WO2002094240A1 - Administration de composes physiologiquement actifs par voie d'inhalation - Google Patents
Administration de composes physiologiquement actifs par voie d'inhalation Download PDFInfo
- Publication number
- WO2002094240A1 WO2002094240A1 PCT/US2002/016347 US0216347W WO02094240A1 WO 2002094240 A1 WO2002094240 A1 WO 2002094240A1 US 0216347 W US0216347 W US 0216347W WO 02094240 A1 WO02094240 A1 WO 02094240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- estradiol
- esters
- aerosol
- ethinyl estradiol
- testosterone
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/138—Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/216—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/27—Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4196—1,2,4-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
- A61K31/422—Oxazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
- A61K31/423—Oxazoles condensed with carbocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/473—Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/49—Cinchonan derivatives, e.g. quinine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
- A61K31/5517—1,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/12—Aerosols; Foams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V30/00—Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
Definitions
- the present invention relates to the delivery of physiologically active compounds through an inhalation route. Specifically, it relates to aerosols containing physiologically active compounds that are used in inhalation therapy.
- the present invention relates to the delivery of physiologically active compounds through an inhalation route. Specifically, it relates to aerosols containing physiologically active compounds that are used in inhalation therapy. [0004]
- the aerosol comprises particles comprising at least 5 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the particles comprise at least 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the particles comprise at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 97 percent, 99 percent, 99.5 percent or 99.97 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the aerosol has a mass of at least 1 ⁇ g.
- the aerosol has a mass of at least 10 ⁇ g. More preferably, the aerosol has a mass of at least 20 ⁇ g.
- the aerosol particles comprise less than 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the particles comprise less than 5 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the particles comprise less than 2.5, 1, 0.5, 0.1 or 0.03 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the aerosol particles comprise less than 90 percent by weight of water.
- the particles comprise less than 80 percent by weight of water. More preferably, the particles comprise less than 70 percent, 60 percent, 50 percent, 40 percent, 30 percent, 20 percent, 10 percent, or 5 percent by weight of water.
- the aerosol has an inhalable aerosol drug mass density of between 1 mg/L and 40 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 2 mg/L and 30 mg/L. More preferably, the aerosol has an inhalable aerosol drug mass density of between 3 mg/L and 20 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.5 mg/L and 50 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 2 mg/L and 30 mg/L. More preferably, the aerosol has an inhalable aerosol drug mass density of between 5 mg/L and 20 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.02 mg/L and 2 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.03 mg/L and 1.5 mg/L. More preferably, the aerosol has an inhalable aerosol drug mass density of between 0.05 mg/L and 1 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.1 mg/L and 20 mg/L.
- the aerosol has an inhalable' aerosol drug mass density of between 0.2 mg/L and 10 mg/L. More preferably, the aerosol has an inhalable aerosol drug mass density of between 0.5 mg/L and 5 mg/L.
- the aerosol comprises conjugated estrogens or estrogen esters
- the aerosol has an inhalable aerosol drug mass density of between 0.05 mg/L and 5 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.1 mg/L and 2 mg/L. More preferably, the aerosol has an inhalable aerosol drag mass density of between 0.15 mg/L and 1.5 mg/L.
- the aerosol comprises conjugated estradiol, estradiol esters, ethinyl estradiol, or ethinyl estradiol esters
- the aerosol has an inhalable aerosol drug mass density of between 0.001 mg/L and 0.2 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between 0.002 mg/L and 0.1 mg/L. More preferably, the aerosol has an inhalable aerosol drug mass density of between 0.004 mg/L and 0.05 mg/L.
- the aerosol comprises hyoscyamine
- the aerosol has an inhalable aerosol drug mass density of between 0.01 mg/L and 1 mg/L.
- the aerosol has an inhalable aerosol drug mass density of between
- the aerosol has an inhalable aerosol drug mass density of between 0.05 mg/L and 0.5 mg/L.
- the aerosol has an inhalable aerosol particle density greater than 10 6 particles/mL.
- the aerosol has an inhalable aerosol particle density greater than 10 7 particles/mL. More preferably, the aerosol has an inhalable aerosol particle density greater than 10 8 particles/mL.
- the aerosol particles have a mass median aerodynamic diameter of less than 5 microns.
- the particles have a mass median aerodynamic diameter of less than 3 microns. More preferably, the particles have a mass median aerodynamic diameter of less than 2 or 1 micron(s).
- the geometric standard deviation around the mass median aerodynamic diameter of the aerosol particles is less than 3.0.
- the geometric standard deviation is less than 2.85. More preferably, the geometric standard deviation is less than 2.7.
- the aerosol is formed by heating a composition containing chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine to form a vapor and subsequently allowing the vapor to condense into an aerosol.
- chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine is delivered to a mammal through an inhalation route.
- the method comprises: a) heating a composition, wherein the composition comprises at least
- the composition that is heated comprises at least 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the composition comprises 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 97 percent, 99 percent, 99.5 percent, 99.9 percent or 99.97 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the delivered aerosol particles comprise at least 5 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the particles comprise at least 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the particles comprise at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 97 percent, 99 percent, 99.5 percent, 99.9 percent or 99.97 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the delivered aerosol has a mass of at least 1 ⁇ g.
- the aerosol has a mass of at least 10 ⁇ g. More preferably, the aerosol has a mass of at least 20 ⁇ g.
- the delivered aerosol particles comprise less than 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the particles comprise less than 5 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the particles comprise less than 2.5, 1, 0.5, 0.1 or 0.03 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- the particles of the delivered condensation aerosol have a mass median aerodynamic diameter of less than 5 microns.
- the particles have a mass median aerodynamic diameter of less than 3 microns. More preferably, the particles have a mass median aerodynamic diameter of less than 2 or 1 micron(s).
- the geometric standard deviation around the mass median aerodynamic diameter of the aerosol particles is less than 3.0.
- the geometric standard deviation is less than 2.85. More preferably, the geometric standard deviation is less than 2.7.
- the particles of the delivered condensation aerosol comprise less than 90 percent by weight of water.
- the particles comprise less than 80 percent by weight of water. More preferably, the particles comprise less than 70 percent, 60 percent, 50 percent, 40 percent, 30 percent, 20 percent, 10 percent, or 5 percent by weight of water.
- the aerosol is amorphous in form, wherein crystalline forms make up less than 50 percent by weight of the total aerosol weight, regardless of the nature of individual particles.
- at least 75 percent by weight of the aerosol is amorphous in form. More preferably, at least 90 percent by weight of the aerosol is amorphous in form.
- the delivered aerosol has an inhalable aerosol drug mass density of between 1 mg/L and 40 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 2 mg/L and 30 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 3 mg/L and 20 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 0.5 mg/L and 50 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 2 mg/L and 30 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drug mass density of between 5 mg/L and 20 mg/L.
- the aerosol comprises clonidine
- the aerosol has an inhalable aerosol drag mass density of between 0.02 mg/L and 2 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.03 mg/L and 1.5 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drug mass density of between 0.05 mg/L and 1 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.1 mg/L and 20 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 0.2 mg/L and 10 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drug mass density of between 0.5 mg/L and 5 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.05 mg/L and 5 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.1 mg/L and 2 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drug mass density of between 0.15 mg/L and 1.5 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.001 mg/L and 0.2 mg/L.
- the delivered aerosol has an inhalable aerosol drag mass density of between 0.002 mg/L and 0.1 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drag mass density of between 0.004 mg/L and 0.05 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 0.01 mg/L and 1 mg/L.
- the delivered aerosol has an inhalable aerosol drug mass density of between 0.025 mg/L and 0.75 mg/L. More preferably, the delivered aerosol has an inhalable aerosol drug mass density of between 0.05 mg/L and 0.5 mg/L.
- the delivered aerosol has an inhalable aerosol particle density greater than 10 6 particles/mL.
- the aerosol has an inhalable aerosol particle density greater than 10 7 particles/mL. More preferably, the aerosol has an inhalable aerosol particle density greater than 10 8 particles/mL.
- the rate of inhalable aerosol particle formation of the delivered condensation aerosol is greater than 10 8 particles per second.
- the aerosol is formed at a rate greater than 10 9 inhalable particles per second. More preferably, the aerosol is formed at a rate greater than 10 10 inhalable particles per second.
- the delivered aerosol is formed at a rate greater than 0.25 mg/second.
- the aerosol is formed at a rate greater than 0.5 mg/second. More preferably, the aerosol is formed at a rate greater than 1 or 2 mg/second.
- the aerosol comprises chlordiazepoxide
- between 1 mg and 40 mg of chlordiazepoxide is delivered to the mammal in a single inspiration.
- between 2 mg and 30 mg of chlordiazepoxide is delivered to the mammal in a single inspiration. More preferably, between 3 mg and 20 mg of chlordiazepoxide is delivered to the mammal in a single inspiration.
- the aerosol comprises betahistine
- between 0.5 mg and 50 mg of betahistine is delivered to the mammal in a single inspiration.
- the aerosol comprises clonidine
- between 0.02 mg and 2 mg of clonidine is delivered to the mammal in a single inspiration.
- the aerosol comprises testosterone
- between 0.1 mg and 20 mg of testosterone is delivered to the mammal in a single inspiration.
- the aerosol comprises conjugated estrogens or estrogen esters
- between 0.05 mg and 5 mg of conjugated estrogens or estrogen esters is delivered to the mammal in a single inspiration.
- the aerosol comprises conjugated estradiol, estradiol esters, ethinyl estradiol, or ethinyl estradiol esters
- between 0.001 mg and 0.2 mg of conjugated conjugated estradiol, estradiol esters, ethinyl estradiol, or ethinyl estradiol esters is delivered to the mammal in a single inspiration.
- estradiol, estradiol esters, ethinyl estradiol, or ethinyl estradiol esters is delivered to the mammal in a single inspiration.
- the aerosol comprises hyoscyamine
- between 0.01 mg and 1 mg of hyoscyamine is delivered to the mammal in a single inspiration.
- the delivered condensation aerosol results in a peak plasma concentration of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine in the mammal in less than 1 h.
- the peak plasma concentration is reached in less than 0.5 h. More preferably, the peak plasma concentration is reached in less than 0.2, 0.1, 0.05, 0.02, 0.01, or 0.005 h (arterial measurement).
- kits for delivering chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine through an inhalation route to a mammal which comprises: a) a composition comprising at least 5 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine; and, b) a device that forms a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, or hyoscyamine; and, b) a device
- the composition comprises at least 10 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the composition comprises at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 97 percent, 99 percent, 99.5 percent, 99.9 percent or 99.97 percent by weight of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine.
- the device contained in the kit comprises: a) an element for heating the chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine composition to form a vapor; b) an element allowing the vapor to cool to form an aerosol; and, c) an element permitting the mammal to inhale the aerosol.
- Fig. 1 shows a device used to deliver chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosols to a mammal through an inhalation route.
- Aerodynamic diameter of a given particle refers to the diameter of a spherical droplet with a density of 1 g/mL (the density of water) that has the same settling velocity as the given particle.
- Alcohol refers to a suspension of solid or liquid particles in a gas.
- Aerosol drug mass density refers to the mass of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine per unit volume of aerosol.
- Aerosol mass density refers to the mass of particulate matter per unit volume of aerosol.
- Aerosol particle density refers to the number of particles per unit volume of aerosol.
- Amorphous particle refers to a particle that does not contain more than 50 percent by weight of a crystalline form. Preferably, the particle does not contain more than 25 percent by weight of a crystalline form. More preferably, the particle does not contain more than 10 percent by weight of a crystalline form.
- Betahistine refers to N-methyl-2-pyridineethanamine.
- Betahistine degradation product refers to a compound resulting from a chemical modification of betaliistine.
- the modification for example, can be the result of a thermally or photochemically induced reaction.
- Such reactions include, without limitation, oxidation and hydrolysis.
- Chlordiazepoxide refers to 7-chloro-N-methyl-5-phenyl-3H-l ,4- benzodiazepin-2-amine 4-oxide.
- Chlordiazepoxide degradation product refers to a compound resulting from a chemical modification of chlordiazepoxide.
- the modification for example, can be the result of a thermally or photochemically induced reaction.
- Such reactions include, without limitation, oxidation and hydrolysis.
- Clonidine refers to 2,6-dichloro-N-2-imidazolidinylidene- benzeneamine.
- Clonidine degradation product refers to a compound resulting from a chemical modification of clonidine.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Condensation aerosol refers to an aerosol formed by vaporization of a substance followed by condensation of the substance into an aerosol.
- Conjugated estrogen refers to estrogen sulfates. This includes a blend of estrogen sulfates containing estrone, equilin, and 17 ⁇ -dihydroequilin.
- Conjugated estrogen degradation product refers to a compound resulting from a chemical modification of a conjugated estrogen.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Estradiol refers to estra-l,3,5(10)-triene-3,17-diol.
- Estradiol degradation product refers to a compound resulting from a chemical modification of estradiol.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Estradiol ester refers to an ester derived from the esterification of an alcohol moiety of estradiol.
- Estradiol ester degradation product refers to a compound resulting from a chemical modification of an estradiol ester.
- the modification for example, can be the result of a thermally or photochemically induced reaction.
- Such reactions include, without limitation, oxidation and hydrolysis.
- Estrogen ester refers to an ester derived from the esterification of an alcohol moiety of estrogen.
- Estrogen ester degradation product refers to a compound resulting from a chemical modification of an estrogen ester. The modification, for example, can be the result of a thermally or photochemically induced reaction.
- Such reactions include, without limitation, oxidation and hydrolysis.
- Ethinyl estradiol refers to 19-nor-17 ⁇ -pregna-l,3,5(10)-trien-20-yne-
- Ethinyl estradiol degradation product refers to a compound resulting from a chemical modification of ethinyl estradiol.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Ethinyl estradiol ester refers to an ester derived from the esterification of an alcohol moiety of ethinyl estradiol.
- Ethinyl estradiol ester degradation product refers to a compound resulting from a chemical modification of an ethinyl estradiol ester.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Hyoscyamine refers to ⁇ -(hydroxymethyl)benzeneacetic acid 8- methyl-8-azabicyclo[3.2. l]oct-3-yl ester.
- Hyoscyamine degradation product refers to a compound resulting from a chemical modification of hyoscyamine.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Inhalable aerosol drug mass density refers to the aerosol drag mass density produced by an inhalation device and delivered into a typical patient tidal volume.
- Inhalable aerosol mass density refers to the aerosol mass density produced by an inhalation device and delivered into a typical patient tidal volume.
- Inhalable aerosol particle density refers to the aerosol particle density of particles of size between 100 nm and 5 microns produced by an inhalation device and delivered into a typical patient tidal volume.
- Mass median aerodynamic diameter or “MMAD” of an aerosol refers to the aerodynamic diameter for which half the particulate mass of the aerosol is contributed by particles with an aerodynamic diameter larger than the
- Rate of aerosol formation refers to the mass of aerosolized particulate matter produced by an inhalation device per unit time.
- Rate of inhalable aerosol particle formation refers to the number of particles of size between 100 nm and 5 microns produced by an inhalation device per unit time.
- Rate of drag aerosol formation refers to the mass of aerosolized chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine produced by an inhalation device per unit time.
- Settling velocity refers to the terminal velocity of an aerosol particle undergoing gravitational settling in air.
- Testosterone refers to 17 ⁇ -hydroxyandrost-4-en-3-one.
- Testosterone degradation product refers to a compound resulting from a chemical modification of testosterone.
- the modification for example, can be the result of a thermally or photochemically induced reaction. Such reactions include, without limitation, oxidation and hydrolysis.
- Typical patient tidal volume refers to 1 L for an adult patient and 15 mL/kg for a pediatric patient.
- Vapor refers to a gas
- vapor phase refers to a gas phase
- thermal vapor refers to a vapor phase, aerosol, or mixture of aerosol- vapor phases, formed preferably by heating.
- Any suitable method is used to form the aerosols of the present invention.
- a preferred method involves heating a composition comprising chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine to form a vapor, followed by cooling of the vapor such that it condenses to provide an chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine comprising aerosol (condensation aerosol).
- composition is heated in one of four forms: as pure active compound (i.e., pure chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine) as a mixture of active compound and a pharmaceutically acceptable excipient; as a salt form of the pure active compound; and, as a mixture of active compound salt form and a pharmaceutically acceptable excipient.
- pure active compound i.e., pure chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine
- pure active compound i.e., pure chlordiazepoxide, betahistine
- Salt forms of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine are either commercially available or are obtained from the corresponding free base using well known methods in the art.
- a variety of pharmaceutically acceptable salts are suitable for aerosolization. Such salts include, without limitation, the following: hydrochloric acid, hydrobromic acid, acetic acid, maleic acid, formic acid, and fumaric acid salts.
- Pharmaceutically acceptable excipients may be volatile or nonvolatile.
- Volatile excipients when heated, are concurrently volatilized, aerosolized and inhaled with the antihistamine.
- Classes of such excipients are known in the art and include, without limitation, gaseous, supercritical fluid, liquid and solid solvents.
- Solid supports on which the composition is heated are of a variety of shapes.
- Such shapes include, without limitation, cylinders of less than 1.0 mm in diameter, boxes of less than 1.0 mm thickness and virtually any shape permeated by small (e.g., less than 1.0 mm-sized) pores.
- solid supports provide a large surface to volume ratio (e.g., greater than 100 per meter) and a large surface to mass ratio (e.g., greater than 1 cm 2 per gram).
- a solid support of one shape can also be transformed into another shape with different properties. For example, a flat sheet of 0.25 mm thickness has a surface to volume ratio of approximately 8,000 per meter. Rolling the sheet into a hollow cylinder of 1 cm diameter produces a support that retains the high surface to mass ratio of the original sheet but has a lower surface to volume ratio (about 400 per meter).
- a number of different materials are used to construct the solid supports. Classes of such materials include, without limitation, metals, inorganic materials, carbonaceous materials and polymers. The following are examples of the material classes: aluminum, silver, gold, stainless steel, copper and tungsten; silica, glass, silicon and alumina; graphite, porous carbons, carbon yarns and carbon felts; polytetrafluoroethylene and polyethylene glycol. Combinations of materials and coated variants of materials are used as well. [0094] Where aluminum is used as a solid support, aluminum foil is a suitable material. Examples of silica, alumina and silicon based materials include amphorous silica S-5631 (Sigma, St.
- the heating of the chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine compositions is performed using any suitable method.
- methods by which heat can be generated include the following: passage of current through an electrical resistance element; absorption of electromagnetic radiation, such as microwave or laser light; and, exothermic chemical reactions, such as exothermic solvation, hydration of pyrophoric materials and oxidation of combustible materials.
- Chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosols of the present invention are delivered to a mammal using an inhalation device.
- the device has at least three elements: an element for heating a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing composition to form a vapor; an element allowing the vapor to cool, thereby providing a condensation aerosol; and, an element permitting the mammal to inhale the aerosol.
- a suitable heating methods are described above.
- the element that allows cooling is, in it simplest form, an inert passageway linking the heating means to the inhalation means.
- the element permitting inhalation is an aerosol exit portal that forms a connection between the cooling element and the mammal's respiratory system.
- Delivery device 100 has a proximal end 102 and a distal end 104, a heating module 106, a power source 108, and a mouthpiece 110.
- a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine composition is deposited on a surface 112 of heating module 106.
- power source 108 initiates heating of heating module 106 (e.g, through ignition of combustible fuel or passage of current through a resistive heating element).
- the chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine composition volatilizes due to the heating of heating module 106 and condenses to form a condensation aerosol prior to reaching the mouthpiece 110 at the proximal end of the device 102. Air flow traveling from the device distal end 104 to the mouthpiece 110 carries the condensation aerosol to the mouthpiece 110, where it is inhaled by the mammal.
- Devices if desired, contain a variety of components to facilitate the delivery of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosols.
- the device may include any component known in the art to control the timing of drug aerosolization relative to inhalation (e.g., breath-actuation), to provide feedback to patients on the rate and/or volume of inhalation, to prevent excessive use (i.e., "lock-out" feature), to prevent use by unauthorized individuals, and/or to record dosing histories.
- the dosage amount of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine in aerosol form is generally no greater than twice the standard dose of the drag given orally.
- chlordiazepoxide 10 mg
- betahistine 16 mg
- clonidine 0.1 mg
- testosterone 5 mg
- conjugated estrogens and estrogen esters 0.625 mg
- estradiol, estradiol esters, ethinyl estradiol and ethinyl estradiol esters 0.02 mg
- hyoscyamine 0.15 mg.
- doses are generally provided as follows for the same indications: chlordiazepoxide, 1 to 40 mg; betahistine, 0.5 to 50 mg; clonidine, 0.02 to 2 mg; testosterone, 0.1 to 20 mg; conjugated estrogens and estrogen esters, 0.05 to 5 mg; estradiol, estradiol esters, ethinyl estradiol and ethinyl estradiol esters, 0.001 mg to 0.2 mg; and, hyoscyamine, 0.01 to 1 mg.
- a typical dosage of a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine aerosol is either administered as a single inhalation or as a series of inhalations taken within an hour or less (dosage equals sum of inhaled amounts). Where the drag is administered as a series of inhalations, a different amount may be delivered in each inhalation.
- One animal experiment involves measuring plasma concentrations of drug in an animal after its exposure to the aerosol. Mammals such as dogs or primates are typically used in such studies, since their respiratory systems are similar to that of a human.
- Initial dose levels for testing in humans is generally less than or equal to the dose in the mammal model that resulted in plasma drag levels associated with a therapeutic effect in humans. Dose escalation in humans is then performed, until either an optimal therapeutic response is obtained or a dose-limiting toxicity is encountered.
- One method involves forming the aerosol in a device through which a gas flow (e.g., air flow) is maintained, generally at a rate between 0.4 and 60 L/min.
- the gas flow carries the aerosol into one or more traps.
- the aerosol is subjected to an analytical technique, such as gas or liquid chromatography, that permits a determination of composition purity.
- a variety of different traps are used for aerosol collection.
- the following list contains examples of such traps: filters; glass wool; impingers; solvent traps, such as dry ice-cooled ethanol, methanol, acetone and dichloromethane traps at various pH values; syringes that sample the aerosol; empty, low-pressure (e.g., vacuum) containers into which the aerosol is drawn; and, empty containers that fully surround and enclose the aerosol generating device.
- a solid such as glass wool
- it is typically extracted with a solvent such as ethanol.
- the solvent extract is subjected to analysis rather than the solid (i.e., glass wool) itself.
- the container is similarly extracted with a solvent.
- the gas or liquid chromatograph discussed above contains a detection system (i.e., detector).
- detection systems are well known in the art and include, for example, flame ionization, photon abso ⁇ tion and mass spectrometry detectors.
- An advantage of a mass spectrometry detector is that it can be used to determine the structure of chlordiazepoxide, betaliistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine degradation products.
- Particle size distribution of a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosol is determined using any suitable method in the art (e.g., cascade impaction).
- An Andersen Eight Stage Non- viable Cascade Impactor (Andersen Instruments, Smyrna, GA) linked to a furnace tube by a mock throat (USP throat, Andersen Instruments, Smyrna, GA) is one system used for cascade impaction studies.
- Inhalable aerosol mass density is determined, for example, by delivering a drag-containing aerosol into a confined chamber via an inhalation device and measuring the mass collected in the chamber.
- the aerosol is drawn into the chamber by having a pressure gradient between the device and the chamber, wherein the chamber is at lower pressure than the device.
- the volume of the chamber should approximate the tidal volume of an inhaling patient.
- Inhalable aerosol drug mass density is determined, for example, by delivering a drag-containing aerosol into a confined chamber via an inhalation device and measuring the amount of active drag compound collected in the chamber.
- the aerosol is drawn into the chamber by having a pressure gradient between the device and the chamber, wherein the chamber is at lower pressure than the device.
- the volume of the chamber should approximate the tidal volume of an inhaling patient.
- the amount of active drag compound collected in the chamber is determined by extracting the chamber, conducting chromatographic analysis of the extract and comparing the results of the chromatographic analysis to those of a standard containing known amounts of drug.
- Inhalable aerosol particle density is determined, for example, by delivering aerosol phase drag into a confined chamber via an inhalation device and measuring the number of particles of given size collected in the chamber.
- the number of particles of a given size may be directly measured based on the light-scattering properties of the particles.
- Number of particles in a given size range Mass in the size range/Mass of a typical particle in the size range.
- Mass of a typical particle in a given size range ⁇ *D 3 * ⁇ /6, where D is a typical particle diameter in the size range (generally, the mean boundary MMADs defining the size range) in microns, ⁇ is the particle density (in g/mL) and mass is given in units of picograms (g "12 ).
- Rate of inhalable aerosol particle formation is determined, for example, by delivering aerosol phase drag into a confined chamber via an inhalation device. The delivery is for a set period of time (e.g., 3 s), and the number of particles of a given size collected in the chamber is determined as outlined above. The rate of particle formation is equal to the number of 100 nm to 5 micron particles collected divided by the duration of the collection time. [0109] Rate of aerosol formation is determined, for example, by delivering aerosol phase drug into a confined chamber via an inhalation device.
- the delivery is for a set period of time (e.g., 3 s), and the mass of particulate matter collected is determined by weighing the confined chamber before and after the delivery of the particulate matter.
- the rate of aerosol formation is equal to the increase in mass in the chamber divided by the duration of the collection time.
- the mass of particulate matter may be equated with the mass lost f om the device or component during the delivery of the aerosol.
- the rate of aerosol formation is equal to the decrease in mass of the device or component during the delivery event divided by the duration of the delivery event.
- Rate of drug aerosol formation is determined, for example, by delivering a chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosol into a confined chamber via an inhalation device over a set period of time (e.g., 3 s).
- the amount of drag collected in the chamber is measured as described above.
- the rate of drag aerosol formation is equal to the amount of chlordiazepoxide, betaliistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine collected in the chamber divided by the duration of the collection time.
- chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine containing aerosol comprises a pharmaceutically acceptable excipient, multiplying the rate of aerosol formation by the percentage of chlordiazepoxide, betahistine, clonidine, testosterone, conjugated estrogens, estrogen esters, estradiol, estradiol esters, ethinyl estradiol, ethinyl estradiol esters, or hyoscyamine in the aerosol provides the rate of drug aerosol formation.
- Chlordiazepoxide containing aerosols are typically used for the treatment of anxiety.
- Betahistine containing aerosols are typically used for the treatment of vertigo (Meniere's disease).
- Clonidine containing aerosols are typically used for the treatment of alcohol withdrawal, nicotine withdrawal, sedation, or hot flashes.
- Testosterone containing aerosols are typically used for testosterone replacement therapy.
- Conjugated estrogens and estrogen ester containing aerosols are typically used for hormone replacement therapy (menopause).
- Estradiol, estradiol ester, ethinyl estradiol, and ethinyl estradiol ester containing aerosols are typically used for hormone replacement therapy (estradiol and esters) and the prevention of pregnancy (ethinyl estradiol and esters).
- Hyoscyamine containing aerosols are typically used for the treatment of peptic ulcers.
- Chlordiazepoxide hydrochloride, betahistine dihydrochloride, clonidine hydrochloride, testosterone, estradiol, certain estradiol esters, and hyoscyamine are commercially available from Sigma (www. sigma-aldrich. com . Obtaining a free base from a salt or esterifying an alcohol are done according to standard methods in the art. Compounds such as ethinyl estradiol are isolated from commercially available pharmaceutical preparations or synthesized using standard methods in the art.
- a solution of drag in approximately 120 ⁇ L dichloromethane is coated on a 3 cm x 8 cm piece of aluminum foil.
- the dichloromethane is allowed to evaporate.
- the coated foil is wrapped around a 300 watt halogen tube (Feit Electric Company, Pico Rivera, CA), which is inserted into a glass tube sealed at one end with a rubber stopper.
- 225 nm light is used to determine the purity of the aerosol. (When desired, the system is flushed through with argon prior to volatilization.)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Otolaryngology (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/016347 WO2002094240A1 (fr) | 2001-05-24 | 2002-05-23 | Administration de composes physiologiquement actifs par voie d'inhalation |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29420301P | 2001-05-24 | 2001-05-24 | |
US60/294,203 | 2001-05-24 | ||
US31747901P | 2001-09-05 | 2001-09-05 | |
US60/317,479 | 2001-09-05 | ||
PCT/US2002/016347 WO2002094240A1 (fr) | 2001-05-24 | 2002-05-23 | Administration de composes physiologiquement actifs par voie d'inhalation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002094240A1 true WO2002094240A1 (fr) | 2002-11-28 |
Family
ID=27761275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/016347 WO2002094240A1 (fr) | 2001-05-24 | 2002-05-23 | Administration de composes physiologiquement actifs par voie d'inhalation |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002094240A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2293794A1 (fr) * | 2008-05-27 | 2011-03-16 | The University of Melbourne | Procédés de traitement de mammifères souffrant de dysfonctionnements de la trompe d eustache |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895719A (en) * | 1985-05-22 | 1990-01-23 | Liposome Technology, Inc. | Method and apparatus for administering dehydrated liposomes by inhalation |
US5738865A (en) * | 1995-04-07 | 1998-04-14 | Edward Mendell Co., Inc. | Controlled release insufflation carrier for medicaments |
WO1998031346A1 (fr) * | 1997-01-16 | 1998-07-23 | Massachusetts Institute Of Technology | Preparation de particules pour inhalation |
WO2000066084A1 (fr) * | 1999-05-04 | 2000-11-09 | Aradigm Corporation | Formulations d'aerosol et dispositifs destines a augmenter la libido chez la femme par l'administration aigue de testosterone |
-
2002
- 2002-05-23 WO PCT/US2002/016347 patent/WO2002094240A1/fr not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895719A (en) * | 1985-05-22 | 1990-01-23 | Liposome Technology, Inc. | Method and apparatus for administering dehydrated liposomes by inhalation |
US5738865A (en) * | 1995-04-07 | 1998-04-14 | Edward Mendell Co., Inc. | Controlled release insufflation carrier for medicaments |
WO1998031346A1 (fr) * | 1997-01-16 | 1998-07-23 | Massachusetts Institute Of Technology | Preparation de particules pour inhalation |
WO2000066084A1 (fr) * | 1999-05-04 | 2000-11-09 | Aradigm Corporation | Formulations d'aerosol et dispositifs destines a augmenter la libido chez la femme par l'administration aigue de testosterone |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2293794A1 (fr) * | 2008-05-27 | 2011-03-16 | The University of Melbourne | Procédés de traitement de mammifères souffrant de dysfonctionnements de la trompe d eustache |
EP2293794A4 (fr) * | 2008-05-27 | 2011-06-22 | Univ Melbourne | Procédés de traitement de mammifères souffrant de dysfonctionnements de la trompe d eustache |
CN102046170B (zh) * | 2008-05-27 | 2012-11-28 | 墨尔本大学 | 治疗患有咽鼓管功能障碍的哺乳动物的方法 |
US8642631B2 (en) | 2008-05-27 | 2014-02-04 | University Of Melbourne | Methods of treating mammals with eustachian tube dysfunctions |
AU2009253739B2 (en) * | 2008-05-27 | 2014-02-06 | Otolanum Ag | Methods of treating mammals with eustachian tube dysfunctions |
KR101621726B1 (ko) | 2008-05-27 | 2016-05-17 | 더 유니버시티 오브 멜버른 | 유스타키오관 기능장애 치료용 국소 약학적 조성물 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7507398B2 (en) | Delivery of physiologically active compounds through an inhalation route | |
WO2002094233A1 (fr) | Administration d'antiemetiques par voie respiratoire | |
WO2002094240A1 (fr) | Administration de composes physiologiquement actifs par voie d'inhalation | |
WO2002094216A2 (fr) | Administration de stimulants par voie d'inhalation | |
WO2002094229A1 (fr) | Administration de myorelaxants par voie respiratoire | |
AU2002259241A1 (en) | Delivery of sedative-hypnotics through an inhalation route | |
WO2002094239A1 (fr) | Administration de diphenhydramine par voie pulmonaire | |
WO2002094235A1 (fr) | Apport de composes pour le traitement de la maladie de parkinson par voie pulmonaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |