode
cathode discharge
Prior art date
Application number
PCT/JP2002/003892
Other languages
French (fr)
Japanese (ja)
Inventor
Hirofumi Yamashita
Haruo Yamazaki
Toshihiro Terada
Shinji Kihara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR10-2003-7000560A priority Critical patent/KR100516607B1/en
Publication of WO2002095792A1 publication Critical patent/WO2002095792A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/545Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode inside the vessel

Definitions

  • the present invention relates to a cold cathode discharge lamp used for backlights of various liquid crystal display devices and the like, and particularly relates to a cold cathode discharge lamp capable of obtaining good starting characteristics even when ambient illuminance is low. .
  • Field technology-Cold cathode discharge lamps used in liquid crystal devices are difficult to reach the surface of the cold cathode discharge lamp due to the structure of the liquid crystal device, and the ambient illuminance near the cold cathode lamp is 10%. It tends to be in a dark environment below lux.
  • the cold cathode discharge lamp is started in such a dark environment, if the initial number of electrons in the cold cathode discharge lamp, which triggers discharge, is insufficient, it will start within 500 ms in an original bright environment. It takes several to several tens of seconds to start.
  • cold cathode fluorescent lamps used in liquid crystal devices are required to start immediately in a dark environment of 0.1 lux or less. Let's talk about starting.
  • Japanese Patent Application Laid-Open No. H11-112944 discloses that, in the interior of a bulb near a cold cathode, electrons are emitted in the dark with a stimulation energy lower than a work function, aluminum oxide, There is disclosed a cold cathode discharge lamp coated with an electron emitting material made of any one of metal oxides such as magnesium oxide, zinc oxide, and lead oxide. Further, Japanese Patent Application Laid-Open No. 2001-150655 discloses a cold cathode discharge lamp in which a cesium compound is applied to an electrode to improve starting characteristics. However, in the cold cathode discharge lamps configured as described above, although the dark start-up characteristics are improved, some start-ups are still slow.
  • the cold cathode discharge lamp coated with an electron emitting material has an average quick start-up characteristic in the dark state compared to a lamp without an electron emitting material applied to its inner surface, it still has a considerable start-up characteristic. Some slow ones were included. Disclosure of the invention
  • the cold-cathode discharge lamp of the present invention is a cold-cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed, and the first electrode is made of a metal for assisting starting. And a second coating made of a metal for assisting starting is provided in the glass tube in proximity to the first coating.
  • the cold cathode discharge lamp of the present invention is characterized in that a coating made of a metal for starting assistance is provided only on the inner surface of a glass tube without providing a coating made of a metal for starting assistance on an electrode.
  • the cold cathode discharge lamp according to claim 1 of the present invention has a phosphor layer formed on the inner surface.
  • a second coating made of a metal for starting assistance is provided on the inner surface of the glass tube near the first coating in proximity to the first coating.
  • the cold cathode discharge lamp according to claim 2 of the present invention is characterized in that, in claim 1, the second coating is formed at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube. I do.
  • the cold cathode discharge lamp according to claim 3 of the present invention is characterized in that, in claim 1 or claim 2, the shape of the electrode is tubular and the first coating is provided on the outer periphery.
  • the cold-cathode discharge lamp according to claim 4 of the present invention is the cold cathode discharge lamp according to any one of claims 1 to 3, wherein the second coating is aluminum alloy metal or aluminum earth metal or a mixture thereof. It is characterized by.
  • the cold cathode discharge lamp according to claim 5 of the present invention is the cold cathode discharge lamp according to any one of claims 1 to 3, wherein the first coating is formed of an alkali metal compound, an alkaline earth metal compound, or a mixture thereof. And the second coating is formed of Al metal or Al earth metal or a mixture thereof.
  • a cold cathode discharge lamp according to claim 6 of the present invention is characterized in that, in claim 5, the first coating is formed of a cesium compound, and the second coating is formed of cesium.
  • the method for manufacturing a cold cathode discharge lamp according to claim 7 of the present invention is a method for manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. At least one of the glass tubes At the other end, an electrode having a first coating of a starting assisting metal is disposed, the sealed substance is sealed, and a current exceeding a steady lighting current is applied to the electrode to age. The first coating is spun to form a second coating at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube, and the first coating is not lost from the surface of the electrode.
  • the cold cathode discharge lamp according to claim 8 of the present invention is a cold cathode discharge lamp having a light emitting tube in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed.
  • a coating made of a starting auxiliary metal is provided on an inner surface of the arc tube in the vicinity of at least one of the electrodes.
  • the cold cathode discharge lamp according to claim 9 of the present invention is the cold cathode discharge lamp according to claim 8, wherein the starting auxiliary metal forming the coating is a rare metal in the range of 100 to 600 eV of the base metal forming the electrode. It is a metal that has a higher sputter yield than that of gas ions.
  • the cold cathode discharge lamp according to claim 10 of the present invention is the cold cathode discharge lamp according to claim 8 or claim 9, wherein at least the electrode on the side provided with the coating made of a starting auxiliary metal is connected to a high voltage side of a lighting circuit. It is characterized by that.
  • the cold cathode discharge lamp according to claim 11 of the present invention is the cold cathode discharge lamp according to any one of claims 8 to 10, wherein the electrode is a cylindrical electrode.
  • the method for manufacturing a cold cathode discharge lamp according to claim 13 of the present invention is characterized in that, when manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a fluorescent layer formed on an inner surface and a sealing substance is sealed, An electrode having a starting auxiliary metal is provided at at least one end of the glass tube, and a high current exceeding a steady lighting current is supplied to the electrode having the starting auxiliary metal to perform aging.
  • the starting assisting metal is sputtered to form a coating made of the starting assisting metal on the inner surface of the arc tube.
  • a method for manufacturing a cold cathode discharge lamp according to claim 14 of the present invention is characterized in that, in claim 7 or claim 13, the aging current is about two to three times the steady-state lighting current.
  • FIG. 1 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 1) of the present invention and its XX ′ cross-sectional view.
  • Fig. 3 shows the lighting probability distribution of the product of the embodiment and the comparison product.
  • FIG. 4 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 2) of the present invention and a cross-sectional view thereof along X--X '.
  • FIG. 5 is a cross-sectional view showing a main part of the cold cathode discharge lamp before the coating of the starting auxiliary metal in the embodiment is formed on the inner surface of the arc tube.
  • FIG. 6 shows a main part of the cold cathode discharge lamp according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a main part showing another example of the cold cathode discharge lamp according to the embodiment.
  • FIG. 8 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 4) of the present invention.
  • Fig. 9 is a diagram showing the measurement results of the start delay time of each of the embodiment products and the comparison products of (Embodiment 2) to (Embodiment 4).
  • FIGS. 1 (a) and 1 (b) show (Embodiment 1) of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along line X- ⁇ 'in FIG. 1 (a).
  • a phosphor layer 3 is formed on the inner surface of a glass tube 2, and a tube-like electrode 5a having an open end on the discharge side is provided at both ends thereof.
  • the enclosed substance is hermetically sealed to form the arc tube 1.
  • At least one non-discharge end of one of the electrodes 5a is connected to a metal internal lead-in 4, and the internal lead 4 is connected to an external lead ⁇ .
  • the electrode 5a is provided with a first coating 8 made of a starting auxiliary metal, and the second coating 9 made of a starting auxiliary metal is formed on the inner surface of the glass tube 2 on the inner surface of the glass tube 2. It is formed at a position that does not overlap with the phosphor layer 3. ing.
  • the first coating 8 is formed of an alkali metal or alkaline earth metal compound or a mixture thereof
  • the second coating 9 is formed of an alkali metal or alkaline earth metal or a mixture thereof.
  • the glass tube 2 is made of a hard material made of borosilicate glass and has a total length of 300 mm, an outer diameter of 2.4 mm, and an inner diameter of 2. Omm.
  • the phosphor layer 3 is formed by applying a three-wavelength region light-emitting phosphor so as to have a film thickness of about 20 / m. .
  • the internal introduction line 4 is formed of evening stainless steel, which is a material having an expansion coefficient similar to that of the material for forming the glass tube 2.
  • a nickel wire with an outer diameter of 0.6 mm was used as the external lead wire 7.
  • Both ends of the glass tube 2 are made of molybdenum and have an outer diameter of 1.7 mm, an inner diameter of 1.3 mm, and a total length of 3 mn!
  • the electrode 5a of up to 5 mm is provided.
  • the first coating 8 has a coating amount of 10 / g or more and less than 100 ⁇ g (preferably 40 ⁇ 20 / g) in the electrode length direction from 0.5 mm to 3 mm (preferably 1 (5 ⁇ 0.5 mm).
  • the second coating 9 is formed at a predetermined position as follows.
  • the first coating 8 is applied to the electrode 5a, a mixed rare gas of mercury, argon and neon is sealed at about 8 kPa, and the second coating 9 is steadily applied to the luminous tube 1 not provided.
  • the aging current that is about 2 to 3 times the lighting current, for example, when the steady-state lighting current is 8 mA, the aging current of about 18 mA to 25 mA is passed to perform aging.
  • 5 First coating 8 applied to a Then, it is formed by being adhered to the inner surface of the glass tube 2.
  • the aging time is ended in a state where the first coating 8 does not disappear from the surface of the electrode 5a, and the first coating 8 is left on the surface of the electrode 5a, and an appropriate film is formed on the inner surface of the glass tube 2.
  • the time for forming the thick second film 9 is about 10 minutes.
  • the first coating 8 is provided on the surface of the electrode 5a in advance, and the starting auxiliary metal is sparged by aging and adhered to the inner surface of the glass tube 2, whereby the electrode 5a is formed. It is possible to form the second coating 9 having a uniform thickness close to the second coating 9.
  • the dark start delay time of the following comparative product A was measured.
  • the number of samples is 100
  • the first coating 8 was formed of a cesium compound, which is one of the metallic alkali compounds
  • the second coating 9 was formed of cesium, which is one of the metallic alkalis. Compared to the case where the second coating 9 was not formed as shown in Fig. 2.
  • test conditions were as follows: the test product A and the comparative product A were left in the dark of 0.1 lux ambient light for 48 hours, then the output voltage under the conditions of ambient illuminance 0.1 lux, ambient temperature 0 ° C, and no wind
  • the dark start delay time was examined using a 1200 Vrms high frequency lighting circuit (not shown).
  • Figure 3 shows the measurement results obtained.
  • Example A 90% of the samples illuminated in 0.9 ms in Example A, whereas the time required for illumination in Comparative product A varied from 1 ms to 250 ms. As many as 6% of lamps exceeded 500 ms.
  • Example A a weak discharge is generated between the first coating 8 and the second coating 9 or between the second coating 9 and the first coating 8, and the discharge is generated in the low-pressure discharge lamp. The initial electrons required for starting were supplied, and a cold cathode discharge lamp with extremely good dark starting characteristics was obtained.
  • the electrode on the surface on which the first coating 8 is formed is connected to the high voltage side of the lighting circuit.
  • a compound such as i, K, or Rb of an alkali metal (group I of the periodic table) can be used instead of the cesium compound.
  • Alkaline earth metals (Group II of the periodic table) such as Be, Mg, Ca, Sr, and Ba can be used.
  • the shape of the electrode 5a is a tube.
  • the electrode 5a has a rod-like shape without an opening on the discharge side, the electrode 5a has a dark start characteristic compared to the conventional product. An extremely good cold cathode discharge lamp was obtained.
  • the shape of the electrode 5a is set to the steady-state lighting current. It is necessary to limit it to a lower level than that of product A, which is in the form of a tube.
  • FIGS. 4 and 5 show (Embodiment 2) of the present invention, and FIG. 4 (b) is a cross-sectional view taken along line XX ′ in (a).
  • a phosphor layer 3 is formed on the inner surface of the glass tube 2, and electrodes 5 b are provided on both ends thereof. Are sealed to constitute the arc tube 1.
  • a metal internal lead-in 4 is connected to the end of the electrode 5 b on the non-firing side, and an external lead 7 is connected to the internal lead-in 4.
  • a coating 9a made of a starting auxiliary metal is formed so as to be close to the electrode 5b.
  • the glass tube 2 is made of a hard material made of borosilicate glass, and has a total length of 300 mm, an outer diameter of 2.4 mm, and an inner diameter of 1.8 mm.
  • a phosphor layer 3 is formed on the inner surface of the glass tube 2 by applying a three-wavelength region light-emitting phosphor to a thickness of about 20 m.
  • a rod-shaped electrode 5 b made of two beams having a total length of 5 mm and an outer diameter of 1.O mm is provided, and one end of the non-discharge side of the electrode 5 b has an outer diameter of 0. It is welded to the 8 mm internal feedthrough 4.
  • the internal feedthrough 4 is made of stainless steel whose expansion coefficient is similar to the material used to form the glass tube 2. Both ends of the arc tube 1 are sealed by the internal feedthrough 4 and the glass tube 2.
  • a rare gas mixture (not shown) of mercury, argon, and neon is sealed in the arc tube 1 at about 8 kPa.
  • the other end of the internal lead-in wire 4 whose one end is connected to the electrode 5b is connected to a nickel external lead-in wire 7 having an outer diameter of 0.6 mm.
  • a coating 9a having a thickness of 2 zm made of a starting metal is formed on the inner surface of the arc tube 1 in the vicinity of the electrode 5b.
  • the starting auxiliary metal is made of a metal with a sputter yield greater than the sputter yield of rare gas ions in the range of 100 to 600 eV of the base metal of electrode 5b.
  • This coating 9a is formed by the following procedure.
  • a small-sized rare-ion gas ion (at oms / ion) of 100 to 600 eV with a sputter yield (at oms / ion) larger than that of the two-beam is used for the electrolytic and electric plating. It is applied by a method such as evaporation.
  • Nickel film thickness As described above, the thickness is set to about 5 / m so that the thickness of the coating 8a formed on the inner surface of the arc tube 1 is about 2 / m.
  • An internal lead wire 4 is connected to one end of an electrode 5b having nickel adhered to the surface of the object by laser welding or the like, and a cold cathode discharge lamp is assembled by a normal manufacturing method.
  • FIG. 5 shows a state immediately after the cold cathode discharge lamp shown in FIG. In this state, the coating 9a is not formed on the inner surface of the arc tube 1, and nickel as a starting auxiliary metal is applied to the surface of the electrode 5b to form the coating 8a.
  • a high current of 6 mA or more which is a normal lighting current, for example, a current of 15 mA is supplied to the electrode 5b and aging is performed for about 2 hours, the electrode 5b is exposed to the surface of the diode during aging.
  • the deposited nickel is spun and adheres to the inner surface of the arc tube 1 close to the electrode 5b to form a coating 9a having a thickness of about 2 m.
  • a coating 8a made of a starting auxiliary metal is provided on the surface of the electrode 5b in advance, and the starting auxiliary metal is sparged by aging and adhered to the inner surface of the arc tube 1, whereby the electrode 5b is formed.
  • the start-up assisting metal coating 9a having a uniform film thickness can be formed in a short time on the inner surface of the arc tube 1 close to the light source. Can be easily realized.
  • test conditions were as follows: Product B was left in the dark of 0.1 lux of ambient light for 48 hours, and then the output voltage was 120 lux under the conditions of 0.1 lux ambient light, 0 ° C ambient temperature, and no wind. Using a high-frequency lighting circuit (not shown) of 0 V rms The dark start delay time was examined. Figure 9 shows the measurement results obtained.
  • the electrode 5b and the starting auxiliary metal are provided on the inner surface of the arc tube 1 by providing the coating 9a made of the starting auxiliary metal close to the electrode 5b. More: Since a weak discharge is generated between the coatings 9a and the initial electrons necessary for starting are supplied into the low-pressure discharge lamp, a cold cathode discharge lamp having extremely good dark start characteristics was obtained. '
  • the electrode 5 a on which the coating 8 a made of the metal for starting assistance is formed is connected to the high voltage side of the lighting circuit. That is, in the above-described embodiment B, since the both ends of the low-pressure discharge lamp have the same structure, the electrode 5b on which the coating 8a is formed is connected to the high-voltage side of the lighting circuit. When the structure of the part is different, it is preferable that the electrode on the surface of which the auxiliary metal for starting is provided is connected to the high voltage side of the lighting circuit.
  • a cold cathode discharge lamp was prepared, and was designated as a working product C.
  • the electrode on the side of the lighting circuit where the coating 8a made of a metal for assistance was not provided was connected to the high voltage side of the lighting circuit, and the dark starting delay time was measured under the same conditions as for the working example B.
  • the number of samples was 100.
  • Figure 9 shows the measurement results obtained.
  • Example C the dark start characteristics of the product C, in which the electrode on which the starting auxiliary metal 8a was not provided was connected to the high voltage side of the lighting circuit, were also better than the comparative product B.
  • the average dark start delay time of Example C is as large as 25 O msec, and the maximum dark start delay time is 48 O msec, compared with Example B above.
  • the present invention is not limited to this. It is sufficient that the starting metal is provided on the surface of b.
  • FIG. 6 shows (Embodiment 3) of the present invention.
  • a tube-shaped electrode 5a is used instead of the rod-shaped electrode 5b, and the inner surface of the arc tube 1 close to the opening of the electrode 5a is started.
  • This embodiment is different from the above embodiment in that a coating 9b made of a movement assisting metal is formed.
  • the electrode 5a is made of molybdenum, and has an outer diameter of 1.5 mm, an inner diameter of 1.3 mm, and a total length of 3 m'm.
  • a coating 8b of nickel having a thickness of 2 ⁇ m is formed as a starting auxiliary metal.
  • the coating 9b is formed by forming a nickel film having a thickness of about 5 m in advance on the inner surface of the electrode 5a by a sputter deposition method, and a high current of 6 mA or more, which is a normal lighting current, for example, about 2 to 3 times.
  • a current of 15 mA to the electrode 5a and aging for about 2 hours the nickel deposited on the inner surface of the electrode 5a is sparged during aging, and It is formed so as to adhere to the inner surface of the arc tube 1 close to the opening a.
  • the electrode 5a having a nickel film formed on the inner surface thereof was connected to the high voltage side of the lighting circuit, and the same conditions as in the above (Embodiment 2) were applied.
  • the dark start delay time was measured.
  • the number of samples was 100.
  • Fig. 9 shows the obtained measurement results. 'As shown in Fig. 9, the average dark start delay time of the product D is 70 msec, and the maximum dark start delay time is 15 O msec'. It was even better than the dark start characteristics of product B.
  • the tube-shaped electrode 5a is used as an electrode, and the auxiliary metal for starting provided on the inner surface thereof is applied to the inner surface of the arc tube 1 by aging, whereby the coating 9b composed of the electrode 5a and the auxiliary metal for starting is formed.
  • the electric field between the electrode 5a and the coating 9b becomes stronger, so that the initial electrons necessary for starting can be more easily supplied. As a result, the dark start characteristics have been significantly improved. Wear.
  • a film made of a starting auxiliary metal is formed on the inner surface of the electrode 5a, and the film is formed on the inner surface of the arc tube 1 by aging to form a film 9b.
  • a coating 8b made of an auxiliary metal for starting is formed on the outer surface of the electrode 5a, and the coating 8b is similarly sputtered by aging to form the arc tube 1.
  • a coating 9c may be formed on the inner surface of the substrate.
  • the electrode 5a wraps from the inside to the outer surface near the opening, and the spattering near the opening where the electrode 5a has a strong wraparound becomes stronger. 5a thinner towards the open end.
  • the discharge can be spread over the entire outer peripheral surface of the cylindrical electrode 5b, and the coating 8b is sufficiently sputtered, for example, as shown in coating 9a in FIG. can do.
  • FIG. 8 shows (Embodiment 4) of the present invention.
  • This embodiment is different from the above (Embodiment 3) in that the coating 9d is formed near the electrode 5a and on the inner surface of the arc tube 1 where the phosphor layer 3 is not formed.
  • the cold cathode discharge lamp in this embodiment is different from the cold cathode discharge lamps shown in FIGS. 6 and 7 in that the phosphor layer 3 does not extend to a position facing the outer surface of the electrode 5a.
  • the phosphor layer 3 does not extend to a position facing the outer surface of the electrode 5a.
  • the starting metal is spun directly on the inner surface of the glass tube 2 having good surface smoothness, not on the phosphor layer 3, to form the coating 9d, thereby forming a coating of several microns on the surface.
  • a more accurate coating 9d can be obtained than the coating formed on the phosphor layer 3 having irregularities.
  • the electrode 5a was connected to the high voltage side of the lighting circuit, and the dark start delay time was measured under the same conditions as in the above (Embodiment 2).
  • the number of samples was 10.0.
  • Figure 9 shows the measurement results obtained.
  • the average dark start delay time of Example E is 3 O msec, and the maximum dark start delay time is 120 ms, which is greater than that of Example D in the above (Embodiment 3). Furthermore, it had good dark start characteristics.
  • the electrodes 5a and 5b have been described as being made of a single metal as an example. However, the present invention is not limited to this. Metals can also be used, and furthermore, single metals, alloys, and sintered metals can be appropriately combined.
  • the cold cathode discharge lamp has the same structure at both ends as an example.
  • the present invention is not limited to this. Should be configured as above o
  • the cold cathode discharge lamp of the present invention is not limited to the above embodiments, and its dimensions, design, material, shape, rating, and the like can be appropriately selected.
  • the electrode is not limited to the above-mentioned rod-shaped electrode or sleeve-shaped electrode, and may be, for example, a cylindrical electrode having a bottom or no bottom. It is not particularly limited as long as it has a practical effect, such as an electrode having a structure of two or more layers or a sleeve-shaped electrode having an inner surface coated with an emissive substance. Absent.
  • the cold cathode discharge lamp of the present invention is a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed, and at least one of the electrodes has Providing a first coating made of a starting aid metal, and providing a second coating made of a starting assistance metal on the inner surface of the glass tube in the vicinity of the one electrode in close proximity to the first coating. Weak discharge between the first coating and the second coating made of the metal for starting assistance, which generates dark electrons and supplies the initial electrons necessary for starting into the cold cathode discharge lamp, resulting in dark start characteristics. Is extremely good.
  • the method for manufacturing a cold cathode discharge lamp of the present invention is a method for manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. At least one end of the tube is provided with an electrode having a first coating of a metal for start-up assistance, the sealed substance is sealed, and a current exceeding a steady lighting current is passed through the electrode to age. Forming a second coating at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube by sputtering the first coating, so that the first coating does not disappear from the surface of the electrode. After the aging, the L-th coating is formed on the surface of the electrode and the second coating is formed on the inner surface of the glass tube, so that the cold cathode discharge lamp of the present invention can be easily realized.
  • the cold cathode discharge lamp of the present invention is a cold cathode discharge lamp having a light emitting tube in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed.
  • a cathode discharge lamp by providing a coating made of a starting aid metal on the inner surface of the arc tube at least near one of the electrodes, a weak discharge is generated between the coating made of the starting aid metal and the electrode.
  • the initial electrons required for starting are supplied to the cold cathode discharge lamp, so that a cold cathode discharge lamp having extremely good dark start characteristics can be obtained.
  • the method of manufacturing a cold cathode discharge lamp of the present invention is used for manufacturing a cold cathode discharge lamp having an arc tube in which electrodes are provided at both ends of a glass tube having a fluorescent layer formed on the inner surface and a sealed substance is sealed. At least one end of the glass tube is provided with an electrode having a metal for starting assistance, and the electrode on the side having the metal for starting assistance is supplied with a high current that is equal to or higher than a steady lighting current to perform aging. Since the starting auxiliary metal is sputtered by aging to form a coating made of the starting auxiliary metal on the inner surface of the arc tube, the cold cathode discharge lamp of the present invention can be easily realized.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Discharge Lamp (AREA)

Abstract

A cold cathode discharge lamp capable of being rapidly started even in such a dark place that an ambient illuminance is 0.1 lux or below, comprising electrodes (5a) installed at both end parts of a glass tube (2) having a fluorescent body layer (3) formed on the inner surface thereof and filling substance sealed therein, wherein a first film (8) formed with a start assisting metal is formed on at least one of the electrodes (5a) and a second film (9) formed with the start assisting metal is formed on the inner surface of the glass tube (2) in proximity to the first film (8), whereby a weak discharge occurs between the second film (9) and the electrode (5a) or between the second film (9) and the first film (8).

Description

冷陰極放電ランプ及びその製造方法 Cold cathode discharge lamp and method of manufacturing the same
技術分野 Technical field
本発明は、 各種液晶ディスプレイ装置等のバッ.クライ トに使用され る冷陰極放電ランプに関し、 特日 に、 周囲照度が低い場合であっても良 好な始動特性が得られる冷陰極放電ランプに関する。  The present invention relates to a cold cathode discharge lamp used for backlights of various liquid crystal display devices and the like, and particularly relates to a cold cathode discharge lamp capable of obtaining good starting characteristics even when ambient illuminance is low. .
田 背景技術 - 液晶機器に組込まれて使用される冷陰極放電ランプは、 液晶機器の 構造上、 外周光が冷陰極放電ランプ表面に到達し難く、 冷陰極放電ラ ンプ近傍の周囲照度は 1 0ルクス以下の暗い環境下となり易い。 この ように暗い環境下で冷陰極放電ランプを始動すると、 放電のきっかけ となる冷陰極放電ランプ中の初期電子数が不足した場合に、 本来の明 るい環境下では 5 0 0 m秒以内に始動するものが、 その始動に数〜数 十秒の時間を要するようになる。 一般に、 液晶機器に使用される冷陰 極蛍光ランプでは、 0 . 1ルクス以下の暗い環境下での即時始動が要 望されており、 以下、 このような暗い環境下における冷陰極放電ラン プの始動について話を進める。  Field technology-Cold cathode discharge lamps used in liquid crystal devices are difficult to reach the surface of the cold cathode discharge lamp due to the structure of the liquid crystal device, and the ambient illuminance near the cold cathode lamp is 10%. It tends to be in a dark environment below lux. When the cold cathode discharge lamp is started in such a dark environment, if the initial number of electrons in the cold cathode discharge lamp, which triggers discharge, is insufficient, it will start within 500 ms in an original bright environment. It takes several to several tens of seconds to start. In general, cold cathode fluorescent lamps used in liquid crystal devices are required to start immediately in a dark environment of 0.1 lux or less. Let's talk about starting.
暗黒始動特性を改善するために、 特開平 4一 1 2 1 9 4 4号公報に は、 冷陰極近傍のバルブ内面に、 暗黒中において仕事関数以下の刺激 エネルギーで電子を放出する、 酸化アルミニウム、 酸化マグネシウム 、 酸化亜鉛、 酸化鉛等のいずれかの金属酸化物からなる電子放射物質 を塗布した冷陰極放電ランプが開示されている。 また、 特開 2 0 0 1— 1 5 0 6 5号公報には電極にセシウム化合物 を被着して始動特性を改善した冷陰極放電ランプが開示されている。 しかしながら、 上記のように構成された冷陰極放電ランプでは、 そ の暗黒始動特性に改善は見られるものの依然として始動の遅いものが ある。 また、 電子放射物質を塗布した冷陰極放電ランプは、 その内面 に電子放射物質を塗布しないものに比べて暗黒状態での始動特性は平 均的に早いものの、 やはり中には相当に始動特性の遅いものが含まれ ていた。 発明の開示 In order to improve the dark start characteristics, Japanese Patent Application Laid-Open No. H11-112944 discloses that, in the interior of a bulb near a cold cathode, electrons are emitted in the dark with a stimulation energy lower than a work function, aluminum oxide, There is disclosed a cold cathode discharge lamp coated with an electron emitting material made of any one of metal oxides such as magnesium oxide, zinc oxide, and lead oxide. Further, Japanese Patent Application Laid-Open No. 2001-150655 discloses a cold cathode discharge lamp in which a cesium compound is applied to an electrode to improve starting characteristics. However, in the cold cathode discharge lamps configured as described above, although the dark start-up characteristics are improved, some start-ups are still slow. In addition, although the cold cathode discharge lamp coated with an electron emitting material has an average quick start-up characteristic in the dark state compared to a lamp without an electron emitting material applied to its inner surface, it still has a considerable start-up characteristic. Some slow ones were included. Disclosure of the invention
本発明は前記問題点を解決し、 周囲照度が 0 . 1ルクス以下の暗黒 中においても、 より速やかに始動できる冷陰極放電ランプを提供する ことを目的とする。 本発明の冷陰極放電ランプは、 内面に蛍光体層が形成されたガラス 管の両端部に電極を設け封入物質を密封した冷陰極放電ランプであつ て、 電極に始動補助用金属からなる第 1の被膜を設け、 ガラス管の内 に前記第 1の被膜に近接して始動補助用金属からなる第 2の被膜を 設けたことを特徴とする。  An object of the present invention is to solve the above problems and to provide a cold cathode discharge lamp that can be started more quickly even in darkness where the ambient illuminance is 0.1 lux or less. The cold-cathode discharge lamp of the present invention is a cold-cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed, and the first electrode is made of a metal for assisting starting. And a second coating made of a metal for assisting starting is provided in the glass tube in proximity to the first coating.
また、 本発明の冷陰極放電ランプは、 電極には始動補助用金属から なる被膜を設けずに、 ガラス管の内面にだけ始動補助用金属からなる 被膜を設けたことを特徴とする。 本発明の請求項 1記載の冷陰極放電ランプは、 内面に蛍光体層が形 成されたガラス管の両端部に電極を設け封入物質を密封した冷陰極放 電ランプであって、 少なくとも一方の電極には始動補助用金属からな る第 1の被膜を設け、 前記一方の電極の近傍における前記ガラス管の 内面に前記第 1の被膜に近接して始動補助用金属からなる第 2の被膜 を設けたことを特徴とする。 Further, the cold cathode discharge lamp of the present invention is characterized in that a coating made of a metal for starting assistance is provided only on the inner surface of a glass tube without providing a coating made of a metal for starting assistance on an electrode. The cold cathode discharge lamp according to claim 1 of the present invention has a phosphor layer formed on the inner surface. A cold cathode discharge lamp in which electrodes are provided at both ends of a formed glass tube and a sealed substance is sealed, and at least one electrode is provided with a first coating made of a metal for assisting starting, and said one electrode A second coating made of a metal for starting assistance is provided on the inner surface of the glass tube near the first coating in proximity to the first coating.
本発明の請求項 2記載の冷陰極放電ランプは、 請求項 1において、 第 2の被膜を、 ガラス管の内面に形成された前記蛍光体層とは重なら ない位置に形成したことを特徴とする。  The cold cathode discharge lamp according to claim 2 of the present invention is characterized in that, in claim 1, the second coating is formed at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube. I do.
本発明の請求項 3記載の冷陰極放電ランプは、 請求項 1または請求 項 2において、 前記電極の形状がチューブ状で外周に前記第 1の被膜 を設けたことを特徴とする。  The cold cathode discharge lamp according to claim 3 of the present invention is characterized in that, in claim 1 or claim 2, the shape of the electrode is tubular and the first coating is provided on the outer periphery.
本発明の請求項 4記載の冷陰極放電ランプは、 請求項 1〜請求項 3 の何れかにおいて、 第 2の被膜がアル力リ金属またはアル力リ土類金 属またはこれらの混合物であることを特徴とする。  The cold-cathode discharge lamp according to claim 4 of the present invention is the cold cathode discharge lamp according to any one of claims 1 to 3, wherein the second coating is aluminum alloy metal or aluminum earth metal or a mixture thereof. It is characterized by.
本発明の請求項 5記載の冷陰極放電ランプは、 請求項 1〜請求項 3 の何れかにおいて、 第 1の被膜をアル力リ金属化合物またはアル力リ 土類金属化合物またはこれらの混合物で形成し、 第 2の被膜をアル力 リ金属またはアル力リ土類金属またはこれらの混合物で形成したこと を特徴とする。  The cold cathode discharge lamp according to claim 5 of the present invention is the cold cathode discharge lamp according to any one of claims 1 to 3, wherein the first coating is formed of an alkali metal compound, an alkaline earth metal compound, or a mixture thereof. And the second coating is formed of Al metal or Al earth metal or a mixture thereof.
本発明の請求項 6記載の冷陰極放電ランプは、 請求項 5において、 第 1の被膜をセシゥム化合物で形成し、 第 2の被膜をセシゥムで形成 したことを特徴とする。  A cold cathode discharge lamp according to claim 6 of the present invention is characterized in that, in claim 5, the first coating is formed of a cesium compound, and the second coating is formed of cesium.
本発明の請求項 7記載の冷陰極放電ランプの製造方法は、 内面に蛍 光体層が形成されたガラス管の両端部に電極を設け封入物質を密封し た冷陰極放電ランプを製造するに際し、 前記ガラス管の少なくとも一 方の端部に始動補助用金属の第 1の被膜を有する電極を配置するとと もに封入物質を密封し、 前記電極に定常点灯電流を越える電流を通電 してエージングし、 このエージングにより前記第 1の被膜をスパヅ夕 リングしてガラス管の内面に形成された前記蛍光体層とは重ならない 位置に第 2の被膜を形成し、 前記電極の表面から第 1の被膜が消失し ない状態で前記エージングを終了して、 電極の表面に第 1の被膜、 前 記ガラス管の内面に第 2の被膜を形成することを特徴とする。 ' 本発明の請求項 8記載の冷陰極放電ランプは、 内面に蛍光体層が形 成されたガラス管の両端部に電極を設け封入物質を密封した発光管を 有する冷陰極放電ランプであって、 少なくとも一方の電極の近傍にお ける前記発光管の内面に始動補助用金属からなる被膜を設けたことを 特徴とする。 The method for manufacturing a cold cathode discharge lamp according to claim 7 of the present invention is a method for manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. At least one of the glass tubes At the other end, an electrode having a first coating of a starting assisting metal is disposed, the sealed substance is sealed, and a current exceeding a steady lighting current is applied to the electrode to age. The first coating is spun to form a second coating at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube, and the first coating is not lost from the surface of the electrode. After the aging, a first coating is formed on the surface of the electrode, and a second coating is formed on the inner surface of the glass tube. '' The cold cathode discharge lamp according to claim 8 of the present invention is a cold cathode discharge lamp having a light emitting tube in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. A coating made of a starting auxiliary metal is provided on an inner surface of the arc tube in the vicinity of at least one of the electrodes.
本発明の請求項 9記載の冷陰極放電ランプは、 請求項 8において、 前記被膜を形成する始動補助用金属が、 前記電極を形成する基体金属 の 1 0 0〜 6 0 0 e V範囲の希ガスイオンによるスパヅ夕収量よりも スパッ夕収量の大きい金属であることを特徴とする。  The cold cathode discharge lamp according to claim 9 of the present invention is the cold cathode discharge lamp according to claim 8, wherein the starting auxiliary metal forming the coating is a rare metal in the range of 100 to 600 eV of the base metal forming the electrode. It is a metal that has a higher sputter yield than that of gas ions.
本発明の請求項 1 0記載の冷陰極放電ランプは、 請求項 8または請 求項 9において、 少なくとも始動補助用金属からなる前記被膜が設け られた側の電極が点灯回路の高圧側に接続されていることを特徴とす る。  The cold cathode discharge lamp according to claim 10 of the present invention is the cold cathode discharge lamp according to claim 8 or claim 9, wherein at least the electrode on the side provided with the coating made of a starting auxiliary metal is connected to a high voltage side of a lighting circuit. It is characterized by that.
本発明の請求項 1 1記載の冷陰極放電ランプは、 請求項 8〜請求項 1 0の何れかにおいて、 前記電極が筒状電極であることを特徴とする 本発明の請求項 1 2記載の冷陰極放電ランプは、 請求項 8〜請求項 1 1の何れかにおいて、 始動補助用金属からなる被膜が、 少なくとも 一方の電極の近傍でかつ蛍光体層が形成されていないガラス管の内面 に設けられたことを特徴とする。 The cold cathode discharge lamp according to claim 11 of the present invention is the cold cathode discharge lamp according to any one of claims 8 to 10, wherein the electrode is a cylindrical electrode. The cold cathode discharge lamp according to any one of claims 8 to 11, wherein the coating made of the starting auxiliary metal has at least It is provided near the one electrode and on the inner surface of the glass tube where the phosphor layer is not formed.
本発明の請求項 1 3記載の冷陰極放電ランプの製造方法は、 内面に 蛍光層が形成されたガラス管の両端部に電極を設け封入物質を密封し た冷陰極放電ランプを製造するに際し、 前記ガラス管の少なくとも一 方の端部に始動補助用金属を有する電極を設け、 前記始動補助用金属 を有する側の電極に定常点灯電流を越える高電流を通電してエージン グし、 このエージングにより前記始動補助用金属をスパッ夕リングし て前記発光管の内面に始動補助用金属からなる被膜を形成することを 特徴とする。  The method for manufacturing a cold cathode discharge lamp according to claim 13 of the present invention is characterized in that, when manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a fluorescent layer formed on an inner surface and a sealing substance is sealed, An electrode having a starting auxiliary metal is provided at at least one end of the glass tube, and a high current exceeding a steady lighting current is supplied to the electrode having the starting auxiliary metal to perform aging. The starting assisting metal is sputtered to form a coating made of the starting assisting metal on the inner surface of the arc tube.
本発明の請求項 1 4記載の冷陰極放電ランプの製造方法は、 請求項 7または請求項 1 3において、 エージング電流が定常点灯電流の 2倍 から 3倍程度であることを特徴とする。 図面の簡単な説明  A method for manufacturing a cold cathode discharge lamp according to claim 14 of the present invention is characterized in that, in claim 7 or claim 13, the aging current is about two to three times the steady-state lighting current. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の (実施の形態 1 ) における冷陰極放電ランプの要部 を示す断面図とその X— X ' 断面図 · 図 2は同実施の形態と始動特性を比較するための比較品の冷陰極放 電ランプの断面図  FIG. 1 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 1) of the present invention and its XX ′ cross-sectional view. Cross section of a cold cathode discharge lamp
図 3は同実施の形態の実施品と比較品との点灯確率分布図  Fig. 3 shows the lighting probability distribution of the product of the embodiment and the comparison product.
図 4は本発明の (実施の形態 2 ) における冷陰極放電ランプの要部 を示す断面図とその X— X ' 断面図  FIG. 4 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 2) of the present invention and a cross-sectional view thereof along X--X '.
図 5は同実施の形態における始動補助用金属の被膜が発光管の内面 に形成される前の冷陰極放電ランプの要部を示す断面図  FIG. 5 is a cross-sectional view showing a main part of the cold cathode discharge lamp before the coating of the starting auxiliary metal in the embodiment is formed on the inner surface of the arc tube.
図 6は本発明の (実施の形態 3 ) における冷陰極放電ランプの要部 を示す断面図 FIG. 6 shows a main part of the cold cathode discharge lamp according to the third embodiment of the present invention. Cross section showing
図 7は同実施の形態における冷陰極放電ランプの別の例を示す要部 の断面図  FIG. 7 is a cross-sectional view of a main part showing another example of the cold cathode discharge lamp according to the embodiment.
図' 8は本発明の (実施の形態 4 ) における冷陰極放電ラ'ンプの要部 を示す断面図  FIG. 8 is a cross-sectional view showing a main part of a cold cathode discharge lamp according to (Embodiment 4) of the present invention.
図 9は (実施の形態 2 ) 〜 (実施の形態 4 ) の各実施品と比較品の 始動遅れ時間の測定結果図 ' 発明を実施するための最良の形態  Fig. 9 is a diagram showing the measurement results of the start delay time of each of the embodiment products and the comparison products of (Embodiment 2) to (Embodiment 4).
以下、 本発明の各実施の形態を図 1〜図 9を用いて説明する。 なお 、 ここでは、 冷陰極放電ランプとして両端部の構造が同一であるもの を例に挙げたため、 一方の側のみ示している。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. Here, only one side is shown because a cold cathode discharge lamp having the same structure at both ends is taken as an example.
(実施の形態 1 ) (Embodiment 1)
図 1 ( a ) ( b ) は本発明の (実施の形態 1 ) を示し、 図 1 ( b ) は (a ) における X— Χ ' 線に沿う断面図である。  FIGS. 1 (a) and 1 (b) show (Embodiment 1) of the present invention, and FIG. 1 (b) is a cross-sectional view taken along line X-Χ 'in FIG. 1 (a).
図 1に示すように、 ガラス管 2の内面には蛍光体層 3が形成されて おり、 その両端部には放電側の端部が開口したチューブ状の電極 5 a が設けられ、 適切な量の封入物質が密封されて発光管 1が構成されて いる。 少なく とも一方の電極 5 aの非放電側の端部には金属製の内部 導入線 4が接続されており、 内部導入線 4には外部導入線 Ίが接続さ れている。  As shown in FIG. 1, a phosphor layer 3 is formed on the inner surface of a glass tube 2, and a tube-like electrode 5a having an open end on the discharge side is provided at both ends thereof. The enclosed substance is hermetically sealed to form the arc tube 1. At least one non-discharge end of one of the electrodes 5a is connected to a metal internal lead-in 4, and the internal lead 4 is connected to an external lead 線.
電極 5 aには始動補助用金属からなる第 1の被膜 8を設け、 ガラス 管 2の内面には、 始動補助用金属からなる第 2の被膜 9が、 ガラス管 2の内面に形成された前記蛍光体層 3とは重ならない位置に形成され ている。 The electrode 5a is provided with a first coating 8 made of a starting auxiliary metal, and the second coating 9 made of a starting auxiliary metal is formed on the inner surface of the glass tube 2 on the inner surface of the glass tube 2. It is formed at a position that does not overlap with the phosphor layer 3. ing.
第 1の被膜 8はアル力リ金属化合物またはアル力リ土類金属化合物 またはこれらの混合物で形成されており、 第 2の被膜 9はアルカリ金 属またはアルカリ土類金属または.これらの混合物で形成されている。 以下、 具体例を挙げて説明する。  The first coating 8 is formed of an alkali metal or alkaline earth metal compound or a mixture thereof, and the second coating 9 is formed of an alkali metal or alkaline earth metal or a mixture thereof. Have been. Hereinafter, a specific example will be described.
ガラス管 2は、 ホウケィ酸ガラスからなる硬質材にて形成されてお り、 全長 3 00 mm、 外径 2. 4 mm, 内径 2. Ommとなっている The glass tube 2 is made of a hard material made of borosilicate glass and has a total length of 300 mm, an outer diameter of 2.4 mm, and an inner diameter of 2. Omm.
。 ガラス管 2の内面には、 三波長域発光蛍光体が膜厚 2 0 /m程度と なるように被着されて前記蛍光体層 3が形成されている。 . . On the inner surface of the glass tube 2, the phosphor layer 3 is formed by applying a three-wavelength region light-emitting phosphor so as to have a film thickness of about 20 / m. .
内部導入線 4はガラス管 2の形成材料と膨張係数が近似した材料 である夕ングステンにて形成されている。 外部導入線 7としては外 径 0. 6 mmのニッケル線を使用した。 ガラス管 2の両端部には、 モリブデンからなり、 外径 1. 7mm、 内径 1. 3mm、 全長 3 mn!〜 5 mmの前記電極 5 aが設けられてい る。 第 1の被膜 8は、 1 0 /g以上 1 00〃g未満 (好ましくは、 4 0 ± 20 / g) の塗布量で電極長さ方向に 0. 5 mm以上 3 mm以下 (好ましくは、 1. 5 ± 0. 5 mm) の長さにわたって形成されてい る。  The internal introduction line 4 is formed of evening stainless steel, which is a material having an expansion coefficient similar to that of the material for forming the glass tube 2. A nickel wire with an outer diameter of 0.6 mm was used as the external lead wire 7. Both ends of the glass tube 2 are made of molybdenum and have an outer diameter of 1.7 mm, an inner diameter of 1.3 mm, and a total length of 3 mn! The electrode 5a of up to 5 mm is provided. The first coating 8 has a coating amount of 10 / g or more and less than 100 μg (preferably 40 ± 20 / g) in the electrode length direction from 0.5 mm to 3 mm (preferably 1 (5 ± 0.5 mm).
この第 2の被膜 9は、 次のようにして所定位置に形成される。  The second coating 9 is formed at a predetermined position as follows.
第 1の被膜 8が電極 5 aに塗布され、 水銀とアルゴンとネオンとの 混合希ガスが、 約 8 k Paで封入され、 第 2の被膜 9については設け られていない発光管 1に、 定常点灯電流の 2倍から 3倍程度であるェ 一ジング電流、 例えば、 定常点灯電流が 8mAの場合には 1 8mA〜 25 mA程度のエージング電流を通電してエージングを行うことで、 エージング中に電極 5 aに塗布された第 1の被膜 8がスパヅ夕リング してガラス管 2の内面に被着して形成される。 The first coating 8 is applied to the electrode 5a, a mixed rare gas of mercury, argon and neon is sealed at about 8 kPa, and the second coating 9 is steadily applied to the luminous tube 1 not provided. The aging current that is about 2 to 3 times the lighting current, for example, when the steady-state lighting current is 8 mA, the aging current of about 18 mA to 25 mA is passed to perform aging. 5 First coating 8 applied to a Then, it is formed by being adhered to the inner surface of the glass tube 2.
ここでエージング時間は、 電極 5 aの表面から第 1の被膜 8が消失 しない状態で終了して電極 5 aの表面に第 1の被膜 8を残して、 前記 ガラス管 2の内面に適正な膜厚の第 2の被膜 9が形成される時間であ つて、 1 0分間程度である。  Here, the aging time is ended in a state where the first coating 8 does not disappear from the surface of the electrode 5a, and the first coating 8 is left on the surface of the electrode 5a, and an appropriate film is formed on the inner surface of the glass tube 2. The time for forming the thick second film 9 is about 10 minutes.
エージング中には放電がチューブ状の電極 5 aの放電側の開口から 第 1の被膜 8が塗布されている外周にまで放電が発生してスパヅタリ ングされるが、 定常点灯電流では電極 5 aの放電が第 1の被膜 8が塗 布されている外周にまで及ばないため、 エージング完了後の第 1の被 膜 8と第 2の被膜 9は安定していて使用中に消失しない。  During aging, discharge occurs from the discharge-side opening of the tube-shaped electrode 5a to the outer periphery where the first coating 8 is applied, and is spattered. Since the discharge does not reach the outer periphery where the first coating 8 is applied, the first coating 8 and the second coating 9 after aging are stable and do not disappear during use.
このように、 あらかじめ電極 5 aの表面に第 1の被膜 8を設け、 ェ —ジングにより始動補助用金属をスパヅ夕リングしてガラス管 2の内 面に被着させることで、 電極 5 aに近接した膜厚が均一な第 2の被膜 9を形成することができる。  As described above, the first coating 8 is provided on the surface of the electrode 5a in advance, and the starting auxiliary metal is sparged by aging and adhered to the inner surface of the glass tube 2, whereby the electrode 5a is formed. It is possible to form the second coating 9 having a uniform thickness close to the second coating 9.
この構成によると、 暗黒の環境下であっても第 2の被膜 9 と電極 5 aの間、 または第 2の被膜 9 と第 1の被膜 8 との間で微少放電が 発生し、 冷陰極放電ランプ内に始動に必要な初期電子が供給されるの で、 初期輝度の低下が小さくかつ暗黒始動特性の良好な冷陰極放電ラ ンプを実現できる。  According to this configuration, even in a dark environment, a minute discharge occurs between the second coating 9 and the electrode 5a or between the second coating 9 and the first coating 8, and the cold cathode discharge occurs. Since the initial electrons necessary for starting are supplied into the lamp, it is possible to realize a cold cathode discharge lamp with a small decrease in initial luminance and excellent dark starting characteristics.
上記のように構成された冷陰極放電ランプを実施品 Aとして、 下記 の比較品 Aとの暗黒始動遅れ時間を測定した。 サンプル数は 1 0 0本 しし  Using the cold cathode discharge lamp configured as described above as the product A, the dark start delay time of the following comparative product A was measured. The number of samples is 100
実施品 Aは第 1の被膜 8はアル力リ金属化合物の 1つであるセシゥ ム化合物、 第 2の被膜 9はアル力リ金属の 1つであるセシウムで形成 した。 図 2に示すように第 2の被膜 9が形成されていないものを比較 Aとした。 In the product A, the first coating 8 was formed of a cesium compound, which is one of the metallic alkali compounds, and the second coating 9 was formed of cesium, which is one of the metallic alkalis. Compared to the case where the second coating 9 was not formed as shown in Fig. 2. A
テス ト条件は、 実施品 Aと比較品 Aを周囲照度 0. 1ルクスの暗黒 中に 48時間放置した後、 周囲照度 0. 1ルクス、 周囲温度 0°C、 無 風の条件下で出力電圧 1200 Vrmsの高周波点灯回路 (図示せず ) を用いて、 暗黒始動遅れ時間について調べた。 得られた測定結果を 図 3に示す。  The test conditions were as follows: the test product A and the comparative product A were left in the dark of 0.1 lux ambient light for 48 hours, then the output voltage under the conditions of ambient illuminance 0.1 lux, ambient temperature 0 ° C, and no wind The dark start delay time was examined using a 1200 Vrms high frequency lighting circuit (not shown). Figure 3 shows the measurement results obtained.
この図 3から明らかなように、 実施品 Aでは 90%のサンプルが 0 . 9 m秒で点灯したのに対して、 比較品 Aでは点灯所要時間が 1 m秒 -250 m秒にばらついて、 500m秒を越えるランプが 6%も発生 した。 実施品 Aの場合には、 第 1の被膜 8と第 2の被膜 9の間、 また は第 2の被膜 9と第 1の被膜 8との間で微弱放電が発生して低圧放電 ランプ内に始動に必要な初期電子が供給され、 暗黒始動特性の極めて 良好な冷陰極放電ランプが得られた。  As is evident from Fig. 3, 90% of the samples illuminated in 0.9 ms in Example A, whereas the time required for illumination in Comparative product A varied from 1 ms to 250 ms. As many as 6% of lamps exceeded 500 ms. In the case of Example A, a weak discharge is generated between the first coating 8 and the second coating 9 or between the second coating 9 and the first coating 8, and the discharge is generated in the low-pressure discharge lamp. The initial electrons required for starting were supplied, and a cold cathode discharge lamp with extremely good dark starting characteristics was obtained.
なお、 両端部の電極 5 aの構造が別構造である場合には、 その表面 に第 1の被膜 8が形成された側の電極が、 点灯回路の高圧側に接続さ れていることが好ましい。  When the structure of the electrodes 5a at both ends is different, it is preferable that the electrode on the surface on which the first coating 8 is formed is connected to the high voltage side of the lighting circuit. .
第 1の被膜 8の材料としては、 アルカリ金属 (周期表の I族) の i, K, Rbなどの化合物をセシウム化合物に代わって使用すること ができる。 アルカリ土類金属 (周期表の II族) の B e, Mg, Ca, S r, B aなどの化合物を使用できる。  As the material of the first coating 8, a compound such as i, K, or Rb of an alkali metal (group I of the periodic table) can be used instead of the cesium compound. Alkaline earth metals (Group II of the periodic table) such as Be, Mg, Ca, Sr, and Ba can be used.
なお、 上記の (実施の形態 1) では電極 5 aの形状がチューブ状で あつたが、 放電側に開口を有していない棒状の形状であっても、 従来 品に比べて暗黒始動特性の極めて良好な冷陰極放電ランプが得られた 。 但しこの場合には、 長期間にわたって第 1 , 第 2の被膜 8, 9の状 態を安定に維持するために、 定常点灯電流を電極 5 aの形状がチュー ブ状である実施品 Aに比べて低く制限することが必要である。 In the above (Embodiment 1), the shape of the electrode 5a is a tube. However, even if the electrode 5a has a rod-like shape without an opening on the discharge side, the electrode 5a has a dark start characteristic compared to the conventional product. An extremely good cold cathode discharge lamp was obtained. However, in this case, in order to maintain the state of the first and second coatings 8 and 9 stably for a long period of time, the shape of the electrode 5a is set to the steady-state lighting current. It is necessary to limit it to a lower level than that of product A, which is in the form of a tube.
さらに、 特開 2 0 0 1— 1 5 0 6 5号公報の実施品と比較検討する と、 特開 2 0 1— 1 5 0 6 5号公報の場合には、 電極に設けられた • セシウム化合物に届く外部光は、 ガラス管の内側に塗布された発光層 (上記実施の形態における蛍光体層 3に相当) を通過して減衰した光 がほとんどであって、 本発明の上記実施の形態ように、 第 2の被膜 9 を、 'ガラス管 2の内面に形成された前記蛍光体層 3とは重ならない位 置に形成し、 外部光が減衰することなく第 2の被膜 9に入射して微少 放電を発生するものに比べて、 良好な暗黒始動特性を期待できない点 で、 本発明は従来技術とは相違している。  Furthermore, in comparison with the embodiment of Japanese Patent Application Laid-Open No. 2001-15065, in the case of Japanese Patent Application Laid-Open No. 2001-16565, cesium provided on the electrode Most of the external light reaching the compound is light attenuated by passing through the light emitting layer (corresponding to the phosphor layer 3 in the above embodiment) applied to the inside of the glass tube. As described above, the second coating 9 is formed at a position that does not overlap with the phosphor layer 3 formed on the inner surface of the glass tube 2, and external light is incident on the second coating 9 without attenuation. The present invention is different from the prior art in that good dark start characteristics cannot be expected as compared with those that generate minute discharge.
(実施の形態 2 ) (Embodiment 2)
図 4と図 5は、 本発明の (実施の形態 2 ) を示し、 図 4 ( b ) は ( a ) における X— X ' 線に沿う断面図である。  FIGS. 4 and 5 show (Embodiment 2) of the present invention, and FIG. 4 (b) is a cross-sectional view taken along line XX ′ in (a).
図 4 ( a ) ( b ) に示すように、 ガラス管 2の内面には蛍光体層 3 が形成されており、 その両端部には電極 5 bが設けられ、 適切な量の • · 封入物質が密封されて発光管 1が構成されている。 電極 5 bの非放竃 側の端部には金属製の内部導入線 4が接続されており、 内部導入線 4 には外部導入線 7が接続されている。  As shown in FIGS. 4 (a) and (b), a phosphor layer 3 is formed on the inner surface of the glass tube 2, and electrodes 5 b are provided on both ends thereof. Are sealed to constitute the arc tube 1. A metal internal lead-in 4 is connected to the end of the electrode 5 b on the non-firing side, and an external lead 7 is connected to the internal lead-in 4.
発光管 1の内面には、 始動補助用金属からなる被膜 9 aが、 電極 5 bと近接するように形成されている。  On the inner surface of the arc tube 1, a coating 9a made of a starting auxiliary metal is formed so as to be close to the electrode 5b.
このように構成された冷陰極放電ランプでは、 電極 5 bと始動補助 金属からなる被膜 9 aとの間で微弱放電が発生して始動に必要な初期 電子が供給されるため、 暗黒始動特性の極めて良好な冷陰極放電ラン プが得られる。 以下、 具体例を挙げて説明する。 In the cold cathode discharge lamp configured as described above, a weak discharge occurs between the electrode 5b and the coating 9a made of the starting auxiliary metal, and the initial electrons necessary for starting are supplied. An extremely good cold cathode discharge lamp is obtained. Hereinafter, a specific example will be described.
ガラス管 2は、 ホウケィ酸ガラスからなる硬質材にて形成されてお り、 全長 300 mm, 外径 2. 4mm、 内径 1. 8 mmとなっている - 。 ガラス管 2の内面には、 三波長域発光蛍光体が膜厚 20 m程度と なるように被着されて、 蛍光体層 3が形成されている。  The glass tube 2 is made of a hard material made of borosilicate glass, and has a total length of 300 mm, an outer diameter of 2.4 mm, and an inner diameter of 1.8 mm. A phosphor layer 3 is formed on the inner surface of the glass tube 2 by applying a three-wavelength region light-emitting phosphor to a thickness of about 20 m.
ガラス管 2の両端部には、 全長 5mm、 外径 1. O mmの二オビゥ ムからなる棒状の電極 5 bが設けられており、 電極 5 bの非放電側の 一端は、 外径 0. 8 mmの内部導入線 4と溶接接続されている。 内部 導入線 4はガラス管 2の形成材料と膨張係数が近似した材料である夕 ングステンにて形成されており、 この内部導入線 4とガラス管 2とに より発光管 1の両端部は封止され、 発光管 1の内部には水銀とァルゴ ンとネオンとの混合希ガス (図示せず) が、 約 8 kP aで封入されて いる。 なお、 一端が電極 5 bと接続された内部導入線 4の他端は、 外 径 0. 6 mmのニッケル製の外部導入線 7に接続されている。  At both ends of the glass tube 2, a rod-shaped electrode 5 b made of two beams having a total length of 5 mm and an outer diameter of 1.O mm is provided, and one end of the non-discharge side of the electrode 5 b has an outer diameter of 0. It is welded to the 8 mm internal feedthrough 4. The internal feedthrough 4 is made of stainless steel whose expansion coefficient is similar to the material used to form the glass tube 2. Both ends of the arc tube 1 are sealed by the internal feedthrough 4 and the glass tube 2. A rare gas mixture (not shown) of mercury, argon, and neon is sealed in the arc tube 1 at about 8 kPa. Note that the other end of the internal lead-in wire 4 whose one end is connected to the electrode 5b is connected to a nickel external lead-in wire 7 having an outer diameter of 0.6 mm.
電極 5 bの近傍における発光管 1の内面には、 始動用補助金属から なる膜厚 2 zmの被膜 9 aが形成されている。 始動用補助金属は、 電 極 5 b.の基体金属の 1· 00〜 600 e V範囲での.希ガスイオンによる スパッ夕収量よりもスパッタ収量の大きい金属からなり、 ここでは電 極 5 bの基体金属である二オビゥムよりも前記スパッ夕収量の大きい ニッケルが使用されている。  On the inner surface of the arc tube 1 in the vicinity of the electrode 5b, a coating 9a having a thickness of 2 zm made of a starting metal is formed. The starting auxiliary metal is made of a metal with a sputter yield greater than the sputter yield of rare gas ions in the range of 100 to 600 eV of the base metal of electrode 5b. Nickel having a higher sputtering yield than diobium, which is a base metal, is used.
この被膜 9 aは、 以下の手順にて形成される。  This coating 9a is formed by the following procedure.
電極 5 bを形成する二オビゥムの表面に、 100〜600 eV範囲 の低エネルギーの希ガスイオンによるスパヅタ収量 (at oms/i o n) が二オビゥムよりも大きい二ヅケルが、 電解メヅキ、 電気メ ヅ キ、 スパヅ夕蒸着等の工法により被着される。 ニッケルの膜厚は、 後 述のように発光管 1の内面に形成される被膜 8 aの膜厚が 2 / m程度 となるように、 5 / m程度とする。 On the surface of the two-beam forming the electrode 5b, a small-sized rare-ion gas ion (at oms / ion) of 100 to 600 eV with a sputter yield (at oms / ion) larger than that of the two-beam is used for the electrolytic and electric plating. It is applied by a method such as evaporation. Nickel film thickness As described above, the thickness is set to about 5 / m so that the thickness of the coating 8a formed on the inner surface of the arc tube 1 is about 2 / m.
二オビゥムの表面にニッケルが被着された電極 5 bの一端に、 内部 導入線 4がレーザ溶接等により接続ざれ、 通常の製造方法により冷陰 極放電ランプの組み立てが行われる。  An internal lead wire 4 is connected to one end of an electrode 5b having nickel adhered to the surface of the objet by laser welding or the like, and a cold cathode discharge lamp is assembled by a normal manufacturing method.
図 5は図 4に示す冷陰極放電ランプの前段階となる組み立て直後の 状態を示す。 この状態では、 発光管 1の内面に被膜 9 aは形成されて おらず、 始動用補助金属であるニッケルは電極 5 bの表面に被着され 被膜 8 aを形成している。  FIG. 5 shows a state immediately after the cold cathode discharge lamp shown in FIG. In this state, the coating 9a is not formed on the inner surface of the arc tube 1, and nickel as a starting auxiliary metal is applied to the surface of the electrode 5b to form the coating 8a.
次いで、 この電極 5 bに通常の点灯電流である 6 m A以上の高電流 、 例えば 1 5 m Aの電流が通電され約 2時間のエージングが行われる と、 エージング中に二オビゥムの表面に被着したニッケルがスパヅ夕 リングして、 電極 5 bに近接した発光管 1の内面に被着し、 膜厚 2 m程度の被膜 9 aが形成される。  Next, when a high current of 6 mA or more, which is a normal lighting current, for example, a current of 15 mA is supplied to the electrode 5b and aging is performed for about 2 hours, the electrode 5b is exposed to the surface of the diode during aging. The deposited nickel is spun and adheres to the inner surface of the arc tube 1 close to the electrode 5b to form a coating 9a having a thickness of about 2 m.
このようにあらかじめ電極 5 bの表面に始動補助用金属からなる被 膜 8 aを設け、 エージングにより始動補助用金属をスパヅ夕リングし て発光管 1の内面に被着させることで、 電極 5 bに近接した発光管 1 の内面へ膜厚が均一な始動補助用金属の被膜 9 aを短時間で形成でき 、 初期輝度の低下が小さくかつ暗黒始動特性の良好な冷陰極放電ラン プの製造が容易に実現できる。  In this way, a coating 8a made of a starting auxiliary metal is provided on the surface of the electrode 5b in advance, and the starting auxiliary metal is sparged by aging and adhered to the inner surface of the arc tube 1, whereby the electrode 5b is formed. The start-up assisting metal coating 9a having a uniform film thickness can be formed in a short time on the inner surface of the arc tube 1 close to the light source. Can be easily realized.
上記のように作成した冷陰極放電ランプを実施品 Bとして、 下記の ように暗黒始動性について検討した。  Using the cold cathode discharge lamp prepared as described above as product B, the dark startability was examined as follows.
テス ト条件は、 実施品 Bを周囲照度 0 . 1ルクスの暗黒中に 4 8時 間放置した後、 周囲照度 0 . 1ルクス、 周囲温度 0 °C、 無風の条件下 で出力電圧 1 2 0 0 V r m sの高周波点灯回路 (図示せず) を用いて 、 暗黒始動遅れ時間について調べた。 得られた測定結果を図 9に示す ο The test conditions were as follows: Product B was left in the dark of 0.1 lux of ambient light for 48 hours, and then the output voltage was 120 lux under the conditions of 0.1 lux ambient light, 0 ° C ambient temperature, and no wind. Using a high-frequency lighting circuit (not shown) of 0 V rms The dark start delay time was examined. Figure 9 shows the measurement results obtained.
また、 比較のために、 ニッケルからなる被膜 9 aの代わりに、 暗黒 中で仕事関数以下の刺激エネルギーで電子を放出する酸化金属性の電 子放射物質である酸化鉛を発光管 1の内面に塗布して泠陰極放電ラン プを作成した。 この冷陰極放電ランプを比較品 Bとして上記と同様の テス ト条件にて暗黒始動遅れ時間について調べた。 得られた比較品 B の測定結果を図 9に示す。  For comparison, instead of the nickel coating 9a, lead oxide, which is a metal oxide electron-emitting substance that emits electrons in the dark with a stimulation energy lower than the work function, is placed on the inner surface of the arc tube 1 in the dark. By coating, a cathode discharge lamp was prepared. Using this cold cathode discharge lamp as a comparative product B, the dark start delay time was examined under the same test conditions as above. Figure 9 shows the measurement results of the obtained comparative product B.
図 9から明らかなように、 実施品 Bと比較品 Bとでは、 平均の暗黒 始動遅れ時間にはほとんど差は無いものの、 最大の暗黒始動遅れ時間 は比較品 Bの 6 0 3 O m秒に対して実施品 Bは 2 8 O. m秒であり、 比 較品 Bのように大きな遅れの発生は無かった。 このように (実施の形 態 2 ) における実施品 Bでは、 発光管 1の内面に電極 5 bに近接する 始動補助用金属よりなる被膜 9 aを設けることで、 電極 5 bと始動補 助金属より:なる被膜 9 a間で微弱放電が発生して低圧放電ランプ内に 始動に必要な初期電子が供給されるため、 暗黒始動特性の極めて良好 な冷陰極放電ランプが得られた。 '  As is evident from Fig. 9, there is almost no difference in the average dark start delay time between the test product B and the comparative product B, but the maximum dark start delay time is 603 O msec of the comparative product B. On the other hand, the sample B was 28 O.msec, and there was no large delay like the sample B. As described above, in the embodiment B of the second embodiment, the electrode 5b and the starting auxiliary metal are provided on the inner surface of the arc tube 1 by providing the coating 9a made of the starting auxiliary metal close to the electrode 5b. More: Since a weak discharge is generated between the coatings 9a and the initial electrons necessary for starting are supplied into the low-pressure discharge lamp, a cold cathode discharge lamp having extremely good dark start characteristics was obtained. '
なお、 上記図 5のように、 始動補助用金属からなる被膜 8 aが形成 された電極 5 aは、 点灯回路の高圧側に接続されていることが好まし い。 すなわち、 上記の実施品 Bでは低圧放電ランプの両端部が同一構 造であるため被膜 8 aが形成された電極 5 bが点灯回路の高圧側に接 続されることとなるが、 例えば、 両端部の構造が別構造である場合に は、 その表面に始動用補助金属が設けられた側の電極が、 点灯回路の 高圧側に接続されていることが好ましい。  In addition, as shown in FIG. 5 described above, it is preferable that the electrode 5 a on which the coating 8 a made of the metal for starting assistance is formed is connected to the high voltage side of the lighting circuit. That is, in the above-described embodiment B, since the both ends of the low-pressure discharge lamp have the same structure, the electrode 5b on which the coating 8a is formed is connected to the high-voltage side of the lighting circuit. When the structure of the part is different, it is preferable that the electrode on the surface of which the auxiliary metal for starting is provided is connected to the high voltage side of the lighting circuit.
このことを確認するために、 低圧放電ランプの両端部を別構造とし た冷陰極放電ランプを作成し、 実施品 Cとした。 この実施品 Cの始動 補助用金属からなる被膜 8 aが設けられていない側の電極を点灯回路 の高圧側に接続し、 実施品 Bと同じ条件にて暗黒始動遅れ時間を測定 した。 サンプル数は 1 0 0本とした。 得られた測定結果を図 9に示す o In order to confirm this, both ends of the low-pressure discharge lamp have different structures. A cold cathode discharge lamp was prepared, and was designated as a working product C. The electrode on the side of the lighting circuit where the coating 8a made of a metal for assistance was not provided was connected to the high voltage side of the lighting circuit, and the dark starting delay time was measured under the same conditions as for the working example B. The number of samples was 100. Figure 9 shows the measurement results obtained.
図 9から明らかなように、 始動補助用金属 8 aが設けられていない 側の電極を点灯回路の高圧側に接続した実施品 Cにおいても比較品 B に比べて暗黒始動特性は良好となっているが、 上記の実施品 Bと比較 すると、 実施品 Cの平均暗黒始動遅れ時間は 2 5 O m秒と大きくなつ ており、 最大の暗黒始動遅れ時間も 4 8 O m秒となっている。  As is evident from Fig. 9, the dark start characteristics of the product C, in which the electrode on which the starting auxiliary metal 8a was not provided was connected to the high voltage side of the lighting circuit, were also better than the comparative product B. However, the average dark start delay time of Example C is as large as 25 O msec, and the maximum dark start delay time is 48 O msec, compared with Example B above.
これは、 高周波点灯回路の出力電圧印加時に、 距離の近い電極と始 動補助金属よりなる被膜間の電界が強くなるので.、 電極と始動補助金 属よりなる被膜間で初期放電が発生し、 低圧放電ランプ内に始動に必 要な初期電子が供給されるためであると考えられる。 このように、 始 動補助用金属を設けた側の電極を点灯回路の高圧側に接続することで 、 暗黒始動性を著しく改善できる。  This is because, when the output voltage of the high-frequency lighting circuit is applied, the electric field between the electrode that is short distance and the film made of the starting auxiliary metal becomes strong.Therefore, initial discharge occurs between the electrode and the film made of the starting auxiliary metal, This is probably because the initial electrons necessary for starting the lamp are supplied into the low-pressure discharge lamp. In this way, by connecting the electrode on the side where the metal for starting assistance is provided to the high voltage side of the lighting circuit, dark startability can be significantly improved.
なお、 上記説明では、 電極 5 bの表面を始動用補助金属からなる被 膜 8 aで覆った例を挙げて説明レたが、 本発明はこれに限定されるも のではなく、 少なくとも電極 5 bの表面に始動用補助金属が設けられ ていればよい。  In the above description, an example in which the surface of the electrode 5b is covered with the film 8a made of the auxiliary metal for starting is described. However, the present invention is not limited to this. It is sufficient that the starting metal is provided on the surface of b.
(実施の形態 3 ) (Embodiment 3)
図 6は、 本発明の (実施の形態 3 ) を示す。  FIG. 6 shows (Embodiment 3) of the present invention.
この (実施の形態 3 ) では、 棒状の電極 5 bの代わりにチューブ状 の電極 5 aを用い、 電極 5 aの開口部に近接した発光管 1の内面に始 動補助用金属よりなる被膜 9 bを形成した点で上記実施の形態とは異 なる。 In this (Embodiment 3), a tube-shaped electrode 5a is used instead of the rod-shaped electrode 5b, and the inner surface of the arc tube 1 close to the opening of the electrode 5a is started. This embodiment is different from the above embodiment in that a coating 9b made of a movement assisting metal is formed.
具体的には、 電極 5 aはモリブデンからなり、 外径 1 . 5 m m、 内 径 1 . 3 m m、 全長 3 m'mとなっている。 電極 5 aの開口部に近接し た発光管 1の内面には、 始動補助用金属であるニッケルよりなる膜厚 2〃mの被膜 8 bが形成されている。 '  Specifically, the electrode 5a is made of molybdenum, and has an outer diameter of 1.5 mm, an inner diameter of 1.3 mm, and a total length of 3 m'm. On the inner surface of the arc tube 1 close to the opening of the electrode 5a, a coating 8b of nickel having a thickness of 2 μm is formed as a starting auxiliary metal. '
この被膜 9 bは、 電極 5 aの内面に予めスパヅ夕蒸着により厚み 5 m程度のニッケル膜を形成し、 通常の点灯電流である 6 m A以上の 高電流、 例えば 2倍から 3倍程度の 1 5 m Aの電流を電極 5 aに通'電 して約 2時間のエージングを行うことで、 ェ一ジング中に電極 5 aの • 内面に蒸着されたニッケルがスパヅ夕リングされて電極 5 aの開口部 に近接した発光管 1の内面に被着して形成される。 '  The coating 9b is formed by forming a nickel film having a thickness of about 5 m in advance on the inner surface of the electrode 5a by a sputter deposition method, and a high current of 6 mA or more, which is a normal lighting current, for example, about 2 to 3 times. By passing a current of 15 mA to the electrode 5a and aging for about 2 hours, the nickel deposited on the inner surface of the electrode 5a is sparged during aging, and It is formed so as to adhere to the inner surface of the arc tube 1 close to the opening a. '
上記のように構成された冷陰極放電ランプを実施品 Dとして、 その 内面にニッケル膜が形成された電極 5 aを点灯回路の高圧側に接続し 、 上記 (実施の形態 2 ) と同じ条件にて暗黒始動遅れ時間を測定した 。 サンプル数は 1 0 0本とした。 得られた測定結果を図 9に示す。 ' 図 9に示すように、 実施品 Dの平均暗黒始動遅れ時間は 7 0 m秒、 最大の暗黒始動遅れ時間は 1 5 O m秒であり'、 上記 (実施の形態 2 ) ' における実 ½品 Bの暗黒始動特性よりもさらに良いものとなった。 このように電極としてチューブ状の電極 5 aを用い、 その内面に設 けた始動用補助金属をエージングにより発光管 1の内面に被着させる ことで、 電極 5 aと始動補助金属よりなる被膜 9 bとの距離が上記 ( 実施の形態 2 ) における冷陰極放電ランプよりも更に短くなり、 電極 5 aと被膜 9 bとの間の電界が更に強くなつて始動に必要な初期電子 がより供給されやすくなるため、 暗黒始動特性の著しい改善が実現で きる。 With the cold cathode discharge lamp configured as described above as the product D, the electrode 5a having a nickel film formed on the inner surface thereof was connected to the high voltage side of the lighting circuit, and the same conditions as in the above (Embodiment 2) were applied. The dark start delay time was measured. The number of samples was 100. Fig. 9 shows the obtained measurement results. 'As shown in Fig. 9, the average dark start delay time of the product D is 70 msec, and the maximum dark start delay time is 15 O msec'. It was even better than the dark start characteristics of product B. As described above, the tube-shaped electrode 5a is used as an electrode, and the auxiliary metal for starting provided on the inner surface thereof is applied to the inner surface of the arc tube 1 by aging, whereby the coating 9b composed of the electrode 5a and the auxiliary metal for starting is formed. Is shorter than that of the cold cathode discharge lamp in the above (Embodiment 2), and the electric field between the electrode 5a and the coating 9b becomes stronger, so that the initial electrons necessary for starting can be more easily supplied. As a result, the dark start characteristics have been significantly improved. Wear.
また、 上記説明では、 電極 5 aの内面に始動用補助金属からなる被 膜を形成してエージングにより発光管 1の内面にスパッ夕リングさせ て被膜 9 bを形成したが、 本発明はこれに限定されるものではなく、 図 7に示すように、 電極 5 aの外表面に始動用補助金属からなる被膜 8 bを形成し、 この被膜 8 bを同様にエージングによりスパヅタリン グして発光管 1の内面に被膜 9 cを形成してもよい。 なお、 この図 7 では、 約 3 0分間のエージングを上記説明よりも大きい 2 O m Aの電 流で行うことにより、 電極内面だけでは放電に必要な電子数が確保で きなくなり、 '放電が電極 5 aの内側から開口部の近傍の外表面に一部 が回り込み、 電極 5 aにおける回り込みの強い開口部の近傍のスパッ 夕リングが強くなるので被膜 8 bと被膜 9 cの厚みがともに電極 5 a の開放端に向かって薄くなつている。 しかしながら、 更にエージング 電流を大きくすることで放電を筒状電極 5 bの外周面全体に広げるこ とができ、 被膜 8 bを十分にスパッタリングさせて、 例えば図 4に示 す被膜 9 aのようにすることができる。  Further, in the above description, a film made of a starting auxiliary metal is formed on the inner surface of the electrode 5a, and the film is formed on the inner surface of the arc tube 1 by aging to form a film 9b. Without limitation, as shown in FIG. 7, a coating 8b made of an auxiliary metal for starting is formed on the outer surface of the electrode 5a, and the coating 8b is similarly sputtered by aging to form the arc tube 1. A coating 9c may be formed on the inner surface of the substrate. In Fig. 7, by performing aging for about 30 minutes with a current of 2 O mA higher than that described above, the number of electrons required for discharge cannot be secured only on the inner surface of the electrode. Part of the electrode 5a wraps from the inside to the outer surface near the opening, and the spattering near the opening where the electrode 5a has a strong wraparound becomes stronger. 5a thinner towards the open end. However, by further increasing the aging current, the discharge can be spread over the entire outer peripheral surface of the cylindrical electrode 5b, and the coating 8b is sufficiently sputtered, for example, as shown in coating 9a in FIG. can do.
(実施の形態 4 ) ' (Embodiment 4) ''
図 8は本発明の (実施の形態 4 ) を示す。  FIG. 8 shows (Embodiment 4) of the present invention.
この実施の形態では、 被膜 9 dを電極 5 aの近傍でかつ蛍光体層 3 が形成されていない部分の発光管 1の内面に形成した点で上記 (実施 の形態 3 ) とは異なる。  This embodiment is different from the above (Embodiment 3) in that the coating 9d is formed near the electrode 5a and on the inner surface of the arc tube 1 where the phosphor layer 3 is not formed.
すなわち、 この実施の形態における冷陰極放電ランプは、 図 6 , 図 7に示す冷陰極放電ランプとは異なり、 蛍光体層 3は電極 5 aの外面 と対向する位置までは延設されておらず、 電極 5 aの開口端付近の発 光管 1の内面はガラス管 2が露出しており、 電極 5 aの開口端付近に は始動用補助金属からなる被膜 9 dが形成されている。 That is, the cold cathode discharge lamp in this embodiment is different from the cold cathode discharge lamps shown in FIGS. 6 and 7 in that the phosphor layer 3 does not extend to a position facing the outer surface of the electrode 5a. , Near the open end of electrode 5a The glass tube 2 is exposed from the inner surface of the light tube 1, and a coating 9d made of a starting auxiliary metal is formed near the opening end of the electrode 5a.
このように蛍光体層 3の上ではなく、 表面平滑性の良いガラス管 2 の内面に、 直接に始動用補助金属をスパヅ夕リングさせて被膜 9 dを 形成することで、 表面に数ミクロンの凹凸を有する蛍光体層 3に形成 した被膜よりもさらに精度の良い被膜 9 dが得られる。  In this way, the starting metal is spun directly on the inner surface of the glass tube 2 having good surface smoothness, not on the phosphor layer 3, to form the coating 9d, thereby forming a coating of several microns on the surface. A more accurate coating 9d can be obtained than the coating formed on the phosphor layer 3 having irregularities.
上記のように構成された冷陰極放電ランプを実施品 Eとして、 電極 5 aを点灯回路の高圧側に接続し、 上記 (実施の形態 2 ) と同じ条件 にて暗黒始動遅れ時間を測定した。 サンプル数は 1 0. 0本とした。 得 られた測定結果を図 9に示す。  Using the cold cathode discharge lamp configured as described above as the product E, the electrode 5a was connected to the high voltage side of the lighting circuit, and the dark start delay time was measured under the same conditions as in the above (Embodiment 2). The number of samples was 10.0. Figure 9 shows the measurement results obtained.
図 9に示すように、 実施品 Eの平均暗黒始動遅れ時間は 3 O m秒、 最大の暗黒始動遅れ時間は 1 2 0 m秒であり、 上記 (実施の形態 3 ) における実施品 Dよりもさらに暗黒始動特性の良いものであった。 なお、 上記各実施の形態では、 電極 5 a , 5 bとして、 単一金属か らなる'ものを例に挙げて説明したが、 本発明はこれに限定されるもの ではなく、 合金や焼結金属からなるものも適用でき、 さらに単一金属 、 合金、 焼結金属を適宜組み合わせたものなどにも適用可能である。  As shown in FIG. 9, the average dark start delay time of Example E is 3 O msec, and the maximum dark start delay time is 120 ms, which is greater than that of Example D in the above (Embodiment 3). Furthermore, it had good dark start characteristics. In each of the above embodiments, the electrodes 5a and 5b have been described as being made of a single metal as an example. However, the present invention is not limited to this. Metals can also be used, and furthermore, single metals, alloys, and sintered metals can be appropriately combined.
'また、 上記各実施の形態では、 冷陰極放電ランプの両端部の構造が 同じものを例に挙げて説明したが、 本発明はこれに限定されるもので はなく、 少なく とも一方の端部が上記のように構成されていればよい o  In each of the above embodiments, the cold cathode discharge lamp has the same structure at both ends as an example. However, the present invention is not limited to this. Should be configured as above o
また、 本発明の冷陰極放電ランプは、 上記各実施の形態に限定され るものではなく、 その寸法、 設計、 材料、 形、 定格等は適宜選択が可 能である。 また、 電極は、 上記の棒状電極やスリーブ状電極だけでな く、 例えば円筒状で有底あるいは無底の電極でもよく、 またスリーブ 状電極が 2層以上の構造を有しているものや、 スリーブ状電極の内面 にエミッ夕物質等が塗布されているものなど、 実用上の効果をなすも のであれば特に限定されるものではない。 - 以上のように本発明の冷陰極放電ランプは、 内面に蛍光体層が形成 されたガラス管の両端部に電極を設け封入物質を密封した冷陰極放電 ランプであって、 少なくとも一方の電極には始動補助用金属からなる 第 1の被膜を設け、 前記一方の電極の近傍における前記ガラス管の内 面に前記第 1の被膜に近接して始動補助用金属からなる第 2の被膜を 設けることで、 始動補助用金属よりなる第 1の被膜と第 2の被膜の間 で微弱放.電が発生して冷陰極放電ランプ内に始動に必要な初期電子が' 供給されるため、 暗黒始動特性が極めて良好である。 The cold cathode discharge lamp of the present invention is not limited to the above embodiments, and its dimensions, design, material, shape, rating, and the like can be appropriately selected. Further, the electrode is not limited to the above-mentioned rod-shaped electrode or sleeve-shaped electrode, and may be, for example, a cylindrical electrode having a bottom or no bottom. It is not particularly limited as long as it has a practical effect, such as an electrode having a structure of two or more layers or a sleeve-shaped electrode having an inner surface coated with an emissive substance. Absent. -As described above, the cold cathode discharge lamp of the present invention is a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed, and at least one of the electrodes has Providing a first coating made of a starting aid metal, and providing a second coating made of a starting assistance metal on the inner surface of the glass tube in the vicinity of the one electrode in close proximity to the first coating. Weak discharge between the first coating and the second coating made of the metal for starting assistance, which generates dark electrons and supplies the initial electrons necessary for starting into the cold cathode discharge lamp, resulting in dark start characteristics. Is extremely good.
また、 本発明の冷陰極放電ランプの製造方法は、 内面に蛍光体層が 形成されたガラス管の両端部に電極を設け封入物質を密封した冷陰極 放電.ランブを製造するに際し、.前記ガラス管の少なく とも一方の端部 に始動補助用金属の第 1の被膜を有する電極を配置するとともに封入 物質を密封し、 前記電極に定常点灯電流を越える電流を通電してエー ジングし、 このエージングにより前記第 1の被膜をスパッタリングし てガラス管の内面に形成された前記蛍光体層とは重ならない位置に第 2の被膜を形成し、 前記電極の表面から第 1の被膜が消失しない状態 で前記エージングを終了して、 電極の表面に第 Lの被膜、 前記ガラス 管の内面に第 2の被膜を形成するので、 本発明の冷陰極放電ランプを 容易に実現できる。  In addition, the method for manufacturing a cold cathode discharge lamp of the present invention is a method for manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. At least one end of the tube is provided with an electrode having a first coating of a metal for start-up assistance, the sealed substance is sealed, and a current exceeding a steady lighting current is passed through the electrode to age. Forming a second coating at a position that does not overlap with the phosphor layer formed on the inner surface of the glass tube by sputtering the first coating, so that the first coating does not disappear from the surface of the electrode. After the aging, the L-th coating is formed on the surface of the electrode and the second coating is formed on the inner surface of the glass tube, so that the cold cathode discharge lamp of the present invention can be easily realized.
また、 本発明の冷陰極放電ランプは、 内面に蛍光体層が形成された ガラス管の両端部に電極を設け封入物質を密封した発光管を有する冷 陰極放電ランプであって、 少なく とも一方の電極の近傍における前記 発光管の内面に始動補助用金属からなる被膜を設けることで、 始動補 助用金属よりなる被膜と電極間で微弱放電が発生して冷陰極放電ラン プ内に始動に必要な初期電子が供給されるため、 暗黒始動特性の極め て良好な冷陰極放電ランプとなる。 Further, the cold cathode discharge lamp of the present invention is a cold cathode discharge lamp having a light emitting tube in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed. In a cathode discharge lamp, by providing a coating made of a starting aid metal on the inner surface of the arc tube at least near one of the electrodes, a weak discharge is generated between the coating made of the starting aid metal and the electrode. As a result, the initial electrons required for starting are supplied to the cold cathode discharge lamp, so that a cold cathode discharge lamp having extremely good dark start characteristics can be obtained.
' また、 本発明の冷陰極放電ランプの製造方法は、 内面に蛍光層が形 成されたガラス管の両端部に電極を設け封入物質を密封した発光管を 有する冷陰極放電ランプを製造するに際し、 前記ガラス管の少なく と も一方の端部に始動補助用金属を有する電極を設け、 前記始動補助用 金属を有する側の電極に定常点灯電流以上の高電流を通電してエージ ングし、 このエージングにより前記始動補助用金属をスパッ夕リング して前記発光管の内面に始動補助用金属からなる被膜を形成するので 、 本発明の冷陰極放電ランプを容易に実現できる。  The method of manufacturing a cold cathode discharge lamp of the present invention is used for manufacturing a cold cathode discharge lamp having an arc tube in which electrodes are provided at both ends of a glass tube having a fluorescent layer formed on the inner surface and a sealed substance is sealed. At least one end of the glass tube is provided with an electrode having a metal for starting assistance, and the electrode on the side having the metal for starting assistance is supplied with a high current that is equal to or higher than a steady lighting current to perform aging. Since the starting auxiliary metal is sputtered by aging to form a coating made of the starting auxiliary metal on the inner surface of the arc tube, the cold cathode discharge lamp of the present invention can be easily realized.

Claims

請 求 の 範 囲 The scope of the claims
1 .  1.
内面に蛍光体層が形成されたガラス管の両端部に電極を設け封入物 質を密封した冷陰極放電ランプであって、 +  A cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on the inner surface to seal the enclosed material,
少なくとも一方の電極には始動補助用金属からなる第 1の被膜-を設 け、  At least one electrode is provided with a first coating made of a starting aid metal,
前記一方の電極の近傍における前記ガラス管の内面に前記第 1の被 膜に近接して始動補助用金属からなる第 2の被膜を設けた ·  A second coating made of a starting aid metal was provided on the inner surface of the glass tube near the one electrode in proximity to the first coating.
.冷陰極放電ランプ。 .Cold cathode discharge lamp.
2 . 2.
第 2の被膜を、 ガラス管の内面に形成された前記蛍光体層とは重な らない位置に形成した  The second coating was formed at a position not overlapping with the phosphor layer formed on the inner surface of the glass tube.
請求項 1記載の冷陰極放電ランプ。 The cold cathode discharge lamp according to claim 1.
3 . 3.
前記電極の形状がチューブ状で外周に前記第 1の被膜を設けた · 請求項 1または請求項 2に記載の冷陰極放電ランプ。  3. The cold cathode discharge lamp according to claim 1, wherein the electrode has a tubular shape and the first coating is provided on an outer periphery.
4 . Four .
第 2の被膜がアル力リ金属またはアル力リ土類金属またはこれらの 混合物である  The second coating is Al-Li metal or Al-earth metal or a mixture thereof
請求項 1〜請求項 3の何れかに記載の冷陰極放電ランプ。 The cold cathode discharge lamp according to claim 1.
5 . Five .
第 1の被膜をアル力リ金属化合物またはアル力リ土類金属化合物ま たはこれらの混合物で形成し、 .  Forming a first coating of an alkali metal or alkaline earth metal compound or a mixture thereof;
第 2の被膜をアル力リ金属またはアル力リ土類金属またはこれらの 混合物で形成した  The second coating was formed from Al-Li metal or Al-earth metal or a mixture thereof
請求項 1〜請求項 3の何れかに記載の冷陰極放電ランプ。 The cold cathode discharge lamp according to claim 1.
6 . 6.
第 1の被膜をセシウム化合物で形成し、 第 2の被膜をセシウムで形 成した  The first coating was formed with a cesium compound, and the second coating was formed with cesium
請求項 5に記載の冷陰極放電ランプ。 ' A cold cathode discharge lamp according to claim 5. '
7 . 7.
内面に蛍光体層が形成されたガラス管の両端部に電極を設け封入物 質を密封した冷陰極放電ランプを製造するに際し、  In manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed,
前記ガラス管の少なく とも一方の端部に始動補助用金属の第 1の被 膜を有する電極を配置するとともに封'入物質を密封し、  At least one end of the glass tube is provided with an electrode having a first film of a metal for assisting starting, and sealing material is sealed;
前記電極に定常点灯電流を越える電流を通電してエージングし、 こ のエージングにより前記第 1の被膜をスパッ夕リングしてガラス管の 内面に形成された前記蛍光体層とは重ならない位置に第 2の被膜を形 成し、  The electrode is aged by passing a current exceeding a steady lighting current, and the first coating is sputtered by the aging, and the first coating is spliced to a position not overlapping with the phosphor layer formed on the inner surface of the glass tube. 2 to form a coating,
前記電極の表面から第 1の被膜が消失しない状態で前記エージング を終了して、 電極の表面に第 1の被膜、 前記ガラス管の内面に第 2の 被膜を形成する  The aging is terminated in a state where the first coating does not disappear from the surface of the electrode, and a first coating is formed on the surface of the electrode and a second coating is formed on the inner surface of the glass tube.
冷陰極放電ランプの製造方法。 Manufacturing method of cold cathode discharge lamp.
8 . 8.
内面に蛍光体層が形成されたガラス管の両端部に電極を設け封入物 質を密封した発光管を有す 冷陰極放電ランプであって、  A cold cathode discharge lamp having a light emitting tube in which electrodes are provided at both ends of a glass tube having a phosphor layer formed on an inner surface and a sealed substance is sealed,
少なく とも一方の電極の近傍における前記発光管の内面に始動補助 用金属からなる被膜を設けた  At least a coating made of a starting auxiliary metal was provided on the inner surface of the arc tube near one of the electrodes.
冷陰極放電ランプ。 Cold cathode discharge lamp.
9 . 9.
前記被膜を形成する始動補助用金属が、 前記電極を形成する基体金 属の 1 0 0〜 6 0 0 e V範囲の希ガスイオンによるスパッ夕収量より もスパッ夕収量の大きい金属である  The starting auxiliary metal forming the coating is a metal having a higher sputter yield than the sputter yield of the base metal forming the electrode due to a rare gas ion in a range of 100 to 600 eV.
請求項 8記載の冷陰極放電ランプ。 9. The cold cathode discharge lamp according to claim 8.
1 0 . Ten .
: 少なく とも始動補助用金属からなる前記 ¾膜が設けられた側の電極 が点灯回路の高圧側に接続されている  : At least the electrode on the side provided with the film made of a metal for starting assistance is connected to the high voltage side of the lighting circuit.
請求項 8または請求項 9記載の冷陰極放電ランプ。 10. The cold cathode discharge lamp according to claim 8 or claim 9.
1 1 . 1 1.
前記電極が筒状電極である  The electrode is a cylindrical electrode
請求項 8〜請求項 1 0の何れかに記載の冷陰極放電ランプ。 The cold cathode discharge lamp according to any one of claims 8 to 10.
1 2 . 1 2.
始動補助用金属からなる被膜が、 少なくとも一方の電極の近傍でか つ蛍光体層が形成されていない発光管の内面に設けられた Check that the coating made of the starting aid metal is near at least one of the electrodes. Provided on the inner surface of the arc tube where no phosphor layer is formed
請求項 8〜請求項 1 1の何れかに記載の冷陰極放電ランプ。  The cold cathode discharge lamp according to any one of claims 8 to 11.
1 3 . 13 .
内面に蛍光層が形成されたガラス管の両端部に電極を設け封入物質 を密封した冷陰極放電ランプを製造するに際し、  When manufacturing a cold cathode discharge lamp in which electrodes are provided at both ends of a glass tube with a fluorescent layer formed on the inner surface and the sealed substance is sealed,
前記ガラス管の少なくとも一方の端部に始動補助用金属を有する電 極を設け、 前記始動補助用金属を有する側の電極に定常点灯電流を越 える高電流を通電してエージングし、  An electrode having a starting aid metal is provided on at least one end of the glass tube, and aging is performed by passing a high current exceeding a steady lighting current to the electrode having the starting assist metal,
このエージングにより前記始動補助用金属をスパヅ夕リングして前 記発光管の内面に始動補助用金属からなる被膜を形成する  By this aging, the starting assisting metal is spun to form a coating made of the starting assisting metal on the inner surface of the arc tube.
冷陰極放電ランプの製造方法。 ·  Manufacturing method of cold cathode discharge lamp. ·
1 4 . 14 .
エージング電流が定常点灯電流の 2倍から 3倍程度である  Aging current is about 2 to 3 times of steady lighting current
' 請求項 7または請求項 1 3に記載の冷陰極放電ランプの製造方法。 'The method for producing a cold cathode discharge lamp according to claim 7 or claim 13.
PCT/JP2002/003892 2001-05-17 2002-04-18 Cold cathode discharge lamp and method of manufacturing the discharge lamp WO2002095792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-7000560A KR100516607B1 (en) 2001-05-17 2002-04-18 Cold cathode discharge lamp and method of manufacturing the discharge lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001147150 2001-05-17
JP2001-147150 2001-05-17

Publications (1)

Publication Number Publication Date
WO2002095792A1 true WO2002095792A1 (en) 2002-11-28

Family

ID=18992677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003892 WO2002095792A1 (en) 2001-05-17 2002-04-18 Cold cathode discharge lamp and method of manufacturing the discharge lamp

Country Status (4)

Country Link
KR (1) KR100516607B1 (en)
CN (1) CN100377289C (en)
TW (1) TW564462B (en)
WO (1) WO2002095792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475536A (en) * 2009-11-23 2011-05-25 Heraeus Noblelight Ltd A flash lamp, a corresponding method of manufacture and apparatus for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674805B2 (en) * 2005-07-14 2011-04-20 日立粉末冶金株式会社 Method for producing electrode material for cold cathode fluorescent lamp
WO2008032705A1 (en) * 2006-09-15 2008-03-20 Panasonic Corporation Electric discharge lamp, illuminator, and liquid crystal display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121944A (en) * 1990-09-10 1992-04-22 Toshiba Lighting & Technol Corp Cold cathode discharge lamp
JPH06342643A (en) * 1993-06-01 1994-12-13 Matsushita Electron Corp Rapid starting type fluorescent lamp
JPH09320533A (en) * 1996-05-29 1997-12-12 West Electric Co Ltd Fluorescent discharge tube
JPH09326246A (en) * 1996-04-01 1997-12-16 Harison Electric Co Ltd Cold cathode low pressure discharge lamp
JPH10312887A (en) * 1997-05-12 1998-11-24 Harison Electric Co Ltd Cold cathode discharge lamp lighting device
JP2001015065A (en) * 1999-06-29 2001-01-19 Nec Lighting Ltd Cold cathode fluorescent lamp and manufacture thereof
JP2001076617A (en) * 1999-08-31 2001-03-23 Hitachi Ltd Discharge tube and liquid crystal display device using discharge tube as illumination light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121944A (en) * 1990-09-10 1992-04-22 Toshiba Lighting & Technol Corp Cold cathode discharge lamp
JPH06342643A (en) * 1993-06-01 1994-12-13 Matsushita Electron Corp Rapid starting type fluorescent lamp
JPH09326246A (en) * 1996-04-01 1997-12-16 Harison Electric Co Ltd Cold cathode low pressure discharge lamp
JPH09320533A (en) * 1996-05-29 1997-12-12 West Electric Co Ltd Fluorescent discharge tube
JPH10312887A (en) * 1997-05-12 1998-11-24 Harison Electric Co Ltd Cold cathode discharge lamp lighting device
JP2001015065A (en) * 1999-06-29 2001-01-19 Nec Lighting Ltd Cold cathode fluorescent lamp and manufacture thereof
JP2001076617A (en) * 1999-08-31 2001-03-23 Hitachi Ltd Discharge tube and liquid crystal display device using discharge tube as illumination light source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475536A (en) * 2009-11-23 2011-05-25 Heraeus Noblelight Ltd A flash lamp, a corresponding method of manufacture and apparatus for the same
US8922119B2 (en) 2009-11-23 2014-12-30 Heraeus Noblelight Ltd. Flash lamp, a corresponding method of manufacture and apparatus for the same
US9177747B2 (en) 2009-11-23 2015-11-03 Heraeus Noblelight Gmbh Flash lamp, a corresponding method of manufacture and apparatus for the same
GB2475536B (en) * 2009-11-23 2016-05-18 Heraeus Noblelight Ltd A flash lamp, a corresponding method of manufacture and apparatus for the same

Also Published As

Publication number Publication date
CN100377289C (en) 2008-03-26
CN1462469A (en) 2003-12-17
KR20030014334A (en) 2003-02-15
TW564462B (en) 2003-12-01
KR100516607B1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
KR100852651B1 (en) Cold-cathode discharge lamp
JP2005235749A (en) Discharge lamp, electrode for discharge lamp, manufacturing method of electrode for discharge lamp, and lighting device
JP2002289138A (en) Cold cathode fluorescent lamp
JP3497153B2 (en) Cold cathode discharge lamp and method of manufacturing the same
WO2005069348A1 (en) Discharge lamp and electrode for discharge lamp
WO2002095792A1 (en) Cold cathode discharge lamp and method of manufacturing the discharge lamp
JP2000100389A (en) Discharge lamp
JP2001015065A (en) Cold cathode fluorescent lamp and manufacture thereof
JP4199022B2 (en) Cold cathode fluorescent lamp
US6603249B2 (en) Fluorescent lamp with reduced sputtering
JPH02186551A (en) Discharge tube
JPH07130329A (en) Discharge lamp and backlight device
JPH04149954A (en) Discharge lamp
JPH0917374A (en) Fluorescent lamp and lighting system
JP3886253B2 (en) Cold cathode fluorescent lamp
JPH1021873A (en) Discharge lamp electrode, manufacture of discharge lamp electrode, discharge lamp and back light device, and illumination system
JP2523921Y2 (en) Small fluorescent lamp
JP2001338607A (en) Electrode for electron emission and cold cathode fluorescent tube
JPH04274156A (en) Cold cathode electric discharge lamp
JP2801791B2 (en) Discharge lamp electrode
JPH08321279A (en) Cold cathode type low pressure discharge lamp
JP2002367561A (en) Cold cathode fluorescent lamp
JPH01200548A (en) Cold cathode low pressure discharge lamp
JP2008053117A (en) Fluorescent lamp, light source device, display device, and lighting method of fluorescent lamp
JP2003197147A (en) Cold-cathode low-pressure discharge tube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 028016246

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037000560

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037000560

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020037000560

Country of ref document: KR