WO2002095486A1 - Light source device and light irradiation device, and device manufacturing method - Google Patents

Light source device and light irradiation device, and device manufacturing method Download PDF

Info

Publication number
WO2002095486A1
WO2002095486A1 PCT/JP2002/004854 JP0204854W WO02095486A1 WO 2002095486 A1 WO2002095486 A1 WO 2002095486A1 JP 0204854 W JP0204854 W JP 0204854W WO 02095486 A1 WO02095486 A1 WO 02095486A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source device
light source
optical
wavelength
Prior art date
Application number
PCT/JP2002/004854
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Tokuhisa
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002591897A priority Critical patent/JPWO2002095486A1/en
Publication of WO2002095486A1 publication Critical patent/WO2002095486A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/255Self-phase modulation [SPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Definitions

  • Light source device light irradiation device, and device manufacturing method
  • the present invention relates to a light source device, a light irradiation device, and a device manufacturing method. More specifically, the present invention relates to a light source device that converts light amplified by an optical amplifier to generate light of a desired wavelength, and a light source device. The present invention relates to a light irradiation device provided with the light irradiation device, and a device manufacturing method using the light irradiation device in a lithographic process.
  • r reticle a pattern formed on a mask or reticle (hereinafter, collectively referred to as an “r reticle”) is converted into a wafer or a resist coated via a projection optical system.
  • a substrate such as a glass plate (hereinafter referred to as “substrate” or “wafer” as appropriate)
  • an exposure apparatus which is a type of light irradiation apparatus, is used.
  • Such exposure apparatuses include a static exposure type projection exposure apparatus that employs a step-and-repeat method (so-called stepper) and a scanning exposure-type projection exposure apparatus that employs a step-and-scan method (so-called scanning).
  • stepper a static exposure type projection exposure apparatus that employs a step-and-repeat method
  • scanning exposure-type projection exposure apparatus that employs a step-and-scan method
  • PRK Photorefractive Keratectomy
  • LASIK Laser Intrastromal Keratomileusis
  • the direction of development of such short-wavelength light sources is roughly divided into the following two types. Is done. One is the development of excimer laser light sources where the laser oscillation wavelength itself is short, and the other is the development of short wavelength light sources that utilize the generation of harmonics from infrared or visible light lasers.
  • a light source device using a KrF excimer laser (wavelength: 248 nm) has been developed.
  • an ArF excimer laser (wavelength 1) is used as a shorter wavelength light source.
  • the development of light source devices that use (93 nm) etc. is in progress.
  • these excimer lasers have disadvantages as a light source device, such as being large in size, and using toxic fluorine gas, which makes the maintenance of the laser complicated and expensive.
  • nonlinear optical effect of a nonlinear optical crystal which is a method of shortening the wavelength along the latter direction, converts long-wavelength light (infrared light and visible light) into shorter-wavelength ultraviolet light.
  • a light source device using such a method there is, for example, a light source device disclosed in International Publication WO99 / 46853 (hereinafter simply referred to as “conventional example”).
  • the generation efficiency of the short-wavelength light is determined by the generation efficiency of the nonlinear optical effect in the nonlinear optical crystal. It is difficult to say that the generation efficiency of the optical effect is high. Therefore, in order to obtain high-intensity ultraviolet light, it is necessary to make high-intensity infrared light or visible light incident on the nonlinear optical crystal. Therefore, in the above-described conventional example, the infrared light or the negligible light (hereinafter, also referred to as “basic light”) of substantially a single wavelength generated by a semiconductor laser or the like is converted into an optical fiber for amplification to which a rare earth element is added.
  • the optical fiber amplifier has a configuration in which the light is amplified and incident on the nonlinear optical crystal.
  • the basic light is amplified by the optical amplification action of the amplification optical fiber of the optical fiber amplifier
  • high-intensity light travels in the amplification optical fiber (and the optical fiber at the subsequent stage).
  • SP self-phase modulation
  • the spectrum width increases.
  • a projection optical system in an exposure apparatus usually uses a lens which is a refractive optical element. For this reason, if the spectrum width of the exposure illumination light is increased, the color difference is increased, and the imaging characteristics of the projection optical system are degraded. As a result, the transfer accuracy of the pattern onto the substrate is degraded.
  • the conventional light source device when used as the exposure light source of the exposure apparatus, if the luminance of the exposure illumination light is increased to improve the throughput, the chromatic aberration increases due to an increase in the spectrum width of the exposure illumination light, As a result, the transfer accuracy of the pattern to the substrate is deteriorated.
  • the spectral width of the exposure illumination light remains large, it becomes difficult to design and manufacture the projection optical system. For this reason, it has been desired to realize a light source device capable of emitting light with high luminance and small spectral width.
  • the present invention has been made under the above circumstances, and a first object of the present invention is to provide a light source device capable of emitting light of high luminance and small spectrum width with a simple configuration. It is in.
  • a second object of the present invention is to provide a light irradiation device capable of irradiating an object with light of high luminance and small spectrum width.
  • a third object of the present invention is to provide a device manufacturing method capable of improving device productivity. Disclosure of the invention
  • n (Z, t) n 0 + n 2 ⁇ I (Z, t)... (1)
  • parameter no is the linear refractive index
  • parameter one data n 2 is the nonlinear refractive index, both of which are shall Sadama the type of material of the light propagating medium.
  • non-linear refractive index includes higher-order components of light intensity I (Z, t), but such higher-order components are small enough to be ignored. Therefore, in this specification, the term “non-linear refractive index” is used to refer to an amount obtained by multiplying the parameter n 2 in equation (1) by the light intensity I (Z, t). .
  • the self-phase modulation amount 0NL after the light propagates through the light propagation medium is given by the length of the light propagation medium
  • the parameter C is a constant determined by the beam shape or the like of the propagating light
  • the parameter I Is the peak light intensity at the time of incidence on the light propagation medium.
  • the self-phase modulation amount 0NL (t) of the light passing through the light propagation system can be known. If the phase modulation having the opposite polarity is performed at an arbitrary position on the optical path, it is possible to suppress the expansion of the spectrum width due to the self-phase modulation in the light passing through the light propagation system.
  • the present invention has been made based on such knowledge, and employs the following configuration.
  • a light generating unit including a light generator for generating light of a predetermined wavelength; an optical amplifying unit for amplifying the light of the predetermined wavelength; A wavelength conversion unit that performs wavelength conversion; and is disposed in an optical path from the light generation unit to the wavelength conversion unit, and performs at least a part of self-phase modulation of light traveling along the optical path. And a phase modulator for performing phase modulation to kill.
  • the light generated by the light generating unit is amplified by passing through the optical amplifying medium of the optical amplifying unit.
  • (Nelgi density) propagates and undergoes self-phase modulation.
  • the phase modulator disposed in the optical path from the light generation unit to the wavelength conversion unit performs phase modulation to cancel at least a part of the self-phase modulation before or after the self-phase modulation, The amount of phase modulation is reduced. Therefore, it is possible to suppress an increase in the spectrum width of light incident on the wavelength conversion unit, and consequently, it is possible to suppress an increase in the spectrum width of light emitted from the wavelength conversion unit.
  • the phase modulator is arranged on the optical path and performs phase modulation according to the amplitude of the supplied modulation electric signal; and the electro-optic modulation element.
  • a signal supply unit that supplies an electric signal having an amplitude corresponding to the intensity of light passing through the electro-optical modulation element as the modulation electric signal to the electro-optic modulation element.
  • the phase modulator may be arranged in an optical path from the light generation unit to the light amplification unit.
  • the phase modulator includes a nonlinear optical member made of a material having a polarity opposite to a polarity of a nonlinear refractive index of a light propagation medium in the light amplifying unit. It can be.
  • the nonlinear optical member, I m - may be to consist gamma P Y mixed crystal - x G a X A si.
  • the light generator generates continuous light, and is arranged at a stage immediately after the light generator, and extracts a pulse light from the continuous light. May be further provided.
  • the light generator generates a laser beam having a substantially single wavelength within a wavelength range from an infrared region to a visible region, and the wavelength converter emits ultraviolet light. You can do it.
  • the optical amplification unit may include an amplification optical fiber.
  • a light generator that generates light of a predetermined wavelength; and a phase modulator that cancels at least a part of self-phase modulation in an optical path where light generated by the light generator enters.
  • a second light source device comprising: a driving signal supply unit that supplies a driving signal on which a phase modulation signal to be performed is superimposed to the light emitting unit; and an optical amplifying unit that amplifies the light having the predetermined wavelength.
  • the phase modulation signal is superimposed on the drive signal supplied to generate light from the light generator, and the self-phase modulation in the optical path where the light generated by the light generator enters can be performed. Since at least a portion is canceled, the amount of self-phase modulation is reduced. Therefore, expansion of the spectrum width due to self-phase modulation can be suppressed.
  • the second light source device of the present invention further includes a pulse modulator that is disposed in an optical path from the light generator to the light amplifying unit and that cuts out pulse light from light emitted from the light generator. It can be.
  • the second light source device of the present invention may further include a wavelength converter for converting the wavelength of the light amplified by the optical amplifier.
  • the light generator may generate a single-wavelength laser light within a wavelength range from an infrared region to a visible region, and the wavelength conversion unit may emit ultraviolet light.
  • the optical amplifier may include an amplification optical fiber.
  • a light irradiation device for irradiating an object with light, comprising: a light source device of one of the first and second light source devices of the present invention; An irradiation optical system that emits the emitted light toward the object. An irradiation device.
  • the wavelength-converted high-brightness light having a narrow spectrum width is applied to the object. be able to.
  • various objects are used as the object to be irradiated with the light depending on the purpose of use of the light irradiation device.
  • a mask having a predetermined pattern formed as the object can be used.
  • the light irradiation device is emitted from the mask.
  • a projection optical system for projecting the reflected light onto the photosensitive object In such a case, light having high brightness and a narrow spectrum width is irradiated on the mask, and light passing through the mask is incident on the projection optical system. Therefore, when the projection optical system includes a refractive optical element, its chromatic aberration Can be suppressed.
  • an exposure apparatus for transferring a pattern of a mask onto a photosensitive object, comprising: a light source device of one of the first and second light source devices of the present invention; An illumination optical system for irradiating the mask with light emitted from the apparatus.
  • a control device for controlling the light source device in order to adjust the intensity of light or the integrated light amount applied to the photosensitive object via the mask may be further provided.
  • the photosensitive object is exposed through the mask (and the projection optical system) using any one of the light irradiation apparatus of the present invention using a mask as an object and the exposure apparatus of the present invention.
  • the flutter of the mask on the photosensitive object This makes it possible to form micro-devices with high precision, and thereby to manufacture highly integrated microdevices with good productivity (including yield). Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using any of the light irradiation apparatus of the present invention using a mask as an object and the exposure apparatus of the present invention.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an internal configuration of the light source device of FIG. 1 together with a main control device.
  • FIG. 3A is a diagram schematically showing the configuration of the pulse modulator of FIG. 2, and FIG. 3B is a timing chart for explaining the operation of the pulse modulator of FIG.
  • FIG. 4A is a diagram schematically showing the configuration of the phase modulator of FIG. 2, and FIG. 4B is a timing chart for explaining the operation of the phase modulator of FIG.
  • FIG. 5 is a diagram schematically showing an optical fiber amplifier constituting the optical amplifying unit of FIG. 2 and a peripheral portion thereof.
  • 6A and 6B are diagrams for explaining the effect of suppressing the expansion of the spectrum width by the phase modulation.
  • FIG. 7 is a diagram illustrating a configuration of the wavelength conversion unit in FIG.
  • FIG. 8 is a block diagram showing an internal configuration of the light source device according to the second embodiment together with a main control device.
  • FIG. 9 is a diagram schematically showing an optical fiber amplifier constituting the optical amplifying unit in FIG. 8 and a peripheral portion thereof.
  • FIG. 1OA is a diagram schematically showing the configuration of the phase modulator of FIG. 9, and FIG. 1OB is a timing chart for explaining the operation of the phase modulator of FIG.
  • FIG. 11 is a block diagram showing an internal configuration of a light source device according to the third embodiment together with a main control device.
  • FIG. 12 is a timing diagram for explaining the phase modulation operation in the light source device of FIG.
  • FIG. 13 is a flowchart for explaining the device manufacturing method of the present invention.
  • FIG. 14 is a flowchart showing a specific example of step 204 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to a first embodiment of the light irradiation apparatus of the present invention including the optical apparatus of the present invention.
  • the exposure apparatus 10 is a step-and-scan type scanning exposure apparatus.
  • the exposure apparatus 10 is an illumination system including a light source device 16 and an illumination optical system 12 as an irradiation optical system, and illumination light for exposure (hereinafter, referred to as “exposure light”) IL from the illumination system.
  • exposure light illumination light for exposure
  • a reticle stage RST that holds a reticle R as a mask to be exposed
  • a projection optical system P that projects exposure light IL through the reticle R onto a wafer W as a photosensitive object
  • a Z tilt stage that holds the wafer W 5 8
  • an XY stage 14 on which is mounted and a control system for these.
  • the light source device 1 6 is, for example, ultraviolet wavelength 1 9 3 nm (A r F excimer laser beam substantially the same wavelength) ultraviolet pulse light, or wavelength 1 5 7 nm (F 2 laser beam with almost the same wavelength) of This is a harmonic generator that outputs pulsed light.
  • the light source device 16 includes an illumination optical system 12, a reticle stage RST, a projection optical system PL, a Z tilt stage 58, an XY stage 14, and an exposure system including a main body column (not shown) on which these components are mounted. Temperature, pressure, humidity, etc. with high accuracy along with the main unit It is housed in a regulated environmental chamber (hereinafter referred to as “chamber”) 1 1.
  • all the light source devices 16 are arranged in the chamber. However, only a part of the light source device 16, for example, only a wavelength conversion unit 163 described later, is disposed in the chamber, particularly, the illumination optical system 12.
  • the wavelength converter 163 and the main body of the light source 16 may be connected by an optical fiber or the like.
  • FIG. 2 is a block diagram showing the internal configuration of the light source device 16 together with a main control device 50 that controls the entire device.
  • the light source device 16 includes a light source section 16A, a laser control device 16B, a modulation control device 16C, and the like.
  • the light source section 16A includes a continuous light generating section 160, a current driver 136 as a drive signal supplier, an electro-optic modulator (hereinafter referred to as “EOM”) 131 as a pulse modulator, and a phase modulator. , A light amplification section 161, a wavelength conversion section 163, and a beam monitor mechanism 164.
  • EOM electro-optic modulator
  • the continuous light generator 160 includes a laser light source 160 as a light generator, an optical cutoff BS, an optical isolator 16 OB, and the like.
  • the laser light source 16 OA here, a single-wavelength oscillation laser, for example, an oscillation wavelength of 1.544 jtm, a continuous wave output (hereinafter referred to as “CW output”) 20 mW of InGaAsP, DFB semiconductor lasers are used.
  • the laser light source 160 A is also referred to as “DFB semiconductor laser 16 OA” as appropriate.
  • the DFB semiconductor laser 16 OA is driven by the current signal DV supplied from the current driver 136, and generates a laser beam having an amount of light corresponding to the magnitude of the current signal DV.
  • the DFB semiconductor laser is usually provided on a heat sink, and these are housed in a housing.
  • a temperature regulator for example, a Peltier element
  • the laser controller 16B controls the temperature so that the oscillation wavelength can be controlled (adjusted).
  • the optical coupler BS one having a transmittance of about 97% is used. Therefore, the laser light from the DFB semiconductor laser 16 OA is split into two by the optical coupler BS, and about 97% of the laser light travels toward the next-stage optical isolator 160B, and the remaining about 3% The beam enters the beam monitor mechanism 164.
  • the beam monitor mechanism 164 includes an energy monitor (not shown) including a photoelectric conversion element such as a photodiode.
  • the output of this energy monitor is supplied to the main controller 50 via the laser controller 16B.
  • the main controller 50 detects the energy (power) of the laser beam based on the output of the energy monitor, and By controlling the current driver 136 via the controller 16B, the amount of laser light oscillated by the DFB semiconductor laser 16OA is controlled as necessary.
  • the optical isolator 160B passes only the light in the direction from the optical coupler BS to the EOM 131, and blocks the light in the opposite direction.
  • the optical isolator 160B prevents a change in the oscillation mode of the DFB semiconductor laser 160A and the generation of noise due to the reflected light (return light).
  • the EOM 131 converts the laser light (CW light (continuous light)) L1 that has passed through the optical isolator 160B into pulsed light. As shown in FIG. 3A, this EOM 131 responds to both the waveguide 310 and the two-branched waveguide that join again after the optical path where the incident light L 1 enters is branched into two. Electrodes 31 1, 312 provided in the same manner.
  • the waveguide 310 is made of a material whose refractive index of the voltage application section changes according to the voltage value when a voltage is applied.
  • the electrode 311 is composed of two electrode plates 311 1 and 3112 provided so as to sandwich the waveguide, and this electrode 311 (more precisely, one electrode 3 11 i) is supplied with one voltage signal MD 11 constituting the pulse modulation signal MD 1 from the modulation control device 16 C.
  • the other electrode 31 1 2 is at the ground level (hereinafter, referred to as “GND”).
  • the electrode 31 2 waveguides is composed of two electrode plates 3 1 2 teeth 31 2 2 provided therebetween, this electrode 31 2 (more precisely, one of the electrodes 31 21) to Is supplied with one voltage signal MD12 constituting the pulse modulation signal MD1 from the modulation controller 16C.
  • the other electrode 3 1 2 2 is at the GND level.
  • each of the above-mentioned electrode plates is shown apart from the waveguide 310, but these electrode plates are actually It is desirable to be in contact with 310. The same applies to the electrode plate in each embodiment described later.
  • pulse modulation signal MD 1 the voltage signal MD 11 and the voltage signal MD 12 are collectively referred to as “pulse modulation signal MD 1”.
  • the two branch optical path lengths in the waveguide 310 are set such that the amount of the emitted light L2 becomes 0 when no voltage is applied to both of the electrodes 31 1 and 312.
  • the electrodes 311 and 312 When different voltage signals are applied to the electrodes 311 and 312, light having an intensity corresponding to the difference between the applied voltages is emitted.
  • the output light be pulsed by using both the voltage applied to the EOM 131 and the control of the current supplied to the DFB semiconductor laser 16 OA.
  • the extinction ratio can be improved. This makes it possible to easily generate a pulse light with a narrow pulse width while improving the extinction ratio as compared with the case where only EOM131 is used, and to make it easier to generate the pulse light at intervals and start oscillation. And it becomes possible to control the stop and the like more easily.
  • AOM acousto-optic modulator
  • the EOM 132 is for phase-modulating each pulse light of the light (optical pulse train) L2 emitted from the EOM 1331.
  • This EOM1 32 includes, as shown in FIG. 4A, a waveguide 320 in which the incident light L2 enters, and an electrode 321.
  • the waveguide 320 is made of a material whose refractive index of the voltage application unit changes according to the voltage value.
  • the electrode 321 is composed of two electrode plates 3211 and 3212 provided so as to sandwich the waveguide.
  • the electrode 321 (more precisely, one electrode plate 321 ⁇ ) has a modulation control
  • the phase modulated signal MD2 from the device 16C is supplied.
  • the other electrode plate 3212 is at the GND level.
  • phase modulation signal MD 2 having a voltage level corresponding to the intensity of the light passing through the waveguide 320 is applied to the electrode 321 so that the incident light L 2 At each moment, the nonlinear refractive index of the voltage application portion of the waveguide 320 changes according to the intensity.
  • phase modulation is performed in accordance with the above-mentioned equation (2).
  • the phase modulation amount 0PM imparted to the emission light L3 by such phase modulation depends on the intensity of the emission light L3 at each instant.
  • phase modulation amount 0PM is determined by the fact that each light pulse of the emitted light L3 The amount is such that the amount of self-phase modulation received in the optical path up to the conversion section 163 cancels out 0 SPM . Adjustment of such phase modulation amount 0PM is Ru obtained from pre-measurement results of the design information of the configuration of the light source device 1 6 or self-phase modulation amount ⁇ s P M. Then, the waveform of the phase modulation signal MD2 is determined from the obtained self-phase modulation amount 0SPM, the electro-optical characteristics of the material of the waveguide 320, the size of the electrode 321, and the like.
  • the optical amplifying unit 16 "Ui amplifies the pulse light L3 from the EOM 132. As shown in FIG. 5, the pulse light from the EOM 132 is periodically distributed in time sequence and branched ( For example, it is configured to include an optical splitter 166 that branches into 128 branches and a plurality of optical fiber amplifiers 167.
  • the optical fiber amplifier 167 includes a first-stage optical amplifier 141 and a second-stage optical amplifier 142.
  • the pre-stage optical amplifier 141 combines the pumping semiconductor laser 178 ⁇ to generate the amplification optical fiber 175 pumping light (pumping light), and the output light of the EOM 132 and the pumping light, It has a wavelength division multiplexing device (Wavelength Division Multiplexers DM) 179i that supplies the combined light to one amplification optical fiber 5i.
  • Wavelength Division Multiplexers DM Wavelength Division Multiplexers
  • subsequent optical amplifier 1 42 combines the amplification optical fiber 1 7 5 2, the pumping semiconductor laser 1 7 8 2 for generating excitation light, and ⁇ beauty front optical amplifier 1 4 1 of the output light and the excitation light has the wavelength division multiplexer for supplying the combined light to the amplification optical full multiplexing 1 7 5 2 1 7 9 2.
  • An optical filter 1 76 that selectively transmits light having substantially the same wavelength as the light generated by the DFB semiconductor laser 16 OA is provided between the first optical amplifier 14 1 and the second optical amplifier 142, and an optical isolator. 1 7 7 are arranged.
  • Said amplifying optical fiber 1 7 5 1; 1 75 2 (hereinafter, when generically referred to as "amplification optical fiber 1 75 J) is a silica glass or phosphate glass as a main material, has a core and a cladding, the core An optical fiber doped with erbium (E r) or two ions of Er and ytterbium (Y b) at a high density Used.
  • E r erbium
  • Y b ytterb
  • the amplification optical Huai Ba 1 75Iota, 1 75 to 2 excitation light exciting semiconductor laser 1 78 1 78 2 has occurred WDM 1 79 ⁇ , 1 79 2 while being supplied via the pulse light through the WDM 1 79 ⁇ is you progress through the core of the amplifying optical fiber 1 75 1 75 2 incident stimulating radiation is generated, a pulse light is amplified You.
  • the amplification optical fiber 1 75 ⁇ 1 75 2 has a high gain, unity of wavelength is outputted a high high-intensity pulsed light. Therefore, light of a narrow band can be obtained efficiently.
  • the excitation light is WDM 1 79Iota, is supplied to the amplification optical fiber 1 75 through 1 79 2, whereby Karagai electrons E r is excited, inversion of the so-called energy level occurs.
  • the pumping semiconductor laser 1 78 1 78 2 are controlled by the modulation control device 1 6 C.
  • a part of the output light is branched by the optical fiber amplifiers 167, and the branched light is divided by the respective branches.
  • the photoelectric conversion elements 17 1 provided at the ends perform photoelectric conversion respectively. Output signals of these photoelectric conversion elements 17 1 are supplied to a modulation control device 16 C.
  • the modulation control device 1 6 C (as i.e. balance) so that the light output becomes constant from the optical fiber amplifier 1 67, feedback control of the drive current of each pumping semiconductor laser 1 78 1 7 8 2 It has become.
  • the modulation control device 16C controls the above-described pulse modulation and phase modulation, and controls each pumping so that the optical output from each optical fiber amplifier 167 becomes constant (that is, balanced).
  • Semiconductor laser 1 78 1 78 2 The feed current is controlled by feedback.
  • the light L4 obtained by amplifying the light L3 by the light amplifying unit 161 configured as described above is emitted from the light amplifying unit 161 to the wavelength conversion unit 163.
  • the light L4 is then up to the optical path of the medium (mainly, amplified optical fiber 1 75Iota in the optical amplification section 1 61, 1 75 2) in the kicking receive self-phase modulation by traveling through (self-phase modulation Occurs).
  • the light 3 that has been phase-modulated by the EOM 132 is made to enter the optical amplifier 161 so as to cancel the amount of phase modulation due to the self-phase modulation (see FIG. 4B), the amount of phase modulation in the light L4 is reduced. Therefore, in the light L4, the expansion of the spectrum width due to the self-phase modulation is suppressed.
  • FIGS. 6A and 6B show examples of suppressing the spread of the spectrum width in the light 4.
  • FIG. 6A shows the spectrum distribution (comparative example) of the light 4 when the phase modulation by the EOM 132 is not performed
  • FIG. The spectrum distribution of the light L4 according to the present embodiment is shown.
  • the expansion of the spectrum width of the light L4 is suppressed.
  • the wavelength converting section 163 includes a plurality of nonlinear optical crystals, and converts the pulse light (light having a wavelength of 1.544 jUm) L4 from the optical amplifying section 161 into its eighth harmonic wavelength, and It generates pulsed ultraviolet light with the same output wavelength (193 nm) as the F excimer laser.
  • FIG. 7 shows a configuration example of the wavelength conversion unit 163.
  • a specific example of the wavelength conversion unit 163 will be described with reference to FIG. Note that Fig. 7 shows that the light L4 with a wavelength of 1.544 jtm emitted from the optical amplification unit 16 "I is used as a fundamental wave and converted into an eighth harmonic (harmonic) using a nonlinear optical crystal.
  • a r F Ekishimare the substantially c configuration example is shown for generating ultraviolet light for 1 93 nm is the same wavelength In the wavelength converter 163 in Fig.
  • Wavelength conversion is performed in the order of 1st harmonic (wavelength 221 nm) ⁇ 8th harmonic (wavelength 193 nm).
  • the light L4 (fundamental wave) having a wavelength of 1.544 m (frequency) emitted from the optical amplification section 161 enters the first-stage nonlinear optical crystal 183.
  • a second harmonic is generated, which is twice the frequency ⁇ of the fundamental wave, that is, a second harmonic of the frequency 2 ⁇ (wavelength is 2 of 772 nm). I do.
  • L i B 3 0 5 L BO
  • NCPM Non-Critical Phase Matching
  • the fundamental wave transmitted through the non-linear optical crystal 183 without wavelength conversion and the second harmonic generated by the wavelength conversion are delayed by half and one wavelength, respectively, by the next wave plate 184. However, only the fundamental wave rotates its polarization direction by 90 degrees and enters the second-stage nonlinear optical crystal 186.
  • An LBO crystal is used as the second-stage nonlinear optical crystal 186, and the NBO PM at a temperature different from that of the first-stage nonlinear optical crystal (LBO crystal) 183 is used in the LBO crystal.
  • the second harmonic generated in the first-stage nonlinear optical crystal 183 and the fundamental wave transmitted through the nonlinear optical crystal 183 without wavelength conversion are generated by sum frequency generation. Obtain a harmonic (wavelength 515 nm).
  • the third harmonic obtained by the non-linear optical crystal 186 and the fundamental wave and the second harmonic transmitted through the non-linear optical crystal 186 without wavelength conversion are dichroic.
  • the third harmonic wave separated by the mirror 187 and reflected here passes through the condenser lens 190 and the dichroic mirror 193 and enters the fourth-stage nonlinear optical crystal 195.
  • the fundamental wave and the second harmonic transmitted through the dichroic mirror 187 pass through the condenser lens 188 and enter the third-stage nonlinear optical crystal 189.
  • the third-stage nonlinear optical crystal 189 a Hoshi BO crystal is used, and the fundamental wave passes through the LBO crystal without wavelength conversion, and the second harmonic is quadrupled by the second harmonic generation in the LBO crystal. Converted to waves (wavelength 386 nm).
  • the fourth harmonic obtained by the nonlinear optical crystal 1189 and the fundamental wave transmitted therethrough are separated by dichroic ⁇ Mira — 191.
  • the fundamental wave transmitted here passes through the condenser lens 194. In both cases, the dichroic light is reflected by the mirror 196 and enters the fifth-stage nonlinear optical crystal 198.
  • the fourth harmonic reflected by the dichroic ⁇ mirror 191 reaches the dichroic mirror 193 through the condenser lens 192, where the third harmonic reflected by the dichroic ⁇ mirror 187 And is incident on the fourth-stage nonlinear optical crystal 195.
  • the nonlinear optical crystal 1 95 of the fourth stage,) S- B a B 2 0 4 (BBO) crystal is used, 7 harmonic (wavelength 221 nm by sum frequency generation and a triple wave and fourth harmonic) Get.
  • the 7th harmonic obtained by the nonlinear optical crystal 195 passes through the condenser lens 197, and is coaxially synthesized with the fundamental wave transmitted through the dichroic ⁇ Mira 191 in the dichroic mirror 196 Then, the light enters the fifth-stage nonlinear optical crystal 198.
  • An LBO crystal is used as the fifth-stage nonlinear optical crystal 198, and an eighth harmonic (wavelength 193 nm) is obtained from the fundamental wave and the seventh harmonic by generating a sum frequency.
  • the arrangement smell Te instead of 8 harmonic generation LBO crystal 1 98, C s and i B 6 O 10 (C LBO ) crystal, or L i 2 B 4 0 7 ( LB4) can also be used as the crystalline It is.
  • the seventh harmonic is generated from the third harmonic and the fourth harmonic.
  • the nonlinear optical crystal is generated.
  • a BBO crystal, a CLBO crystal, an LB4 crystal, or an LBO crystal can be used.
  • the illumination optical system 12 is configured to include an optical integrator, a variable ND filter, a reticle blind, and the like (all not shown).
  • a fly-eye lens, an internal reflection type integrator (such as a rod integrator), or a diffractive optical element is used as the optical integrator.
  • the configuration of such an illumination optical system is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-124433, Japanese Patent Application Laid-Open No. H6-349701, and corresponding US Pat. No. 5,534,970. .
  • the disclosures in the above US patents will be incorporated by reference as if set forth in this specification.
  • Exposure light IL emitted from the illumination optical system 12 passes through a condenser lens 32 after the optical path is bent vertically downward by a mirror M, and then passes through a condenser lens 32 to form a rectangular illumination on a reticle R held on a reticle stage RST. Illuminate area 42R with a uniform illumination distribution.
  • a reticle R is mounted on the reticle stage RST, and is held by suction via a vacuum chuck (not shown).
  • the reticle stage RST is movable in a horizontal plane (XY plane), and is moved by a reticle stage driving unit 49 in a predetermined direction in the scanning direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1). It is designed to be scanned in a range.
  • the position and the amount of rotation of the reticle stage RST during this scanning are measured by an external laser interferometer 54R via a movable mirror 52R fixed on the reticle stage RST, and the measurement of the laser interferometer 54R is performed.
  • the value is supplied to the main controller 50.
  • the projection optical system PL is, for example, a double-sided telecentric reduction system, and includes a plurality of lens elements having a common optical axis AX in the Z-axis direction.c
  • Magnification; 8 is for example 14, 15, 1 No. 6 and others are used. Therefore, as described above, when the illumination area 42 R on the reticle R is illuminated by the exposure light I, the projection optical system of the illumination area 42 R portion of the pattern formed on the reticle R A reduced image (partial isometric image) by the PL is projected onto a rectangular projection area 42 W conjugated to the illumination area 42 R within the field of view of the projection optical system PL, and is projected onto a resist applied on the surface of the wafer W. The reduced image is transferred.
  • the XY stage 14 is two-dimensionally driven by a wafer stage drive unit 56 in the Y-axis direction, which is the scanning direction, and the X-axis direction, which is orthogonal to the scanning direction (the direction perpendicular to the plane of FIG. 1). .
  • a wafer W is held on a Z tilt stage 58 mounted on the XY stage 14 by vacuum suction or the like via a wafer holder (not shown).
  • the Z-tilt stage 58 adjusts the position (focus position) of the wafer W in the Z-axis direction by, for example, three actuators (piezo elements or voice coil motors) and an XY plane (projection optical system PL).
  • the position of the XY stage 14 is measured by an external laser interferometer 54 W via a movable mirror 52 W fixed on the Z tilt stage 58, and the position of the laser interferometer 54 W is measured.
  • the measured value is supplied to the main controller 50.
  • the moving mirror actually has an X moving mirror having a reflecting surface perpendicular to the X axis and a Y moving mirror having a reflecting surface perpendicular to the Y axis.
  • X-axis position measurement, Y-axis position measurement, and rotation (including jogging, pitching, and rolling) measurements are provided, respectively. In Figure 1, these are typically used as moving mirrors. Shown as 52 W, laser interferometer 54 W.
  • a reference mark plate FM used for performing reticle alignment or the like described later is provided on the Z tilt stage 58.
  • This fiducial mark plate FM has its surface almost at the same height as the surface of the wafer W.
  • This fiducial mark plate has a reticle alignment fiducial mark and a baseline measurement fiducial mark on the surface of FM. Reference marks such as marks are formed.
  • an irradiation optical system 60a for irradiating an imaging light beam for forming an image of a pinhole or a slit toward the measurement point from an oblique direction with respect to the optical axis AX, and a wafer W of the imaging light beam.
  • An oblique incidence type multi-point focal position detection system (focus sensor) comprising a light receiving optical system 60b for receiving a light beam reflected on the surface is provided.
  • the main controller 50 determines a part of the surface of the shot area where the measurement point exists based on the Z position detected for each measurement point from the light receiving optical system 60b. By sequentially calculating the Z position and the tilt amount, and controlling the Z position and the tilt angle of the Z tilt stage 58 via a drive system (not shown) based on the calculation results, auto focus (automatic focusing) and Perform auto-leveling.
  • the main controller 50 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and the like.
  • the main controller 50 controls the exposure amount at the time of scanning exposure as will be described later, and also controls the entire apparatus.
  • reticle R moves reticle R to illuminated area 42R in the + Y direction (or one Y direction) via reticle stage RST.
  • S ⁇ V () 8 is a reticle stage drive unit 49 based on the measured values of the laser interferometers 54 R and 54 W so that the scanning is performed with the reticle R from the reticle R to the wafer W).
  • the position and speed of reticle stage RST and X stage 14 are controlled via wafer stage drive unit 56, respectively.
  • the main controller 50 controls the position of the stage 14 via the wafer stage driving unit 56 based on the measurement value of the laser interferometer 54W.
  • main controller 50 loads reticle R to be exposed onto reticle stage R S using a reticle loader (not shown).
  • a reticle alignment is performed using a reticle alignment system (not shown), and a base line measurement of an off-axis type alignment system (not shown) is performed using the aforementioned reference marks.
  • Preparation work such as reticle alignment and baseline measurement is described in detail in, for example, Japanese Patent Application Laid-Open No. 7-176468 and US Patent Nos. 5,646,413 corresponding thereto.
  • a portion of the description herein shall be incorporated by reference to its disclosure in the above-mentioned publications and corresponding U.S. patents. And
  • main controller 50 instructs a wafer transfer system (not shown) to replace wafer W.
  • the wafer exchange (if there is no wafer on the stage, a simple wafer load) is performed by the wafer transfer system and a wafer transfer mechanism (not shown) on the stage 14. Since the wafer exchange is performed in the same manner as in a known exposure apparatus, a detailed description is omitted.
  • a search alignment and a so-called fine alignment using the alignment system in which the above-described baseline measurement was performed for example, Japanese Patent Application Laid-Open No. 61-44929 and corresponding US Pat. Performs a series of alignment processes including EGA wafer alignment, etc., disclosed in detail in 780, 617, etc.
  • the disclosures in the above-mentioned publications and corresponding US patents are incorporated herein by reference.
  • the reticle pattern is transferred to a plurality of shot areas on the wafer W by the step-and-scan method.
  • the main controller 50 gives a command to the modulation controller 16C in order to give the target integrated exposure amount determined according to the exposure condition and the resist sensitivity to the wafer W. Control.
  • main controller 50 instructs a wafer transfer system (not shown) to replace wafer W.
  • a wafer transfer mechanism (not shown) on the XY stage 14.
  • search alignment and fine alignment are performed on the replaced wafer in the same manner as described above. Do.
  • the reticle pattern is transferred to a plurality of shot areas on the wafer W by the step-and-scan method.
  • the illuminance is changed by at least one of the exposure condition (including the light amount distribution of the exposure light IL on the pupil plane of the illumination optical system, that is, the illumination condition of the reticle R, the numerical aperture of the projection optical system PL) and the reticle pattern.
  • the exposure condition including the light amount distribution of the exposure light IL on the pupil plane of the illumination optical system, that is, the illumination condition of the reticle R, the numerical aperture of the projection optical system PL
  • the exposure condition including the light amount distribution of the exposure light IL on the pupil plane of the illumination optical system, that is, the illumination condition of the reticle R, the numerical aperture of the projection optical system PL
  • the reticle pattern When it changes, it is desirable to control at least one of the frequency and the peak power of the light emitted from the light source device 16 so that an appropriate exposure amount is given to the wafer (the resist).
  • the scanning speed of the reticle and the wafer may be adjusted in addition to at least one of the frequency and the peak power.
  • the pulse light is converted into a wavelength conversion unit for each pulse light.
  • the EOM 132 performs the phase modulation of the phase modulation amount that cancels the phase modulation amount caused by the self-phase modulation received when passing through the medium on the optical path up to 163. Therefore, it is possible to suppress an increase in the spectrum width of the light incident on the wavelength conversion unit 163, and to supply light with good monochromaticity to the wavelength conversion unit 163. Therefore, the monochromaticity of the wavelength-converted light emitted from the wavelength converter 163 can be improved.
  • an EOM 132 for performing phase modulation between the EOM 131 for performing pulse modulation and the optical amplifying unit 161, for example, when the EOM 32 is disposed after the optical amplifying unit 161.
  • the peak intensity of the light passing through the EOM132 can be reduced as compared with the case of FIG. This extends the life of the EOM 132 components.
  • the pulse light emitted from the EOM 13 1 1 is arranged by placing the EOM 13 2 between the EOM 13 1 and the optical amplification section 161. Since the beam is incident on the EOM 132 with no (or almost no) inclusions, the phase modulation signal MD2 is supplied to the EOM 132 with high precision timing for phase modulation of the pulsed light. can do. Therefore, a phase modulation amount corresponding to the light intensity at each instant can be accurately given to the pulse light, and the expansion of the spectrum width of the light incident on the wavelength conversion unit 163 can be effectively suppressed. Can be.
  • the phase modulation can be accurately performed by adjusting the waveform of the voltage signal that can control the level value accurately and easily. It can be performed.
  • pulse cutout is performed by pulse modulation using the EOM131.Thus, by controlling the light pulse cutout interval and the optical amplification rate, the light source device 16 can be used as a light source device. The configuration can be easily controlled.
  • the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system PL can be effectively suppressed.
  • the formed pattern can be accurately transferred to wafer W.
  • the EOM 132 for performing phase modulation is arranged between the EOM 13 31 for performing pulse modulation and the optical amplifier 161. And the wavelength conversion unit 163. The point is that the EOM 132 should be placed in the optical path up to the wavelength conversion section 163 where the pulse light propagates.
  • the EOM 1 31 for performing the pulse modulation and the EOM 1 32 for performing the phase modulation are separately provided, but the voltage signals MD 1 1, By supplying a modulation signal in which the phase modulation signal MD 2 is superimposed on each of the MDs 12, pulse modulation and phase modulation may be performed simultaneously by one electro-optic modulator.
  • the electrodes 13 1 and 1 32 are arranged as the EOM 131 that performs pulse modulation according to each of the two branched waveguides.
  • the electrodes are arranged only on one of the two branched waveguides. It can also be configured.
  • the exposure apparatus according to the second embodiment has the same configuration as the exposure apparatus 10 according to the above-described first embodiment except that the configuration of the light source apparatus is different from that of the above-described first embodiment. I have.
  • the light source device 16 according to the second embodiment
  • the difference from the light source device of the first embodiment is that there is no EOM132 and that the optical amplifier 161 'is used instead of the optical amplifier 161. I do.
  • the second embodiment will be described focusing on such differences.
  • the same or equivalent elements as those of the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
  • the optical amplifying unit 161 ′ of the second embodiment is different from the optical amplifying unit 161 of the first embodiment (see FIG. 5) in the optical fiber amplifier 167.
  • the difference is that an optical fiber amplifier 1 67 'is used instead.
  • the optical fiber amplifier device 1 67 ' are disposed between the front-stage optical amplifier 1 41 and the rear-stage optical amplifier 1 42 in the optical fiber amplifier 1 67, more precisely, the phase between the optical isolator 1 77 and WDM 1 79 2
  • the only difference from the optical fiber amplifier 167 is that the modulator 138 is provided.
  • the phase modulator 1 38 as shown in FIG. 1 OA, the amplification optical fiber 1 75Kai, a non-linear optical element 330 having a non-linear refractive index with a polarity opposite to that of the 1 75 2 nonlinear refractive index, the A DC power source 332 for applying a voltage to the nonlinear optical member 330 via an electrode 331 including a pair of electrode plates 33 11 and 3312 is provided.
  • a semiconductor optical amplifier I ni is also used as an amplification medium - x G a x A S l - Y P Y mixed crystal is used.
  • the incident pulse light L 21 hardly deforms by passing through the nonlinear optical member 330 (the intensity (amplitude) does not change). 2)
  • the pulse light L22 is emitted.
  • the phase modulation amount 0 PM imparted to the emission light L22 by the modulation depends on the intensity of the emission light L22 at each instant.
  • phase modulation amount 0PM is proportional to the optical path length in the nonlinear optical member 330
  • the optical path length in the nonlinear optical member 330 is such that the phase modulation amount 0PM by the phase modulator 138 is It is set to an amount to become long to cancel the self-phase modulation amount 0 S PM that Ru received in the optical path to the conversion unit 1 63.
  • the pulse light L2 ' is incident on the optical fiber amplifier 167' configured as described above, the pulse light L2 'is passed through the amplification optical fibers 1 75 ⁇ and 175 2 as in the case of the first embodiment.
  • the pulse light L2 ' is passed through the amplification optical fibers 1 75 ⁇ and 175 2 as in the case of the first embodiment.
  • mainly amplifying optical fiber 1 75Iota, 1 75 self-phase modulation of the pulsed light in the two is offset by our Keru phase modulation to the phase modulator 1 38.
  • the spread of the pulse width of the pulse light due to the self-phase modulation is suppressed, and the high-intensity pulse light L 3 ′ having a high unity of the wavelength is transmitted from the optical amplification unit 161 ′ to the wavelength conversion unit 163. It is injected toward.
  • a pulse is cut out by the EOM 131 from the continuous light L 1 ′ generated by the continuous light generation unit 160. Is performed to generate an optical pulse train L 2 ′.
  • Each pulse light of each pulse train L 2 ′ of the optical pulse train generated in this way is supplied to the optical amplifier 161 ′.
  • the expansion of the spectrum width due to self-phase modulation is suppressed.
  • the light L3 ′ emitted from the optical amplifier 161 ′ enters the wavelength converter 163, is wavelength-converted, and is emitted as light emitted from the light source device 16.
  • the pattern formed on the reticle R is transferred onto the wafer W using the light emitted from the light source device 16 in the same manner as in the first embodiment.
  • the same effects as those of the above-described first embodiment can be obtained, and as a result, the wavelength conversion unit 163 can be obtained.
  • the phase modulation can be accurately performed without performing dynamic control in the phase modulation.
  • the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system PL can be effectively suppressed.
  • the pattern formed on R can be transferred onto wafer W with high accuracy.
  • the phase modulator 138 for performing the phase modulation is disposed between the first-stage optical amplifier 141 and the second-stage optical amplifier 142, but the optical path length in the nonlinear optical member is adjusted.
  • a phase modulator of the same type as the phase modulator 138 may be disposed between the EOM 13 1 and the upstream optical amplifier 141, or the downstream optical amplifier 142 and the wavelength converter It may be arranged between 1 and 63. That is, similarly to the EOM 132 in the first embodiment, the phase modulator 138 can be arranged in the optical path for transmitting the pulse light to the wavelength converter 163.
  • I ni-xG as the material of the nonlinear optical element 330 of the phase modulator 1 38 a x A S l - Y ⁇ ⁇ was used mixed crystal, the amplifying optical fiber 1 75Iota, A material with a non-linear refractive index different in polarity from the non-linear refractive index of the material of 1 75 2 Material, it can be adopted as the material of the nonlinear optical member 330.
  • the exposure apparatus of the third embodiment has the same configuration as that of the exposure apparatus 10 of the first embodiment except that the configuration of the light source apparatus is different from that of the above-described first embodiment. I have.
  • the light source device 16 according to the third embodiment does not have the EOM 13 2 as compared with the light source device according to the first embodiment (see FIG. 2).
  • a current driver 136 'for supplying a signal on which a phase modulation signal described later is superimposed is used instead of the current driver 136 for supplying a DC current signal.
  • the third embodiment will be described focusing on such differences.
  • the same or similar elements as those of the first embodiment are denoted by the same reference numerals, and duplicate description will be omitted.
  • a current flows through the active layer to cause a population inversion between the conduction band and the valence band, and the spontaneous emission in the population inversion state is supplied from the resonator as a trigger.
  • a laser beam is generated according to the amount of current.
  • the carriers are concentrated on the light emitting portion by the current supply for light emission, and the refractive index changes due to the concentration of the carriers.
  • the change in the refractive index changes according to the concentration of the carrier, but the concentration of the carrier changes according to the amount of supplied current. That is, the refractive index of the light emitting portion changes due to the change in the supplied current amount, and the laser light emitted is phase-modulated by the change in the refractive index (see the above-mentioned equation (2)).
  • the amount of the phase modulation can be changed by changing the supply current.
  • the phase modulation is performed by utilizing the above principle and performing amplitude modulation of the drive signal DV ′ for the continuous generation unit 16 and the semiconductor laser 16 OA.
  • the generated laser light is generated.
  • a drive signal DV ′ in which an AC component for phase modulation is superimposed on a DC component is supplied from the current driver 136 to the DFB semiconductor laser 1.
  • the period of the AC component in the drive signal DV ′ is substantially equal to the light / loss width that is cut out later by the EOM.
  • light L 1 "having an intensity waveform corresponding to the waveform of the drive signal DV ' is emitted from the DFB semiconductor laser 16 OA.
  • the light L 1" emitted from the DFB semiconductor laser 16 OA is As described above, the phase is modulated according to the intensity at each instant.
  • the light L 1 "emitted from the DFB semiconductor laser 16 OA is pulse-modulated by the EOM 13 1.
  • the EOM 13 1 outputs the modulated signal MD 1 from the modulation controller 16 C.
  • the pulse light L 2 ”emitted from the EOM1 31 in response to the pulse cutout instruction by the EOM1 31 has a time change of the phase modulation amount 0 PM that can cancel the self-phase modulation amount 0 SPM received on the optical path to the wavelength conversion unit 163 at 0 PM. Perform pulse cutting.
  • each pulsed light is emitted from the optical pulse train L2 "force EOM131, which has been subjected to phase modulation to cancel the self-phase modulation received later.
  • the optical pulse train L 2 ′′ generated as described above is incident on the optical amplifying unit 161, as in the case of the first embodiment, the optical pulse train L 2 ′′ passes through the amplifying optical fiber 175 175 2 , Each pulsed light is amplified, and mainly the amplification optical fiber 1
  • the light is emitted from the continuous light generation unit 160.
  • the EOM 1331 performs pulse extraction at a timing at which the amount of phase modulation that cancels out the subsequent self-phase modulation changes with time, and an optical pulse train L 2" is generated.
  • the light L 3 ′′ emitted from the optical amplification unit 16 1 enters the wavelength conversion unit 16 3, is wavelength-converted, and is emitted as emission light from the light source device 16. .
  • the pattern formed on the reticle R is transferred onto the wafer W using the light emitted from the light source device 16 in the same manner as in the first embodiment.
  • the continuous light generated by the continuous light generation unit 160 is pulse-modulated when the continuous light generation unit 160 generates laser light. Then, for each pulse light, a phase modulation amount that cancels out the phase modulation amount caused by self-phase modulation received when the respective pulse light passes through the medium on the optical path up to the wavelength conversion unit 163. Perform phase modulation. Therefore, it is possible to suppress an increase in the spectrum width of the light incident on the wavelength conversion unit 163, and to supply light with good monochromaticity to the wavelength conversion unit 163. Therefore, the monochromaticity of the wavelength-converted light emitted from the wavelength converter 163 can be improved.
  • the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system is effectively suppressed, and the reticle R is formed on the reticle R.
  • the transferred pattern can be accurately transferred to the wafer W.
  • the phase modulation signal to the drive signal DV ′ is a continuous AC current component.
  • the intensity modulation signal is almost equivalent to the pulse width in response to the pulse extraction instruction.
  • the phase modulation signal may be superimposed on the DC component, and the light generated by driving with the drive signal DV ′ during the period in which the phase modulation signal is superimposed may be pulse-cut out by the EOM 131. It is needless to say that the phase modulation methods described in the first to third embodiments can be applied in any combination.
  • the phase modulation amount 0PM intentionally applied does not necessarily have to coincide with the amount that cancels the self-phase modulation amount 0SPM.
  • the phase modulation amount 0PM is made different from the self-phase modulation amount 0SPM within a range in which the spectrum width required by the above-described exposure apparatus can be obtained.
  • the phase modulation amount 0PM is equal to the self-phase modulation amount 0SPM. It may be an amount that partially cancels out. Also in such a case, the effect of controlling the expansion of the spectrum width is exerted.
  • the configuration of the wavelength conversion unit in each of the above embodiments is merely an example, and it goes without saying that the configuration of the wavelength conversion unit, the material of the nonlinear optical crystal, the output wavelength, and the like are not limited thereto.
  • the fundamental wave of wavelength 1. 57 jt m emitted from the optical amplifying portion 1 63 performs harmonic generation 1 0 harmonic by using a nonlinear optical crystal, 1 57 nm is the same wavelength as the F 2 laser UV light can be generated.
  • a DFB semiconductor laser was used as the laser light source 16 OA.
  • a fiber laser such as a laser can also be used.
  • the Er-doped fiber is used as the amplification optical fiber.
  • a Yb-doped fiber or another rare-earth element-doped fiber may be used.
  • the optical fiber in which the rare earth element is added to the core is used as the amplification medium.
  • a rod-shaped glass body to which the rare earth element is added is used, May be irradiated.
  • the number of optical fiber amplifiers arranged in parallel in the optical amplification section 161 or 161 ' may be arbitrary, and the number may be determined according to the specifications required for the product to which the light source device according to the present invention is applied. Should be determined. In particular, high output as a light source device When the requirement is not required, the number of optical fiber amplifiers can be reduced and the configuration can be simplified. When simplifying to include only one optical fiber amplifier, the splitter 166 is not required.
  • optical gain of one path can be increased.
  • an appropriate light amount control device may be provided between the optical fiber amplifier, which may be destroyed due to the generation of a giant pulse, and the wavelength converter.
  • a single laser light source 16 OA is used.
  • a plurality of laser light sources 16 OA are used, and at least one of the light source units 16 A shown in FIG.
  • the same number of optical elements as the laser light source (optical isolators 16B, EOM 131, 1332, optical amplifiers 161, etc.) except for the part 163 should be provided.
  • a large number of output lights L4 generated by the light source unit and the wavelength division multiplexing device described above may be configured to be incident on the wavelength conversion unit 163.
  • the wavelength of the ultraviolet light emitted from the light source device is set to be substantially the same as that of the ArF excimer laser.
  • the set wavelength may be arbitrarily set.
  • the oscillation wavelength of the laser light source 16 OA, the configuration of the wavelength converter 16 3, the magnification of the harmonics, and the like may be determined according to the conditions.
  • the set wavelength may be determined, for example, in accordance with the design rules (line width, pitch, etc.) of the pattern to be transferred onto the wafer. (Phase shift type or not) may be considered.
  • the light source device according to the present invention can be applied to a laser repair device used for cutting a part (such as a fuse) of a circuit pattern formed on a wafer.
  • the book The present invention can be suitably applied not only to a step-and-scan type scanning exposure apparatus, but also to a static exposure type, for example, a step-and-repeat type exposure apparatus (such as a stepper).
  • the present invention can be applied to a step-and-stick type exposure apparatus, a mirror projection aligner, and the like.
  • the light source device according to the present invention is used as a light source device for generating exposure illumination light, but light having substantially the same wavelength as the exposure illumination light is required.
  • a light source device for a reticle alignment described above, or a light source device for a spatial image detection system that detects a projection image of a mark arranged on an object plane or an image plane of the projection optical system and obtains optical characteristics of the projection optical system It is also possible to use as such.
  • the light source device of the present invention can be used for various devices other than the exposure device.
  • the light source device of the present invention can be used as a light source device in an optical inspection device or the like.
  • the light source device of the present invention can also be used for optical adjustment (optical axis alignment, etc.) or inspection for an optical system such as the projection optical system in the above embodiment. Further, the light source device of the present invention can be applied to various devices having an excimer laser as a light source instead of the excimer laser.
  • FIG. 13 shows a flowchart of an example of manufacturing the device.
  • a device function / performance design for example, circuit design of a semiconductor device
  • a pattern is designed to realize the function.
  • step 202 mask manufacturing step
  • step 203 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 204 wafer processing step
  • step 205 device assembly step
  • step 205 device assembly step
  • a dicing process and a bonding process are performed. Steps such as, and the packaging step (chip encapsulation) are included as necessary.
  • step 206 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
  • FIG. 14 shows a detailed flow example of the above step 204 in the semiconductor device.
  • step 2 11 oxidation step
  • step 2 12 CVD step
  • step 2 13 electrode formation step
  • step 2 14 ion implantation step
  • steps 211 to 214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to necessary processing in each stage.
  • the post-processing step is executed as follows.
  • step 215 resist forming step
  • step 2 16 exposure step
  • the lithography described above was performed.
  • the circuit pattern of the mask is transferred to the wafer by the stem (exposure apparatus) and the exposure method.
  • Step 217 development step
  • Step 218 etching step
  • the exposed members other than the portion where the resist remains are removed by etching.
  • step 219 resist removing step
  • the exposure apparatus of each of the above-described embodiments is used in the exposure step (step 2 16), so that the reticle pattern can be accurately transferred onto the wafer. it can. As a result, highly integrated devices can be manufactured with good productivity (including yield). Industrial applicability
  • the light source device of the present invention is suitable for generating high-luminance light with improved wavelength unity.
  • the light irradiation device of the present invention is suitable for irradiating an object with high-intensity light having improved unity of wavelength, and particularly when the object is a mask, the light irradiation apparatus is formed on the mask. Suitable for transferring transferred patterns.
  • the device manufacturing method of the present invention is suitable for microdevice production.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A light source device comprises a phase modulator (132) which is disposed in an optical path from a light generation unit (160) to a wavelength conversion unit (163) and performs phase modulation for canceling at least a part of self phase modulation of the light propagated through the optical path. The phase modulator (132) performs the phase modulation according to the intensity of the light at each instant. As a result, the effect of the self phase modulation is suppressed, and an increase in the spectral width of the light incident on the wavelength conversion unit can be suppressed.

Description

明 細 書  Specification
光源装置及び光照射装置、 並びにデバイス製造方法 技術分野 Light source device, light irradiation device, and device manufacturing method
本発明は、 光源装置及び光照射装置、 並びにデバイス製造方法に係り、 さら に詳しくは、 光増幅器によって増幅された光を波長変換して所望の波長の光を 発生する光源装置及び該光源装置を備える光照射装置、 並びに該光照射装置を リソグラフイエ程で用いるデバイス製造方法に関する。 背景技術  The present invention relates to a light source device, a light irradiation device, and a device manufacturing method. More specifically, the present invention relates to a light source device that converts light amplified by an optical amplifier to generate light of a desired wavelength, and a light source device. The present invention relates to a light irradiation device provided with the light irradiation device, and a device manufacturing method using the light irradiation device in a lithographic process. Background art
従来から、 物体の微細構造の検査、 物体の微細加工、 また、 視力矯正の治療 等に光照射装置が使用されている。 例えば、 半導体素字等を製造するためのリ ソグラフイエ程では、 マスク又はレチクル (以下、 rレチクル」 と総称する) に 形成されたパターンを、 投影光学系を介してレジスト等が塗布されたウェハ又 はガラスプレート等の基板 (以下、 適宜 「基板」 又は 「ウェハ」 という) 上に 転写するために、 光照射装置の一種である露光装置が用いられている。 こうし た露光装置としては、 ステップ,アンド ' リピート方式を採用する静止露光型 の投影露光装置 (いわゆるステツバ) や、 ステップ 'アンド 'スキャン方式を 採用する走査露光型の投影露光装置 (いわゆるスキャニング 'ステツバ) 等が 主として用いられている。 また、 視力矯正のために、 角膜表面のアブレーショ ン ( P R K: Photorefractive Keratectomy) あるいは角膜内部のアブレーショ ン L A S I K: Laser Intrastromal Keratomileusis) を行って近眼や乱視等の 治療をするために、光照射装置の一種であるレーザ治療装置が用いられている。 かかる光照射装置のために、 短波長の光を発生する光源について多くの開発 がなされてきた。 こうした、 短波長光源の開発の方向は、 主に次の 2種に大別 される。 その一つはレーザの発振波長自身が短波長であるエキシマレーザ光源 の開発であり、 もう一つは赤外又は可視光レーザの高調波発生を利用した短波 長光源の開発である。 Conventionally, light irradiation devices have been used for inspection of the fine structure of an object, fine processing of an object, and treatment for vision correction. For example, in a lithographic process for manufacturing semiconductor characters, etc., a pattern formed on a mask or reticle (hereinafter, collectively referred to as an “r reticle”) is converted into a wafer or a resist coated via a projection optical system. In order to transfer onto a substrate such as a glass plate (hereinafter referred to as “substrate” or “wafer” as appropriate), an exposure apparatus, which is a type of light irradiation apparatus, is used. Such exposure apparatuses include a static exposure type projection exposure apparatus that employs a step-and-repeat method (so-called stepper) and a scanning exposure-type projection exposure apparatus that employs a step-and-scan method (so-called scanning). Are mainly used. In addition, a type of light irradiation device is used to correct myopia and astigmatism by performing ablation of the corneal surface (PRK: Photorefractive Keratectomy) or abrasion inside the cornea (LASIK: Laser Intrastromal Keratomileusis) to correct vision. Is used. For such light irradiation devices, many developments have been made on light sources that generate short-wavelength light. The direction of development of such short-wavelength light sources is roughly divided into the following two types. Is done. One is the development of excimer laser light sources where the laser oscillation wavelength itself is short, and the other is the development of short wavelength light sources that utilize the generation of harmonics from infrared or visible light lasers.
このうち、前者の方向に沿っては、 K r Fエキシマレーザ(波長 2 4 8 n m) を使用する光源装置が開発され、 現在ではさらに短波長の光源として A r Fェ キシマレ一ザ (波長 1 9 3 n m) 等を使用する光源装置の開発が進められてい る。 しかし、 これらのエキシマレーザは大型であること、 有毒なフッ素ガスを 使用するためレーザのメインテナンスが煩雑でかつ費用が高額となるなどの、 光源装置として不利な点が存在する。  Along the former direction, a light source device using a KrF excimer laser (wavelength: 248 nm) has been developed. At present, an ArF excimer laser (wavelength 1) is used as a shorter wavelength light source. The development of light source devices that use (93 nm) etc. is in progress. However, these excimer lasers have disadvantages as a light source device, such as being large in size, and using toxic fluorine gas, which makes the maintenance of the laser complicated and expensive.
そこで、 後者の方向に沿った短波長化の方法である、 非線形光学結晶の非線 形光学効果を利用し、 長波長の光 (赤外光、 可視光) をより短波長の紫外光に 変換する方法が注目を集めている。 かかる方法を使用した光源装置としては、 例えば、国際公開公報 WO 9 9 / 4 6 8 3 5に開示されたもの(以下、単に「従 来例」 という) がある。  Therefore, using the nonlinear optical effect of a nonlinear optical crystal, which is a method of shortening the wavelength along the latter direction, converts long-wavelength light (infrared light and visible light) into shorter-wavelength ultraviolet light. The way to do is getting attention. As a light source device using such a method, there is, for example, a light source device disclosed in International Publication WO99 / 46853 (hereinafter simply referred to as “conventional example”).
上述のような非線形光学結晶を使用する短波長化の方法では、 非線形光学結 晶における非線形光学効果の発生効率によって短波長光の発生効率が決まるが, 現状では、 利用可能な非線形光学結晶の非線形光学効果の発生効率が高いとは いい難い。 このため、 高輝度の紫外光を得るためには、 非線形光学結晶に高強 度の赤外光又は可視光を入射させる必要がある。 そこで、 上述の従来例では、 半導体レーザ等によって発生したほぼ単一波長の赤外光又は可ネ^光(以下、 「基 本光」 ともいう) を、 希土類元素が添加された増幅用光ファイバを有する光フ アイバ増幅器で増幅して、 非線形光学結晶に入射させる構成を採用している。 ところで、 光ファイバ増幅器の増幅用光ファイバにおける光増幅作用により 基本光を増幅すると、 その増幅用光ファイバ (及びその後段の光ファイバ) 内 を高強度の光が進行することになる。 この結果、 光ファイバ内において非線形 光学現象の一種である自己位相変調 (Self Phase Modulation: S P )が発生 し、 光の進行とともに、 スペクトル幅が増大していく。 こうしたスペクトル幅 の増大は、 光ファイバ内における光エネルギ密度が大きいほど大きくなる。 一方、 露光装置における投影光学系には、 通常、 屈折光学素子であるレンズ が使用されている。 このため露光用照明光のスぺクトル幅が大きくなると色収 差が大きくなリ、 投影光学系の結像特性が劣化するので、 基板へのパターンの 転写精度が悪化することになる。 In the method of shortening the wavelength using the nonlinear optical crystal as described above, the generation efficiency of the short-wavelength light is determined by the generation efficiency of the nonlinear optical effect in the nonlinear optical crystal. It is difficult to say that the generation efficiency of the optical effect is high. Therefore, in order to obtain high-intensity ultraviolet light, it is necessary to make high-intensity infrared light or visible light incident on the nonlinear optical crystal. Therefore, in the above-described conventional example, the infrared light or the negligible light (hereinafter, also referred to as “basic light”) of substantially a single wavelength generated by a semiconductor laser or the like is converted into an optical fiber for amplification to which a rare earth element is added. The optical fiber amplifier has a configuration in which the light is amplified and incident on the nonlinear optical crystal. By the way, when the basic light is amplified by the optical amplification action of the amplification optical fiber of the optical fiber amplifier, high-intensity light travels in the amplification optical fiber (and the optical fiber at the subsequent stage). As a result, self-phase modulation (SP), a type of nonlinear optical phenomenon, occurs in the optical fiber. Then, as the light progresses, the spectrum width increases. Such an increase in the spectral width increases as the optical energy density in the optical fiber increases. On the other hand, a projection optical system in an exposure apparatus usually uses a lens which is a refractive optical element. For this reason, if the spectrum width of the exposure illumination light is increased, the color difference is increased, and the imaging characteristics of the projection optical system are degraded. As a result, the transfer accuracy of the pattern onto the substrate is degraded.
すなわち、 従来例の光源装置を露光装置の露光用光源として使用した場合、 スループット向上のため露光用照明光の輝度を高めると、 露光用照明光のスぺ クトル幅の増大により色収差が増大し、 基板へのパターンの転写精度の悪化を 招く結果となってしまう。 また、 露光用照明光のスペクトル幅が大きいままで あると、 投影光学系の設計や製造が困難となってしまう。 このため、 高輝度か つ小スぺクトル幅の光を射出可能な光源装置の実現が望まれていた。  That is, when the conventional light source device is used as the exposure light source of the exposure apparatus, if the luminance of the exposure illumination light is increased to improve the throughput, the chromatic aberration increases due to an increase in the spectrum width of the exposure illumination light, As a result, the transfer accuracy of the pattern to the substrate is deteriorated. In addition, if the spectral width of the exposure illumination light remains large, it becomes difficult to design and manufacture the projection optical system. For this reason, it has been desired to realize a light source device capable of emitting light with high luminance and small spectral width.
本発明は、 上記の事情のもとでなされたものであり、 その第 1の目的は、 簡 単な構成で、 高輝度かつ小スぺクトル幅の光を射出可能な光源装置を提供する ことにある。  The present invention has been made under the above circumstances, and a first object of the present invention is to provide a light source device capable of emitting light of high luminance and small spectrum width with a simple configuration. It is in.
また、 本発明の第 2の目的は、 高輝度かつ小スぺクトル幅の光を対象物に照 射することができる光照射装置を提供することにある。  Further, a second object of the present invention is to provide a light irradiation device capable of irradiating an object with light of high luminance and small spectrum width.
また、 本発明の第 3の目的は、 デバイスの生産性の向上を図ることが可能な デバイス製造方法を提供することにある。 発明の開示  Further, a third object of the present invention is to provide a device manufacturing method capable of improving device productivity. Disclosure of the invention
本発明者等が研究の結果から得た知見によれば、 媒質中を光が伝搬している ときに発生する自己位相変調は、 その光の伝搬による屈折率の変化により伝搬 光自らが位相変調されることにより発生する。 ここで、 光伝搬媒体における光 の伝搬方向を Z方向とし、 時刻を tとして、 光伝搬媒体における伝搬光の光強 度を I ( Z , t ) としたとき、 光伝搬媒体の各 Z位置及び各時刻における屈折 率 n (Z, t ) は、 According to the findings obtained by the present inventors from the results of the research, self-phase modulation that occurs when light propagates in a medium is based on the fact that the propagating light itself undergoes phase modulation due to a change in the refractive index due to the propagation of the light. It is caused by being done. Here, assuming that the propagation direction of light in the light propagation medium is the Z direction, the time is t, and the light intensity of the propagation light in the light propagation medium is I (Z, t), each Z position of the light propagation medium and Refraction at each time The rate n (Z, t) is
n (Z, t ) =n0 + n2 ■ I (Z, t ) … (1 ) と表される。 (1 ) 式において、 パラメータ no は線形屈折率であり、 パラメ一 タ n2 は非線形屈折率であり、 いずれも光伝搬媒体の材料の種類によって定ま るものである。 n (Z, t) = n 0 + n 2 ■ I (Z, t)... (1) (1) In the equation, parameter no is the linear refractive index, parameter one data n 2 is the nonlinear refractive index, both of which are shall Sadama the type of material of the light propagating medium.
なお、 厳密には、 「非線形屈折率」 というときには光強度 I (Z, t ) の高次 成分も含まれるが、 かかる高次成分は無視することができる程度に小さい。 そ こで、 本明細書においては、 「非線形屈折率」 の用語を、 (1 ) 式におけるパラ メータ n2 に光強度 I (Z, t ) を乗じた量を指すものとして用いるものとす る。 Strictly speaking, the term “non-linear refractive index” includes higher-order components of light intensity I (Z, t), but such higher-order components are small enough to be ignored. Therefore, in this specification, the term “non-linear refractive index” is used to refer to an amount obtained by multiplying the parameter n 2 in equation (1) by the light intensity I (Z, t). .
そして、 例えば光が光伝搬媒体を伝搬した後の自己位相変調量 0NL は、 光 伝搬媒体の長さをしとしたとき、  Then, for example, the self-phase modulation amount 0NL after the light propagates through the light propagation medium is given by the length of the light propagation medium,
0NL = C ■ n2 ■ L ■ I o … (2) 0NL = C ■ n 2 ■ L ■ I o… (2)
と表される。 ここで、 パラメータ Cは、 伝搬光のビーム形状等によって定まる 定数であり、 パラメータ I。 は光伝搬媒体への入射時のピーク光強度である。 It is expressed as Here, the parameter C is a constant determined by the beam shape or the like of the propagating light, and the parameter I. Is the peak light intensity at the time of incidence on the light propagation medium.
したがって、光源装置における初期光の仕様及び光伝搬系の仕様が決まれば、 その光伝搬系を介した光の自己位相変調量 0NL (t) が分かるので、 その自己 位相変調量 0NL (t ) と逆の極性を有する位相変調を光路上の任意の場所で行 えば、 光伝搬系を介した光における自己位相変調に伴うスぺクトル幅の拡大を 抑制することができる。  Therefore, if the specification of the initial light and the specification of the light propagation system in the light source device are determined, the self-phase modulation amount 0NL (t) of the light passing through the light propagation system can be known. If the phase modulation having the opposite polarity is performed at an arbitrary position on the optical path, it is possible to suppress the expansion of the spectrum width due to the self-phase modulation in the light passing through the light propagation system.
本発明は、 かかる知見に基づいてなされたものであり、 以下のような構成を 採用する。  The present invention has been made based on such knowledge, and employs the following configuration.
本発明は第 1の観点からすると、 所定波長の光を発生する光発生器を含む光 発生部と ;前記所定波長の光を増幅する光増幅部と ;前記光増幅部で増幅され た光を波長変換する波長変換部と ;前記光発生部から前記波長変換部に至る光 路中に配置され、 前記光路を進行する光の自己位相変調の少なくとも一部を相 殺する位相変調を行う位相変調器と ; を備える第 1の光源装置である。 According to a first aspect of the present invention, there is provided a light generating unit including a light generator for generating light of a predetermined wavelength; an optical amplifying unit for amplifying the light of the predetermined wavelength; A wavelength conversion unit that performs wavelength conversion; and is disposed in an optical path from the light generation unit to the wavelength conversion unit, and performs at least a part of self-phase modulation of light traveling along the optical path. And a phase modulator for performing phase modulation to kill.
これによれば、 光発生部が発生した光が、 光増幅部の光増幅媒体を介するこ とにより増幅されるが、 光増幅媒体等の光伝搬媒体中を高強度 (より正確には 高工ネルギ密度)の光が伝搬することにより、自己位相変調を受ける。しかし、 光発生部から波長変換部までの光路中に配置された位相変調器が、 自己位相変 調の事前又は事後に、 その自己位相変調の少なくとも一部を相殺する位相変調 を行うので、 自己位相変調量が低減する。 したがって、 波長変換部に入射する 光のスペクトル幅の拡大を抑制することができ、 ひいては、 波長変換部から射 出される光のスぺクトル幅の拡大を抑制することができる。  According to this, the light generated by the light generating unit is amplified by passing through the optical amplifying medium of the optical amplifying unit. (Nelgi density) propagates and undergoes self-phase modulation. However, since the phase modulator disposed in the optical path from the light generation unit to the wavelength conversion unit performs phase modulation to cancel at least a part of the self-phase modulation before or after the self-phase modulation, The amount of phase modulation is reduced. Therefore, it is possible to suppress an increase in the spectrum width of light incident on the wavelength conversion unit, and consequently, it is possible to suppress an increase in the spectrum width of light emitted from the wavelength conversion unit.
本発明の第 1の光源装置では、 前記位相変調器は、 前記光路上に配置され、 供給された変調用電気信号の振幅に応じた位相変調を行う電気光学変調素子 と;前記電気光学変調素子を通過する光の強度に応じた振幅の電気信号を、 前 記変調用電気信号として、 前記電気光学変調素子に供給する信号供給器と ; を 備えることとすることができる。  In the first light source device of the present invention, the phase modulator is arranged on the optical path and performs phase modulation according to the amplitude of the supplied modulation electric signal; and the electro-optic modulation element. And a signal supply unit that supplies an electric signal having an amplitude corresponding to the intensity of light passing through the electro-optical modulation element as the modulation electric signal to the electro-optic modulation element.
この場合において、 前記位相変調器は、 前記光発生部から前記光増幅部まで の光路中に配置されることとすることができる。  In this case, the phase modulator may be arranged in an optical path from the light generation unit to the light amplification unit.
また、 本発明の第 1の光源装置では、 前記位相変調器は、 前記光増幅部にお ける光伝搬媒体の非線形屈折率の極性と反対の極性を有する材質から成る非線 形光学部材を含むこととすることができる。  In the first light source device of the present invention, the phase modulator includes a nonlinear optical member made of a material having a polarity opposite to a polarity of a nonlinear refractive index of a light propagation medium in the light amplifying unit. It can be.
この場合において、 前記非線形光学部材は、 I m - x G a X A s i - γ PY混晶 から成ることとすることができる。 In this case, the nonlinear optical member, I m - may be to consist gamma P Y mixed crystal - x G a X A si.
また、本発明の第 1の光源装置では、前記光発生部が連続光を発生し、かつ、 前記光発生部の直後の段に配置され、 前記連続光からパルス光の切出しを行う パルス変調器を更に備えることとすることができる。  Further, in the first light source device of the present invention, the light generator generates continuous light, and is arranged at a stage immediately after the light generator, and extracts a pulse light from the continuous light. May be further provided.
本発明の第 1の光源装置では、 前記光発生器は、 赤外域から可視域までの波 長範囲内のほぼ単一波長のレーザ光を発生し、 前記波長変換部は紫外光を射出 することとすることができる。 In the first light source device of the present invention, the light generator generates a laser beam having a substantially single wavelength within a wavelength range from an infrared region to a visible region, and the wavelength converter emits ultraviolet light. You can do it.
本発明の第 1の光源装置では、 前記光増幅部は、 増幅用光ファイバを含むこ ととすることができる。  In the first light source device of the present invention, the optical amplification unit may include an amplification optical fiber.
本発明は、 第 2の観点からすると、 所定波長の光を発生する光発生器と ;前 記光発生器が発生した光が迪る光路における自己位相変調の少なくとも一部を 相殺する位相変調を行う位相変調用信号が重畳された駆動信号を、 前記光発 器に供給する駆動信号供給器と ;前記所定波長の光を増幅する光増幅部と ; を 備える第 2の光源装置である。  According to a second aspect of the present invention, there is provided a light generator that generates light of a predetermined wavelength; and a phase modulator that cancels at least a part of self-phase modulation in an optical path where light generated by the light generator enters. A second light source device, comprising: a driving signal supply unit that supplies a driving signal on which a phase modulation signal to be performed is superimposed to the light emitting unit; and an optical amplifying unit that amplifies the light having the predetermined wavelength.
これによれば、 光発生器から光を発生させるために供給される駆動信号に位 相変調用信号を重畳させることにより、 光発生器が発生した光が迪る光路にお ける自己位相変調の少なくとも一部を相殺するので、 自己位相変調量が低減す る。 したがって、 自己位相変調によるスペクトル幅の拡大を抑制することがで ぎる。  According to this, the phase modulation signal is superimposed on the drive signal supplied to generate light from the light generator, and the self-phase modulation in the optical path where the light generated by the light generator enters can be performed. Since at least a portion is canceled, the amount of self-phase modulation is reduced. Therefore, expansion of the spectrum width due to self-phase modulation can be suppressed.
本発明の第 2の光源装置では、 前記光発生器から前記光増幅部までの光路中 に配置され、 前記光発生器から射出された光からパルス光の切出しを行うパル ス変調器を更に備えることとすることができる。  The second light source device of the present invention further includes a pulse modulator that is disposed in an optical path from the light generator to the light amplifying unit and that cuts out pulse light from light emitted from the light generator. It can be.
また、 本発明の第 2の光源装置では、 前記光増幅部で増幅された光を波長変 換する波長変換部を更に備えることとすることができる。  Further, the second light source device of the present invention may further include a wavelength converter for converting the wavelength of the light amplified by the optical amplifier.
この場合において、 前記光発生器が、 赤外域から可視域までの波長範囲内の 単一波長のレーザ光を発生し、 前記波長変換部が紫外光を射出することとする ことができる。  In this case, the light generator may generate a single-wavelength laser light within a wavelength range from an infrared region to a visible region, and the wavelength conversion unit may emit ultraviolet light.
また、 本発明の第 2の光源装置では、 前記光増幅部が増幅用光ファイバを含 むこととすることができる。  In the second light source device of the present invention, the optical amplifier may include an amplification optical fiber.
本発明は、 第 3の観点からすると、 対象物に光を照射する光照射装置であつ て、 本発明の第 1及び第 2光源装置のうちのいずれかの光源装置と ;該光源装 置から射出された光を前記対象物に向けて射出する照射光学系と; を備える光 照射装置である。 According to a third aspect of the present invention, there is provided a light irradiation device for irradiating an object with light, comprising: a light source device of one of the first and second light source devices of the present invention; An irradiation optical system that emits the emitted light toward the object. An irradiation device.
これによれば、 前記光源装置から射出された光を、 照射光学系を介して対象 物に向けて射出するので、 波長変換された高輝度かつスぺクトル幅の狭い光を 対象物に照射することができる。  According to this, since the light emitted from the light source device is emitted toward the object via the irradiation optical system, the wavelength-converted high-brightness light having a narrow spectrum width is applied to the object. be able to.
この場合において、 前記光が照射される対象物としては、 光照射装置の使用 目的に応じて種々の対象物が用いられる。 例えば、 光照射装置をデバイスバタ ーンの形成に使用する場合には、 前記対象物として所定のパターンが形成され たマスクを用いることができ、 この場合、 光照射装置は、 そのマスクから射出 される光を感光物体に投射する投影光学系を更に備えることとすることができ る。 かかる場合には、 高輝度かつスぺクトル幅の狭い光がマスクに照射され、 そのマスクを介した光が投影光学系に入射するので、 投影光学系が屈折光学素 子を含む場合、 その色収差の発生を抑制することが可能となる。  In this case, various objects are used as the object to be irradiated with the light depending on the purpose of use of the light irradiation device. For example, when the light irradiation device is used for forming a device pattern, a mask having a predetermined pattern formed as the object can be used. In this case, the light irradiation device is emitted from the mask. And a projection optical system for projecting the reflected light onto the photosensitive object. In such a case, light having high brightness and a narrow spectrum width is irradiated on the mask, and light passing through the mask is incident on the projection optical system. Therefore, when the projection optical system includes a refractive optical element, its chromatic aberration Can be suppressed.
本発明は、 第 4の観点からすると、 マスクのパターンを感光物体上に転写す る露光装置であって、 本発明の第 1及び第 2光源装置のうちのいずれかの光源 装置と ;該光源装置から射出された光を前記マスクに照射する照明光学系と ; を備える露光装置である。  According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern of a mask onto a photosensitive object, comprising: a light source device of one of the first and second light source devices of the present invention; An illumination optical system for irradiating the mask with light emitted from the apparatus.
これによれば、 前記光源装置から射出された光を、 照明光学系を介してマス クに照射するので、 波長変換された高輝度かつスぺクトル幅の狭い光をマスク に照射することができ、 そのマスクを介した光で感光物体が露光される。 従つ て、 マスクのパターンを感光物体上に精度良く転写することが可能となる。 この場合において、 前記マスクを介して前記感光物体に照射される光の強度 又は積算光量を調整するために前記光源装置を制御する制御装置を更に備える こととすることができる。  According to this, since the light emitted from the light source device is radiated to the mask via the illumination optical system, it is possible to irradiate the mask with the wavelength-converted high-brightness light having a narrow spectrum width. The photosensitive object is exposed to light through the mask. Therefore, it is possible to transfer the pattern of the mask onto the photosensitive object with high accuracy. In this case, a control device for controlling the light source device in order to adjust the intensity of light or the integrated light amount applied to the photosensitive object via the mask may be further provided.
また、 リソグラフイエ程において、 対象物としてマスクを用いる本発明の光 照射装置、 及び本発明の露光装置のいずれかを用い、 前記マスク (及び投影光 学系) を介して前記感光物体を露光することにより感光物体上にマスクのバタ ーンを精度良く形成することができ、 これにより、 より高集積度のマイクロデ バイスを生産性 (歩留まりを含む) 良く製造することができる。 従って、 本発 明は、 更に別の観点からすると、 対象物としてマスクを用いる本発明の光照射 装置及び本発明の露光装置のいずれかを用いるデバイス製造方法であるとも言 える。 図面の簡単な説明 In the lithographic process, the photosensitive object is exposed through the mask (and the projection optical system) using any one of the light irradiation apparatus of the present invention using a mask as an object and the exposure apparatus of the present invention. The flutter of the mask on the photosensitive object This makes it possible to form micro-devices with high precision, and thereby to manufacture highly integrated microdevices with good productivity (including yield). Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using any of the light irradiation apparatus of the present invention using a mask as an object and the exposure apparatus of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る露光装置の構成を概略的に示す図で お 。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
図 2は、 図 1の光源装置の内部構成を主制御装置とともに示すプロック図で あ 。  FIG. 2 is a block diagram showing an internal configuration of the light source device of FIG. 1 together with a main control device.
図 3 Aは、 図 2のパルス変調器の構成を概略的に示す図、 図 3 Bは、 図 2の パルス変調器の作用を説明するためのタイミング図である。  FIG. 3A is a diagram schematically showing the configuration of the pulse modulator of FIG. 2, and FIG. 3B is a timing chart for explaining the operation of the pulse modulator of FIG.
図 4 Aは、 図 2の位相変調器の構成を概略的に示す図であり、 図 4 Bは、 図 2の位相変調器の作用を説明するためのタイミング図である。  FIG. 4A is a diagram schematically showing the configuration of the phase modulator of FIG. 2, and FIG. 4B is a timing chart for explaining the operation of the phase modulator of FIG.
図 5は、 図 2の光増幅部を構成する光ファイバ増幅器及びその周辺部を概略 的に示す図である。  FIG. 5 is a diagram schematically showing an optical fiber amplifier constituting the optical amplifying unit of FIG. 2 and a peripheral portion thereof.
図 6 A及び図 6 Bは、 位相変調によるスぺクトル幅の拡大の抑制効果を説明 するための図である。  6A and 6B are diagrams for explaining the effect of suppressing the expansion of the spectrum width by the phase modulation.
図 7は、 図 2の波長変換部の構成を示す図である。  FIG. 7 is a diagram illustrating a configuration of the wavelength conversion unit in FIG.
図 8は、 第 2の実施形態に係る光源装置の内部構成を主制御装置とともに示 すブロック図である。  FIG. 8 is a block diagram showing an internal configuration of the light source device according to the second embodiment together with a main control device.
図 9は、 図 8の光増幅部を構成する光ファイバ増幅器及びその周辺部を概略 的に示す図である。  FIG. 9 is a diagram schematically showing an optical fiber amplifier constituting the optical amplifying unit in FIG. 8 and a peripheral portion thereof.
図 1 O Aは、 図 9の位相変調器の構成を概略的に示す図、 図 1 O Bは、 図 9 の位相変調器の作用を説明するためのタイミング図である。 図 1 1は、 第 3の実施形態に係る光源装置の内部構成を主制御装置とともに 示すブロック図である。 FIG. 1OA is a diagram schematically showing the configuration of the phase modulator of FIG. 9, and FIG. 1OB is a timing chart for explaining the operation of the phase modulator of FIG. FIG. 11 is a block diagram showing an internal configuration of a light source device according to the third embodiment together with a main control device.
図 1 2は、 図 1 1の光源装置における位相変調作用を説明するためのタイミ ング図である。  FIG. 12 is a timing diagram for explaining the phase modulation operation in the light source device of FIG.
図 1 3は、 本発明のデバイス製造方法を説明するためのフローチャートであ る。  FIG. 13 is a flowchart for explaining the device manufacturing method of the present invention.
図 1 4は、 図 1 3のステップ 2 0 4の具体例を示すフローチヤ一トである。 発明を実施するための最良の形態  FIG. 14 is a flowchart showing a specific example of step 204 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
《第 1の実施形態》  << 1st Embodiment >>
以下、 本発明の第 1の実施形態を、 図 1〜図フを参照して説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
図 1には、 本発明の光学装置を含んで構成される本発明の光照射装置の第 1 の実施形態に係る露光装置 1 0の概略構成が示されている。 この露光装置 1 0 は、 ステップ'アンド 'スキャン方式の走査型露光装置である。  FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to a first embodiment of the light irradiation apparatus of the present invention including the optical apparatus of the present invention. The exposure apparatus 10 is a step-and-scan type scanning exposure apparatus.
この露光装置 1 0は、 光源装置 1 6及び照射光学系としての照明光学系 1 2 から成る照明系、 この照明系からの露光用照明光(以下、 「露光光」 という) I Lによリ照明されるマスクとしてのレチクル Rを保持するレチクルステージ R S T、 レチクル Rを介した露光光 I Lを感光物体としてのウェハ W上に投射す る投影光学系 Pし、 ウェハ Wを保持する Zチルトステージ 5 8が搭載された X Yステージ 1 4、 及びこれらの制御系等を備えている。  The exposure apparatus 10 is an illumination system including a light source device 16 and an illumination optical system 12 as an irradiation optical system, and illumination light for exposure (hereinafter, referred to as “exposure light”) IL from the illumination system. A reticle stage RST that holds a reticle R as a mask to be exposed, a projection optical system P that projects exposure light IL through the reticle R onto a wafer W as a photosensitive object, and a Z tilt stage that holds the wafer W 5 8 And an XY stage 14 on which is mounted, and a control system for these.
前記光源装置 1 6は、 例えば、 波長 1 9 3 n m ( A r Fエキシマレーザ光と ほぼ同一波長) の紫外パルス光、 あるいは波長 1 5 7 n m ( F2 レーザ光とほ ぼ同一波長) の紫外パルス光を出力する高調波発生装置である。 この光源装置 1 6は、 前記照明光学系 1 2、 レチクルステージ R S T、 投影光学系 P L、 Z チル卜ステージ 5 8、 X Yステージ 1 4及びこれら各部が搭載された不図示の 本体コラム等から成る露光装置本体とともに、 温度、 圧力、 湿度等が高精度に 調整されたエンバイロンメンタル■チャンバ (以下、 「チャンバ」 という) 1 1 内に収納されている。 The light source device 1 6 is, for example, ultraviolet wavelength 1 9 3 nm (A r F excimer laser beam substantially the same wavelength) ultraviolet pulse light, or wavelength 1 5 7 nm (F 2 laser beam with almost the same wavelength) of This is a harmonic generator that outputs pulsed light. The light source device 16 includes an illumination optical system 12, a reticle stage RST, a projection optical system PL, a Z tilt stage 58, an XY stage 14, and an exposure system including a main body column (not shown) on which these components are mounted. Temperature, pressure, humidity, etc. with high accuracy along with the main unit It is housed in a regulated environmental chamber (hereinafter referred to as “chamber”) 1 1.
なお、 本実施形態では、 光源装置 1 6を全てチャンバ内に配置するものとし たが、 光源装置 1 6の一部、 例えば後述する波長変換部 1 63のみをチャンバ 内、 特に照明光学系 1 2と同一の架台に設け、 この波長変換部 1 63と光源 1 6の本体部とを光ファィバ等で接続してもよい。  In the present embodiment, all the light source devices 16 are arranged in the chamber. However, only a part of the light source device 16, for example, only a wavelength conversion unit 163 described later, is disposed in the chamber, particularly, the illumination optical system 12. The wavelength converter 163 and the main body of the light source 16 may be connected by an optical fiber or the like.
図 2には、 光源装置 1 6の内部構成が装置全体を統括制御する主制御装置 5 0とともにブロック図にて示されている。 この図 2に示されるように、 光源装 置 1 6は、 光源部 1 6A、 レーザ制御装置 1 6 B、 及び変調制御装置 1 6 C等 を含んで構成されている。  FIG. 2 is a block diagram showing the internal configuration of the light source device 16 together with a main control device 50 that controls the entire device. As shown in FIG. 2, the light source device 16 includes a light source section 16A, a laser control device 16B, a modulation control device 16C, and the like.
前記光源部 1 6Aは、 連続光発生部 1 60、 駆動信号供給器としての電流駆 動器 1 36、 パルス変調器としての電気光学変調器 (以下、 「EOM」 という) 1 31、 位相変調器としての Ε ΟΜ 1 32、 光増幅部 1 61、 波長変換部 1 6 3、 及びビームモニタ機構 1 64を含んで構成されている。  The light source section 16A includes a continuous light generating section 160, a current driver 136 as a drive signal supplier, an electro-optic modulator (hereinafter referred to as “EOM”) 131 as a pulse modulator, and a phase modulator. , A light amplification section 161, a wavelength conversion section 163, and a beam monitor mechanism 164.
前記連続光発生部 1 60は、 光発生器としてのレーザ光源 1 60Α、 光カツ ブラ BS、 及び光アイソレータ 1 6 OB等を有する。  The continuous light generator 160 includes a laser light source 160 as a light generator, an optical cutoff BS, an optical isolator 16 OB, and the like.
前記レーザ光源 1 6 OAとしては、ここでは、単一波長発振レーザ、例えば、 発振波長 1. 544 jt m, 連続波出力 (以下 「CW出力」 という) 20 mWの I n G a A s P, D F B半導体レーザが用いられている。 以下においては、 レ 一ザ光源 1 60 Aを適宜「D FB半導体レーザ 1 6 OA」とも呼ぶものとする。 この D FB半導体レーザ 1 6 OAは、 電流駆動器 1 36から供給された電流信 号 DVにより駆動され、 電流信号 DVの大きさに応じた光量のレーザ光を発生 する。  As the laser light source 16 OA, here, a single-wavelength oscillation laser, for example, an oscillation wavelength of 1.544 jtm, a continuous wave output (hereinafter referred to as “CW output”) 20 mW of InGaAsP, DFB semiconductor lasers are used. In the following, the laser light source 160 A is also referred to as “DFB semiconductor laser 16 OA” as appropriate. The DFB semiconductor laser 16 OA is driven by the current signal DV supplied from the current driver 136, and generates a laser beam having an amount of light corresponding to the magnitude of the current signal DV.
なお、 D FB半導体レーザは、 通常、 ヒートシンクの上に設けられ、 これら が筐体内に収納されている。 本実施形態では、 D FB半導体レーザ 1 6 OAに 付設されるヒートシンク上に温度調整器 (例えばペルチェ素子など) が設けら れており、 レーザ制御装置 1 6 Bがその温度を制御することにより発振波長が 制御 (調整) 可能な構成となっている。 The DFB semiconductor laser is usually provided on a heat sink, and these are housed in a housing. In the present embodiment, a temperature regulator (for example, a Peltier element) is provided on a heat sink attached to the DFB semiconductor laser 16 OA. The laser controller 16B controls the temperature so that the oscillation wavelength can be controlled (adjusted).
前記光カップラ BSとしては、透過率が 97%程度のものが用いられている。 このため、 D FB半導体レーザ 1 6 OAからのレーザ光は、 光カップラ BSに よって 2つに分岐され、 その 97%程度が次段の光アイソレータ 1 60 Bに向 かって進み、 残り 3%程度がビームモニタ機構 1 64に入射するようになって いる。  As the optical coupler BS, one having a transmittance of about 97% is used. Therefore, the laser light from the DFB semiconductor laser 16 OA is split into two by the optical coupler BS, and about 97% of the laser light travels toward the next-stage optical isolator 160B, and the remaining about 3% The beam enters the beam monitor mechanism 164.
前記ビームモニタ機構 1 64は、 フォトダイオード等の光電変換素子から成 るエネルギモニタ (図示省略) を含んでいる。 このエネルギモニタの出力は、 レーザ制御装置 1 6 Bを介して主制御装置 50に供給されており、 主制御装置 50ではエネルギモニタの出力に基づいてレーザ光のエネルギ (パワー) を検 出し、レーザ制御装置 1 6 Bを介して電流駆動器 1 36を制御することにより、 D FB半導体レーザ 1 6 OAで発振されるレーザ光の光量を必要に応じて制御 する。  The beam monitor mechanism 164 includes an energy monitor (not shown) including a photoelectric conversion element such as a photodiode. The output of this energy monitor is supplied to the main controller 50 via the laser controller 16B. The main controller 50 detects the energy (power) of the laser beam based on the output of the energy monitor, and By controlling the current driver 136 via the controller 16B, the amount of laser light oscillated by the DFB semiconductor laser 16OA is controlled as necessary.
前記光アイソレータ 1 60 Bは、 光カップラ BSから EOM 1 3 1に向かう 方向の光のみを通過させ、 反対向きの光の通過を阻止する。 この光アイソレー タ 1 60Bにより、 反射光 (戻り光) に起因する D FB半導体レーザ 1 60A の発振モードの変化や雑音の発生等が防止される。  The optical isolator 160B passes only the light in the direction from the optical coupler BS to the EOM 131, and blocks the light in the opposite direction. The optical isolator 160B prevents a change in the oscillation mode of the DFB semiconductor laser 160A and the generation of noise due to the reflected light (return light).
前記 EOM 1 31は、 光アイソレータ 1 60 Bを通過したレーザ光 (CW光 (連続光)) L 1をパルス光に変換するためのものである。この EOM 1 31は、 図 3 Aに示されるように、 入射した光 L 1が迪る光路が 2分岐した後、 再び合 流する導波路 31 0と、 2分岐した導波路の双方それぞれに応じて設けられた 電極 31 1 , 31 2とを備えている。 ここで、 導波路 31 0は、 電圧が印加さ れるとその電圧値に応じて電圧印加部の屈折率が変化する材質で構成されてい る。 また、 電極 31 1は、 導波路を挟むように設けられた 2つの電極板 31 1 1, 31 12から構成されており、 この電極 31 1 (より正確には一方の電極 3 1 1 i)には、変調制御装置 1 6 Cからのパルス変調信号 MD 1を構成する一方 の電圧信号 MD 1 1が供給されている。 ここで、 他方の電極 31 12 は接地レ ベル (以下、 「GND」 と表す) となっている。 また、 電極 31 2は、 導波路を 挟むように設けられた 2つの電極板 3 1 2し 31 22から構成されており、 こ の電極 31 2 (より正確には一方の電極 31 21) には、 変調制御装置 1 6 C からのパルス変調信号 MD 1を構成する一方の電圧信号 MD 1 2が供給されて いる。 ここで、 他方の電極 3 1 22 は G N Dレベルとなっている。 The EOM 131 converts the laser light (CW light (continuous light)) L1 that has passed through the optical isolator 160B into pulsed light. As shown in FIG. 3A, this EOM 131 responds to both the waveguide 310 and the two-branched waveguide that join again after the optical path where the incident light L 1 enters is branched into two. Electrodes 31 1, 312 provided in the same manner. Here, the waveguide 310 is made of a material whose refractive index of the voltage application section changes according to the voltage value when a voltage is applied. The electrode 311 is composed of two electrode plates 311 1 and 3112 provided so as to sandwich the waveguide, and this electrode 311 (more precisely, one electrode 3 11 i) is supplied with one voltage signal MD 11 constituting the pulse modulation signal MD 1 from the modulation control device 16 C. Here, the other electrode 31 1 2 is at the ground level (hereinafter, referred to as “GND”). The electrode 31 2, waveguides is composed of two electrode plates 3 1 2 teeth 31 2 2 provided therebetween, this electrode 31 2 (more precisely, one of the electrodes 31 21) to Is supplied with one voltage signal MD12 constituting the pulse modulation signal MD1 from the modulation controller 16C. Here, the other electrode 3 1 2 2 is at the GND level.
ここで、図 3 Aにおいては、説明を分かリ易くするために、上記各電極板が、 導波路 31 0から離れた状態で示されているが、 これらの電極板は実際には導 波路 31 0に接触していることが望ましい。 後述する各実施形態における電極 板についても同様である。  Here, in FIG. 3A, for ease of explanation, each of the above-mentioned electrode plates is shown apart from the waveguide 310, but these electrode plates are actually It is desirable to be in contact with 310. The same applies to the electrode plate in each embodiment described later.
なお、 以下の説明においては、 電圧信号 MD 1 1及び電圧信号 MD 1 2を総 称するときには、 「パルス変調信号 MD 1」 と呼ぶものとする。  In the following description, the voltage signal MD 11 and the voltage signal MD 12 are collectively referred to as “pulse modulation signal MD 1”.
なお、 電極 31 1 , 31 2の双方ともに電圧が印加されていないときに、 射 出光 L 2の光量が 0となるように、 導波路 31 0における 2つの分岐光路長が 設定されている。 また、 電極 3 1 1 , 3 1 2に互いに異なる電圧信号が印加さ れることにより、 それらの印加電圧の差に応じた強度の光が射出されるように なっている。  Note that the two branch optical path lengths in the waveguide 310 are set such that the amount of the emitted light L2 becomes 0 when no voltage is applied to both of the electrodes 31 1 and 312. When different voltage signals are applied to the electrodes 311 and 312, light having an intensity corresponding to the difference between the applied voltages is emitted.
この EOM 1 31では、 図 3 Bに示されるように、 強度がほぼ一定の連続光 L 1を入射するが、 変調制御装置 1 6 Cからのパルス変調信号 MD 1を構成す る電圧信号 MD 1 1及び MD 1 2が OVの場合には、 射出光 L 2の光量はほぼ 0となる。 そして、 変調制御装置 1 6 Cから、 電圧信号 MD 1 1として正電圧 ピークを有するパルス信号が供給されるとともに、 電圧信号 MD 1 1に同期し て、電圧信号 MD 1 2として負電圧ピークを有するパルス信号が供給されると、 電圧信号 MD 1 1の電圧レベルと電圧信号 MD 1 2の電圧レベルとの差に応じ た光量の光が射出光 L 2として射出される。 こうして、 変調制御装置 1 6 Cに よる制御のもとで、 入射光 L 1のパルス切出し、 すなわち、 パルス変調が行わ れ、 光パルス列が射出光し 2として、 EOM 1 31から射出される。 In this EOM 131, as shown in FIG. 3B, continuous light L1 having almost constant intensity is incident, but the voltage signal MD1 constituting the pulse modulated signal MD1 from the modulation controller 16C is inputted. When 1 and MD12 are OV, the light quantity of the emitted light L2 is almost zero. A pulse signal having a positive voltage peak is supplied as the voltage signal MD 11 from the modulation control device 16 C, and the voltage signal MD 12 has a negative voltage peak in synchronization with the voltage signal MD 11. When the pulse signal is supplied, light having an amount of light corresponding to the difference between the voltage level of the voltage signal MD11 and the voltage level of the voltage signal MD12 is emitted as emission light L2. Thus, the modulation controller 16 C Under this control, the pulse of the incident light L 1 is cut out, that is, pulse modulation is performed, and the optical pulse train is emitted from the EOM 131 as the emitted light 2.
なお、 EOM 1 31への印加電圧と D F B半導体レーザ 1 6 OAへの供給電 流制御とを併用して、 出力光のパルス化を行うことが望ましい。 かかる場合に は、 消光比を向上することができる。 このようにすれば、 EOM1 31のみを 用いる場合に比べて、 消光比を向上しつつ、 パルス幅が狭いパルス光を容易に 発生させることが可能になるとともに、 パルス光の発振間隔や発振の開始及び その停止などをより簡単に制御することが可能になる。  It is desirable that the output light be pulsed by using both the voltage applied to the EOM 131 and the control of the current supplied to the DFB semiconductor laser 16 OA. In such a case, the extinction ratio can be improved. This makes it possible to easily generate a pulse light with a narrow pulse width while improving the extinction ratio as compared with the case where only EOM131 is used, and to make it easier to generate the pulse light at intervals and start oscillation. And it becomes possible to control the stop and the like more easily.
また、 EOM1 31に代えて、 音響光学変調器 (AOM) を用いることも可 能である。  Also, an acousto-optic modulator (AOM) can be used in place of EOM131.
図 2に戻り、 前記 EOM 1 32は、 EOM 1 3 1から射出された光 (光パル ス列) L 2の各パルス光を位相変調するためのものである。 この EOM1 32 は、 図 4 Aに示されるように、 入射光 L 2が迪る導波路 320と、 電極 321 とを備えている。 ここで、 導波路 320は、 電圧が印加されるとその電圧値に 応じて電圧印加部の屈折率が変化する材質で構成されている。 また、 電極 32 1は、導波路を挟むように設けられた 2つの電極板 3211 , 3212から構成 されており、 この電極 321 (より正確には一方の電極板 321 ι) には、 変調 制御装置 1 6 Cからの位相変調信号 MD 2が供給されている。 ここで、 他方の 電極板 3212 は G N Dレベルとなっている。 Returning to FIG. 2, the EOM 132 is for phase-modulating each pulse light of the light (optical pulse train) L2 emitted from the EOM 1331. This EOM1 32 includes, as shown in FIG. 4A, a waveguide 320 in which the incident light L2 enters, and an electrode 321. Here, when a voltage is applied, the waveguide 320 is made of a material whose refractive index of the voltage application unit changes according to the voltage value. The electrode 321 is composed of two electrode plates 3211 and 3212 provided so as to sandwich the waveguide. The electrode 321 (more precisely, one electrode plate 321 ι) has a modulation control The phase modulated signal MD2 from the device 16C is supplied. Here, the other electrode plate 3212 is at the GND level.
この EOM 1 32では、 図 4 Bに示されるように、 導波路 320を通過中の 光の強度に応じた電圧レベルの位相変調信号 MD 2が電極 321に印加される ことにより、 入射光 L 2の各瞬間に強度に応じて、 導波路 320の電圧印加部 分の非線型屈折率が変化する。 この結果、 前述の (2) 式に従って位相変調が 行われる。 かかる位相変調によって射出光 L 3に付与される位相変調量 0PM は、 図 4 Bに示されるように、 射出光 L 3の各瞬間の強度に応じたものとなつ ている。 なお、 位相変調量 0PM は、 射出光 L 3の各光パルスがその後の波長 変換部 1 63までの光路において受ける自己位相変調量 0S P M を相殺する量 となるようになつている。 かかる位相変調量 0PM の調整は、 光源装置 1 6の 構成の設計情報あるいは自己位相変調量 ø s P M の事前計測結果から求められ る。 そして、 求められた自己位相変調量 0SPM、 導波路 320の材質の電気光 学特性、 及び電極 32 1の大きさ等から位相変調信号 MD 2の波形が決定され る。 In this EOM 132, as shown in FIG. 4B, the phase modulation signal MD 2 having a voltage level corresponding to the intensity of the light passing through the waveguide 320 is applied to the electrode 321 so that the incident light L 2 At each moment, the nonlinear refractive index of the voltage application portion of the waveguide 320 changes according to the intensity. As a result, phase modulation is performed in accordance with the above-mentioned equation (2). As shown in FIG. 4B, the phase modulation amount 0PM imparted to the emission light L3 by such phase modulation depends on the intensity of the emission light L3 at each instant. It should be noted that the phase modulation amount 0PM is determined by the fact that each light pulse of the emitted light L3 The amount is such that the amount of self-phase modulation received in the optical path up to the conversion section 163 cancels out 0 SPM . Adjustment of such phase modulation amount 0PM is Ru obtained from pre-measurement results of the design information of the configuration of the light source device 1 6 or self-phase modulation amount ø s P M. Then, the waveform of the phase modulation signal MD2 is determined from the obtained self-phase modulation amount 0SPM, the electro-optical characteristics of the material of the waveguide 320, the size of the electrode 321, and the like.
前記光増幅部 1 6 "Ui、EOM 1 32からのパルス光 L 3を増幅するもので、 図 5に示されるように、 EOM 1 32からのパルス光を時間順に周期的に振り 分けて分岐 (例えば、 1 28分岐) する光分岐器 1 66と、 複数の光ファイバ 増幅器 1 67とを含んで構成されている。  The optical amplifying unit 16 "Ui amplifies the pulse light L3 from the EOM 132. As shown in FIG. 5, the pulse light from the EOM 132 is periodically distributed in time sequence and branched ( For example, it is configured to include an optical splitter 166 that branches into 128 branches and a plurality of optical fiber amplifiers 167.
図 5に示されるように、 光ファイバ増幅器 1 67は、 前段光増幅器 1 4 1と 後段光増幅器 1 42とを備えている。 ここで、 前段光増幅器 1 41は、 増幅用 光ファイバ 1 75 励起光 (ポンプ光) を発生する励起用半導体レーザ 1 7 8ι、 及び上述の EOM 1 32の出力光と励起光とを合成し、 その合成光を増 幅用光ファイバ 1つ 5i に供給する波長分割多重化装置(Wavelength Division Multiplexers DM) 1 79i を有している。 また、 後段光増幅器 1 42は、 増幅用光ファイバ 1 7 52、励起光を発生する励起用半導体レーザ 1 7 82、 及 び前段光増幅器 1 4 1の出力光と励起光とを合成し、 その合成光を増幅用光フ アイバ 1 7 52に供給する波長分割多重化装置 1 7 92を有している。そして、 前段光増幅器 1 4 1と後段光増幅器 1 42との間には、 D F B半導体レーザ 1 6 OAの発生光とほぼ同一波長の光を選択的に透過する光フィルタ 1 7 6と、 光アイソレータ 1 7 7とが配置されている。 As shown in FIG. 5, the optical fiber amplifier 167 includes a first-stage optical amplifier 141 and a second-stage optical amplifier 142. Here, the pre-stage optical amplifier 141 combines the pumping semiconductor laser 178ι to generate the amplification optical fiber 175 pumping light (pumping light), and the output light of the EOM 132 and the pumping light, It has a wavelength division multiplexing device (Wavelength Division Multiplexers DM) 179i that supplies the combined light to one amplification optical fiber 5i. Moreover, subsequent optical amplifier 1 42 combines the amplification optical fiber 1 7 5 2, the pumping semiconductor laser 1 7 8 2 for generating excitation light, and及beauty front optical amplifier 1 4 1 of the output light and the excitation light has the wavelength division multiplexer for supplying the combined light to the amplification optical full multiplexing 1 7 5 2 1 7 9 2. An optical filter 1 76 that selectively transmits light having substantially the same wavelength as the light generated by the DFB semiconductor laser 16 OA is provided between the first optical amplifier 14 1 and the second optical amplifier 142, and an optical isolator. 1 7 7 are arranged.
前記増幅用光ファイバ 1 7 51 ; 1 752 (以下、 総称するときには 「増幅用 光ファイバ 1 75J と記す) は、 シリカガラス又はフォスフェイトガラスを主 材とし、 コアとクラッドを有し、 コアにエルビウム(E r )、 あるいは E rとィ ッテルビウム (Y b) との 2種のイオンが高密度にドープされた光ファイバが 用いられる。 Said amplifying optical fiber 1 7 5 1; 1 75 2 (hereinafter, when generically referred to as "amplification optical fiber 1 75 J) is a silica glass or phosphate glass as a main material, has a core and a cladding, the core An optical fiber doped with erbium (E r) or two ions of Er and ytterbium (Y b) at a high density Used.
以上のように構成された光ファイバ増幅器 1 67において、 増幅用光フアイ バ 1 75ι, 1 752 に、 励起用半導体レーザ 1 78 1 782 が発生した励 起光が WDM 1 79ι, 1 792 を介して供給された状態で、 WDM 1 79丄 を 介してパルス光が入射し増幅用光ファイバ 1 75 1 752のコア中を進行す ると、 誘導放射が発生し、 パルス光が増幅される。 かかる光増幅にあたって、 増幅用光ファイバ 1 75^ 1 752 は高い増幅率を有するので、波長の単一性 が高い高輝度のパルス光が出力される。 このため、 効率良く狭帯域の光を得る ことができる。 In the optical fiber amplifier 1 67 configured as described above, the amplification optical Huai Ba 1 75Iota, 1 75 to 2, excitation light exciting semiconductor laser 1 78 1 78 2 has occurred WDM 1 79ι, 1 79 2 while being supplied via the pulse light through the WDM 1 79丄is you progress through the core of the amplifying optical fiber 1 75 1 75 2 incident stimulating radiation is generated, a pulse light is amplified You. In such an optical amplifier, since the amplification optical fiber 1 75 ^ 1 75 2 has a high gain, unity of wavelength is outputted a high high-intensity pulsed light. Therefore, light of a narrow band can be obtained efficiently.
前記励起用半導体レーザ 1 78 1 782は、 D FB半導体レーザ 1 6 OA における発振波長よりも短い波長 (例えば、 980 nm) の光を励起光として 発生する。この励起光が WDM 1 79ι, 1 792 を介して増幅用光ファイバ 1 75に供給され、 それにより E rの殻外電子が励起され、 いわゆるエネルギ準 位の反転分布が発生する。 なお、励起用半導体レーザ 1 78 1 782 は、 変 調制御装置 1 6 Cによって制御されるようになっている。 The pumping semiconductor laser 1 78 1 78 2, D FB semiconductor laser 1 6 wavelength shorter than the oscillation wavelength in OA (e.g., 980 nm) to emit light as an excitation light. The excitation light is WDM 1 79Iota, is supplied to the amplification optical fiber 1 75 through 1 79 2, whereby Karagai electrons E r is excited, inversion of the so-called energy level occurs. Incidentally, the pumping semiconductor laser 1 78 1 78 2 are controlled by the modulation control device 1 6 C.
また、 本実施形態では、 各光ファイバ増幅器 1 67のゲインの差を抑制する ため、 各光ファイバ増幅器 1 67でその出力光の一部が分岐され、 その分岐さ れた光が、 それぞれの分岐端に設けられた光電変換素子 1 7 1によってそれぞ れ光電変換されるようになっている。 これらの光電変換素子 1 7 1の出力信号 が変調制御装置 1 6 Cに供給されるようになつている。  Further, in the present embodiment, in order to suppress the difference in gain between the optical fiber amplifiers 167, a part of the output light is branched by the optical fiber amplifiers 167, and the branched light is divided by the respective branches. The photoelectric conversion elements 17 1 provided at the ends perform photoelectric conversion respectively. Output signals of these photoelectric conversion elements 17 1 are supplied to a modulation control device 16 C.
変調制御装置 1 6 Cでは、 各光ファイバ増幅器 1 67からの光出力が一定に なるように (即ちバランスするように)、 各励起用半導体レーザ 1 78 1 7 82のドライブ電流をフィードバック制御するようになっている。 The modulation control device 1 6 C, (as i.e. balance) so that the light output becomes constant from the optical fiber amplifier 1 67, feedback control of the drive current of each pumping semiconductor laser 1 78 1 7 8 2 It has become.
すなわち、 変調制御装置 1 6 Cでは、 上述したパルス変調及び位相変調を制 御するとともに、 各光ファイバ増幅器 1 67からの光出力が一定になるように (即ちバランスするように)、 各励起用半導体レーザ 1 78 1 782 のドラ ィブ電流をフイードバック制御するようになつている。 That is, the modulation control device 16C controls the above-described pulse modulation and phase modulation, and controls each pumping so that the optical output from each optical fiber amplifier 167 becomes constant (that is, balanced). Semiconductor laser 1 78 1 78 2 The feed current is controlled by feedback.
以上のように構成された光増幅部 1 61によって上述の光 L3が増幅された 光 L4が、 波長変換部 1 63に向けて、 光増幅部 1 61から射出される。  The light L4 obtained by amplifying the light L3 by the light amplifying unit 161 configured as described above is emitted from the light amplifying unit 161 to the wavelength conversion unit 163.
この光 L4は、 それまでの光路の媒質 (主に、 光増幅部 1 61内における増 幅用光ファイバ 1 75ι, 1 752) 内を進行することにより自己位相変調を受 ける (自己位相変調が生じる)。 しかし、上述したように、 この自己位相変調に よる位相変調量 を相殺するように EOM 1 32により位相変調が行わ れた光し 3を光増幅部 1 61に入射させるようにしているので (図 4B参照)、 光 L 4における位相変調量は、 低減されたものとなっている。 このため、 光 L 4では、 自己位相変調に伴うスぺクトル幅の拡大が抑制されている。 The light L4 is then up to the optical path of the medium (mainly, amplified optical fiber 1 75Iota in the optical amplification section 1 61, 1 75 2) in the kicking receive self-phase modulation by traveling through (self-phase modulation Occurs). However, as described above, the light 3 that has been phase-modulated by the EOM 132 is made to enter the optical amplifier 161 so as to cancel the amount of phase modulation due to the self-phase modulation (see FIG. 4B), the amount of phase modulation in the light L4 is reduced. Therefore, in the light L4, the expansion of the spectrum width due to the self-phase modulation is suppressed.
かかる光し 4におけるスぺクトル幅の拡大の抑制の例が、 図 6 A及び図 6 B に示されている。 ここで、 図 6Aには、 EOM 1 32による位相変調を行わな い場合の光し 4が有するスペクトル分布 (比較例) が示されており、 図 6Bに は、 EOM 1 32による位相変調が行われた本実施形態における光 L4が有す るスぺクトル分布が示されている。 図 6 Aと図 6 Bとを比較して確認されるよ うに、 本実施形態においては、 光 L4が有するスぺクトル幅の拡大が抑制され ている。  FIGS. 6A and 6B show examples of suppressing the spread of the spectrum width in the light 4. Here, FIG. 6A shows the spectrum distribution (comparative example) of the light 4 when the phase modulation by the EOM 132 is not performed, and FIG. The spectrum distribution of the light L4 according to the present embodiment is shown. As can be confirmed by comparing FIG. 6A and FIG. 6B, in the present embodiment, the expansion of the spectrum width of the light L4 is suppressed.
前記波長変換部 1 63は、 複数の非線形光学結晶を含み、 光増幅部 1 61か らのパルス光 (波長 1. 544jUmの光) L 4をその 8倍高調波に波長変換し て、 A r Fエキシマレーザとほぼ同じ出力波長 (1 93 nm) のパルス紫外光 を発生する。  The wavelength converting section 163 includes a plurality of nonlinear optical crystals, and converts the pulse light (light having a wavelength of 1.544 jUm) L4 from the optical amplifying section 161 into its eighth harmonic wavelength, and It generates pulsed ultraviolet light with the same output wavelength (193 nm) as the F excimer laser.
図 7には、 この波長変換部 1 63の構成例が示されている。 ここで、 この図 に基づいて波長変換部 1 63の具体例について説明する。 なお、 図 7には、 光 増幅部 1 6 "Iから射出される波長 1. 544jt mの光 L4を基本波として、 非 線形光学結晶を用いて 8倍波 (高調波) に波長変換して、 A r Fエキシマレー ザとほぼ同じ波長である 1 93 nmの紫外光を発生する構成例が示されている c 図 7の波長変換部 1 63では、 基本波 (波長 1. 544 jt m) → 2倍波 (波 長 772 nm) →3倍波 (波長 51 5 n m) →4倍波 (波長 386 nm) →1 倍波 (波長 221 nm) → 8倍波 (波長 1 93 n m) の順に波長変換が行われ る。 FIG. 7 shows a configuration example of the wavelength conversion unit 163. Here, a specific example of the wavelength conversion unit 163 will be described with reference to FIG. Note that Fig. 7 shows that the light L4 with a wavelength of 1.544 jtm emitted from the optical amplification unit 16 "I is used as a fundamental wave and converted into an eighth harmonic (harmonic) using a nonlinear optical crystal. , a r F Ekishimare the substantially c configuration example is shown for generating ultraviolet light for 1 93 nm is the same wavelength In the wavelength converter 163 in Fig. 7, the fundamental wave (wavelength 1.544 jtm) → the second harmonic (wavelength 772 nm) → the third harmonic (wavelength 515 nm) → the fourth harmonic (wavelength 386 nm) → Wavelength conversion is performed in the order of 1st harmonic (wavelength 221 nm) → 8th harmonic (wavelength 193 nm).
これを更に詳述すると、 光増幅部 1 61から射出された波長 1. 544 m (周波数 ) の光 L4 (基本波) は、 1段目の非線形光学結晶 1 83に入射す る。 基本波がこの非線形光学結晶 1 83を通る際に、 2次高調波発生により基 本波の周波数 ωの 2倍、 すなわち周波数 2 ω (波長は 1 /2の 772 nm) の 2倍波が発生する。  More specifically, the light L4 (fundamental wave) having a wavelength of 1.544 m (frequency) emitted from the optical amplification section 161 enters the first-stage nonlinear optical crystal 183. When the fundamental wave passes through this nonlinear optical crystal 183, a second harmonic is generated, which is twice the frequency ω of the fundamental wave, that is, a second harmonic of the frequency 2 ω (wavelength is 2 of 772 nm). I do.
この 1段目の非線形光学結晶 1 83として、 L i B305 (L BO) 結晶が用 いられ、 基本波を 2倍波に波長変換するための位相整合に LBO結晶の温度調 節による方法、 NCPM (Non-Critical Phase Matching) が使用される。 N CPMは、 非線形光学結晶内での基本波と第二高調波との角度ずれ (Walk-off) が起こらないため高効率で 2倍波への変換を可能にし、 また発生した 2倍波は Walk-offによるビームの変形も受けないため有利である。 As the nonlinear optical crystal 1 83 of the first stage, L i B 3 0 5 ( L BO) Irare use crystals, according to the temperature regulatory the LBO crystal phase matching for wavelength conversion of the fundamental wave to the second harmonic wave Method, NCPM (Non-Critical Phase Matching) is used. The N CPM does not cause a walk-off between the fundamental wave and the second harmonic in the nonlinear optical crystal, so it is possible to convert it to a second harmonic wave with high efficiency. This is advantageous because the beam is not deformed by the walk-off.
非線形光学結晶 1 83で波長変換されずに透過した基本波と、 波長変換で発 生した 2倍波とは、 次段の波長板 1 84でそれぞれ半波長、 1波長の遅延が与 えられて、 基本波のみその偏光方向が 90度回転し、 2段目の非線形光学結晶 1 86に入射する。 2段目の非線形光学結晶 1 86として LBO結晶が用いら れるとともに、 その LBO結晶では 1段目の非線形光学結晶 (LBO結晶) 1 83とは異なる温度での N C PMが使用される。 この非線形光学結晶 1 86で は、 1段目の非線形光学結晶 1 83で発生した 2倍波と、 波長変換されずにそ の非線形光学結晶 1 83を透過した基本波とから和周波発生により 3倍波 (波 長 51 5 n m) を得る。  The fundamental wave transmitted through the non-linear optical crystal 183 without wavelength conversion and the second harmonic generated by the wavelength conversion are delayed by half and one wavelength, respectively, by the next wave plate 184. However, only the fundamental wave rotates its polarization direction by 90 degrees and enters the second-stage nonlinear optical crystal 186. An LBO crystal is used as the second-stage nonlinear optical crystal 186, and the NBO PM at a temperature different from that of the first-stage nonlinear optical crystal (LBO crystal) 183 is used in the LBO crystal. In the nonlinear optical crystal 186, the second harmonic generated in the first-stage nonlinear optical crystal 183 and the fundamental wave transmitted through the nonlinear optical crystal 183 without wavelength conversion are generated by sum frequency generation. Obtain a harmonic (wavelength 515 nm).
次に、 非線形光学結晶 1 86で得られた 3倍波と、 波長変換されずにその非 線形光学結晶 1 86を透過した基本波および 2倍波とは、 ダイクロイツク ■ ミ ラー 1 87により分離され、 ここで反射された 3倍波は集光レンズ 1 90、 及 びダイクロイツク ' ミラー 1 93を通って 4段目の非線形光学結晶 1 95に入 射する。 一方、 ダイクロイツク ' ミラー 1 87を透過した基本波および 2倍波 は、 集光レンズ 1 88を通って 3段目の非線形光学結晶 1 89に入射する。 Next, the third harmonic obtained by the non-linear optical crystal 186 and the fundamental wave and the second harmonic transmitted through the non-linear optical crystal 186 without wavelength conversion are dichroic. The third harmonic wave separated by the mirror 187 and reflected here passes through the condenser lens 190 and the dichroic mirror 193 and enters the fourth-stage nonlinear optical crystal 195. On the other hand, the fundamental wave and the second harmonic transmitted through the dichroic mirror 187 pass through the condenser lens 188 and enter the third-stage nonlinear optical crystal 189.
3段目の非線形光学結晶 1 89としてはし BO結晶が用いられ、 基本波が波 長変換されずにその L B O結晶を透過するとともに、 2倍波が L B O結晶で 2 次高調波発生により 4倍波 (波長 386 nm) に変換される。 非線形光学結晶 1 89で得られた 4倍波とそれを透過した基本波とは、 ダイクロイツク ■ ミラ —1 91によリ分離され、 ここを透過した基本波は集光レンズ 1 94を通ると ともに、 ダイクロイツク ■ ミラー 1 96で反射されて 5段目の非線形光学結晶 1 98に入射する。 一方、 ダイクロイツク ■ ミラー 1 91で反射された 4倍波 は、 集光レンズ 1 92を通ってダイクロイツク ' ミラ一 1 93に達し、 ここで ダイクロイツク ■ ミラー 1 87で反射された 3倍波と同軸に合成されて 4段目 の非線形光学結晶 1 95に入射する。  As the third-stage nonlinear optical crystal 189, a Hoshi BO crystal is used, and the fundamental wave passes through the LBO crystal without wavelength conversion, and the second harmonic is quadrupled by the second harmonic generation in the LBO crystal. Converted to waves (wavelength 386 nm). The fourth harmonic obtained by the nonlinear optical crystal 1189 and the fundamental wave transmitted therethrough are separated by dichroic ■ Mira — 191. The fundamental wave transmitted here passes through the condenser lens 194. In both cases, the dichroic light is reflected by the mirror 196 and enters the fifth-stage nonlinear optical crystal 198. On the other hand, the fourth harmonic reflected by the dichroic ■ mirror 191 reaches the dichroic mirror 193 through the condenser lens 192, where the third harmonic reflected by the dichroic ■ mirror 187 And is incident on the fourth-stage nonlinear optical crystal 195.
4段目の非線形光学結晶 1 95としては、 )S— B a B204 (BBO) 結晶が 用いられ、 3倍波と 4倍波とから和周波発生により 7倍波 (波長 221 nm) を得る。 非線形光学結晶 1 95で得られた 7倍波は集光レンズ 1 97を通ると ともに、 ダイクロイツク ■ ミラ一 1 96で、 ダイクロイツク ■ ミラ一 1 9 1を 透過した基本波と同軸に合成されて、 5段目の非線形光学結晶 1 98に入射す る。 The nonlinear optical crystal 1 95 of the fourth stage,) S- B a B 2 0 4 (BBO) crystal is used, 7 harmonic (wavelength 221 nm by sum frequency generation and a triple wave and fourth harmonic) Get. The 7th harmonic obtained by the nonlinear optical crystal 195 passes through the condenser lens 197, and is coaxially synthesized with the fundamental wave transmitted through the dichroic ミ Mira 191 in the dichroic mirror 196 Then, the light enters the fifth-stage nonlinear optical crystal 198.
5段目の非線形光学結晶 1 98として LBO結晶が用いられ、 基本波と 7倍 波とから和周波発生により 8倍波 (波長 1 93 nm) を得る。 上記構成におい て、 8倍波生成用 LBO結晶 1 98の代わりに、 C sし i B6O10 (C LBO) 結晶、 あるいは L i 2 B407 (LB4) 結晶などを用いることも可能である。 なお、本実施形態では、 3倍波と 4倍波とから 7倍波を生成するものとしたが、 例えば基本波と 6倍波とから 7倍波を生成する場合には、 その非線形光学結晶 として B BO結晶、 CLBO結晶、 LB 4結晶、 あるいは L B O結晶などを用 いることが可能である。 An LBO crystal is used as the fifth-stage nonlinear optical crystal 198, and an eighth harmonic (wavelength 193 nm) is obtained from the fundamental wave and the seventh harmonic by generating a sum frequency. The arrangement smell Te, instead of 8 harmonic generation LBO crystal 1 98, C s and i B 6 O 10 (C LBO ) crystal, or L i 2 B 4 0 7 ( LB4) can also be used as the crystalline It is. In this embodiment, the seventh harmonic is generated from the third harmonic and the fourth harmonic. For example, when the seventh harmonic is generated from the fundamental wave and the sixth harmonic, the nonlinear optical crystal is generated. For example, a BBO crystal, a CLBO crystal, an LB4 crystal, or an LBO crystal can be used.
図 1に戻り、 前記照明光学系 1 2は、 オプティカルインテグレータ、 可変 N Dフィルタ、 及びレチクルブラインド等 (いずれも不図示) を含んで構成され ている。 ここで、 オプティカルインテグレータとしてはフライアイレンズ、 内 面反射型インテグレ一タ (ロッドインテグレータ等)、あるいは回折光学素子等 が用いられる。 こうした照明光学系の構成は、 例えば、 特開平 1 0— 1 1 24 33号公報、特開平 6— 349701号公報及びこれに対応する米国特許第 5, 534, 970号公報などに開示されている。 本国際出願で指定した指定国又 は選択した選択国の国内法令が許す限りにおいて、 上記米国特許における開示 を援用して本明細書の記載の一部とする。  Returning to FIG. 1, the illumination optical system 12 is configured to include an optical integrator, a variable ND filter, a reticle blind, and the like (all not shown). Here, a fly-eye lens, an internal reflection type integrator (such as a rod integrator), or a diffractive optical element is used as the optical integrator. The configuration of such an illumination optical system is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-124433, Japanese Patent Application Laid-Open No. H6-349701, and corresponding US Pat. No. 5,534,970. . To the extent permitted by the national laws of the designated or elected nations designated in this international application, the disclosures in the above US patents will be incorporated by reference as if set forth in this specification.
この照明光学系 1 2から射出された露光光 I Lは、 ミラー Mによって光路が 垂直下方に折り曲げられた後、 コンデンサレンズ 32を経て、 レチクルステー ジ RST上に保持されたレチクル R上の矩形の照明領域 42 Rを均一な照度分 布で照明する。  Exposure light IL emitted from the illumination optical system 12 passes through a condenser lens 32 after the optical path is bent vertically downward by a mirror M, and then passes through a condenser lens 32 to form a rectangular illumination on a reticle R held on a reticle stage RST. Illuminate area 42R with a uniform illumination distribution.
前記レチクルステージ RS T上にはレチクル Rが載置され、 不図示のバキュ —ムチャック等を介して吸着保持されている。 レチクルステージ RS Tは、 水 平面 (XY平面) 内で移動可能であり、 レチクルステージ駆動部 49によって 走査方向 (ここでは図 1の紙面左右方向である Y軸方向とする) に所定スト口 ーク範囲で走査されるようになっている。 この走査中のレチクルステージ RS Tの位置及び回転量は、 レチクルステージ RS T上に固定された移動鏡 52 R を介して外部のレーザ干渉計 54 Rによって計測され、 このレーザ干渉計 54 Rの計測値が主制御装置 50に供給されるようになっている。  A reticle R is mounted on the reticle stage RST, and is held by suction via a vacuum chuck (not shown). The reticle stage RST is movable in a horizontal plane (XY plane), and is moved by a reticle stage driving unit 49 in a predetermined direction in the scanning direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1). It is designed to be scanned in a range. The position and the amount of rotation of the reticle stage RST during this scanning are measured by an external laser interferometer 54R via a movable mirror 52R fixed on the reticle stage RST, and the measurement of the laser interferometer 54R is performed. The value is supplied to the main controller 50.
前記投影光学系 P Lは、 例えば両側テレセントリックな縮小系であり、 共通 の Z軸方向の光軸 A Xを有する複数枚のレンズエレメン卜から構成されている c また、 この投影光学系 P Lとしては、 投影倍率; 8が例えば 1 4、 1 5、 1 ノ 6等のものが使用されている。 このため、 上記のようにして、 露光光 I しに よりレチクル Rにおける照明領域 4 2 Rが照明されると、 そのレチクル Rに形 成されたパターンのうち照明領域 4 2 R部分の投影光学系 P Lによる縮小像 (部分等立像) が、 投影光学系 P Lの視野内で照明領域 4 2 Rと共役な矩形の 投影領域 4 2 Wに投影され、 ウェハ Wの表面に塗布されたレジスト上にその縮 小像が転写される。 The projection optical system PL is, for example, a double-sided telecentric reduction system, and includes a plurality of lens elements having a common optical axis AX in the Z-axis direction.c As the projection optical system PL, Magnification; 8 is for example 14, 15, 1 No. 6 and others are used. Therefore, as described above, when the illumination area 42 R on the reticle R is illuminated by the exposure light I, the projection optical system of the illumination area 42 R portion of the pattern formed on the reticle R A reduced image (partial isometric image) by the PL is projected onto a rectangular projection area 42 W conjugated to the illumination area 42 R within the field of view of the projection optical system PL, and is projected onto a resist applied on the surface of the wafer W. The reduced image is transferred.
前記 X Yステージ 1 4は、 ウェハステージ駆動部 5 6によって走査方向であ る Y軸方向及びこれに直交する X軸方向 (図 1における紙面直交方向) に 2次 元駆動されるようになっている。 この X Yステージ 1 4上に搭載された Zチル 卜ステージ 5 8上に不図示のウェハホルダを介してウェハ Wが真空吸着等によ リ保持されている。 Zチルトステージ 5 8は、例えば 3つのァクチユエ一タ(ピ ェゾ素子又はボイスコイルモータなど)によってウェハ Wの Z軸方向の位置(フ オーカス位置) を調整すると共に、 X Y平面 (投影光学系 P Lの像面) に対す るウェハ Wの傾斜角を調整する機能を有する。 また、 X Yステージ 1 4の位置 は、 Zチルトステージ 5 8上に固定された移動鏡 5 2 Wを介して外部のレーザ 干渉計 5 4 Wによリ計測され、 このレーザ干渉計 5 4 Wの計測値が主制御装置 5 0に供給されるようになっている。  The XY stage 14 is two-dimensionally driven by a wafer stage drive unit 56 in the Y-axis direction, which is the scanning direction, and the X-axis direction, which is orthogonal to the scanning direction (the direction perpendicular to the plane of FIG. 1). . A wafer W is held on a Z tilt stage 58 mounted on the XY stage 14 by vacuum suction or the like via a wafer holder (not shown). The Z-tilt stage 58 adjusts the position (focus position) of the wafer W in the Z-axis direction by, for example, three actuators (piezo elements or voice coil motors) and an XY plane (projection optical system PL). It has a function of adjusting the inclination angle of the wafer W with respect to the image plane of. The position of the XY stage 14 is measured by an external laser interferometer 54 W via a movable mirror 52 W fixed on the Z tilt stage 58, and the position of the laser interferometer 54 W is measured. The measured value is supplied to the main controller 50.
ここで、 移動鏡は、 実際には、 X軸に垂直な反射面を有する X移動鏡と Y軸 に垂直な反射面を有する Y移動鏡とが存在し、 これに対応してレーザ干渉計も X軸位置計測用、 Y軸位置計測用、 及び回転 (ョーイング量、 ピッチング量、 ローリング量を含む) 計測用のものがそれぞれ設けられているが、 図 1では、 これらが代表的に、 移動鏡 5 2 W、 レーザ干渉計 5 4 Wとして示されている。  Here, the moving mirror actually has an X moving mirror having a reflecting surface perpendicular to the X axis and a Y moving mirror having a reflecting surface perpendicular to the Y axis. X-axis position measurement, Y-axis position measurement, and rotation (including jogging, pitching, and rolling) measurements are provided, respectively. In Figure 1, these are typically used as moving mirrors. Shown as 52 W, laser interferometer 54 W.
Zチルトステージ 5 8上には、 後述するレチクルァライメン卜等を行う際に 使用される基準マーク板 F Mが設けられている。 この基準マーク板 F Mは、 そ の表面がウェハ Wの表面とほぼ同一の高さとされている。 この基準マーク板 F Mの表面には、 レチクルァライメン卜用基準マーク、 ベースライン計測用基準 マーク等の基準マークが形成されている。 On the Z tilt stage 58, a reference mark plate FM used for performing reticle alignment or the like described later is provided. This fiducial mark plate FM has its surface almost at the same height as the surface of the wafer W. This fiducial mark plate has a reticle alignment fiducial mark and a baseline measurement fiducial mark on the surface of FM. Reference marks such as marks are formed.
更に、 本実施形態の露光装置 1 0では、 図 1に示されるように、 主制御装置 5 0の制御の下で、 投影光学系 P Lの結像面 (X Y面) に設定される多数の計 測点に向けてそれぞれピンホール又はスリッ卜の像を形成するための結像光束 を、 光軸 A Xに対して斜め方向より照射する照射光学系 6 0 aと、 それらの結 像光束のウェハ W表面での反射光束を受光する受光光学系 6 0 bとからなる斜 入射方式の多点焦点位置検出系(フォーカスセンサ)が設けられている。なお、 本実施形態と同様の多点焦点位置検出系(フォーカスセンサ)の詳細な構成は、 例えば特開平 6— 2 8 3 4 0 3号公報及びこれに対応する米国特許第 5, 4 4 8 , 3 3 2号等に開示されている。 本国際出願で指定した指定国又は選択した 選択国の国内法令が許す限りにおいて、 上記公報及び米国特許における開示を 援用して本明細書の記載の一部とする。  Further, in the exposure apparatus 10 of the present embodiment, as shown in FIG. 1, under the control of the main controller 50, a large number of meters set on the imaging plane (XY plane) of the projection optical system PL are provided. An irradiation optical system 60a for irradiating an imaging light beam for forming an image of a pinhole or a slit toward the measurement point from an oblique direction with respect to the optical axis AX, and a wafer W of the imaging light beam. An oblique incidence type multi-point focal position detection system (focus sensor) comprising a light receiving optical system 60b for receiving a light beam reflected on the surface is provided. The detailed configuration of the multi-point focal position detection system (focus sensor) similar to that of the present embodiment is described in, for example, Japanese Patent Application Laid-Open No. Hei 6-284304 and US Pat. , 332, etc. To the extent permitted by the national laws of the designated country or selected elected countries specified in this international application, the disclosures in the above-mentioned publications and US patents are incorporated herein by reference.
走査露光時等に、 主制御装置 5 0は、 受光光学系 6 0 bからの各計測点につ いて検出された Z位置に基づいて、 計測点が存在するショット領域の一部の表 面の Z位置及び傾斜量を逐次算出しつつ、 この算出結果に基づいて Zチルトス テージ 5 8の Z位置や傾斜角を不図示の駆動系を介して制御することにより、 オートフォーカス (自動焦点合わせ) 及びオートレべリングを実行する。 前記主制御装置 5 0は、 C P U (中央演算処理装置)、 R O M (リード'オン リ ·メモリ)、 R A M (ランダム■アクセス■メモリ) 等から成るいわゆるマイ クロコンピュータ (又はワークステーション) を含んで構成され、 これまでに 説明した各種の制御を行う他、 露光動作が的確に行われるように、 例えばレチ クル Rとウェハ Wの同期走査、 ウェハ Wのステッピング、 露光タイミング等を 制御する。 また、 本実施形態では、 主制御装置 5 0は、 後述するように走査露 光の際の露光量の制御を行う等の他、 装置全体を統括制御する。  At the time of scanning exposure, etc., the main controller 50 determines a part of the surface of the shot area where the measurement point exists based on the Z position detected for each measurement point from the light receiving optical system 60b. By sequentially calculating the Z position and the tilt amount, and controlling the Z position and the tilt angle of the Z tilt stage 58 via a drive system (not shown) based on the calculation results, auto focus (automatic focusing) and Perform auto-leveling. The main controller 50 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and the like. In addition to the various controls described above, for example, synchronous scanning of the reticle R and the wafer W, stepping of the wafer W, exposure timing, and the like are controlled so that the exposure operation is performed appropriately. Further, in the present embodiment, the main controller 50 controls the exposure amount at the time of scanning exposure as will be described later, and also controls the entire apparatus.
具体的には、 主制御装置 5 0は、 例えば走査露光時には、 レチクル Rがレチ クルステージ R S Tを介して、 照明領域 4 2 Rに対して + Y方向 (又は一 Y方 向) に速度 VB = Vで走査されるのに同期して、 X Yステージ 1 4を介してゥ ェハ Wが投影領域 4 2 Wに対して一 Y方向 (又は + Y方向) に速度 VW = )S ■ V ( )8はレチクル Rからウェハ Wに対する投影倍率) で走査されるように、 レ —ザ干渉計 5 4 R、 5 4 Wの計測値に基づいてレチクルステージ駆動部 4 9、 ウェハステージ駆動部 5 6をそれぞれ介してレチクルステージ R S T、 X Υス テージ 1 4の位置及び速度をそれぞれ制御する。また、ステッピングの際には、 主制御装置 5 0ではレーザ干渉計 5 4 Wの計測値に基づいてウェハステージ駆 動部 5 6を介して Χ Υステージ 1 4の位置を制御する。 More specifically, for example, at the time of scanning exposure, reticle R moves reticle R to illuminated area 42R in the + Y direction (or one Y direction) via reticle stage RST. In synchronization with the scanning at the speed VB = V, the wafer W is moved in one Y direction (or + Y direction) with respect to the projection area 42 W via the XY stage 14 in synchronization with the speed VW. =) S ■ V () 8 is a reticle stage drive unit 49 based on the measured values of the laser interferometers 54 R and 54 W so that the scanning is performed with the reticle R from the reticle R to the wafer W). The position and speed of reticle stage RST and X stage 14 are controlled via wafer stage drive unit 56, respectively. In stepping, the main controller 50 controls the position of the stage 14 via the wafer stage driving unit 56 based on the measurement value of the laser interferometer 54W.
次に、 本実施形態の露光装置 1 0において所定枚数 (Ν枚) のウェハ W上に レチクルパターンの露光を行う場合の露光シーケンスについて主制御装置 5 0 の制御動作を中心として説明する。  Next, an exposure sequence when a reticle pattern is exposed on a predetermined number (Ν) of wafers W in the exposure apparatus 10 of the present embodiment will be described focusing on the control operation of the main controller 50.
まず、 主制御装置 5 0では、 不図示のレチクルローダを用いて露光対象のレ チクル Rをレチクルステージ R S Τ上にロードする。  First, main controller 50 loads reticle R to be exposed onto reticle stage R S using a reticle loader (not shown).
次いで、 不図示のレチクルァライメント系を用いてレチクルァライメントを 行うとともに、 前述した基準マークを用いてオファクシス方式のァライメン卜 系 (不図示) のべ一スライン計測を行う。 なお、 レチクルァライメント、 ベー スライン計測等の準備作業については、 例えば特開平 7— 1 7 6 4 6 8号公報 及びこれに対応する米国特許第 5 , 6 4 6 , 4 1 3号に詳細に開示されており、 本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおい て、 上記公報及び対応する上記米国特許における開示を援用して本明細書の記 載の一部とする。  Next, a reticle alignment is performed using a reticle alignment system (not shown), and a base line measurement of an off-axis type alignment system (not shown) is performed using the aforementioned reference marks. Preparation work such as reticle alignment and baseline measurement is described in detail in, for example, Japanese Patent Application Laid-Open No. 7-176468 and US Patent Nos. 5,646,413 corresponding thereto. To the extent permitted by the national law of the designated State designated in this International Application or of the elected State to which it is disclosed, a portion of the description herein shall be incorporated by reference to its disclosure in the above-mentioned publications and corresponding U.S. patents. And
次に、 主制御装置 5 0では、 不図示のウェハ搬送系にウェハ Wの交換を指示 する。 これにより、 ウェハ搬送系及び Χ Υステージ 1 4上の不図示のウェハ受 け渡し機構によってウェハ交換 (ステージ上にウェハが無い場合は、 単なるゥ ェハロード) が行われる。 このウェハ交換は、 公知の露光装置と同様に行われ るので詳細説明は省略する。 次いで、 前述のベースライン計測が行われたァライメン卜系を用いてサーチ ァライメント及びいわゆるファインァライメン卜、 例えば特開昭 6 1 - 4 4 2 9号公報及びこれに対応する米国特許第 4 , 7 8 0 , 6 1 7号等に詳細に開 示される E G A方式のウェハァライメント等を含む一連のァライメント工程の 処理を行う。 本国際出願で指定した指定国又は選択した選択国の国内法令が許 す限りにおいて、 上記公報及び対応する上記米国特許における開示を援用して 本明細書の記載の一部とする。 Next, main controller 50 instructs a wafer transfer system (not shown) to replace wafer W. As a result, the wafer exchange (if there is no wafer on the stage, a simple wafer load) is performed by the wafer transfer system and a wafer transfer mechanism (not shown) on the stage 14. Since the wafer exchange is performed in the same manner as in a known exposure apparatus, a detailed description is omitted. Then, a search alignment and a so-called fine alignment using the alignment system in which the above-described baseline measurement was performed, for example, Japanese Patent Application Laid-Open No. 61-44929 and corresponding US Pat. Performs a series of alignment processes including EGA wafer alignment, etc., disclosed in detail in 780, 617, etc. To the extent permitted by the national laws of the designated or designated elected States in this International Application, the disclosures in the above-mentioned publications and corresponding US patents are incorporated herein by reference.
次に、 上記のァライメント結果及びショットマップデータに基づいて、 ゥェ ハ W上の各ショット領域の露光のための走査開始位置 (加速開始位置) にゥェ ハ Wを移動させる動作と、 前述した走査露光動作とを繰り返し行って、 ステツ プ■アンド 'スキャン方式でウェハ W上の複数のショット領域にレチクルパタ ーンを転写する。 かかる走査露光中に、 主制御装置 5 0は、 露光条件及びレジ スト感度に応じて決定された目標積算露光量をウェハ Wに与えるため、 変調制 御装置 1 6 Cに指令を与え、 露光光量の制御を行う。  Next, based on the alignment result and the shot map data, an operation of moving the wafer W to a scanning start position (acceleration start position) for exposure of each shot area on the wafer W; By repeatedly performing the scanning exposure operation, the reticle pattern is transferred to a plurality of shot areas on the wafer W by the step-and-scan method. During the scanning exposure, the main controller 50 gives a command to the modulation controller 16C in order to give the target integrated exposure amount determined according to the exposure condition and the resist sensitivity to the wafer W. Control.
1枚目のウェハ Wに対する露光が終了すると、 主制御装置 5 0では、 不図示 のウェハ搬送系にウェハ Wの交換を指示する。 これにより、 ウェハ搬送系及び X Yステージ 1 4上の不図示のウェハ受け渡し機構によってウェハ交換が行わ れ、 以後上記と同様にしてその交換後のウェハに対してサーチァライメント、 ファインァライメン卜を行う。  When the exposure for the first wafer W is completed, main controller 50 instructs a wafer transfer system (not shown) to replace wafer W. As a result, the wafer is exchanged by the wafer transfer system and a wafer transfer mechanism (not shown) on the XY stage 14. Thereafter, search alignment and fine alignment are performed on the replaced wafer in the same manner as described above. Do.
そして、 上記と同様にして、 このウェハ W上の複数のショット領域にステツ プ■アンド 'スキャン方式でレチクルパターンを転写する。  Then, in the same manner as described above, the reticle pattern is transferred to a plurality of shot areas on the wafer W by the step-and-scan method.
なお、 露光条件 (照明光学系の瞳面上での露光光 I Lの光量分布、 すなわち レチクル Rの照明条件、 投影光学系 P Lの開口数などを含む) 及びレチクルパ ターンの変更の少なくとも一方によって照度が変化するときは、 ウェハ (レジ スト) に適正な露光量が与えられるように、 光源装置 1 6から射出される光の 周波数とピークパワーとの少なくとも一方を制御することが望ましい。 このと き、 周波数及びピークパワーの少なくとも一方に加えてレチクル及びウェハの 走査速度を調整するようにしてもよい。 The illuminance is changed by at least one of the exposure condition (including the light amount distribution of the exposure light IL on the pupil plane of the illumination optical system, that is, the illumination condition of the reticle R, the numerical aperture of the projection optical system PL) and the reticle pattern. When it changes, it is desirable to control at least one of the frequency and the peak power of the light emitted from the light source device 16 so that an appropriate exposure amount is given to the wafer (the resist). This and In addition, the scanning speed of the reticle and the wafer may be adjusted in addition to at least one of the frequency and the peak power.
以上説明したように、 本実施形態に係る光源装置 1 6によると、 連続光発生 部 1 60が発生した連続光をパルス変調した後、 各パルス光に対して、 当該各 パルス光が波長変換部 1 63までの光路上の媒質を通過する際に受ける自己位 相変調に起因して生じる位相変調量を相殺する位相変調量の位相変調を E O M 1 32によって行う。 したがって、 波長変換部 1 63に入射する光におけるス ぺク トル幅の拡大を抑制することができ、 単色性の良い光を波長変換部 1 63 に供給することができる。 このため、 波長変換部 1 63から射出される波長変 換光の単色性を高めることができる。  As described above, according to the light source device 16 according to the present embodiment, after the continuous light generated by the continuous light generation unit 160 is pulse-modulated, the pulse light is converted into a wavelength conversion unit for each pulse light. The EOM 132 performs the phase modulation of the phase modulation amount that cancels the phase modulation amount caused by the self-phase modulation received when passing through the medium on the optical path up to 163. Therefore, it is possible to suppress an increase in the spectrum width of the light incident on the wavelength conversion unit 163, and to supply light with good monochromaticity to the wavelength conversion unit 163. Therefore, the monochromaticity of the wavelength-converted light emitted from the wavelength converter 163 can be improved.
また、 パルス変調を行う EOM1 31と光増幅部 1 61との間に位相変調を 行う EOM 1 32を配置することによリ、 該 EOM 32を光増幅部 1 6 1の 後段に配置した場合などに比べて、 EOM1 32を通過する光のピーク強度を 低減することができる。 これにより EOM 1 32の部品寿命を長くすることが できる。  In addition, by disposing an EOM 132 for performing phase modulation between the EOM 131 for performing pulse modulation and the optical amplifying unit 161, for example, when the EOM 32 is disposed after the optical amplifying unit 161. The peak intensity of the light passing through the EOM132 can be reduced as compared with the case of FIG. This extends the life of the EOM 132 components.
さらに、 比較的狭いパルス幅の光パルスを使用する場合には、 EOM 1 3 1 と光増幅部 1 61との間に EOM1 32を配置することにより、 EOM 1 3 1 から射出されたパルス光を介在物が無い (あるいは、 介在物が殆ど無い) 状態 で EOM 1 32に入射させるので、 パルス光を位相変調するのにあたって、 位 相変調用信号 M D 2を精度の良いタィミングで E O M 1 32に供給することが できる。 したがって、 パルス光に対して、 各瞬間の光強度に応じた位相変調量 を精度良く与えることができ、 波長変換部 1 63に入射する光におけるスぺク トル幅の拡大を有効に抑制することができる。  Furthermore, when an optical pulse having a relatively narrow pulse width is used, the pulse light emitted from the EOM 13 1 1 is arranged by placing the EOM 13 2 between the EOM 13 1 and the optical amplification section 161. Since the beam is incident on the EOM 132 with no (or almost no) inclusions, the phase modulation signal MD2 is supplied to the EOM 132 with high precision timing for phase modulation of the pulsed light. can do. Therefore, a phase modulation amount corresponding to the light intensity at each instant can be accurately given to the pulse light, and the expansion of the spectrum width of the light incident on the wavelength conversion unit 163 can be effectively suppressed. Can be.
また、 位相変調器として電気光学効果を有する媒質を使用した EOM1 32 を用いるので、 レベル値の制御が精度良くかつ容易に行うことができる電圧信 号の波形を調整することにより、 精度良く位相変調を行うことができる。 また、 連続光発生部 1 60の直後の段において、 EOM1 31を用いたパル ス変調によってパルス切出しを行うので、 光パルス切出し間隔や光増幅率を制 御することにより、 光源装置 1 6として光量制御が容易な構成とすることがで さる。 In addition, since the EOM132 using a medium having an electro-optic effect is used as the phase modulator, the phase modulation can be accurately performed by adjusting the waveform of the voltage signal that can control the level value accurately and easily. It can be performed. In addition, in the stage immediately after the continuous light generating unit 160, pulse cutout is performed by pulse modulation using the EOM131.Thus, by controlling the light pulse cutout interval and the optical amplification rate, the light source device 16 can be used as a light source device. The configuration can be easily controlled.
また、 本実施形態の露光装置によれば、 露光にあたって単色性の高い照明光 I Lをレチクル Rに照射できるので、 投影光学系 P Lの色収差を効果的に抑制 することができ、 これによりレチクル Rに形成されたパターンを精度良くゥェ ハ Wに転写することができる。  Further, according to the exposure apparatus of the present embodiment, the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system PL can be effectively suppressed. The formed pattern can be accurately transferred to wafer W.
なお、 上記実施形態では、 位相変調を行う EOM1 32を、 パルス変調を行 う EOM 1 3 1と光増幅部 1 61との間に配置したが、 光増幅部 1 61中や光 増幅部 1 61と波長変換部 1 63との間に配置することもできる。 要は、 パル ス光の伝搬する波長変換部 1 63までの光路中に EOM 1 32を配置すれば良 い。  In the above embodiment, the EOM 132 for performing phase modulation is arranged between the EOM 13 31 for performing pulse modulation and the optical amplifier 161. And the wavelength conversion unit 163. The point is that the EOM 132 should be placed in the optical path up to the wavelength conversion section 163 where the pulse light propagates.
また、 上記の実施形態では、 パルス変調を行う EOM 1 31と位相変調を行 う EOM 1 32とを別個に設けたが、 EOM1 3 1にパルス変調信号 M D 1を 構成する電圧信号 MD 1 1 , MD 1 2それぞれに位相変調信号 MD 2を重畳さ せた変調信号を供給することにより、 1つの電気光学変調器によりパルス変調 と位相変調とを同時に行うようにしてもよい。  Further, in the above embodiment, the EOM 1 31 for performing the pulse modulation and the EOM 1 32 for performing the phase modulation are separately provided, but the voltage signals MD 1 1, By supplying a modulation signal in which the phase modulation signal MD 2 is superimposed on each of the MDs 12, pulse modulation and phase modulation may be performed simultaneously by one electro-optic modulator.
また、 上記の実施形態では、 パルス変調を行う EOM1 31として、 2分岐 した導波路それぞれに応じて電極 1 3 1 , 1 32を配置したが、 2分岐した導 波路の一方のみに電極を配置する構成とすることもできる。  Further, in the above-described embodiment, the electrodes 13 1 and 1 32 are arranged as the EOM 131 that performs pulse modulation according to each of the two branched waveguides. However, the electrodes are arranged only on one of the two branched waveguides. It can also be configured.
《第 2の実施形態》  << 2nd Embodiment >>
次に、本発明の第 2の実施形態を説明する。本第 2の実施形態の露光装置は、 光源装置の構成が前述した第 1の実施形態の光源装置と異なる点を除き、 前述 した第 1の実施形態の露光装置 1 0と同様に構成されている。  Next, a second embodiment of the present invention will be described. The exposure apparatus according to the second embodiment has the same configuration as the exposure apparatus 10 according to the above-described first embodiment except that the configuration of the light source apparatus is different from that of the above-described first embodiment. I have.
すなわち、本第 2の実施形態に係る光源装置 1 6は、図 8に示されるように、 前述の第 1の実施形態の光源装置 (図 2参照) と比べて、 EOM1 32が無い こと、 及び、 光増幅部 1 61に代えて光増幅部 1 61 ' が用いらている点が相 違する。 以下、 かかる相違点を中心として、 本第 2の実施形態の説明を行う。 なお、 本、第 2の実施形態の説明にあたって、 第 1の実施形態と同一又は同等の 要素には同一の符号を付し、 重複する説明を省略する。 That is, as shown in FIG. 8, the light source device 16 according to the second embodiment The difference from the light source device of the first embodiment (see FIG. 2) is that there is no EOM132 and that the optical amplifier 161 'is used instead of the optical amplifier 161. I do. Hereinafter, the second embodiment will be described focusing on such differences. In the description of the second embodiment, the same or equivalent elements as those of the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
本第 2の実施形態の光増幅部 1 61 ' は、 図 9に示されるように、 第 1の実 施形態の光増幅部 1 61 (図 5参照) と比べて、 光ファイバ増幅器 1 67に代 えて、 光ファイバ増幅器 1 67' を使用する点が異なる。 この光ファイバ増幅 器 1 67' は、 光ファイバ増幅器 1 67における前段光増幅器 1 41と後段光 増幅器 1 42との間、 より正確には、 光アイソレータ 1 77と WDM 1 792 との間に位相変調器 1 38が配置されている点のみが、 光ファイバ増幅器 1 6 7と異なっている。 As shown in FIG. 9, the optical amplifying unit 161 ′ of the second embodiment is different from the optical amplifying unit 161 of the first embodiment (see FIG. 5) in the optical fiber amplifier 167. The difference is that an optical fiber amplifier 1 67 'is used instead. The optical fiber amplifier device 1 67 'are disposed between the front-stage optical amplifier 1 41 and the rear-stage optical amplifier 1 42 in the optical fiber amplifier 1 67, more precisely, the phase between the optical isolator 1 77 and WDM 1 79 2 The only difference from the optical fiber amplifier 167 is that the modulator 138 is provided.
この位相変調器 1 38は、 図 1 OAに示されるように、 増幅用光ファイバ 1 75χ, 1 752の非線形屈折率と反対の極性を有する非線形屈折率を有する非 線形光学部材 330と、 該非線形光学部材 330に対して一対の電極板 33 1 1 , 3312から成る電極 331を介して電圧を印加するための直流電源 332 とを備えている。本第 2の実施形態では、非線形光学部材 330の材料として、 半導体光増幅器の増幅用媒質としても使用される I ni-xG axA S l-Y PY混 晶が用いられている。 The phase modulator 1 38, as shown in FIG. 1 OA, the amplification optical fiber 1 75Kai, a non-linear optical element 330 having a non-linear refractive index with a polarity opposite to that of the 1 75 2 nonlinear refractive index, the A DC power source 332 for applying a voltage to the nonlinear optical member 330 via an electrode 331 including a pair of electrode plates 33 11 and 3312 is provided. In the second embodiment, as the material of the nonlinear optical element 330, a semiconductor optical amplifier I ni is also used as an amplification medium - x G a x A S l - Y P Y mixed crystal is used.
この I m-xGaxA si-γ Ργ混晶は、 パルス変調を行う EOM 1 31から 波長変換部 1 63までのパルス光の光路における非線形光学部材 330以外の 主な非線形光学部材である増幅用光ファイバ 1 75^ 1 752 を構成するシリ 力ガラスとは反対の極性の非線形屈折率を有している。 すなわち、 シリカガラ スは正の非線形屈折率を有しているのに対して、 I nnG ax A Sl-Y PY混 晶は負の非線形屈折率 (=—2 X 1 O i 5 m2/"W: Grant et al., 1991, Appl. Phys. Lett.58(11), plll9)を有しており、その絶対値がシリカガラスよりも 5 桁程度大きい。 なお、 I rn.xG ax A si-γ Ργ混晶は、 電圧が印加されてい ない場合には、 1. 55〃 m帯の光について吸収性を有するので、利得が Γ 1 j となるように、 直流電源 332から電極 331を介して非線形光学部材 330 に電圧が印加されている。 This Im-xGaxA si-γ Ργ mixed crystal is an amplification optical fiber that is a main nonlinear optical member other than the nonlinear optical member 330 in the optical path of the pulse light from the EOM 131 that performs pulse modulation to the wavelength conversion section 163. It has a nonlinear refractive index of the opposite polarity to the silica force glass constituting the 1 75 ^ 1 75 2. That is, while the Shirikagara scan has a positive nonlinear refractive index, I nnG a x A Sl - Y P Y mixed crystal is negative nonlinear refractive index (= -2 X 1 O i 5 m 2 / "W: Grant et al., 1991, Appl. Phys. Lett. 58 (11), plll9), whose absolute value is 5 times higher than that of silica glass. It is about an order of magnitude larger. When no voltage is applied, I rn.xG ax A si-γ Ργ mixed crystal has absorptivity for light in the 1.55 m band, so that the gain should be Γ 1 j. A voltage is applied from the DC power supply 332 to the nonlinear optical member 330 via the electrode 331.
位相変調器 1 38では、 図 1 0 Bに示されるように、 入射したパルス光 L 2 1が、 非線形光学部材 330を通過することにより殆ど変形せずに (その強度 (振幅) が変化せずに) パルス光 L 22が射出される。 一方、 パルス光が非線 形光学部材 330を通過すると、 前述の (2) 式に従って、 パルス光の各瞬間 の強度及び非線形光学部材 330内おける光路長に応じた位相変調が行われる c かかる位相変調によって射出光 L 22に付与される位相変調量 0P M は、 図 1 0 Bに示されるように、 射出光 L 22の各瞬間の強度に応じたものとなってい る。 なお、 位相変調量 0PM は、 非線形光学部材 330内おける光路長に比例 するが、 当該非線形光学部材 330内おける光路長は、 位相変調器 1 38によ る位相変調量 0PM が、 パルス光が波長変換部 1 63までの光路において受け る自己位相変調量 0S PM を相殺する量となる長さに設定されている。 In the phase modulator 138, as shown in FIG. 10B, the incident pulse light L 21 hardly deforms by passing through the nonlinear optical member 330 (the intensity (amplitude) does not change). 2) The pulse light L22 is emitted. On the other hand, when the pulsed light passes through the nonlinear optical member 330, according to the above (2), c such phase phase-modulated according to the intensity and the optical path length definitive nonlinear optical element within 330 of each moment of the pulsed light is performed As shown in FIG. 10B, the phase modulation amount 0 PM imparted to the emission light L22 by the modulation depends on the intensity of the emission light L22 at each instant. Although the phase modulation amount 0PM is proportional to the optical path length in the nonlinear optical member 330, the optical path length in the nonlinear optical member 330 is such that the phase modulation amount 0PM by the phase modulator 138 is It is set to an amount to become long to cancel the self-phase modulation amount 0 S PM that Ru received in the optical path to the conversion unit 1 63.
以上のように構成された光ファイバ増幅器 1 67' にパルス光 L2' が入射 すると、 第 1の実施形態の場合と同様に、 増幅用光ファイバ 1 75ι, 1 752 を介することにより、 パルス光が増幅されるとともに、 主に増幅用光ファイバ 1 75ι, 1 752 におけるパルス光の自己位相変調が、位相変調器 1 38にお ける位相変調によって相殺される。 この結果、 自己位相変調によるパルス光の スぺクトル幅の拡大が抑制され、 波長の単一性が高い高輝度のパルス光 L 3' が、 光増幅部 1 61 ' から波長変換部 1 63へ向けて射出される。 When the pulse light L2 'is incident on the optical fiber amplifier 167' configured as described above, the pulse light L2 'is passed through the amplification optical fibers 1 75ι and 175 2 as in the case of the first embodiment. There while being amplified, mainly amplifying optical fiber 1 75Iota, 1 75 self-phase modulation of the pulsed light in the two is offset by our Keru phase modulation to the phase modulator 1 38. As a result, the spread of the pulse width of the pulse light due to the self-phase modulation is suppressed, and the high-intensity pulse light L 3 ′ having a high unity of the wavelength is transmitted from the optical amplification unit 161 ′ to the wavelength conversion unit 163. It is injected toward.
すなわち、 本第 2の実施形態の光源装置 1 6では、 第 1実施形態の場合と同 様にして、 連続光発生部 1 60で発生された連続光 L 1 ' から、 EOM 1 31 によってパルス切出しが行われて光パルス列 L 2' が生成される。 こうして生 成された光パルス列の各パルス列 L 2' の各パルス光は、 光増幅部 1 61 ' に おいて増幅されるととともに、 自己位相変調によるスぺクトル幅の拡大が抑制 される。 そして、 光増幅部 1 61 ' から射出された光 L3' が波長変換部 1 6 3に入射して、 波長変換された後、 光源装置 1 6の射出光として射出される。 こうして光源装置 1 6から射出された光を使用して、 第 1の実施形態の場合と 同様にして、 レチクル Rに形成されたパターンがウェハ Wに転写される。 That is, in the light source device 16 of the second embodiment, in the same manner as in the first embodiment, a pulse is cut out by the EOM 131 from the continuous light L 1 ′ generated by the continuous light generation unit 160. Is performed to generate an optical pulse train L 2 ′. Each pulse light of each pulse train L 2 ′ of the optical pulse train generated in this way is supplied to the optical amplifier 161 ′. At the same time, the expansion of the spectrum width due to self-phase modulation is suppressed. Then, the light L3 ′ emitted from the optical amplifier 161 ′ enters the wavelength converter 163, is wavelength-converted, and is emitted as light emitted from the light source device 16. The pattern formed on the reticle R is transferred onto the wafer W using the light emitted from the light source device 16 in the same manner as in the first embodiment.
以上説明したように、 本第 2の実施形態に係る光源装置 1 6によると、 前述 した第 1の実施形態と同等の作用により同等の効果を得ることができ、 結果的 に波長変換部 1 63から射出される波長変換光の単色性を高めることができる c これに加えて、 また、 位相変調器として、 非線形屈折率が、 増幅用光ファイバ 1 75ι, 1 752の非線形屈折率の極性と反対の極性を有する非線形光学部材 を使用するので、 位相変調にあたって動的な制御をすることなく、 精度良く位 相変調を行うことができる。 As described above, according to the light source device 16 according to the second embodiment, the same effects as those of the above-described first embodiment can be obtained, and as a result, the wavelength conversion unit 163 can be obtained. in addition to c which can enhance the monochromaticity of the wavelength converted light emitted from, also as a phase modulator, nonlinear refractive index, the amplification optical fiber 1 75Iota, the polarity of the 1 75 2 nonlinear refractive index Since the nonlinear optical member having the opposite polarity is used, the phase modulation can be accurately performed without performing dynamic control in the phase modulation.
また、 本第 2の実施形態の露光装置によると、 露光にあたって単色性の高い 照明光 I Lをレチクル Rに照射できるので、 投影光学系 P Lの色収差を効果的 に抑制することができ、 これによりレチクル Rに形成されたパターンを精度良 くウェハ Wに転写することができる。  In addition, according to the exposure apparatus of the second embodiment, the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system PL can be effectively suppressed. The pattern formed on R can be transferred onto wafer W with high accuracy.
なお、 上記第 2の実施形態では、 位相変調を行う位相変調器 1 38を、 前段 光増幅器 1 41と後段光増幅器 1 42との間に配置したが、 非線形光学部材に おける光路長を調整した位相変調器 1 38と同様のタイプの位相変調器を、 E OM 1 3 1と前段光増幅器 1 41との間に配置してもよいし、 また、 後段光増 幅器 1 42と波長変換部 1 63との間に配置してもよい。 すなわち、 第 1の実 施形態における EOM1 32と同様に、 波長変換部 1 63までのパルス光の伝 搬する光路中に位相変調器 1 38を、 配置することができる。  In the second embodiment, the phase modulator 138 for performing the phase modulation is disposed between the first-stage optical amplifier 141 and the second-stage optical amplifier 142, but the optical path length in the nonlinear optical member is adjusted. A phase modulator of the same type as the phase modulator 138 may be disposed between the EOM 13 1 and the upstream optical amplifier 141, or the downstream optical amplifier 142 and the wavelength converter It may be arranged between 1 and 63. That is, similarly to the EOM 132 in the first embodiment, the phase modulator 138 can be arranged in the optical path for transmitting the pulse light to the wavelength converter 163.
また、 上記第 2の実施形態では、 位相変調器 1 38の非線形光学部材 330 の材料として I ni-xG ax A S l-Y ΡΥ混晶を用いたが、 増幅用光ファイバ 1 75ι, 1 752の材料の非線形屈折率と極性が異なる非線形屈折率を有する材 料であれば、 非線形光学部材 3 3 0の材料として採用することができる。 《第 3の実施形態》 Further, in the second embodiment, I ni-xG as the material of the nonlinear optical element 330 of the phase modulator 1 38 a x A S l - Y Ρ Υ was used mixed crystal, the amplifying optical fiber 1 75Iota, A material with a non-linear refractive index different in polarity from the non-linear refractive index of the material of 1 75 2 Material, it can be adopted as the material of the nonlinear optical member 330. << Third embodiment >>
次に、本発明の第 3の実施形態を説明する。本第 3の実施形態の露光装置は、 光源装置の構成が前述した第 1の実施形態の光源装置と異なる点を除き、 前述 した第 1の実施形態の露光装置 1 0と同様に構成されている。  Next, a third embodiment of the present invention will be described. The exposure apparatus of the third embodiment has the same configuration as that of the exposure apparatus 10 of the first embodiment except that the configuration of the light source apparatus is different from that of the above-described first embodiment. I have.
すなわち、 本第 3の実施形態に係る光源装置 1 6は、 図 1 1に示されるよう に、 前述の第 1の実施形態の光源装置 (図 2参照) と比べて、 E O M 1 3 2が 無いこと、 及び、 直流電流信号を供給する電流駆動器 1 3 6に代えて後述する 位相変調信号が重畳された信号を供給する電流駆動器 1 3 6 ' が用いられる点 が相違する。 以下、 かかる相違点を中心として、 本第 3の実施形態の説明を行 う。 なお、 本第 3の実施形態の説明にあたって、 第 1の実施形態と同一又は同 等の要素には同一の符号を付し、 重複する説明を省略する。  That is, as shown in FIG. 11, the light source device 16 according to the third embodiment does not have the EOM 13 2 as compared with the light source device according to the first embodiment (see FIG. 2). The difference is that a current driver 136 'for supplying a signal on which a phase modulation signal described later is superimposed is used instead of the current driver 136 for supplying a DC current signal. Hereinafter, the third embodiment will be described focusing on such differences. In the description of the third embodiment, the same or similar elements as those of the first embodiment are denoted by the same reference numerals, and duplicate description will be omitted.
ここで、 本第 3の実施形態で利用する位相変調の原理について簡単に説明す る。  Here, the principle of the phase modulation used in the third embodiment will be briefly described.
半導体レーザ素子は、 活性層に電流が流れることにより伝導帯と価電子帯と の間で反転分布を生じさせ、 かかる反転分布状態における自然放射光の発生を 卜リガとして共振器より、 供給された電流量に応じたレーザ光を発生する。 こ うした発光のための電流供給によりキャリアが発光部に集中するが、 かかるキ ャリァの集中によリ屈折率が変化する。 この屈折率の変化はキヤリァの集中度 によって変化するが、 該キャリアの集中度は供給電流量によって変化する。 すなわち、 供給電流量の変化によって発光部の屈折率が変化し、 この屈折率 の変化により射出されるレーザ光が位相変調される (前述の (2 ) 式参照)。 そ して、 この位相変調の量は、 供給電流を変化させることにより、 変化させるこ とができる。  In a semiconductor laser device, a current flows through the active layer to cause a population inversion between the conduction band and the valence band, and the spontaneous emission in the population inversion state is supplied from the resonator as a trigger. A laser beam is generated according to the amount of current. The carriers are concentrated on the light emitting portion by the current supply for light emission, and the refractive index changes due to the concentration of the carriers. The change in the refractive index changes according to the concentration of the carrier, but the concentration of the carrier changes according to the amount of supplied current. That is, the refractive index of the light emitting portion changes due to the change in the supplied current amount, and the laser light emitted is phase-modulated by the change in the refractive index (see the above-mentioned equation (2)). The amount of the phase modulation can be changed by changing the supply current.
本第 3の実施形態では、 上記の原理を利用して、 連続発生部 1 6 0のり 8 半導体レーザ 1 6 O Aの駆動信号 D V ' を振幅変調することにより、 位相変調 されたレーザ光を発生させる。 In the third embodiment, the phase modulation is performed by utilizing the above principle and performing amplitude modulation of the drive signal DV ′ for the continuous generation unit 16 and the semiconductor laser 16 OA. The generated laser light is generated.
すなわち、 図 1 2に示されるように、 直流成分に位相変調のための交流成分 が重畳した駆動信号 DV' が、 電流駆動器 1 36, から D FB半導体レーザ 1 That is, as shown in FIG. 12, a drive signal DV ′ in which an AC component for phase modulation is superimposed on a DC component is supplied from the current driver 136 to the DFB semiconductor laser 1.
6 OAに供給される。 ここで、 駆動信号 DV' における交流成分の周期は、 後 に E O Mによって切り出される光/ ルス幅と同程度とされている。 この結果、 駆動信号 DV' の波形に応じた強度波形の光 L 1 " が D FB半導体レーザ 1 6 OAから射出される。 こうして D FB半導体レーザ 1 6 OAから射出された光 L 1 " は、 上述したように、 各瞬間の強度に応じた位相変調がなされたものと なっている。 6 Supplied to OA. Here, the period of the AC component in the drive signal DV ′ is substantially equal to the light / loss width that is cut out later by the EOM. As a result, light L 1 "having an intensity waveform corresponding to the waveform of the drive signal DV 'is emitted from the DFB semiconductor laser 16 OA. Thus, the light L 1" emitted from the DFB semiconductor laser 16 OA is As described above, the phase is modulated according to the intensity at each instant.
こうして D F B半導体レーザ 1 6 OAから射出された光 L 1 " は、 EOM 1 3 1によってパルス変調される。かかるパルス変調において、 EOM 1 3 1は、 変調制御装置 1 6 Cからの変調信号 MD 1によるパルス切出し指示に応じて、 EOM1 31から射出されたパルス光 L 2" が波長変換部 1 63までの光路で 受ける自己位相変調量 0SPMを相殺可能な位相変調量 0PMの時間変化となる タイミングでパルス切出しを行う。 こうして、 各パルス光が後に受ける自己位 相変調を相殺する位相変調が施された光パルス列 L 2" 力 EOM 1 3 1から 射出される。  The light L 1 "emitted from the DFB semiconductor laser 16 OA is pulse-modulated by the EOM 13 1. In this pulse modulation, the EOM 13 1 outputs the modulated signal MD 1 from the modulation controller 16 C. The pulse light L 2 ”emitted from the EOM1 31 in response to the pulse cutout instruction by the EOM1 31 has a time change of the phase modulation amount 0 PM that can cancel the self-phase modulation amount 0 SPM received on the optical path to the wavelength conversion unit 163 at 0 PM. Perform pulse cutting. In this way, each pulsed light is emitted from the optical pulse train L2 "force EOM131, which has been subjected to phase modulation to cancel the self-phase modulation received later.
以上のようにして生成された光パルス列 L 2" が光増幅部 1 61に入射する と、第 1の実施形態の場合と同様に、増幅用光ファイバ 1 75 1 752 を介 することにより、 各パルス光が増幅されるとともに、 主に増幅用光ファイバ 1When the optical pulse train L 2 ″ generated as described above is incident on the optical amplifying unit 161, as in the case of the first embodiment, the optical pulse train L 2 ″ passes through the amplifying optical fiber 175 175 2 , Each pulsed light is amplified, and mainly the amplification optical fiber 1
75ι, 1 752 におけるパルス光の自己位相変調が、 D FB半導体レーザ 1 6 OAからの射出時に既に行われていた位相変調によって相殺される。この結果、 自己位相変調によるパルス光のスぺクトル幅の拡大が抑制され、 波長の単一性 が高い高輝度のパルス光し 3" 力 光増幅部 1 61から波長変換部 1 63へ向 けて射出される。 75ι, 1 75 2 self-phase modulation of the pulsed light in is canceled by the phase modulation which has already been made at the time of injection from D FB semiconductor laser 1 6 OA. As a result, the expansion of the pulse width of the pulse light due to the self-phase modulation is suppressed, and a high-intensity pulse light having a high wavelength uniformity is directed from the 3 "power amplifier 161 to the wavelength converter 163. Is injected.
すなわち、 本第 3の実施形態の光源装置 1 6では、 連続光発生部 1 60で発 生された位相変調光 L 1 " から、 E O M 1 3 1が、 後の自己位相変調を相殺す る位相変調量の時間変化をするタイミングでパルス切出しを行い、 光パルス列 L 2 " を生成する。 こうして生成された光パルス列 L 2 " の各パルス光は、 光 増幅部 1 6 1において増幅されるととともに、 増幅用光ファイバ 1 7 5 1 7 52 における自己位相変調によるスぺクトル幅の拡大が抑制される。そして、 光増幅部 1 6 1から射出された光 L 3 " が波長変換部 1 6 3に入射して、 波長 変換された後、 光源装置 1 6の射出光として射出される。 こうして光源装置 1 6から射出された光を使用して、 第 1の実施形態の場合と同様にして、 レチク ル Rに形成されたパターンがウェハ Wに転写される。 That is, in the light source device 16 of the third embodiment, the light is emitted from the continuous light generation unit 160. From the generated phase-modulated light L 1 ", the EOM 1331 performs pulse extraction at a timing at which the amount of phase modulation that cancels out the subsequent self-phase modulation changes with time, and an optical pulse train L 2" is generated. Each pulse of light pulses L 2 "produced in this way, along with the amplified in the optical amplifier unit 1 6 1, economies of Bae spectrum width due to self-phase modulation in the amplification optical fiber 1 7 5 1 7 5 2 Then, the light L 3 ″ emitted from the optical amplification unit 16 1 enters the wavelength conversion unit 16 3, is wavelength-converted, and is emitted as emission light from the light source device 16. . The pattern formed on the reticle R is transferred onto the wafer W using the light emitted from the light source device 16 in the same manner as in the first embodiment.
以上説明したように、 本第 3の実施形態に係る光源装置 1 6によると、 連続 光発生部 1 6 0におけるレーザ光発生にあたって、 連続光発生部 1 6 0が発生 した連続光をパルス変調した後、 各パルス光に対して、 当該各パルス光が波長 変換部 1 6 3までの光路上の媒質を通過する際に受ける自己位相変調に起因し て生じる位相変調量を相殺する位相変調量の位相変調を行う。 したがって、 波 長変換部 1 6 3に入射する光におけるスぺクトル幅の拡大を抑制することがで き、 単色性の良い光を波長変換部 1 6 3に供給することができる。 このため、 波長変換部 1 6 3から射出される波長変換光の単色性を高めることができる。 また、 本第 3の実施形態の露光装置によれば、 露光にあたって単色性の高い 照明光 I Lをレチクル Rに照射できるので、 投影光学系の色収差を効果的に抑 制し、 レチクル Rに形成されたパターンを精度良くウェハ Wに転写することが できる。  As described above, according to the light source device 16 according to the third embodiment, the continuous light generated by the continuous light generation unit 160 is pulse-modulated when the continuous light generation unit 160 generates laser light. Then, for each pulse light, a phase modulation amount that cancels out the phase modulation amount caused by self-phase modulation received when the respective pulse light passes through the medium on the optical path up to the wavelength conversion unit 163. Perform phase modulation. Therefore, it is possible to suppress an increase in the spectrum width of the light incident on the wavelength conversion unit 163, and to supply light with good monochromaticity to the wavelength conversion unit 163. Therefore, the monochromaticity of the wavelength-converted light emitted from the wavelength converter 163 can be improved. Further, according to the exposure apparatus of the third embodiment, the reticle R can be irradiated with the illumination light IL having high monochromaticity at the time of exposure, so that the chromatic aberration of the projection optical system is effectively suppressed, and the reticle R is formed on the reticle R. The transferred pattern can be accurately transferred to the wafer W.
なお、 上記第 3の実施形態では、 駆動信号 D V ' への位相変調用信号を連続 的な交流電流成分としたが、 パルス切出し指示に応じてほぼパルス幅程度の時 間幅だけ強度用変調信号である位相変調用信号を直流成分に重畳し、 その位相 変調用信号の重畳した期間の駆動信号 D V 'による駆動によって発生した光を、 E O M 1 3 1でパルス切出ししてもよい。 なお、 上記第 1〜第 3の実施形態それぞれで説明した位相変調の手法を任意 に組み合わせて適用することが可能なことは勿論である。 In the third embodiment, the phase modulation signal to the drive signal DV ′ is a continuous AC current component. However, the intensity modulation signal is almost equivalent to the pulse width in response to the pulse extraction instruction. The phase modulation signal may be superimposed on the DC component, and the light generated by driving with the drive signal DV ′ during the period in which the phase modulation signal is superimposed may be pulse-cut out by the EOM 131. It is needless to say that the phase modulation methods described in the first to third embodiments can be applied in any combination.
また、 上記の各実施形態では意図的に付与される位相変調量 0PM は、 自己 位相変調量 0SPM を相殺する量と必ずしも一致していなくとも良い。 例えば、 前述の露光装置で要求されるスぺクトル幅が得られる程度の範囲内で位相変調 量 0PM を自己位相変調量 0SPM と異ならせる、 換言すれば位相変調量 0PM が自己位相変調量 0SPMの一部を相殺する量であっても良い。かかる場合にも, スぺクトル幅の拡大を制御する効果を奏する。  Further, in each of the above embodiments, the phase modulation amount 0PM intentionally applied does not necessarily have to coincide with the amount that cancels the self-phase modulation amount 0SPM. For example, the phase modulation amount 0PM is made different from the self-phase modulation amount 0SPM within a range in which the spectrum width required by the above-described exposure apparatus can be obtained. In other words, the phase modulation amount 0PM is equal to the self-phase modulation amount 0SPM. It may be an amount that partially cancels out. Also in such a case, the effect of controlling the expansion of the spectrum width is exerted.
また、 上記の各実施形態における波長変換部の構成は一例であって、 本発明 の波長変換部の構成や非線形光学結晶の材料、 出力波長などがこれに限定され ないことは勿論である。 例えば、 光増幅部 1 63から射出される波長 1. 57 jt mの基本波を、 非線形光学結晶を用いて 1 0倍波の高調波発生を行い、 F2 レーザと同じ波長である 1 57 nmの紫外光を発生することもできる。 Further, the configuration of the wavelength conversion unit in each of the above embodiments is merely an example, and it goes without saying that the configuration of the wavelength conversion unit, the material of the nonlinear optical crystal, the output wavelength, and the like are not limited thereto. For example, the fundamental wave of wavelength 1. 57 jt m emitted from the optical amplifying portion 1 63 performs harmonic generation 1 0 harmonic by using a nonlinear optical crystal, 1 57 nm is the same wavelength as the F 2 laser UV light can be generated.
また、 上記の各実施形態では、 レーザ光源 1 6 OAとして、 D FB半導体レ 一ザを使用したが、 他の半導体レーザや、 例えば発振波長が 990 nm付近の ィッテルビウム(Y b)■ ドープ■ファイバーレーザ等のファイバレーザを使用 することもできる。  In each of the above embodiments, a DFB semiconductor laser was used as the laser light source 16 OA. However, other semiconductor lasers or ytterbium (Yb) -doped fiber having an oscillation wavelength of around 990 nm, for example, were used. A fiber laser such as a laser can also be used.
また、 上記の各実施形態では、 増幅用光ファイバとして E r ドープファイバ を採用したが、 Y b ドープファイバその他の希土類元素ドープファイバを採用 することも可能である。  In each of the above embodiments, the Er-doped fiber is used as the amplification optical fiber. However, a Yb-doped fiber or another rare-earth element-doped fiber may be used.
また、 上記の各実施形態では、 増幅用媒体として希土類元素がコア部に添加 された光ファイバを採用したが、 例えば、 希土類元素が添加されたロッド状の ガラス体を採用し、 これに励起光を照射するようにしてもよい。  In each of the embodiments described above, the optical fiber in which the rare earth element is added to the core is used as the amplification medium. For example, a rod-shaped glass body to which the rare earth element is added is used, May be irradiated.
また、 光増幅部 1 61又は 1 61 ' において並列に配置される光ファイバ増 幅器の数は任意でよく、 本発明に係る光源装置が適用される製品において要求 される仕様に応じてその本数を決定すればよい。 特に、 光源装置として高出力 を要求されない場合には、 光ファイバ増幅器の数を減らして、 構成を簡略化す ることができる。 なお、 光ファイバ増幅器を 1つのみ含むように簡略化すると きは、 分岐器 1 6 6も不要となる。 Further, the number of optical fiber amplifiers arranged in parallel in the optical amplification section 161 or 161 'may be arbitrary, and the number may be determined according to the specifications required for the product to which the light source device according to the present invention is applied. Should be determined. In particular, high output as a light source device When the requirement is not required, the number of optical fiber amplifiers can be reduced and the configuration can be simplified. When simplifying to include only one optical fiber amplifier, the splitter 166 is not required.
また、 光ファイバ増幅器を直列に接続することにより、 1経路の光増幅率を 高めることもできる。 かかる場合には、 ジャイアントパルスの発生により破壊 の可能性のある光ファイバ増幅器から波長変換部までの間に、 適宜な光量制御 装置を設ければよい。  In addition, by connecting optical fiber amplifiers in series, the optical gain of one path can be increased. In such a case, an appropriate light amount control device may be provided between the optical fiber amplifier, which may be destroyed due to the generation of a giant pulse, and the wavelength converter.
また、上記各実施形態では単一のレーザ光源 1 6 O Aを用いるものとしたが、 複数のレーザ光源 1 6 O Aを用いるとともに、 図 2に示される光源部 1 6 Aの うち、 例えば少なくとも波長変換部 1 6 3を除く残りの光学要素 (光アイソレ ータ 1 6 0 B、 E O M 1 3 1、 1 3 2、 光増幅部 1 6 1など) をレーザ光源と 同数だけ設けるようにし、 この複数の光源部と前述した波長分割多重化装置と によって生成される多数の出力光 L 4を波長変換部 1 6 3に入射させるように 構成しても良い。  In each of the above embodiments, a single laser light source 16 OA is used. However, a plurality of laser light sources 16 OA are used, and at least one of the light source units 16 A shown in FIG. The same number of optical elements as the laser light source (optical isolators 16B, EOM 131, 1332, optical amplifiers 161, etc.) except for the part 163 should be provided. A large number of output lights L4 generated by the light source unit and the wavelength division multiplexing device described above may be configured to be incident on the wavelength conversion unit 163.
また、 上記の各実施形態では、 光源装置が射出する紫外光の波長を、 A r F エキシマレーザとほぼ同一に設定するものとしたが、 その設定波長は任意でよ く、 この設定すべき波長に応じて、 レーザ光源 1 6 O Aの発振波長や波長変換 部 1 6 3の構成及び高調波の倍率などを決定すればよい。 なお、 設定波長は、 一例として、 ウェハ上に転写すべきパターンのデザインルール (線幅、 ピッチ など) に応じて決定するようにしてもよく、 さらにはその決定に際して前述の 露光条件ゃレチクルの種類 (位相シフト型か否か) などを考慮してもよい。 また、 上記の各実施形態では、 本発明に係る光源装置がステップ,アンド - スキャン方式の走査型露光装置に適用された場合について説明したが、 露光装 置以外でデバイス製造工程などに用いられる装置、 例えば、 ウェハ上に形成さ れた回路パターンの一部 (ヒューズなど) を切断するために用いられるレーザ リペア装置などにも本発明に係る光源装置を適用することができる。 また、 本 発明は、 ステップ■アンド 'スキャン方式の走査型露光装置に限らず、 静止露 光型、 例えばステップ■アンド■ リピート方式の露光装置 (ステツパなど) に も好適に適用できるものである。 更にはステップ■アンド■スティツチ方式の 露光装置、 ミラープロジェクシヨン■ァライナーなどにも適用できる。 In each of the above embodiments, the wavelength of the ultraviolet light emitted from the light source device is set to be substantially the same as that of the ArF excimer laser. However, the set wavelength may be arbitrarily set. The oscillation wavelength of the laser light source 16 OA, the configuration of the wavelength converter 16 3, the magnification of the harmonics, and the like may be determined according to the conditions. The set wavelength may be determined, for example, in accordance with the design rules (line width, pitch, etc.) of the pattern to be transferred onto the wafer. (Phase shift type or not) may be considered. Further, in each of the above embodiments, the case where the light source device according to the present invention is applied to the step-and-scan type scanning exposure apparatus has been described, but the apparatus used in a device manufacturing process other than the exposure apparatus is used. For example, the light source device according to the present invention can be applied to a laser repair device used for cutting a part (such as a fuse) of a circuit pattern formed on a wafer. Also the book The present invention can be suitably applied not only to a step-and-scan type scanning exposure apparatus, but also to a static exposure type, for example, a step-and-repeat type exposure apparatus (such as a stepper). Furthermore, the present invention can be applied to a step-and-stick type exposure apparatus, a mirror projection aligner, and the like.
また、 上記の各実施形態では、 本発明に係る光源装置が露光用照明光を発生 する光源装置として使用される例を説明したが、 露光用照明光とほぼ同一の波 長の光を必要とする上述のレチクルァライメン卜用の光源装置、 あるいは投影 光学系の物体面又は像面に配置されるマークの投影像を検出して投影光学系の 光学特性を求める空間像検出系の光源装置等として使用することも可能である。 なお、 本発明の光源装置は、 露光装置以外にも様々な装置に利用することが できる。 例えば、 レーザ光を角膜に照射して表面のアブレーシヨン (あるいは 切開した角膜内部のアブレーシヨン) を行い、 角膜の曲率若しくは ω凸を矯正 して近眼、 乱視などの治療を行うレーザ治療装置に使用される光源装置として 利用することができる。 また、 光学式検査装置等における光源装置としても、 本発明の光源装置は利用可能である。  Further, in each of the above embodiments, an example in which the light source device according to the present invention is used as a light source device for generating exposure illumination light has been described, but light having substantially the same wavelength as the exposure illumination light is required. A light source device for a reticle alignment described above, or a light source device for a spatial image detection system that detects a projection image of a mark arranged on an object plane or an image plane of the projection optical system and obtains optical characteristics of the projection optical system It is also possible to use as such. The light source device of the present invention can be used for various devices other than the exposure device. For example, it is used for laser treatment equipment that irradiates the cornea with laser light to ablate the surface (or ablation inside the incised cornea), corrects the curvature or ω convexity of the cornea, and treats myopia, astigmatism, etc. It can be used as a light source device. Further, the light source device of the present invention can be used as a light source device in an optical inspection device or the like.
また、 本発明の光源装置は、 上記の実施形態における投影光学系のような光 学系の光学調整 (光軸合わせ等) 用又は検査用としても利用可能である。 さら には、 エキシマレーザを光源として有する各種装置におし、て、 エキシマレーザ に置き換えて本発明の光源装置を適用できる。  Further, the light source device of the present invention can also be used for optical adjustment (optical axis alignment, etc.) or inspection for an optical system such as the projection optical system in the above embodiment. Further, the light source device of the present invention can be applied to various devices having an excimer laser as a light source instead of the excimer laser.
《デバイス製造方法》  《Device manufacturing method》
次に、 上記の各実施形態の露光装置及び方法を使用したデバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 C C D、 薄膜磁気へッド、 マイクロマシ ン等) の製造について説明する。  Next, the manufacture of devices (such as semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, and micromachines) using the exposure apparatuses and methods of the above embodiments will be described.
図 1 3には、 上記デバイスの製造例のフローチャートが示されている。 この 図 1 3に示されるように、 まず、 ステップ 2 0 1 (設計ステップ) において、 デバイスの機能■性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。引き続き、ステップ 2 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマスクを製作 する。 一方、 ステップ 2 0 3 (ウェハ製造ステップ) において、 シリコン等の 材料を用いてウェハを製造する。 FIG. 13 shows a flowchart of an example of manufacturing the device. As shown in FIG. 13, first, in step 201 (design step), a device function / performance design (for example, circuit design of a semiconductor device) is performed. A pattern is designed to realize the function. Subsequently, in step 202 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 203 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 2 0 4 (ウェハ処理ステップ) において、 ステップ 2 0 "!〜 ステップ 2 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 2 0 5 (デバイス組立てステップ) において、 ステップ 2 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 2 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。  Next, in step 204 (wafer processing step), using the mask and the wafer prepared in steps 200 to 223, as described later, the actual Next, in step 205 (device assembly step), device assembly is performed using the wafer processed in step 204. In step 205, a dicing process and a bonding process are performed. Steps such as, and the packaging step (chip encapsulation) are included as necessary.
最後に、 ステップ 2 0 6 (検査ステップ) において、 ステップ 2 0 5で作成 されたデバイスの動作確認テスト、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。  Finally, in step 206 (inspection step), inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
図 1 4には、 半導体デバイスにおける、 上記ステップ 2 0 4の詳細なフロー 例が示されている。 図 1 4において、 ステップ 2 1 1 (酸化ステップ) におい てはウェハの表面を酸化させる。 ステップ 2 1 2 ( C V Dステップ) において はウェハ表面に絶縁膜を形成する。 ステップ 2 1 3 (電極形成ステップ) にお いてはウェハ上に電極を蒸着によって形成する。 ステップ 2 1 4 (イオン打ち 込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 2 1 1 〜ステップ 2 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成してお リ、 各段階において必要な処理に応じて選択されて実行される。  FIG. 14 shows a detailed flow example of the above step 204 in the semiconductor device. In FIG. 14, in step 2 11 (oxidation step), the surface of the wafer is oxidized. In step 2 12 (CVD step), an insulating film is formed on the wafer surface. In step 2 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 2 14 (ion implantation step), ions are implanted into the wafer. Each of the above-mentioned steps 211 to 214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to necessary processing in each stage.
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 2 1 5 (レジスト形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 2 1 6 (露光ステップ) において、 上で説明したリソグラフイシ ステム (露光装置) 及び露光方法によってマスクの回路パターンをウェハに転 写する。 次に、 ステップ 2 1 7 (現像ステップ) においては露光されたウェハ を現像し、 ステップ 2 1 8 (エッチングステップ) において、 レジストが残存 している部分以外の部分の露出部材をエッチングにより取り去る。 そして、 ス テツプ 2 1 9 (レジスト除去ステップ) において、 エッチングが済んで不要と なったレジス卜を取り除く。 In each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 215 (resist forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 2 16 (exposure step), the lithography described above was performed. The circuit pattern of the mask is transferred to the wafer by the stem (exposure apparatus) and the exposure method. Next, in Step 217 (development step), the exposed wafer is developed, and in Step 218 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 219 (resist removing step), the unnecessary resist after etching is removed.
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。  By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施形態のデバイス製造方法を用いることにより、 露光工程 (ステップ 2 1 6 ) において上記各実施形態の露光装置が用いられるので、 精 度良くレチクルのパターンをウェハ上に転写することができる。 この結果、 高 集積度のデバイスを生産性 (歩留まりを含む) 良く製造することができる。 産業上の利用可能性  By using the device manufacturing method of the present embodiment described above, the exposure apparatus of each of the above-described embodiments is used in the exposure step (step 2 16), so that the reticle pattern can be accurately transferred onto the wafer. it can. As a result, highly integrated devices can be manufactured with good productivity (including yield). Industrial applicability
以上詳細に説明したように、 本発明の光源装置は、 波長の単一性が向上した 高輝度の光を発生するのに適している。 また、 本発明の光照射装置は、 波長の 単一性が向上した高輝度の光を対象物に照射するのに適しており、 特に対象物 がマスクである場合には、 そのマスクに形成されたパターンの転写に適してい る。 また、 本発明のデバイス製造方法は、 マイクロデバイスの生産に適してい る。  As described in detail above, the light source device of the present invention is suitable for generating high-luminance light with improved wavelength unity. Further, the light irradiation device of the present invention is suitable for irradiating an object with high-intensity light having improved unity of wavelength, and particularly when the object is a mask, the light irradiation apparatus is formed on the mask. Suitable for transferring transferred patterns. Further, the device manufacturing method of the present invention is suitable for microdevice production.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定波長の光を発生する光発生器を含む光発生部と; 1. a light generator including a light generator for generating light of a predetermined wavelength;
前記所定波長の光を増幅する光増幅部と ;  An optical amplifier for amplifying the light of the predetermined wavelength;
前記光増幅部で増幅された光を波長変換する波長変換部と ;  A wavelength converter for wavelength-converting the light amplified by the optical amplifier;
前記光発生部から前記波長変換部に至る光路中に配置され、 前記光路を進行 する光の自己位相変調の少なくとも一部を相殺する位相変調を行う位相変調器 と ; を備える光源装置。  And a phase modulator disposed in an optical path from the light generation unit to the wavelength conversion unit and performing a phase modulation for canceling at least a part of a self-phase modulation of light traveling in the optical path.
2 . 請求項 1に記載の光源装置において、 2. The light source device according to claim 1,
前記位相変調器は、  The phase modulator,
前記光路上に配置され、 供給された変調用電気信号の振幅に応じた位相変調 を行う電気光学変調素子と ;  An electro-optic modulation element arranged on the optical path and performing phase modulation according to the amplitude of the supplied electric signal for modulation;
前記電気光学変調素子を通過する光の強度に応じた振幅の電気信号を、 前記 変調用電気信号として、 前記電気光学変調素子に供給する信号供給器と ; を備 えることを特徴とする光源装置。  A light source device for supplying an electric signal having an amplitude corresponding to the intensity of light passing through the electro-optic modulation element to the electro-optic modulation element as the modulation electric signal. .
3 . 請求項 1に記載の光源装置において、 3. The light source device according to claim 1,
前記位相変調器は、 前記光発生部から前記光増幅部までの光路中に配置され ることを特徴とする光源装置。  The light source device, wherein the phase modulator is arranged in an optical path from the light generation unit to the light amplification unit.
4 . 請求項 1に記載の光源装置において、 4. The light source device according to claim 1,
前記位相変調器は、 前記光増幅部における光伝搬媒体の非線形屈折率の極性 と反対の極性を有する材質から成る非線形光学部材を含むことを特徴とする光 Wherein the phase modulator includes a nonlinear optical member made of a material having a polarity opposite to the polarity of the nonlinear refractive index of the light propagation medium in the optical amplification unit.
5. 請求項 4に記載の光源装置において、 5. In the light source device according to claim 4,
前記非線形光学部材は、 I m-xGaxA si-γΡγ混晶から成ることを特徴 とする光源装置。  The light source device, wherein the nonlinear optical member is made of an Im-xGaxA si-γΡγ mixed crystal.
6. 請求項 1に記載の光源装置において、 6. The light source device according to claim 1,
前記光発生部は連続光を発生し、  The light generating unit generates continuous light,
前記光発生部の直後の段に配置され、 前記連続光からパルス光の切出しを行 うパルス変調器を更に備えることを特徴とする光源装置。  A light source device further comprising a pulse modulator arranged at a stage immediately after the light generation unit and for extracting pulse light from the continuous light.
7. 請求項 1に記載の光源装置において、 7. The light source device according to claim 1,
前記光発生器は、 赤外域から可視域までの波長範囲内のほぼ単一波長のレー ザ光を発生し、前記波長変換部は紫外光を射出することを特徴とする光源装置。  The light source device, wherein the light generator generates laser light of substantially a single wavelength within a wavelength range from an infrared region to a visible region, and the wavelength conversion unit emits ultraviolet light.
8. 請求項 1に記載の光源装置において、 8. The light source device according to claim 1,
前記光増幅部は、 増幅用光ファイバを含むことを特徴とする光源装置。  The light source device, wherein the optical amplification unit includes an amplification optical fiber.
9. 所定波長の光を発生する光発生器と ; 9. a light generator for generating light of a predetermined wavelength;
前記光発生器が発生した光が迪る光路における自己位相変調の少なくとも一 部を相殺する位相変調を行う位相変調用信号が重畳された駆動信号を、 前記光 発生器に供給する駆動信号供給器と;  A drive signal supply unit for supplying a drive signal on which a phase modulation signal for performing phase modulation for canceling at least a part of self-phase modulation in an optical path where light generated by the light generator is superimposed to the light generator to the light generator; When;
前記所定波長の光を増幅する光増幅部と ; を備える光源装置。  A light amplification unit that amplifies the light of the predetermined wavelength.
1 0. 請求項 9に記載の光源装置において、 10. The light source device according to claim 9,
前記光発生器から前記光増幅部までの光路に配置され、 前記光発生器から射 出された光からパルス光の切出しを行うパルス変調器を更に備えることを特徴 とする光源装置。 A light source device further comprising a pulse modulator disposed on an optical path from the light generator to the light amplifying unit, and for extracting pulse light from light emitted from the light generator.
1 1 . 請求項 9に記載の光源装置において、 11. The light source device according to claim 9,
前記光増幅部で増幅された光を波長変換する波長変換部を更に備えることを 特徴とする光源装置。  The light source device further comprises a wavelength conversion unit that converts the wavelength of the light amplified by the optical amplification unit.
1 2 . 請求項 1 1に記載の光源装置において、 12. The light source device according to claim 11,
前記光発生器は、 赤外域から可視域までの波長範囲内のほぼ単一波長のレー ザ光を発生し、前記波長変換部は紫外光を射出することを特徴とする光源装置。  The light source device, wherein the light generator generates laser light of substantially a single wavelength within a wavelength range from an infrared region to a visible region, and the wavelength conversion unit emits ultraviolet light.
1 3 . 請求項 9に記載の光源装置において、 13. The light source device according to claim 9,
前記光増幅部は、 増幅用光ファイバを含むことを特徴とする光源装置。  The light source device, wherein the optical amplification unit includes an amplification optical fiber.
1 4 . 対象物に光を照射する光照射装置であって、 1 4. A light irradiation device for irradiating an object with light,
請求項 1〜 1 3のいずれか一項に記載の光源装置と ;  A light source device according to any one of claims 1 to 13;
前記光源装置から射出された光を前記対象物に向けて射出する照射光学系 と ; を備える光照射装置。  An irradiation optical system that emits light emitted from the light source device toward the object.
1 5 . 請求項 1 4に記載の光照射装置において、 15. The light irradiation device according to claim 14, wherein
前記対象物は、 所定のパターンが形成されたマスクであり、  The object is a mask on which a predetermined pattern is formed,
前記マスクから射出される前記光を感光物体に投射する投影光学系を更に備 えることを特徴とする光照射装置。  A light irradiation device further comprising a projection optical system for projecting the light emitted from the mask onto a photosensitive object.
1 6 . リソグラフイエ程を含むデバイス製造方法であって、 1 6. A device manufacturing method including a lithographic process,
前記リソグラフイエ程では、 請求項 1 5に記載の光照射装置を用い、 前記マ スク及び投影光学系を介して前記感光物体を露光することを特徴とするデバィ ス製造方法。 16. A device manufacturing method comprising: exposing the photosensitive object through the mask and the projection optical system using the light irradiation device according to claim 15 in the lithographic process.
1 7 . マスクのパターンを感光物体上に転写する露光装置であって、 請求項 1 ~ 1 3のいずれか一項に記載の光源装置と ; 17. An exposure apparatus for transferring a pattern of a mask onto a photosensitive object, wherein the light source device according to any one of claims 1 to 13;
前記光源装置から射出された光を前記マスクに照射する照明光学系と ; を備 える露光装置。  An illumination optical system that irradiates the mask with light emitted from the light source device.
1 8 . 請求項 1 7に記載の露光装置において、 18. The exposure apparatus according to claim 17,
前記マスクを介して前記感光物体に照射される光の強度又は積算光量を調整 するために前記光源装置を制御する制御装置を更に備えることを特徴とする露 光装置。  An exposure apparatus, further comprising: a control device that controls the light source device to adjust the intensity of light or the integrated light amount applied to the photosensitive object via the mask.
1 9 . リソグラフイエ程を含むデバイス製造方法であって、 1 9. A device manufacturing method including a lithographic process,
前記リソグラフイエ程では、 請求項 1 7に記載の露光装置を用い、 前記マス クを介して前記感光物体を露光することを特徴とするデバィス製造方法。  18. A device manufacturing method, comprising: exposing the photosensitive object through the mask using the exposure apparatus according to claim 17 during the lithographic process.
PCT/JP2002/004854 2001-05-18 2002-05-20 Light source device and light irradiation device, and device manufacturing method WO2002095486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002591897A JPWO2002095486A1 (en) 2001-05-18 2002-05-20 Light source device, light irradiation device, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001149625 2001-05-18
JP2001-149625 2001-05-18

Publications (1)

Publication Number Publication Date
WO2002095486A1 true WO2002095486A1 (en) 2002-11-28

Family

ID=18994765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004854 WO2002095486A1 (en) 2001-05-18 2002-05-20 Light source device and light irradiation device, and device manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2002095486A1 (en)
WO (1) WO2002095486A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154085A1 (en) * 2008-06-18 2009-12-23 株式会社ニコン Seed light generating device, light source device and method for adjusting the same, optical irradiation device, exposure device, and device manufacturing method
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
JP2014224917A (en) * 2013-05-16 2014-12-04 株式会社ニコン Pulse laser device, exposure device, and inspection device
US9172204B2 (en) 2011-02-10 2015-10-27 Nikon Corporation Method for adjusting electro-optic modulator in laser device, and laser device
WO2015174819A3 (en) * 2014-05-16 2016-01-07 Mimos Berhad Method for producing narrow spectral linewidths
WO2017204112A1 (en) * 2016-05-26 2017-11-30 株式会社ニコン Pulsed light generation device, pulsed light generation method, exposure device comprising pulsed light generation device, and inspection device
WO2017204113A1 (en) * 2016-05-26 2017-11-30 株式会社ニコン Pulsed light generation device, pulsed light generation method, exposure device comprising pulsed light generation device, and inspection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183511A (en) * 1992-01-07 1993-07-23 Nec Corp Optical transmitter
JPH05333389A (en) * 1992-06-03 1993-12-17 Fujitsu Ltd Optical transmission system and optical amplifier
JPH0758698A (en) * 1993-06-30 1995-03-03 Nec Corp Optical modulator and mach-zehnder type optical intensity modulator driving methods using the optical modulator
JP2001083557A (en) * 1999-09-10 2001-03-30 Nikon Corp Laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183511A (en) * 1992-01-07 1993-07-23 Nec Corp Optical transmitter
JPH05333389A (en) * 1992-06-03 1993-12-17 Fujitsu Ltd Optical transmission system and optical amplifier
JPH0758698A (en) * 1993-06-30 1995-03-03 Nec Corp Optical modulator and mach-zehnder type optical intensity modulator driving methods using the optical modulator
JP2001083557A (en) * 1999-09-10 2001-03-30 Nikon Corp Laser device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154085A1 (en) * 2008-06-18 2009-12-23 株式会社ニコン Seed light generating device, light source device and method for adjusting the same, optical irradiation device, exposure device, and device manufacturing method
JP2010003771A (en) * 2008-06-18 2010-01-07 Nikon Corp Seed light generating device, light source device and method for adjusting the same, optical irradiation apparatus, exposure apparatus, and device manufacturing method
US8792083B2 (en) 2008-06-18 2014-07-29 Nikon Corporation Seed light generation device, light source device, adjustment method thereof, light irradiation device, exposure device, and device manufacturing method
US9172204B2 (en) 2011-02-10 2015-10-27 Nikon Corporation Method for adjusting electro-optic modulator in laser device, and laser device
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
JP2014224917A (en) * 2013-05-16 2014-12-04 株式会社ニコン Pulse laser device, exposure device, and inspection device
WO2015174819A3 (en) * 2014-05-16 2016-01-07 Mimos Berhad Method for producing narrow spectral linewidths
WO2017204113A1 (en) * 2016-05-26 2017-11-30 株式会社ニコン Pulsed light generation device, pulsed light generation method, exposure device comprising pulsed light generation device, and inspection device
WO2017204112A1 (en) * 2016-05-26 2017-11-30 株式会社ニコン Pulsed light generation device, pulsed light generation method, exposure device comprising pulsed light generation device, and inspection device
CN109154727A (en) * 2016-05-26 2019-01-04 株式会社尼康 Pulsed light generating means, pulsed light generation method, the exposure device and check device for having pulsed light generating means
KR20190011243A (en) * 2016-05-26 2019-02-01 가부시키가이샤 니콘 Pulsed light generating apparatus, pulse light generating method, exposure apparatus having pulse light generating apparatus, and inspection apparatus
JPWO2017204113A1 (en) * 2016-05-26 2019-04-25 株式会社ニコン Pulse light generation apparatus, pulse light generation method, exposure apparatus and inspection apparatus provided with pulse light generation apparatus
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
TWI733813B (en) 2016-05-26 2021-07-21 日商尼康股份有限公司 Pulsed light generating device, pulsed light generating method, exposure device and inspection device provided with pulsed light generating device
US11303091B2 (en) 2016-05-26 2022-04-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
KR102393457B1 (en) 2016-05-26 2022-05-02 가부시키가이샤 니콘 Pulsed light generating apparatus, pulsed light generating method, exposure apparatus and inspection apparatus provided with pulsed light generating apparatus
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11757247B2 (en) 2016-05-26 2023-09-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Also Published As

Publication number Publication date
JPWO2002095486A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP2004086193A (en) Light source device and light irradiation apparatus
US7397598B2 (en) Light source unit and light irradiation unit
US7212275B2 (en) Exposure apparatus with laser device
US7098992B2 (en) Light source unit and wavelength stabilizing control method, exposure apparatus and exposure method, method of making exposure apparatus, and device manufacturing method and device
JP4517271B2 (en) Exposure apparatus equipped with a laser device
JP4232130B2 (en) Laser apparatus and light irradiation apparatus and exposure method using this laser apparatus
EP1752822B1 (en) Wavelength converting optical system, laser light source, exposure apparatus, device for inspecting object of inspection, and polymer crystal working apparatus
WO1999046835A1 (en) Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus
JP5256606B2 (en) Laser apparatus, excimer laser apparatus, light irradiation apparatus and exposure apparatus, light generation method, excimer laser light generation method, light irradiation method, exposure method, and device manufacturing method
US8792083B2 (en) Seed light generation device, light source device, adjustment method thereof, light irradiation device, exposure device, and device manufacturing method
JP2001083472A (en) Optical modulating device, light source device and exposure source
JP5359461B2 (en) Laser apparatus, light source apparatus, adjustment method thereof, light irradiation apparatus, exposure apparatus, and device manufacturing method
WO2002065597A1 (en) Light source device and light irradiating device and production method for device
WO2002095486A1 (en) Light source device and light irradiation device, and device manufacturing method
JP2013156448A (en) Laser device, exposure device and inspection device
JP2002350914A (en) Light source device and irradiation device
JP2003163393A (en) Light source unit and irradiation unit
US20060262387A1 (en) Optical amplifier fiber
JP2003161974A (en) Light source device and light irradiation device
JP2002261361A (en) Optical amplifying apparatus, light source apparatus, and light irradiation apparatus
JP2008124321A (en) Laser device, light irradiation device, exposure device, method for generating light, method for irradiating light, exposure method, and method for manufacturing device
JP2003158324A (en) Light source and light irradiator
JP2002050815A (en) Light source device, projection aligner, method for manufacturing projection aligner, and device- manufacturing method
JPWO2002071143A1 (en) Light source device, light irradiation device, exposure device, and device manufacturing method
JP2013007931A (en) Laser device, exposure device and inspecting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002591897

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase