WO2002095790A2 - Electromagnetic radiation lamp - Google Patents

Electromagnetic radiation lamp Download PDF

Info

Publication number
WO2002095790A2
WO2002095790A2 PCT/FR2002/001664 FR0201664W WO02095790A2 WO 2002095790 A2 WO2002095790 A2 WO 2002095790A2 FR 0201664 W FR0201664 W FR 0201664W WO 02095790 A2 WO02095790 A2 WO 02095790A2
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
electrode
filament
electrode chamber
curvature
Prior art date
Application number
PCT/FR2002/001664
Other languages
French (fr)
Other versions
WO2002095790A3 (en
Inventor
Christian Lumpp
Original Assignee
Lumpp & Consultants
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumpp & Consultants filed Critical Lumpp & Consultants
Priority to AU2002313066A priority Critical patent/AU2002313066A1/en
Publication of WO2002095790A2 publication Critical patent/WO2002095790A2/en
Publication of WO2002095790A3 publication Critical patent/WO2002095790A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/32Special longitudinal shape, e.g. for advertising purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Definitions

  • the invention relates to an electromagnetic radiation lamp comprising an electrode disposed at each of the two ends of a longitudinal emitter tube, filled with gas, each electrode consisting of at least one filament wound around a support rod having a front end. uncovered and fixed at a rear end to a connection end of the lamp connected to an electrode chamber in which the electrode is housed, the electrode chamber being covered with a reflective material and having an internal diameter greater than the internal diameter of the emitter tube with which it communicates, at its front part, through an outlet orifice of an outlet area
  • Electromagnetic radiation lamps in the ultraviolet, visible and / or infrared, are commonly used, in particular in the field of graphic arts, for applications such as the drying of inks, varnishes or adhesives, radical or cationic type, on supports such as paper, cardboard, plastic or textile.
  • WO-A-9801700 describes an ultraviolet emitter in the form of a mercury lamp with electrodes disposed at both ends of a longitudinal emitting tube, said to be discharge, filled with gas and provided with side reflectors.
  • a plasma arc is formed between the two electrodes by mercury or any other metallic iodide.
  • each electrode can be placed in an electrode chamber, wider than the emitter tube and covered with a reflection material.
  • the plasma beam of UV radiation may have a very small radiating section, for example of the order of 10 mm 2 .
  • a flat substrate constituted for example by paper or by a thermosensitive plastic film
  • a lamp with ultraviolet radiation comprising reflectors, in particular elliptical reflectors, for example in a drying device
  • the interruption, even momentary , movement of the substrate tends to cause a burn line thereon.
  • the lamp emits radiation not only in the ultraviolet but also in the infrared, the calorific power of the infrared radiation being close to 50% of the total power of the lamp.
  • the extinction of the lamp does not eliminate this problem, the thermal inertia of the tube causing an emission of infrared radiation for a certain time after its extinction.
  • known devices include either reflectors which close on themselves by hiding the lamp, or a mechanical element or cover (“shutter”) interposed between the lamp and the irradiated substrate.
  • Such devices are cumbersome and thermodynamically delicate. They also cause excessive expansion of the irradiating enclosure, which simultaneously makes it necessary to reduce the power of the ultraviolet lamp by approximately half of its value. It should be noted that a greater reduction in the power of the lamp would extinguish the plasma arc. In all cases, the lamp is subjected to a cooling cycle of several minutes and restarting the lamp at its operational level requires several minutes, resulting in a significant loss of productivity.
  • the object of the invention is to provide an electromagnetic radiation lamp which does not have the drawbacks of known devices and which has improved performance, in particular during the temporary or total shutdown of an installation comprising such lamps.
  • the outlet zone of the electrode chamber has a substantially spherical shape, with a predetermined radius of curvature and a center of curvature disposed substantially on a front region of the rod. support, in the part on which the filament is wound, so that the infrared radiation emitted by the exposed front end of the support rod and reflected by the reflection material covering the exit area of the electrode chamber are directed towards the rear of the electrode.
  • the lamp comprising cooling means
  • the lamp is associated with means for modulating the flow rate of a cooling fluid circulating along the emitter tube in proportion to the electric voltage applied across the electrodes of the lamp.
  • FIG. 1 illustrates, in schematic form, an electromagnetic radiation lamp according to the prior art.
  • FIG. 2 represents in more detail, one end of a lamp according to the prior art comprising an electrode chamber.
  • Figure 3 shows one end of a lamp according to the invention.
  • FIG. 4 illustrates, in more detail, the reflection of the radiation in an electrode chamber of a lamp according to FIG. 3.
  • FIG. 5 represents, in cross section, a particular embodiment of an electromagnetic radiation device of known type, in which the invention can be implemented.
  • FIG. 6 illustrates a circuit for controlling the ventilation of a lamp according to the invention. Description of particular embodiments.
  • an electromagnetic radiation lamp and more particularly an ultraviolet radiation lamp, conventionally comprises a longitudinal emitter tube 1_ with an electrode 2 at each of its ends.
  • the tube is generally a transparent quartz tube, with a diameter of 18 to 25mm, with a length which can range from a few centimeters to several meters, filled with an ionizing gas under a pressure of the order of a few bars.
  • the gas may, for example, be a mixture of argon or xenon and mercury, mercury iodide or any other metallic iodide.
  • Each electrode 2 is conventionally constituted by at least one filament 3, for example made of tungsten, wound around a support rod 4 emitting electrons.
  • each electrode has two filaments in superimposed windings.
  • the front end of the support rod 4, oriented towards the central part of the tube, is uncovered while its rear end is fixed to a connection end 5 of the lamp.
  • the tungsten electrodes are so-called hot electrodes which, in operation, are brought to a high temperature, for example 2000 ° C.
  • the electrode chamber 6 has an internal diameter greater than internal diameter of the transmitter tube with which it communicates.
  • a tube 1 of 8mm in diameter is connected to an electrode chamber 6 of 13mm in diameter.
  • the length of the electrode chamber 6 corresponds to the length of the milky zone which becomes opaque during operation around the electrode, that is to say approximately 20mm. It is thus possible to obtain an intense plasma arc of smaller section (3 mm in diameter, for example), that is to say having better energy efficiency. It is then possible to increase the line voltage between the electrodes, for example up to values of the order of 30V / cm, which promotes better concentration of the ultraviolet plasma arc while maintaining a low current , of the order of 5A.
  • the electrode chamber 6 is, like the end of the tube surrounding the electrode 2 in FIG. 1, covered with a reflection material 7.
  • the electrode chamber 6 according to the invention differs from the known electrode chamber, according to FIG. 2, by its geometric shape. It has a reduced length, while having a radius of curvature for connection to the tube 1.
  • the outlet zone of the chamber 6, which communicates through an outlet orifice 8 with the interior of the tube 1 has a substantially spherical shape.
  • Its radius of curvature r and its center of curvature C are such that the infrared radiation emitted by the uncovered front end of the support rod and reflected by the reflection material 7 are directed towards the rear of the electrode.
  • the center of curvature C is disposed substantially on a front zone of the support rod 4, in the part on which the filament is wound. This preferably comprises, as in FIG.
  • a first filament 3a is wound over almost the entire length of the rod 4 located inside the electrode chamber and only a small part of the rod 4, exposed, protrudes forward, out of the filament 3a.
  • a second filament 3b is superimposed on about the front half of the first filament.
  • the center of curvature C is located on the front part of the support rod on which the second filament 3b is wound, preferably about 1mm from the front end of the filament 3b.
  • the radius of curvature r of the outlet zone of the electrode chamber 6 is greater than or equal to approximately 6mm, for an internal diameter of the tube of the order of 6mm and a thickness of the wall of the chamber on the order of a millimeter.
  • the support rod projects forward about 2mm beyond the winding 3b and the center of curvature C is located about 3mm from the free end of the rod 4, c ' that is to say 1 mm from the front end of the filament 3b.
  • the temperature of the front end of the electrode that is to say of the exposed front part of the rod 4 is significantly higher, for example of the order 2000 ° C, that the temperature of the spiral rear part of the electrode, for example of the order of 500 ° C, near the first filament 3a.
  • the quartz constituting the wall of the electrode chamber being naturally opaque to infrared radiation emitted at low temperature, only the infrared radiation emitted by the uncovered front part of the rod passes through it and is reflected by the reflection material 7.
  • the reflection material is a material resistant to a temperature of approximately 900 ° C., while adhering to quartz.
  • the reflection coefficient of this material is of the order of 90% for the wavelengths of infrared radiation to be reflected towards the rear of the electrode.
  • the materials that can be used are gold, platinum, zirconium oxide, etc.
  • the geometric shape of the electrode chamber 6 in FIG. 3 therefore makes it possible to reflect towards the rear of the electrode 2 the infrared radiation emitted by the front part of the electrode.
  • the uncovered front end of the support rod constitutes a radiating cylinder emitting at 2000 ° C. the entire outer surface of which is radiant. This uncovered front end emits infrared rays at all points on its surface, which are directed onto the reflective spherical concave front surface of the electrode chamber.
  • an incident ray Ri crosses the wall of the chamber 6, then is reflected by the reflection material 7.
  • the reflected ray Rr after having crossed the wall of the chamber in the opposite direction, is directed towards the back of the electrode 2.
  • the rays Ri and Rr make respectively angles ai and ar, equal, with an axis of symmetry S passing through the center of curvature C.
  • the difference in refractive index of the two crossed media, gas in the electrode and quartz chamber of the wall, is such that the return to the rear of the infrared radiation is accentuated.
  • the geometric shape of the electrode chamber according to the invention makes it possible to improve the performance of the lamp, in particular during the temporary or total shutdown of an installation comprising such a lamp.
  • the return towards the rear of the electrode of infrared radiation emitted by the uncovered front end of the support rod makes it possible to ensure the evaporation of the mercury around and at the back of the electrode even when the lamp power is reduced in the event of a temporary shutdown of the installation.
  • the various operating phases of such a lamp are as follows: - a warm-up phase, - a stand-by phase during which the installation is ready to operate, but where the power is reduced, - a nominal operating phase, during which the plasma arc formed between the electrodes generates the desired ultraviolet radiation,
  • a lamp comprising an electrode chamber according to FIG. 2, it can be noted, in certain cases, the formation of mercury droplets in the region of the electrode, in particular during the waiting, momentary stopping and d '' total stop.
  • the temperature at the rear of the electrode is generally not sufficient to ensure the vaporization of these mercury droplets.
  • the accumulation of mercury droplets in the region of electrode 2, and more particularly behind it, thus gradually leads to an increasing deficit in the quantity of mercury present in the emitter tube 1 and increasing inertia during the transition to nominal phase.
  • the intensity of the current in the lamp being, for a given voltage, a function of the mercury charge in the plasma arc, this also leads to a progressive reduction in the power, and therefore in the efficiency, of the lamp.
  • the geometry of the electrode chamber according to the invention makes it possible to recover the heat energy, hitherto unused, contained in the infrared radiation emitted by the front part of the electrode to heat the rear part of the electrode and prevent the formation of mercury droplets in this zone during the standby phases, that is to say during the standby and momentary stop phases, by ensuring the evaporation of residual mercury droplets which would have deposited, during a total stop of the installation, on the spiral filament of the electrode whose surface temperature would be lower than the melting temperature of mercury.
  • a further improvement in the performance of the lamp which is more particularly linked to its operation during the standby phases, can be obtained by appropriate regulation of the lamp cooling device and, more particularly, ventilation of the emitter tube, while eliminating any mechanical sealing of the lamp.
  • a device for cooling a lamp is, for example, described in the document WO-A-0118447 which places more mainly the emphasis on the means for cooling an electromagnetic radiation lamp comprising parabolic static reflectors, more particularly elliptical .
  • Figure 5 shows, in cross section at the emitter tube 1, a particular embodiment of a lamp according to this document, in which the invention can be implemented.
  • the lamp described in the aforementioned document is mounted in a support structure 9 in which an intermediate wall 10 delimits on the one hand a longitudinal pipe 1 1, intended for the circulation of a cooling fluid, more particularly for the circulation of air , and secondly a housing 12, open on one side, for the lamp.
  • the intermediate wall 10 has orifices 13 ensuring the circulation of the cooling fluid between the longitudinal pipe 11 and the housing 12.
  • Two lateral reflectors 14, static, are arranged on either side of the longitudinal tube 1 in the housing 12. As shown in FIG.
  • the cooling fluid coming from the longitudinal pipe 11 circulates both in a corridor of cooling 15, located between the reflectors 14 and the external walls of the housing 12, and, homogeneously, around and along the tube 1, by means of a longitudinal slot 16 separating the side reflectors 14 and parallel to the tube axis 1.
  • the flow rate of the cooling fluid is regulated so as to be proportional to the electrical voltage applied between the electrodes 2.
  • FIG. 6 An electrical circuit for controlling the ventilation of a lamp in which the coolant is air, is illustrated in FIG. 6.
  • an alternating electrical voltage of the order of 400V
  • the electrodes 2 of the lamp are connected to the terminals of a secondary winding of the transformer 18.
  • a fan 19, intended to determine the flow rate of the air flow circulating in the lamp cooling circuit, is controlled by a motor 20.
  • the motor 20 is itself controlled by a variator 21 supplied by the alternating electrical network.
  • the primary of a step-down transformer 22 is connected in parallel to the secondary of the power transformer 18, while the secondary of the transformer 22 is connected to a drive control input 21.
  • the drive control input 21 thus receives, via the transformer 22, a quantity representative of the voltage applied between the electrodes 2.
  • the variator 22, which is preferably a frequency variator, thus regulates the flow of cooling air of the lamp so that it is proportional to the voltage applied between the electrodes 2 of the lamp.
  • the maximum output voltage of the transformer 22 can be of the order of 10V.
  • An inductor 23 is conventionally connected in series with the primary winding of the power transformer 18, while a contactor 24, of the relay type, is connected in parallel with the inductor 23.
  • the contactor 17 When the installation is switched on, the contactor 17 is closed, the contactor 24 being initially closed. Upon ignition, the voltage across the lamp is zero and the dimmer 21 imposes a minimum air flow. The lamp temperature then increases rapidly. The plasma evolves and the tension gradually increases. Simultaneously the air flow increases, until the lamp reaches, in 2 or 3s, its nominal power.
  • the contactors 17 and 24 are closed.
  • a voltage of the order of 400V is then applied to the primary of the power transformer 18, which then applies, for example, a nominal voltage of the order of 2500V between the electrodes 2 of the lamp, with an arc length about 90cm, for a nominal current of the order of 6A.
  • the variator 21 then controls the fan to impose on the cooling air a sufficient flow rate to maintain the walls of the tube 1 at a temperature admissible by the latter, 700 ° C. for example.
  • the contactor 24 is open, introducing the inductor 23 in series with the transformer primary.
  • the voltage applied between the electrodes 2 is not modified, but the intensity of the current is greatly reduced, for example up to 1 A, reducing the power of the lamp in an equivalent manner.
  • the reduction in the power of the lamp results in a reduction in the amount of infrared radiation emitted by the emitter tube 1.
  • the variator 21 continues to impose a maximum flow rate on the cooling air.
  • the thermal imbalance thus generated causes the lamp to cool in a few seconds, causing, along the longitudinal slit 16, a uniform and longitudinal condensation of the mercury inside the emitter tube 1.
  • the voltage then decreases to the point of equilibrium of argon plasma.
  • the air flow follows the evolution of this voltage while maintaining the plasma state of argon, whose energy level is very low compared to that of mercury.
  • the plasma temperature is then too low for there to be a significant emission of ultraviolet radiation.
  • the argon plasma then occupies the entire inner part of the tube 1.
  • the radiation then produced by the tube is a diffuse radiation and of low energy level, so that the temperature of the insulated substrate is close to the ambient temperature.
  • any risk of burns or fire is eliminated, despite the elimination of any mechanical sealing.
  • We can consider that the cold argon plasma then plays the role of a static seal.
  • the regulation of the flow rate of the coolant is combined with the geometry of the electrode chambers to ensure uniform and longitudinal condensation of the mercury inside the emitter tube 1, without condensation of the mercury in the electrode chambers, more particularly at the back of the electrodes.
  • the condensation of mercury inside the emitter tube 1 is characterized by a shiny strip, longitudinal and continuous, with a geometric surface substantially identical to the cooling air slot and directly above it. This makes it possible to significantly reduce the inertia of the lamp after any stop, total or even momentary.
  • the invention is not limited to the particular embodiments described above. It applies in particular to all electromagnetic radiation lamps in which one of the elements constituting the plasma arc is likely to form droplets during a shutdown of the installation. It also applies to any type of cooling fluid and cooling circuit. It is also not limited to the use of argon to form cold plasma, but extends to any neutral gas allowing the same result to be obtained.

Abstract

The invention concerns a lamp, for instance a mercury UV lamp, comprising, at each of its ends, an electrode chamber (6), whereof the internal diameter is larger than that of a longitudinal transmitter tube (1) with which it communicates. The output zone of the electrode chamber is spherical, it centre of curvature (C) being arranged on a front zone, covered by a filament (3b), a support rod (4) of an electrode (2) housed in the electrode chamber. The infrared rays (Ri) transmitted by one exposed front end of the support rod are reflected (Rr) towards the rear of the electrode by a reflecting material (7) covering the chamber. Additionally, the flow rate of the air cooling the tube (1) is modulated proportionally to the electric voltage at the lamp terminals. In case of temporary pause of the installation, this ensures uniform and longitudinal condensation of mercury in the tube (1), without formation of mercury droplets in the electrode chambers.

Description

Lampe à rayonnement électromagnétiqueElectromagnetic radiation lamp
Domaine technique de l'inventionTechnical field of the invention
L'invention concerne une lampe à rayonnement électromagnétique comportant une électrode disposée a chacune des deux extrémités d'un tube émetteur longitudinal, rempli de gaz, chaque électrode étant constituée par au moins un filament enroulé autour d'une tige de support comportant une extrémité avant découverte et fixée, à une extrémité arrière, à une extrémité de raccordement de la lampe connectée à une chambre d'électrode dans laquelle est logée l'électrode, la chambre d'électrode étant recouverte d'un matériau de réflexion et ayant un diamètre interne supérieur au diamètre interne du tube émetteur avec lequel elle communique, à sa partie avant, par un orifice de sortie d'une zone de sortieThe invention relates to an electromagnetic radiation lamp comprising an electrode disposed at each of the two ends of a longitudinal emitter tube, filled with gas, each electrode consisting of at least one filament wound around a support rod having a front end. uncovered and fixed at a rear end to a connection end of the lamp connected to an electrode chamber in which the electrode is housed, the electrode chamber being covered with a reflective material and having an internal diameter greater than the internal diameter of the emitter tube with which it communicates, at its front part, through an outlet orifice of an outlet area
Etat de la techniqueState of the art
Des lampes à rayonnement électromagnétique, dans l'ultraviolet, le visible et/ou l'infrarouge, sont couramment utilisées, notamment dans le domaine des arts graphiques, pour des applications comme le séchage d'encres, de vernis ou d'adhésifs, du type radicalaire ou cationique, sur des supports comme le papier, le carton, le plastique ou le textile.Electromagnetic radiation lamps, in the ultraviolet, visible and / or infrared, are commonly used, in particular in the field of graphic arts, for applications such as the drying of inks, varnishes or adhesives, radical or cationic type, on supports such as paper, cardboard, plastic or textile.
Le document WO-A-9801700, par exemple, décrit un émetteur de rayonnement ultraviolet sous la forme d'une lampe à mercure comportant des électrodes disposées aux deux extrémités d'un tube émetteur longitudinal, dit à décharge, rempli de gaz et muni de réflecteurs latéraux. Un arc plasmatique est formé entre les deux électrodes par du mercure ou tout autre iodure métallique. Dans ce document, chaque électrode peut être disposée dans une chambre d'électrode, plus large que le tube émetteur et recouverte d'un matériau de réflexion. Le faisceau plasmatique de rayonnement UV peut avoir une très faible section rayonnante, par exemple de l'ordre de 10 mm2.WO-A-9801700, for example, describes an ultraviolet emitter in the form of a mercury lamp with electrodes disposed at both ends of a longitudinal emitting tube, said to be discharge, filled with gas and provided with side reflectors. A plasma arc is formed between the two electrodes by mercury or any other metallic iodide. In this document, each electrode can be placed in an electrode chamber, wider than the emitter tube and covered with a reflection material. The plasma beam of UV radiation may have a very small radiating section, for example of the order of 10 mm 2 .
Lorsqu'un substrat plan, constitué par exemple par du papier ou par un film plastique thermosensible, est irradié par une lampe à rayonnement ultraviolet comportant des réflecteurs, notamment des réflecteurs elliptiques, par exemple dans un dispositif de séchage, l'interruption, même momentanée, du déplacement du substrat a tendance à provoquer sur celui-ci une ligne de brûlure. Ceci est lié au fait que la lampe émet des rayonnements non seulement dans l'ultraviolet mais également dans l'infrarouge, la puissance calorifique des rayonnements infrarouges étant voisine de 50 % de la puissance totale de la lampe. L'extinction de la lampe n'élimine pas ce problème, l'inertie thermique du tube provoquant une émission de rayonnements infrarouges pendant un certain temps après son extinction. Pour éviter le risque d'incendie, les dispositifs connus comportent soit des réflecteurs qui se ferment sur eux-mêmes en cachant la lampe, soit un élément mécanique ou opercule (« shutter ») venant s'interposer entre la lampe et le substrat irradié. De tels dispositifs sont lourds et délicats sur le plan thermodynamique. Ils entraînent, de plus, des dilatations excessives de l'enceinte irradiante, ce qui oblige simultanément à réduire la puissance de la lampe à ultraviolets d'environ la moitié de sa valeur. Il est à noter qu'une réduction plus importante de la puissance de la lampe provoquerait l'extinction de l'arc plasmatique. Dans tous les cas, la lampe est soumise à un cycle de refroidissement de plusieurs minutes et la remise en service de la lampe à son niveau opérationnel nécessite plusieurs minutes, d'où une perte de productivité non négligeable.When a flat substrate, constituted for example by paper or by a thermosensitive plastic film, is irradiated by a lamp with ultraviolet radiation comprising reflectors, in particular elliptical reflectors, for example in a drying device, the interruption, even momentary , movement of the substrate tends to cause a burn line thereon. This is linked to the fact that the lamp emits radiation not only in the ultraviolet but also in the infrared, the calorific power of the infrared radiation being close to 50% of the total power of the lamp. The extinction of the lamp does not eliminate this problem, the thermal inertia of the tube causing an emission of infrared radiation for a certain time after its extinction. To avoid the risk of fire, known devices include either reflectors which close on themselves by hiding the lamp, or a mechanical element or cover ("shutter") interposed between the lamp and the irradiated substrate. Such devices are cumbersome and thermodynamically delicate. They also cause excessive expansion of the irradiating enclosure, which simultaneously makes it necessary to reduce the power of the ultraviolet lamp by approximately half of its value. It should be noted that a greater reduction in the power of the lamp would extinguish the plasma arc. In all cases, the lamp is subjected to a cooling cycle of several minutes and restarting the lamp at its operational level requires several minutes, resulting in a significant loss of productivity.
Objet de l'inventionSubject of the invention
L'invention a pour but une lampe à rayonnement électromagnétique ne présentant pas les inconvénients des dispositifs connus et ayant des performances améliorées, notamment lors de l'arrêt momentané ou total d'une installation comportant de telles lampesThe object of the invention is to provide an electromagnetic radiation lamp which does not have the drawbacks of known devices and which has improved performance, in particular during the temporary or total shutdown of an installation comprising such lamps.
Selon l'invention, ce but est atteint par le fait que la zone de sortie de la chambre d'électrode a une forme sensiblement sphérique, avec un rayon de courbure prédéterminé et un centre de courbure disposé sensiblement sur une zone avant de la tige de support, dans la partie sur laquelle est enroulé le filament, de manière à ce que les rayonnements infrarouges émis par l'extrémité avant découverte de la tige de support et réfléchis par le matériau de réflexion recouvrant la zone de sortie de la chambre d'électrode soient dirigés vers l'arrière de l'électrode.According to the invention, this object is achieved by the fact that the outlet zone of the electrode chamber has a substantially spherical shape, with a predetermined radius of curvature and a center of curvature disposed substantially on a front region of the rod. support, in the part on which the filament is wound, so that the infrared radiation emitted by the exposed front end of the support rod and reflected by the reflection material covering the exit area of the electrode chamber are directed towards the rear of the electrode.
Selon un développement de l'invention, la lampe comportant des moyens de refroidissement, la lampe est associée à des moyens de modulation du débit d'un fluide de refroidissement circulant le long du tube émetteur proportionnellement à la tension électrique appliquée aux bornes des électrodes de la lampe. Description sommaire des dessinsAccording to a development of the invention, the lamp comprising cooling means, the lamp is associated with means for modulating the flow rate of a cooling fluid circulating along the emitter tube in proportion to the electric voltage applied across the electrodes of the lamp. Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés, dans lesquels :Other advantages and characteristics will emerge more clearly from the description which follows of particular embodiments of the invention given by way of nonlimiting examples, and represented in the appended drawings, in which:
La figure 1 illustre, sous forme schématique une lampe à rayonnement électromagnétique selon l'art antérieur.FIG. 1 illustrates, in schematic form, an electromagnetic radiation lamp according to the prior art.
La figure 2 représente plus en détail, une extrémité d'une lampe selon l'art antérieur comportant une chambre d'électrode.FIG. 2 represents in more detail, one end of a lamp according to the prior art comprising an electrode chamber.
La figure 3 représente une extrémité d'une lampe selon l'invention.Figure 3 shows one end of a lamp according to the invention.
La figure 4 illustre, plus en détail, la réflexion du rayonnement dans une chambre d'électrode d'une lampe selon la figure 3.FIG. 4 illustrates, in more detail, the reflection of the radiation in an electrode chamber of a lamp according to FIG. 3.
La figure 5 représente, en coupe transversale, un mode de réalisation particulier d'un dispositif à rayonnement électromagnétique de type connu, dans lequel l'invention peut être mise en œuvre.FIG. 5 represents, in cross section, a particular embodiment of an electromagnetic radiation device of known type, in which the invention can be implemented.
La figure 6 illustre un circuit de contrôle de la ventilation d'une lampe selon l'invention. Description de modes particuliers de réalisation.FIG. 6 illustrates a circuit for controlling the ventilation of a lamp according to the invention. Description of particular embodiments.
Comme représenté à la figure 1 , une lampe à rayonnement électromagnétique, et plus particulièrement une lampe à rayonnement ultraviolet, comporte classiquement un tube émetteur longitudinal 1_ avec une électrode 2 à chacune de ses extrémités. Le tube est généralement un tube en quartz transparent, d'un diamètre de 18 à 25mm, d'une longueur pouvant aller de quelques centimètres à plusieurs mètres, rempli d'un gaz ionisant sous une pression de l'ordre de quelques bars. Le gaz peut, par exemple, être un mélange d'argon ou de xénon et de mercure, d'iodure de mercure ou de tout autre iodure métallique. Lorsqu'une tension électrique alternative suffisante, classiquement de l'ordre de 12V/cm, est appliquée entre les électrodes, un arc plasmatique lumineux, de forme sensiblement cylindrique, se forme dans le tube, entre les électrodes et engendre le rayonnement ultraviolet désiré.As shown in FIG. 1, an electromagnetic radiation lamp, and more particularly an ultraviolet radiation lamp, conventionally comprises a longitudinal emitter tube 1_ with an electrode 2 at each of its ends. The tube is generally a transparent quartz tube, with a diameter of 18 to 25mm, with a length which can range from a few centimeters to several meters, filled with an ionizing gas under a pressure of the order of a few bars. The gas may, for example, be a mixture of argon or xenon and mercury, mercury iodide or any other metallic iodide. When a sufficient alternating electric voltage, conventionally of the order of 12V / cm, is applied between the electrodes, a luminous plasma arc, of substantially cylindrical shape, forms in the tube, between the electrodes and generates the desired ultraviolet radiation.
Chaque électrode 2 est classiquement constituée par au moins un filament 3, par exemple en tungstène, enroulé autour d'une tige de support 4 émettrice d'électrons. Sur la figure 1 , chaque électrode comporte deux filaments en enroulements superposés. L'extrémité avant de la tige de support 4, orientée vers la partie centrale du tube, est découverte tandis que son extrémité arrière est fixée à une extrémité 5 de raccordement de la lampe. Les électrodes, en tungstène, sont des électrodes dites chaudes qui, en fonctionnement, sont portées à une température élevée, par exemple 2000°C.Each electrode 2 is conventionally constituted by at least one filament 3, for example made of tungsten, wound around a support rod 4 emitting electrons. In FIG. 1, each electrode has two filaments in superimposed windings. The front end of the support rod 4, oriented towards the central part of the tube, is uncovered while its rear end is fixed to a connection end 5 of the lamp. The tungsten electrodes are so-called hot electrodes which, in operation, are brought to a high temperature, for example 2000 ° C.
L'extrémité de lampe représentée à la figure 2, décrit dans le document WO-A-The lamp end shown in FIG. 2, described in the document WO-A-
9801700, comporte une chambre d'électrode 6 dans laquelle est logée l'électrode 2. La chambre d'électrode 6 a un diamètre interne supérieur au diamètre interne du tube émetteur avec lequel elle communique. À titre d'exemple, un tube 1 de 8mm de diamètre est connecté à une chambre d'électrode 6 de 13mm de diamètre. La longueur de la chambre d'électrode 6 correspond à la longueur de la zone laiteuse qui s'opacifie en fonctionnement autour de l'électrode, soit classiquement environ 20mm. On peut ainsi obtenir un arc plasmatique intense de section plus faible (3mm de diamètre, par exemple), c'est-à-dire présentant un meilleur rendement énergétique. Il est alors possible d'augmenter la tension linéique entre les électrodes, par exemple jusqu'à des valeurs de l'ordre de 30V/cm, ce qui favorise une meilleure concentration de l'arc plasmatique ultraviolet tout en conservant un courant de faible intensité, de l'ordre de 5A.9801700, has an electrode chamber 6 in which is housed the electrode 2. The electrode chamber 6 has an internal diameter greater than internal diameter of the transmitter tube with which it communicates. For example, a tube 1 of 8mm in diameter is connected to an electrode chamber 6 of 13mm in diameter. The length of the electrode chamber 6 corresponds to the length of the milky zone which becomes opaque during operation around the electrode, that is to say approximately 20mm. It is thus possible to obtain an intense plasma arc of smaller section (3 mm in diameter, for example), that is to say having better energy efficiency. It is then possible to increase the line voltage between the electrodes, for example up to values of the order of 30V / cm, which promotes better concentration of the ultraviolet plasma arc while maintaining a low current , of the order of 5A.
Pour maintenir une certaine température au niveau de l'électrode, la chambre d'électrode 6 est, comme l'extrémité du tube entourant l'électrode 2 sur la figure 1 , recouverte d'un matériau de réflexion 7.To maintain a certain temperature at the level of the electrode, the electrode chamber 6 is, like the end of the tube surrounding the electrode 2 in FIG. 1, covered with a reflection material 7.
La chambre d'électrode 6 selon l'invention, représentée à la figure 3, se distingue de la chambre d'électrode connue, selon la figure 2, par sa forme géométrique. Elle a une longueur réduite, tout en ayant un rayon de courbure de raccordement au tube 1 plus élevé. En fait, la zone de sortie de la chambre 6, qui communique par un orifice de sortie 8 avec l'intérieur du tube 1 , a une forme sensiblement sphérique. Son rayon de courbure r et son centre de courbure C sont tels que les rayonnements infrarouges émis par l'extrémité avant découverte de la tige de support et réfléchis par le matériau de réflexion 7 soient dirigés vers l'arrière de l'électrode. Le centre de courbure C est disposé sensiblement sur une zone avant de la tige de support 4, dans la partie sur laquelle est enroulé le filament. Celui-ci comporte de préférence, comme sur la figure 2, deux filaments. Un premier filament 3a est enroulé sur presque la totalité de la longueur de la tige 4 située à l'intérieur de la chambre d'électrode et seule une petite partie de la tige 4, découverte, fait saillie vers l'avant, hors du filament 3a. Un second filament 3b est superposé sur environ la moitié avant du premier filament. Le centre de courbure C est localisé sur la partie avant de la tige de support sur laquelle est enroulé le second filament 3b, de préférence à environ 1mm de l'extrémité avant du filament 3b.The electrode chamber 6 according to the invention, shown in FIG. 3, differs from the known electrode chamber, according to FIG. 2, by its geometric shape. It has a reduced length, while having a radius of curvature for connection to the tube 1. In fact, the outlet zone of the chamber 6, which communicates through an outlet orifice 8 with the interior of the tube 1, has a substantially spherical shape. Its radius of curvature r and its center of curvature C are such that the infrared radiation emitted by the uncovered front end of the support rod and reflected by the reflection material 7 are directed towards the rear of the electrode. The center of curvature C is disposed substantially on a front zone of the support rod 4, in the part on which the filament is wound. This preferably comprises, as in FIG. 2, two filaments. A first filament 3a is wound over almost the entire length of the rod 4 located inside the electrode chamber and only a small part of the rod 4, exposed, protrudes forward, out of the filament 3a. A second filament 3b is superimposed on about the front half of the first filament. The center of curvature C is located on the front part of the support rod on which the second filament 3b is wound, preferably about 1mm from the front end of the filament 3b.
Dans le mode de réalisation de la figure 3, le rayon de courbure r de la zone de sortie de la chambre d'électrode 6 est supérieur ou égal à 6mm environ, pour un diamètre interne du tube de l'ordre de 6mm et une épaisseur de la paroi de la chambre de l'ordre du millimètre. À titre d'exemple, la tige de support fait saillie vers l'avant sur environ 2mm au-delà de l'enroulement 3b et le centre de courbure C est situé à environ 3mm de l'extrémité libre de la tige 4, c'est-à-dire à 1 mm de l'extrémité avant du filament 3b.In the embodiment of FIG. 3, the radius of curvature r of the outlet zone of the electrode chamber 6 is greater than or equal to approximately 6mm, for an internal diameter of the tube of the order of 6mm and a thickness of the wall of the chamber on the order of a millimeter. For example, the support rod projects forward about 2mm beyond the winding 3b and the center of curvature C is located about 3mm from the free end of the rod 4, c ' that is to say 1 mm from the front end of the filament 3b.
L'électrode 2, portée à haute température, émet essentiellement des rayonnements infrarouges dans la chambre d'électrode. Dans la chambre d'électrode de la figure 2, la température de l'extrémité avant de l'électrode, c'est-à-dire de la partie avant découverte de la tige 4 est nettement plus élevée, par exemple de l'ordre de 2000°C, que la température de la partie arrière spiralée de l'électrode, par exemple de l'ordre de 500°C, près du premier filament 3a. Le quartz constituant la paroi de la chambre d'électrode étant naturellement opaque aux rayonnements infrarouges émis à faible température, seuls les rayonnements infrarouges émis par la partie avant découverte de la tige le traversent et sont réfléchis par le matériau de réflexion 7. Le matériau de réflexion est un matériau résistant à une température de 900°C environ, tout en adhérant au quartz. Le coefficient de réflexion de ce matériau est de l'ordre de 90 % pour les longueurs d'onde des rayonnements infrarouges à réfléchir vers l'arrière de l'électrode. À titre d'exemple, les matériaux utilisables sont l'or, le platine, l'oxyde de zirconium, etc..The electrode 2, brought to high temperature, essentially emits infrared radiation in the electrode chamber. In the electrode chamber of FIG. 2, the temperature of the front end of the electrode, that is to say of the exposed front part of the rod 4 is significantly higher, for example of the order 2000 ° C, that the temperature of the spiral rear part of the electrode, for example of the order of 500 ° C, near the first filament 3a. The quartz constituting the wall of the electrode chamber being naturally opaque to infrared radiation emitted at low temperature, only the infrared radiation emitted by the uncovered front part of the rod passes through it and is reflected by the reflection material 7. The reflection material is a material resistant to a temperature of approximately 900 ° C., while adhering to quartz. The reflection coefficient of this material is of the order of 90% for the wavelengths of infrared radiation to be reflected towards the rear of the electrode. For example, the materials that can be used are gold, platinum, zirconium oxide, etc.
La forme géométrique de la chambre d'électrode 6 de la figure 3 permet donc de réfléchir vers l'arrière de l'électrode 2 les rayonnements infrarouges émis par la partie avant de l'électrode. L'extrémité avant découverte de la tige de support constitue un cylindre rayonnant émissif à 2000°C dont toute la surface extérieure est rayonnante. Cette extrémité avant découverte émet en tous points de sa surface des rayons infrarouges dirigés sur la surface concave sphérique avant réfléchissante de la chambre d'électrode.The geometric shape of the electrode chamber 6 in FIG. 3 therefore makes it possible to reflect towards the rear of the electrode 2 the infrared radiation emitted by the front part of the electrode. The uncovered front end of the support rod constitutes a radiating cylinder emitting at 2000 ° C. the entire outer surface of which is radiant. This uncovered front end emits infrared rays at all points on its surface, which are directed onto the reflective spherical concave front surface of the electrode chamber.
Comme représenté aux figures 3 et 4, un rayon incident Ri traverse la paroi de la chambre 6, puis est réfléchi par le matériau de réflexion 7. Le rayon réfléchi Rr, après avoir traversé en sens inverse la paroi de la chambre, est dirigé vers l'arrière de l'électrode 2. Les rayons Ri et Rr font respectivement des angles ai et ar, égaux, avec un axe de symétrie S passant par le centre de courbure C. La différence d'indice de réfraction des deux milieux traversés, gaz dans la chambre d'électrode et quartz de la paroi, est telle que le renvoi vers l'arrière des rayonnements infrarouges est accentué.As shown in FIGS. 3 and 4, an incident ray Ri crosses the wall of the chamber 6, then is reflected by the reflection material 7. The reflected ray Rr, after having crossed the wall of the chamber in the opposite direction, is directed towards the back of the electrode 2. The rays Ri and Rr make respectively angles ai and ar, equal, with an axis of symmetry S passing through the center of curvature C. The difference in refractive index of the two crossed media, gas in the electrode and quartz chamber of the wall, is such that the return to the rear of the infrared radiation is accentuated.
Grâce à la localisation du centre de courbure C dans la partie de la tige de support sur laquelle est enroulé le filament, tout rayon émis par un point quelconque de l'extrémité avant découverte de la tige de support, en direction de la surface interne de la chambre d'électrode, est renvoyé vers l'arrière de l'électrode, c'est-à-dire sur la surface du filament 3 dans le mode de réalisation de la figure 3. Seuls les rayons émis en direction de l'orifice 8 ne sont pas réfléchis.Thanks to the location of the center of curvature C in the part of the support rod on which the filament is wound, any ray emitted by a point any of the exposed front end of the support rod, towards the internal surface of the electrode chamber, is returned towards the rear of the electrode, i.e. on the surface of the filament 3 in the embodiment of FIG. 3. Only the rays emitted in the direction of the orifice 8 are not reflected.
La forme géométrique de la chambre d'électrode selon l'invention permet d'améliorer les performances de la lampe, notamment lors de l'arrêt momentané ou total d'une installation comportant une telle lampe. En effet, dans le cas d'une lampe à mercure, le renvoi vers l'arrière de l'électrode des rayonnements infrarouges émis par l'extrémité avant découverte de la tige de support permet d'assurer l'evaporation du mercure autour et à l'arrière de l'électrode même lorsque la puissance de la lampe est réduite en cas d'arrêt momentané de l'installation.The geometric shape of the electrode chamber according to the invention makes it possible to improve the performance of the lamp, in particular during the temporary or total shutdown of an installation comprising such a lamp. In fact, in the case of a mercury lamp, the return towards the rear of the electrode of infrared radiation emitted by the uncovered front end of the support rod makes it possible to ensure the evaporation of the mercury around and at the back of the electrode even when the lamp power is reduced in the event of a temporary shutdown of the installation.
On rappellera que, classiquement, dans une lampe à rayonnement UV dont le tube est rempli d'un mélange d'argon et de mercure, le mercure dont le point de fusion est voisin de 350°C, ou tout autre iodure métallique dopant destiné à assurer la conductibilité du gaz, est à l'état liquide ou solide avant utilisation de la lampe. L'argon (point de fusion de l'ordre de -30°C) a tout d'abord une fonction d'amorçage de l'arc plasmatique.It will be recalled that, conventionally, in a UV lamp whose tube is filled with a mixture of argon and mercury, mercury whose melting point is close to 350 ° C., or any other doping metal iodide intended for ensure the conductivity of the gas, is in a liquid or solid state before using the lamp. Argon (melting point of the order of -30 ° C) firstly has a priming function for the plasma arc.
Les diverses phases de fonctionnement d'une telle lampe sont les suivantes : - une phase de préchauffe (« warm up »), - une phase d'attente (« stand-by ») pendant laquelle l'installation est prête à fonctionner, mais où la puissance est réduite, - une phase de fonctionnement nominal, pendant laquelle l'arc plasmatique formé entre les électrodes engendre le rayonnement ultraviolet désiré,The various operating phases of such a lamp are as follows: - a warm-up phase, - a stand-by phase during which the installation is ready to operate, but where the power is reduced, - a nominal operating phase, during which the plasma arc formed between the electrodes generates the desired ultraviolet radiation,
- une phase d'arrêt momentané, correspondant à la phase d'attente,- a momentary stop phase, corresponding to the waiting phase,
- une phase d'arrêt total.- a total stop phase.
Dans une lampe comportant une chambre d'électrode selon la figure 2, on peut remarquer, dans certains cas, la formation de gouttelettes de mercure dans la région de l'électrode, notamment lors des phases d'attente, d'arrêt momentané et d'arrêt total. Dans les lampes connues, la température à l'arrière de l'électrode n'est généralement pas suffisante pour assurer la vaporisation de ces gouttelettes de mercure. L'accumulation de gouttelettes de mercure dans la région de l'électrode 2, et plus particulièrement à l'arrière de celle-ci, conduit ainsi, peu à peu, à un déficit croissant dans la quantité de mercure présente dans le tube émetteur 1 et à une inertie croissante lors du passage en phase nominale. L'intensité du courant dans la lampe étant, pour une tension donnée, fonction de la charge de mercure dans l'arc plasmatique, cela conduit également à une réduction progressive de la puissance, et donc de l'efficacité, de la lampe.In a lamp comprising an electrode chamber according to FIG. 2, it can be noted, in certain cases, the formation of mercury droplets in the region of the electrode, in particular during the waiting, momentary stopping and d '' total stop. In known lamps, the temperature at the rear of the electrode is generally not sufficient to ensure the vaporization of these mercury droplets. The accumulation of mercury droplets in the region of electrode 2, and more particularly behind it, thus gradually leads to an increasing deficit in the quantity of mercury present in the emitter tube 1 and increasing inertia during the transition to nominal phase. The intensity of the current in the lamp being, for a given voltage, a function of the mercury charge in the plasma arc, this also leads to a progressive reduction in the power, and therefore in the efficiency, of the lamp.
La géométrie de la chambre d'électrode selon l'invention permet de récupérer l'énergie calorifique, inutilisée jusqu'ici, contenue dans les rayonnements infrarouges émis par la partie avant de l'électrode pour réchauffer la partie arrière de l'électrode et empêcher la formation de gouttelettes de mercure dans cette zone pendant les phases de veille, c'est-à-dire pendant les phases d'attente et d'arrêt momentané, en assurant l'evaporation de gouttelettes de mercure résiduelles qui se seraient déposées, lors d'un arrêt total de l'installation, sur le filament spirale de l'électrode dont la température de surface serait inférieure à la température de fusion du mercure.The geometry of the electrode chamber according to the invention makes it possible to recover the heat energy, hitherto unused, contained in the infrared radiation emitted by the front part of the electrode to heat the rear part of the electrode and prevent the formation of mercury droplets in this zone during the standby phases, that is to say during the standby and momentary stop phases, by ensuring the evaporation of residual mercury droplets which would have deposited, during a total stop of the installation, on the spiral filament of the electrode whose surface temperature would be lower than the melting temperature of mercury.
Selon un développement de l'invention, une amélioration supplémentaire des performances de la lampe, qui sont plus particulièrement liées à son fonctionnement pendant les phases de veille, peut être obtenue par une régulation appropriée du dispositif de refroidissement de la lampe et, plus particulièrement, de la ventilation du tube émetteur, tout en supprimant tout operculage mécanique de la lampe.According to a development of the invention, a further improvement in the performance of the lamp, which is more particularly linked to its operation during the standby phases, can be obtained by appropriate regulation of the lamp cooling device and, more particularly, ventilation of the emitter tube, while eliminating any mechanical sealing of the lamp.
Un dispositif de refroidissement d'une lampe est, par exemple, décrit dans le document WO-A-0118447 qui met plus principalement l'accent sur les moyens de refroidissement d'une lampe à rayonnement électromagnétique comportant des réflecteurs statiques paraboliques, plus particulièrement elliptiques. La figure 5 représente, en coupe transversale au niveau du tube émetteur 1 , un mode de réalisation particulier d'une lampe selon ce document, dans lequel l'invention peut être mise en œuvre.A device for cooling a lamp is, for example, described in the document WO-A-0118447 which places more mainly the emphasis on the means for cooling an electromagnetic radiation lamp comprising parabolic static reflectors, more particularly elliptical . Figure 5 shows, in cross section at the emitter tube 1, a particular embodiment of a lamp according to this document, in which the invention can be implemented.
La lampe décrite dans le document précité est montée dans une structure porteuse 9 dans laquelle une paroi intermédiaire 10 délimite d'une part une conduite longitudinale 1 1 , destinée à la circulation d'un fluide de refroidissement, plus particulièrement à la circulation d'air, et d'autre part un logement 12, ouvert sur un des côtés, pour la lampe. La paroi intermédiaire 10 comporte des orifices 13 assurant la circulation du fluide de refroidissement entre la conduite longitudinale 11 et le logement 12. Deux réflecteurs latéraux 14, statiques, sont disposés de part et d'autre du tube longitudinal 1 dans le logement 12. Comme représenté à la figure 5, le fluide de refroidissement en provenance de la conduite longitudinale 11 circule à la fois dans un couloir de refroidissement 15, situé entre les réflecteurs 14 et les parois externes du logement 12, et, de manière homogène, autour et le long du tube 1 , par l'intermédiaire d'une fente longitudinale 16 séparant les réflecteurs latéraux 14 et parallèle à l'axe du tube 1.The lamp described in the aforementioned document is mounted in a support structure 9 in which an intermediate wall 10 delimits on the one hand a longitudinal pipe 1 1, intended for the circulation of a cooling fluid, more particularly for the circulation of air , and secondly a housing 12, open on one side, for the lamp. The intermediate wall 10 has orifices 13 ensuring the circulation of the cooling fluid between the longitudinal pipe 11 and the housing 12. Two lateral reflectors 14, static, are arranged on either side of the longitudinal tube 1 in the housing 12. As shown in FIG. 5, the cooling fluid coming from the longitudinal pipe 11 circulates both in a corridor of cooling 15, located between the reflectors 14 and the external walls of the housing 12, and, homogeneously, around and along the tube 1, by means of a longitudinal slot 16 separating the side reflectors 14 and parallel to the tube axis 1.
Selon l'invention, pour permettre la suppression de tout operculage mécanique, le débit du fluide de refroidissement est régulé de manière à être proportionnel à la tension électrique appliquée entre les électrodes 2.According to the invention, to allow the removal of any mechanical sealing, the flow rate of the cooling fluid is regulated so as to be proportional to the electrical voltage applied between the electrodes 2.
Un circuit électrique de contrôle de la ventilation d'une lampe dans laquelle le fluide de refroidissement est l'air, est illustré à la figure 6. Dans le mode de réalisation représenté, une tension électrique alternative, de l'ordre de 400V, est appliquée, par l'intermédiaire d'un contacteur 17 aux bornes d'un enroulement primaire d'un transformateur de puissance 18. Les électrodes 2 de la lampe sont connectées aux bornes d'un enroulement secondaire du transformateur 18. Un ventilateur 19, destiné à déterminer le débit du flux d'air circulant dans le circuit de refroidissement de la lampe, est commandé par un moteur 20.An electrical circuit for controlling the ventilation of a lamp in which the coolant is air, is illustrated in FIG. 6. In the embodiment shown, an alternating electrical voltage, of the order of 400V, is applied, via a contactor 17 to the terminals of a primary winding of a power transformer 18. The electrodes 2 of the lamp are connected to the terminals of a secondary winding of the transformer 18. A fan 19, intended to determine the flow rate of the air flow circulating in the lamp cooling circuit, is controlled by a motor 20.
Le moteur 20 est lui-même contrôlé par un variateur 21 alimenté par le réseau électrique alternatif. Le primaire d'un transformateur abaisseur 22 est connecté en parallèle sur le secondaire du transformateur de puissance 18, tandis que le secondaire du transformateur 22 est connecté à une entrée de commande du variateur 21. L'entrée de commande du variateur 21 reçoit ainsi, par l'intermédiaire du transformateur 22, une grandeur représentative de la tension appliquée entre les électrodes 2. Le variateur 22, qui est, de préférence, un variateur de fréquence, régule ainsi le débit d'air de refroidissement de la lampe de manière à ce qu'il soit proportionnel à la tension appliquée entre les électrodes 2 de la lampe. À titre d'exemple la tension maximum de sortie du transformateur 22 peut être de l'ordre de 10V.The motor 20 is itself controlled by a variator 21 supplied by the alternating electrical network. The primary of a step-down transformer 22 is connected in parallel to the secondary of the power transformer 18, while the secondary of the transformer 22 is connected to a drive control input 21. The drive control input 21 thus receives, via the transformer 22, a quantity representative of the voltage applied between the electrodes 2. The variator 22, which is preferably a frequency variator, thus regulates the flow of cooling air of the lamp so that it is proportional to the voltage applied between the electrodes 2 of the lamp. By way of example, the maximum output voltage of the transformer 22 can be of the order of 10V.
Une inductance 23 est, classiquement connectée en série avec l'enroulement primaire du transformateur de puissance 18, tandis qu'un contacteur 24, de type relais, est connecté en parallèle avec l'inductance 23.An inductor 23 is conventionally connected in series with the primary winding of the power transformer 18, while a contactor 24, of the relay type, is connected in parallel with the inductor 23.
Lorsque l'installation est mise en marche, le contacteur 17 est fermé, le contacteur 24 étant initialement fermé. À l'amorçage, la tension aux bornes de la lampe est nulle et le variateur 21 impose un débit d'air minimum. La température de la lampe augmente alors rapidement. Le plasma évolue et la tension augmente progressivement. Simultanément le débit d'air augmente, jusqu'à ce que la lampe atteigne, en 2 ou 3s, sa puissance nominale.When the installation is switched on, the contactor 17 is closed, the contactor 24 being initially closed. Upon ignition, the voltage across the lamp is zero and the dimmer 21 imposes a minimum air flow. The lamp temperature then increases rapidly. The plasma evolves and the tension gradually increases. Simultaneously the air flow increases, until the lamp reaches, in 2 or 3s, its nominal power.
En phase de fonctionnement nominal de l'installation comportant la lampe, les contacteurs 17 et 24 sont fermés. Une tension de l'ordre de 400V est alors appliquée au primaire du transformateur de puissance 18, qui applique alors, par exemple, une tension nominale de l'ordre de 2500V entre les électrodes 2 de la lampe, d'une longueur d'arc d'environ 90cm, pour un courant nominal de l'ordre de 6A. Le variateur 21 commande alors le ventilateur pour imposer à l'air de refroidissement un débit suffisant pour maintenir les parois du tube 1 à une température admissible par celui-ci, 700°C par exemple. En phase d'arrêt momentané, le contacteur 24 est ouvert, introduisant l'inductance 23 en série avec le primaire du transformateur. La tension appliquée entre les électrodes 2 n'est pas modifiée, mais l'intensité du courant est fortement réduite, par exemple jusqu'à 1 A, réduisant de manière équivalente la puissance de la lampe. La réduction de la puissance de la lampe a pour conséquence une réduction de la quantité de rayonnements infrarouges émis par le tube émetteur 1. Simultanément, la tension entre les électrodes n'étant pas réduite, le variateur 21 continue à imposer un débit maximal à l'air de refroidissement.In nominal operating phase of the installation comprising the lamp, the contactors 17 and 24 are closed. A voltage of the order of 400V is then applied to the primary of the power transformer 18, which then applies, for example, a nominal voltage of the order of 2500V between the electrodes 2 of the lamp, with an arc length about 90cm, for a nominal current of the order of 6A. The variator 21 then controls the fan to impose on the cooling air a sufficient flow rate to maintain the walls of the tube 1 at a temperature admissible by the latter, 700 ° C. for example. In the momentary shutdown phase, the contactor 24 is open, introducing the inductor 23 in series with the transformer primary. The voltage applied between the electrodes 2 is not modified, but the intensity of the current is greatly reduced, for example up to 1 A, reducing the power of the lamp in an equivalent manner. The reduction in the power of the lamp results in a reduction in the amount of infrared radiation emitted by the emitter tube 1. Simultaneously, the voltage between the electrodes not being reduced, the variator 21 continues to impose a maximum flow rate on the cooling air.
Le déséquilibre thermique ainsi engendré provoque le refroidissement de la lampe en quelques secondes, entraînant, le long de la fente longitudinale 16, une condensation uniforme et longitudinale du mercure à l'intérieur du tube émetteur 1. La tension diminue alors au point d'équilibre du plasma de l'argon. Le débit d'air suit l'évolution de cette tension en maintenant l'état plasmatique de l'argon, dont le niveau d'énergie est très bas par comparaison avec celui du mercure. La température du plasma est alors trop faible pour qu'il y ait une émission significative de rayonnements ultraviolets. Par ailleurs, le plasma de l'argon occupe alors toute la partie intérieure du tube 1.Le rayonnement alors produit par le tube est un rayonnement diffus et de faible niveau d'énergie, de sorte que la température du substrat insolé est voisine de la température ambiante. Ainsi, tout risque de brûlure ou d'incendie est écarté, malgré la suppression de tout operculage mécanique. On peut considérer que le plasma d'argon, froid, joue alors le rôle d'un opercule statique.The thermal imbalance thus generated causes the lamp to cool in a few seconds, causing, along the longitudinal slit 16, a uniform and longitudinal condensation of the mercury inside the emitter tube 1. The voltage then decreases to the point of equilibrium of argon plasma. The air flow follows the evolution of this voltage while maintaining the plasma state of argon, whose energy level is very low compared to that of mercury. The plasma temperature is then too low for there to be a significant emission of ultraviolet radiation. Furthermore, the argon plasma then occupies the entire inner part of the tube 1. The radiation then produced by the tube is a diffuse radiation and of low energy level, so that the temperature of the insulated substrate is close to the ambient temperature. Thus, any risk of burns or fire is eliminated, despite the elimination of any mechanical sealing. We can consider that the cold argon plasma then plays the role of a static seal.
À l'arrêt total de l'installation, avec l'ouverture des contacteurs 17 et 24, on provoque automatiquement, un débit d'air de refroidissement supérieur à celui correspondant à la puissance nominale de la lampe, ramenant ainsi la lampe à la température ambiante en un minimum de temps.When the installation comes to a complete stop, with the opening of contactors 17 and 24, a cooling air flow greater than that is automatically triggered corresponding to the nominal power of the lamp, thus bringing the lamp to room temperature in a minimum of time.
La régulation du débit du fluide de refroidissement se combine avec la géométrie des chambres d'électrode pour assurer une condensation uniforme et longitudinale du mercure à l'intérieur du tube émetteur 1 , sans condensation du mercure dans les chambres d'électrode, plus particulièrement à l'arrière des électrodes.' La condensation du mercure à l'intérieur du tube émetteur 1 se caractérise par une bande brillante, longitudinale et continue, de surface géométrique sensiblement identique à la fente d'air de refroidissement et à l'aplomb de celle-ci. Ceci permet de réduire de façon importante l'inertie de la lampe après tout arrêt, total ou même momentané.The regulation of the flow rate of the coolant is combined with the geometry of the electrode chambers to ensure uniform and longitudinal condensation of the mercury inside the emitter tube 1, without condensation of the mercury in the electrode chambers, more particularly at the back of the electrodes. ' The condensation of mercury inside the emitter tube 1 is characterized by a shiny strip, longitudinal and continuous, with a geometric surface substantially identical to the cooling air slot and directly above it. This makes it possible to significantly reduce the inertia of the lamp after any stop, total or even momentary.
L'invention n'est pas limitée aux modes de réalisation particuliers décrits ci- dessus. Elle s'applique notamment à toutes les lampes à rayonnement électromagnétique dans lesquelles l'un des éléments constituant l'arc plasmatique est susceptible de former des gouttelettes pendant un arrêt de l'installation. Elle s'applique également à tout type de fluide de refroidissement et de circuit de refroidissement. Elle n'est pas non plus limitée à l'utilisation d'argon pour former le plasma froid, mais s'étend à tout gaz neutre permettant d'obtenir le même résultat. The invention is not limited to the particular embodiments described above. It applies in particular to all electromagnetic radiation lamps in which one of the elements constituting the plasma arc is likely to form droplets during a shutdown of the installation. It also applies to any type of cooling fluid and cooling circuit. It is also not limited to the use of argon to form cold plasma, but extends to any neutral gas allowing the same result to be obtained.

Claims

Revendications claims
1. Lampe à rayonnement électromagnétique comportant une électrode (2) disposée à chacune des deux extrémités d'un tube émetteur longitudinal (1), rempli de gaz, chaque électrode étant constituée par au moins un filament (3, 3a, 3b) enroulé autour d'une tige de support (4) comportant une extrémité avant découverte et fixée, à une extrémité arrière, à une extrémité de raccordement (5) de la lampe connectée à une chambre d'électrode (6) dans laquelle est logée l'électrode, la chambre d'électrode (6) étant recouverte d'un matériau de réflexion (7) et ayant un diamètre interne supérieur au diamètre interne du tube émetteur (1) avec lequel elle communique, à sa partie avant, par un orifice de sortie (8) d'une zone de sortie, lampe caractérisée en ce que la zone de sortie de la chambre d'électrode a une forme sensiblement sphérique, avec un rayon de courbure (r) prédéterminé et un centre de courbure (C) disposé sensiblement sur une zone avant de la tige de support (4), dans la partie sur laquelle est enroulé le filament (3), de manière à ce que les rayonnements infrarouges (Ri) émis par l'extrémité avant découverte de la tige de support (4) et réfléchis (Rr) par le matériau de réflexion (7) recouvrant la zone de sortie de la chambre d'électrode soient dirigés vers l'arrière de l'électrode (2).1. Electromagnetic radiation lamp comprising an electrode (2) disposed at each of the two ends of a longitudinal emitter tube (1), filled with gas, each electrode consisting of at least one filament (3, 3a, 3b) wound around a support rod (4) having an uncovered front end and fixed, at a rear end, to a connection end (5) of the lamp connected to an electrode chamber (6) in which the electrode is housed , the electrode chamber (6) being covered with a reflection material (7) and having an internal diameter greater than the internal diameter of the emitter tube (1) with which it communicates, at its front part, by an outlet orifice (8) of an exit zone, lamp characterized in that the exit zone of the electrode chamber has a substantially spherical shape, with a predetermined radius of curvature (r) and a center of curvature (C) disposed substantially on an area before the a support rod (4), in the part on which the filament (3) is wound, so that the infrared radiation (Ri) emitted by the uncovered front end of the support rod (4) and reflected ( Rr) through the reflection material (7) covering the exit area of the electrode chamber are directed towards the rear of the electrode (2).
2. Lampe selon la revendication 1 , caractérisée en ce que, l'électrode (2) comportant un premier filament (3a) et un second filament (3b), superposé sur environ la moitié avant du premier filament, le centre de courbure (C) de la zone de sortie de la chambre d'électrode (6) est localisé sur la partie avant de la tige de support sur laquelle est enroulé le second filament (3b). 2. Lamp according to claim 1, characterized in that, the electrode (2) comprising a first filament (3a) and a second filament (3b), superimposed on about the front half of the first filament, the center of curvature (C ) of the exit zone of the electrode chamber (6) is located on the front part of the support rod on which the second filament (3b) is wound.
3. Lampe selon la revendication 2, caractérisée en ce que le centre de courbure (C) de la zone de sortie de la chambre d'électrode (6) est situé à environ 1mm de l'extrémité avant du filament (3).3. Lamp according to claim 2, characterized in that the center of curvature (C) of the exit area of the electrode chamber (6) is located about 1mm from the front end of the filament (3).
4. Lampe selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le rayon de courbure (r) de la zone de sortie de la chambre d'électrode (6) est supérieur ou égal à 6 mm environ.4. Lamp according to any one of claims 1 to 3, characterized in that the radius of curvature (r) of the exit area of the electrode chamber (6) is greater than or equal to approximately 6 mm.
5. Lampe selon l'une quelconque des revendications 1 à 4, caractérisée en ce que, la lampe comportant des moyens de refroidissement, la lampe est associée à des moyens (21 ) de modulation du débit d'un fluide de refroidissement circulant le long du tube émetteur (1) proportionnellement à la tension électrique appliquée aux bornes des électrodes (2) de la lampe.5. Lamp according to any one of claims 1 to 4, characterized in that, the lamp comprising cooling means, the lamp is associated with means (21) for modulating the flow rate of a cooling fluid circulating along of the emitter tube (1) in proportion to the electric voltage applied to the terminals of the electrodes (2) of the lamp.
6. Lampe selon la revendication 5, caractérisée en ce que le tube émetteur longitudinal (1 ) est muni de réflecteurs latéraux (14) statiques, séparés par une fente (16) par laquelle passe le fluide de refroidissement. 6. Lamp according to claim 5, characterized in that the longitudinal emitter tube (1) is provided with lateral reflectors (14) static, separated by a slot (16) through which the coolant passes.
PCT/FR2002/001664 2001-05-23 2002-05-17 Electromagnetic radiation lamp WO2002095790A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002313066A AU2002313066A1 (en) 2001-05-23 2002-05-17 Electromagnetic radiation lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0106846A FR2825190B1 (en) 2001-05-23 2001-05-23 ELECTROMAGNETIC RADIATION LAMP
FR01/06846 2001-05-23

Publications (2)

Publication Number Publication Date
WO2002095790A2 true WO2002095790A2 (en) 2002-11-28
WO2002095790A3 WO2002095790A3 (en) 2004-02-19

Family

ID=8863623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001664 WO2002095790A2 (en) 2001-05-23 2002-05-17 Electromagnetic radiation lamp

Country Status (3)

Country Link
AU (1) AU2002313066A1 (en)
FR (1) FR2825190B1 (en)
WO (1) WO2002095790A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714492A (en) * 1971-05-03 1973-01-30 Gte Sylvania Inc Dc fluorescent lamp with improved efficiency
US4425527A (en) * 1981-06-22 1984-01-10 Gte Laboratories Incorporated Optical filters comprising pyrolyzed polyimide films and lamp
EP0578415A1 (en) * 1992-06-30 1994-01-12 Ge Lighting Limited DC fluorescent lamps
WO1998001700A2 (en) * 1996-07-09 1998-01-15 Lumpp & Consultants Electromagnetic radiation transmitter/reflector device, apparatus and method therefor
FR2798187A1 (en) * 1999-09-06 2001-03-09 Christian Lumpp ELECTROMAGNETIC IRRADIATION DEVICE HAVING COOLING MEANS
US6212004B1 (en) * 1996-05-10 2001-04-03 Applied Coatings, Inc. Reflector with directional control of visible and infra-red radiation
US6236147B1 (en) * 1997-12-30 2001-05-22 Perkinelmer, Inc. Arc lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714492A (en) * 1971-05-03 1973-01-30 Gte Sylvania Inc Dc fluorescent lamp with improved efficiency
US4425527A (en) * 1981-06-22 1984-01-10 Gte Laboratories Incorporated Optical filters comprising pyrolyzed polyimide films and lamp
EP0578415A1 (en) * 1992-06-30 1994-01-12 Ge Lighting Limited DC fluorescent lamps
US6212004B1 (en) * 1996-05-10 2001-04-03 Applied Coatings, Inc. Reflector with directional control of visible and infra-red radiation
WO1998001700A2 (en) * 1996-07-09 1998-01-15 Lumpp & Consultants Electromagnetic radiation transmitter/reflector device, apparatus and method therefor
US6236147B1 (en) * 1997-12-30 2001-05-22 Perkinelmer, Inc. Arc lamp
FR2798187A1 (en) * 1999-09-06 2001-03-09 Christian Lumpp ELECTROMAGNETIC IRRADIATION DEVICE HAVING COOLING MEANS

Also Published As

Publication number Publication date
WO2002095790A3 (en) 2004-02-19
AU2002313066A1 (en) 2002-12-03
FR2825190B1 (en) 2003-08-15
FR2825190A1 (en) 2002-11-29

Similar Documents

Publication Publication Date Title
EP0910772B1 (en) Electromagnetic radiation transmitter/reflector device, apparatus and method therefor
FR2632450A1 (en) HIGH INTENSITY DISCHARGE LAMP, WITHOUT ELECTRODES, OF HIGH PERFORMANCE, WHICH PRIMING IS FACILITATED
FR2606125A1 (en) IMPROVED PROJECTOR FOR MOTOR VEHICLE
BE898336A (en) DISCHARGE LAMP.
FR2536507A1 (en) METHOD FOR OPERATING A GASIFICATION BURNER FOR LIQUID FUEL, GASIFICATION BURNER AND CONTROL DEVICE FOR CARRYING OUT SAID METHOD
WO2002085080A1 (en) Method and device for generating extreme ultraviolet radiation in particular for lithography
WO2008132376A1 (en) Device for de-icing the air intake of a gas turbine
FR2616010A1 (en) ELECTRODE-FREE DISCHARGE LAMP DEVICE
FR2638283A1 (en) CAPACITIVE PRIMING ELECTRODES FOR HID LAMPS
FR2494538A1 (en) POWER SUPPLY FOR HIGH INTENSITY DISCHARGE LAMPS
FR2554302A1 (en) Radiation source for optical equipment, especially for reproduction systems using photolithography
FR2550382A1 (en) INCANDESCENT LAMPS USING A CYLINDER REFLECTING INFRARED RADIATION
FR2680601A1 (en) LOW PRESSURE DISCHARGE LAMP WITHOUT ELECTRODE.
WO2002095790A2 (en) Electromagnetic radiation lamp
US3909736A (en) RF Excited electrodeless gas arc lamp for pumping lasers
FR2498012A1 (en) DISCHARGE RECEPTACLE FOR HIGH PRESSURE SODIUM VAPOR BLADES
FR2465312A1 (en) FILAMENT WITH HIGH RADIANT POWER FOR ENERGY CONSERVATION INCANDESCENT LAMPS WITH INFRARED RADIATION COVERS
EP1876633B1 (en) Plasma lamp with means to generate in its bulb a resonant ultrasound wave
EP1046187A1 (en) Tube, device and method for emitting electromagnetic radiation
FR2616589A1 (en) Discharge lamp with two switchable arcs, for motor vehicle headlamp
WO2007085744A2 (en) Method and device for preventive treatment of an optical surface designed to be exposed to a laser flow
FR2572225A1 (en) LASER EMISSION DEVICE
FR3032587A1 (en) HEATING AND LIGHTING PANEL
FR2751093A1 (en) Ultra-violet radiation source and transmitter-reflector
FR2553575A1 (en) High-pressure sodium vapour lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP