WO2002094091A1 - Fatigue inspection device and fatigue evaluation method - Google Patents

Fatigue inspection device and fatigue evaluation method Download PDF

Info

Publication number
WO2002094091A1
WO2002094091A1 PCT/JP2001/010197 JP0110197W WO02094091A1 WO 2002094091 A1 WO2002094091 A1 WO 2002094091A1 JP 0110197 W JP0110197 W JP 0110197W WO 02094091 A1 WO02094091 A1 WO 02094091A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
vibration
frequency band
spectrum
band component
Prior art date
Application number
PCT/JP2001/010197
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Sakamoto
Original Assignee
Kazuyoshi Sakamoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuyoshi Sakamoto filed Critical Kazuyoshi Sakamoto
Priority to JP2002590816A priority Critical patent/JPWO2002094091A1/en
Publication of WO2002094091A1 publication Critical patent/WO2002094091A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist

Definitions

  • the present invention relates to a fatigue inspection device and a fatigue evaluation method.
  • Tremors are unconscious mechanical vibrations with small amplitudes that are invisible to the eye.
  • a document by the present inventors (“On the Mechanism of Tremor Occurrence”, Proceedings of the Conference on Biomechanisms, pp. 31-34, Kazuyoshi Sakamoto, et al., July 12, 1989--12 As described in (3), studies are being conducted to measure the location and degree of injury using the frequency characteristics of tremor caused by pathological causes.
  • the inventor has found that the degree of human fatigue can be measured using the vibration characteristics of tremor.
  • the present invention has been made based on the above findings, and has as its object to provide a fatigue inspection apparatus and a fatigue evaluation method capable of measuring the degree of human fatigue by relatively simple means. Disclosure of the invention
  • the fatigue inspection device includes a detection unit that detects vibration of tremor in a body part of the subject, and an analysis unit that analyzes a spectrum of the vibration.
  • the fatigue inspection device according to claim 2 is the device according to claim 1, wherein the vibration is , Acceleration.
  • the fatigue detection device according to claim 3, according to claim 1, wherein the analysis unit outputs data including a high-frequency band component and a Z or low-frequency band component in the vibration spectrum.
  • the configuration was adopted.
  • the fatigue inspection apparatus wherein the analysis unit is configured to determine a high frequency band component and a low frequency band component in a total power of a spectrum of the vibration. It is configured to output the ratio.
  • the fatigue inspection apparatus according to claim 5, wherein the detection unit is an acceleration sensor according to any one of claims 1 to 4.
  • the fatigue inspection apparatus wherein the threshold for separating the high frequency band component and the low frequency band component is set to a high frequency side in the vibration spectrum. And the average value of the peak frequencies on the low frequency side or near it.
  • the fatigue evaluation method further comprising: acquiring a vibration spectrum of a tremor in a body part of the subject, and evaluating the fatigue state of the subject based on the vibration spectrum. Has become.
  • the fatigue evaluation method further comprising: obtaining a vibration spectrum of a tremor in a body part of the subject, and converting the vibration spectrum into a value of a high frequency band component Z or a value of a low frequency band component.
  • the fatigue evaluation method according to claim 9, wherein the fatigue state of the subject is evaluated based on the threshold value that separates the high-frequency band component from the low-frequency band component. The average value of the peak frequencies on the high frequency side and the low frequency side in the vibration spectrum or a value close to the average value.
  • FIG. 1 is a view for explaining the knowledge that is the premise of the fatigue evaluation method according to the present invention.
  • FIG. 1 is a view for explaining the knowledge that is the premise of the fatigue evaluation method according to the present invention.
  • FIG. 2 is a graph for explaining the findings obtained by the inventor, and shows a change in the upper limb tremor vector when a load is applied.
  • the horizontal axis represents frequency
  • the vertical axis represents power spectrum.
  • FIG. 3 is a graph for explaining the findings obtained by the present inventors.
  • the tremor power spectrum is shown when the upper limb is unloaded in air and when immersed in water.
  • the horizontal axis represents frequency
  • the vertical axis represents power spectrum.
  • FIG. 4 is a graph for explaining the findings obtained by the present inventors.
  • the horizontal axis represents the magnitude of the load, and the vertical axis represents the relative total power when the value at no load is set to 1. It is.
  • FIG. 5 is a graph for explaining the findings obtained by the present inventors, and shows the change in the spectrum content of the upper limb tremor spectrum by band during load application. .
  • the horizontal axis indicates the magnitude of the load
  • the vertical axis indicates the ratio of the high frequency band component to the low frequency band component in the total power.
  • FIG. 6 is a schematic block diagram of the fatigue evaluation device according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the parts that can be measured for tremor include the fingers, hands, forearms, upper limbs, feet, lower legs, lower limbs, head, and trunk.
  • upper limb tremor is measured using the upper limb part of the body part as an example.
  • a load (weight) 2 is attached from the elbow joint of the right arm 1 of the subject sitting on the chair to the forearm.
  • Load 2 between subjects In order to keep the load intensity constant, the maximum voluntary contraction strength (hereinafter referred to as “MVC” for Maximum Voluntary Contraction) was measured for each subject in advance, and 5%, 10%, 15% %, 20% MVC and zero external load (sometimes referred to as “no load” or “postural” in this specification).
  • MVC maximum voluntary contraction strength
  • Load 2 is mounted midway between the wrist and the elbow. It is desirable to attach load 2 so that it does not move with respect to arm 1.
  • an acceleration sensor 3 is attached near the wrist of the arm 1.
  • the acceleration sensor for example, MT-3T manufactured by Nihon Kohden can be used. The subject puts his arm vertically and forward with respect to the trunk, and stretches out with the pronation turned (the entire upper limb is twisted inward and the hand is horizontal to the ground). Keep your wrists and fingers relaxed to avoid the effects of the tremor ( Figure 1).
  • the subject keeps the same posture for a certain period of time (usually 1 minute) while visually observing the subject so that the arm 1 does not deviate from the marker 4 (visual feedback). Then, the vibration of the tremor is acquired by the acceleration sensor 3 while maintaining the visual feedback.
  • This data was subjected to Fourier transform to obtain a power spectrum.
  • the subjects in this experiment were 10 males (average age 23.4 years). As data, the average value among all subjects was adopted.
  • Figure 2 shows the results of the experiment.
  • the vibration here is based on acceleration only. It can be seen that the spectrum has a high-frequency peak and a low-frequency peak. The peak of upper limb tremor increased as the load increased. In particular, the tendency was strong at the high frequency peak.
  • the magnitude of the high frequency peak corresponds to the magnitude of the cerebral fatigue
  • the magnitude of the low frequency peak corresponds to the magnitude of the spinal cord fatigue. It turns out that it corresponds.
  • the high-frequency component works as the spinal system
  • the low-frequency component works as the cerebrum
  • the function of the frequency component is opposite to that of upper limb tremor.
  • the acceleration component increases. Therefore, the increase in the power spectrum of the 10 Hz component in Fig. 2 means that the origin of the 1 OH z component of upper limb tremor is caused by the function of the cerebrum. Is shown experimentally. Here, it is considered that the reason why the 3 Hz component also increased was that the function of the cerebrum affected the spinal cord, which is a subordinate mechanism.
  • TP total power
  • the average (solid circle in Fig. 4) and standard deviation (vertical bar in Fig. 4) of the relative values of all subjects were calculated and displayed in Fig. 4.
  • the “*” and “**” marks in the figure indicate the difference between the no-load and the relative total power under other load weights statistically tested (t-test for paired data). This indicates that there is a statistical difference (significant difference) between 1% and 1%.
  • the load on skeletal muscle can be maintained for a long time at a load of 15% MVC or less, and muscle fatigue after a certain period of time at a load of 15% MVC or more. Always happens.
  • the results in Fig. 4 show that the total power value increases sharply above 15% MVC, explaining this phenomenon.
  • the present invention is based on the above findings.
  • This fatigue testing apparatus includes a detecting unit 10 for detecting vibration of tremor, an analyzing unit 20 for analyzing a vibration spectrum, and a display unit 30 for displaying data output from the analyzing unit 20.
  • the detection unit 10 is an acceleration sensor in this embodiment.
  • An acceleration sensor similar to the acceleration sensor 1 shown in FIG. 1 can be used. You. Therefore, an output (for example, a voltage) based on the acceleration is sent from the detection unit 10 to the analysis unit 20.
  • the analysis unit 20 can be configured by a normal computer having an interface for taking in the output from the detection unit 10.
  • functions in the analysis unit 20 include an AD converter that performs AD conversion on an input, a function that performs a Fourier transform on the obtained digital data to obtain a vibration spectrum, and a vibration spectrum. It is a function to acquire the status of the statue content for each band in the total part.
  • These functions can be easily implemented as software or hardware. Also, these functions may be realized by a plurality of distributed elements. In the present embodiment, the sampling time of the AD conversion is set to 10 ms.
  • the fatigue evaluation method ′ in the present embodiment will be described with reference to FIG.
  • Load 2 is also used for fatigue evaluation.
  • the load can be 5% MVC.
  • the magnitude of the load is inversely proportional to the time indicating the increase in the total power of the tremor vibration, it is advisable to apply a load of 15% MVC or more in order to perform a quick fatigue evaluation.
  • the acceleration sensor 3 as the detection unit 10 is attached to the arm 1 of the subject.
  • the analysis unit 20 analyzes the acceleration data obtained from the acceleration sensor 3.
  • the spectrum content of each band in the vibration spectrum and the total power is obtained.
  • Such a graph is displayed on the display unit 30 in an appropriate medium.
  • the frequency band of the high frequency component is set to 5 Hz to 50 Hz
  • the frequency band of the low frequency component is set to 0.5 Hz to 0.5 Hz.
  • a specific evaluation of 5 Hz is performed as follows. First, the upper extremity tremor as shown in Fig.
  • the threshold for separating the high frequency band component and the low frequency band component should be the average value of the peak frequencies (that is, two peak frequencies) on the high frequency side and the low frequency side in the vibration spectrum or in the vicinity thereof. Can be.
  • the frequency component of the tremor vibration is rationally divided into two bands, high and low, in response to frequency fluctuations due to individual differences and differences in body parts. It can be divided into components.
  • the degree of fatigue can be quantitatively indicated by using the spectrum content. This makes it possible to accurately perform fatigue evaluation.
  • the vibration is obtained as acceleration data (data indicating force) from the acceleration sensor, there is an advantage that the change of the spectrum, particularly, the increase and decrease of the high-frequency spectrum is clear.
  • the acceleration sensor is attached near the wrist of the subject to measure upper limb tremor, but may be attached to another part (for example, upper arm).
  • the tremor of various body parts may be measured by being attached to many body parts such as fingers, hands, forearms, lower legs, lower limbs, and trunk, not limited to the upper limbs.
  • any part that generates tremor may be used.
  • the frequency separating the high frequency and the low frequency fluctuates. In order to obtain this frequency, as described in this specification, an experiment is performed on a subject in advance to obtain high and low peak values.
  • the present invention it is possible to provide a fatigue inspection apparatus and a fatigue evaluation method capable of measuring the degree of fatigue of a subject with a simple configuration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A fatigue inspection device and a fatigue evaluation method capable of measuring the fatigue of a person by a rather simple means; the method, comprising the steps of installing an accelerator sensor on the arm of the measured person, and analyzing the acceleration data obtained from the acceleration sensor by an analyzing part (20) to provide vibration spectra and spectra percentage content for each zone in total power wherein, for superior limb shivering, when the components in high frequency zone are large in the vibration spectra, the fatigue can be evaluated to be large in the cerebrum system and, when the components in low frequency zone are large, the fatigue can be evaluated to be large in the spinal chord system, whereby the state of fatigue can be judged properly.

Description

明 細 書 疲労検査装置および疲労評価方法 技術分野  Description Fatigue inspection device and fatigue evaluation method Technical field
本発明は、 疲労検査装置および疲労評価方法に関するものである。 背景技術  The present invention relates to a fatigue inspection device and a fatigue evaluation method. Background art
人間の身体部位には、 振戦が存在する。 振戦とは、 目に見えない程度の微少 な振幅での、 無意識的な機械的振動である。 例えば、 本発明者らによる文献 (「 振戦の発生メカニズムについて」 バイオメカニズム学会講演会予稿集第 3 1頁 〜第 3 4頁、 坂本和義等、 1 9 8 9年 7月 1 2日〜 1 3日) に記載されている ように、 病理的な原因で生じる振戦の周波数特性を用いて、 障害の部位や程度 を測定しようとする研究がされている。  There are tremors in human body parts. Tremors are unconscious mechanical vibrations with small amplitudes that are invisible to the eye. For example, a document by the present inventors (“On the Mechanism of Tremor Occurrence”, Proceedings of the Conference on Biomechanisms, pp. 31-34, Kazuyoshi Sakamoto, et al., July 12, 1989--12 As described in (3), studies are being conducted to measure the location and degree of injury using the frequency characteristics of tremor caused by pathological causes.
しかしながら、 健常者の振戦 (これを生理的振戦という) を対象とし、 これ から、 人間の疲労度を測定しょうとする試みは、 なされていない。  However, no attempt has been made to measure the tremor of a healthy person (this is called physiological tremor) and to measure the degree of human fatigue.
本発明者は、 振戦の振動特性を用いて、 人間の疲労度を測定できるという知 見を得た。  The inventor has found that the degree of human fatigue can be measured using the vibration characteristics of tremor.
本発明は、 前記の知見に基づいてなされたもので、 その目的は、 人間の疲労 度を、 比較的に簡単な手段で計測できる疲労検査装置および疲労評価方法を提 供することを目的としている。 発明の開示  The present invention has been made based on the above findings, and has as its object to provide a fatigue inspection apparatus and a fatigue evaluation method capable of measuring the degree of human fatigue by relatively simple means. Disclosure of the invention
請求項 1記載の疲労検査装置は、 対象者の身体部位における振戦の振動を検 出する検出部と、 前記振動のスペクトルを解析する解析部とを備えたものであ る。  The fatigue inspection device according to claim 1 includes a detection unit that detects vibration of tremor in a body part of the subject, and an analysis unit that analyzes a spectrum of the vibration.
請求項 2記載の疲労検査装置は、 請求項 1記載のものにおいて、 前記振動を 、 加速度におけるものとした。 The fatigue inspection device according to claim 2 is the device according to claim 1, wherein the vibration is , Acceleration.
請求項 3記載の疲労検查装置は、 請求項 1または 2に記載 ものにおいて、 前記解析部を、 前記振動のスぺク トルにおける高周波帯域成分および Zまたは 低周波帯域成分を含むデータを出力する構成とした。  The fatigue detection device according to claim 3, according to claim 1, wherein the analysis unit outputs data including a high-frequency band component and a Z or low-frequency band component in the vibration spectrum. The configuration was adopted.
請求項 4記載の疲労検査装置は、 請求項 1〜 3のいずれか 1項に記載のもの において、 前記解析部を、 記振動のスペク トルのトータルパワーにおける高 周波帯域成分および低周波帯域成分の比率を出力する構成とした。  The fatigue inspection apparatus according to claim 4, wherein the analysis unit is configured to determine a high frequency band component and a low frequency band component in a total power of a spectrum of the vibration. It is configured to output the ratio.
請求項 5記載の疲労検査装置は、 請求項 1〜4のいずれか 1項に記載のもの において、 前記検出部を加速度センサとした。  The fatigue inspection apparatus according to claim 5, wherein the detection unit is an acceleration sensor according to any one of claims 1 to 4.
請求項 6記載の疲労検査装置は、 請求項 1〜5のいずれか 1項に記載のもの において、 前記高周波帯域成分と低周波帯域成分とを分ける閾値を、 前記振動 スぺク トルにおける高周波側と低周波側でのピーク周波数の平均値またはその 近傍とした。  The fatigue inspection apparatus according to claim 6, wherein the threshold for separating the high frequency band component and the low frequency band component is set to a high frequency side in the vibration spectrum. And the average value of the peak frequencies on the low frequency side or near it.
請求項 7記載の疲労評価方法は、 対象者の身体部位における振戦の振動スぺ ク トルを取得し、 前記振動スぺク トルに基づいて、 前記対象者の疲労状態を評 価する構成となっている。  The fatigue evaluation method according to claim 7, further comprising: acquiring a vibration spectrum of a tremor in a body part of the subject, and evaluating the fatigue state of the subject based on the vibration spectrum. Has become.
請求項 8記載の疲労評価方法は、 対象者の身体部位における振戦の振動スぺ ク トルを取得し、 前記振動スぺク トルの高周波帯域成分おょぴ Zまたは低周波 帯域成分の値に基づいて、 前記対象者の疲労状態を評価する構成となっている 請求項 9記載の疲労評価方法は、 請求項 8記載のものにおいて、 前記高周波 帯域成分と低周波帯域成分とを分ける閾値を、 前記振動スぺク トルにおける高 周波側と低周波側でのピーク周波数の平均値またはその近傍としたものである  The fatigue evaluation method according to claim 8, further comprising: obtaining a vibration spectrum of a tremor in a body part of the subject, and converting the vibration spectrum into a value of a high frequency band component Z or a value of a low frequency band component. The fatigue evaluation method according to claim 9, wherein the fatigue state of the subject is evaluated based on the threshold value that separates the high-frequency band component from the low-frequency band component. The average value of the peak frequencies on the high frequency side and the low frequency side in the vibration spectrum or a value close to the average value.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明にかかる疲労評価方法の前提となる知見を説明するための説 明図である。 FIG. 1 is a view for explaining the knowledge that is the premise of the fatigue evaluation method according to the present invention. FIG.
図 2は、 本発明者によって得られた知見を説明するためのグラフであって、 負荷加重時における上肢振戦スぺク トルの変化を示すものである。 このグラフ において、 横軸は周波数、 縦軸はパワースぺク トラムを示している。  FIG. 2 is a graph for explaining the findings obtained by the inventor, and shows a change in the upper limb tremor vector when a load is applied. In this graph, the horizontal axis represents frequency, and the vertical axis represents power spectrum.
図 3は、 本発明者によって得られた知見を説明するためのグラフである。 上 肢を空気中無負荷状態とした場合と、 水中に浸けた場合とにおける振戦パワー スペク トルを示している。 図において横軸は周波数、 縦軸はパワースぺクトラ ムである。  FIG. 3 is a graph for explaining the findings obtained by the present inventors. The tremor power spectrum is shown when the upper limb is unloaded in air and when immersed in water. In the figure, the horizontal axis represents frequency, and the vertical axis represents power spectrum.
図 4は、 本発明者によって得られた知見を説明するためのグラフであって、 横軸は負荷の大きさ、 縦軸は、 無負荷での値を 1としたときの相対的なトータ ルパワーである。  FIG. 4 is a graph for explaining the findings obtained by the present inventors. The horizontal axis represents the magnitude of the load, and the vertical axis represents the relative total power when the value at no load is set to 1. It is.
図 5は、 本発明者によって得られた知見を説明するためのグラフであって、 負荷加重時における上肢振戦スぺク トルの帯域別スぺク トル含有率の変化を示 すものである。 このグラフにおいて、 横軸は負荷の大きさ、 縦軸は、 トータル パワーにおける、 高周波帯域成分と低周波帯域成分との比率を示している。 図 6は、 本発明の一実施形態に係る疲労評価装置の概略的なプロック図であ る。 発明を実施するための最良の形態  FIG. 5 is a graph for explaining the findings obtained by the present inventors, and shows the change in the spectrum content of the upper limb tremor spectrum by band during load application. . In this graph, the horizontal axis indicates the magnitude of the load, and the vertical axis indicates the ratio of the high frequency band component to the low frequency band component in the total power. FIG. 6 is a schematic block diagram of the fatigue evaluation device according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態に係る疲労検査装置および疲労評価方法を説明す る。  Hereinafter, a fatigue inspection device and a fatigue evaluation method according to an embodiment of the present invention will be described.
まず、 本発明実施形態の前提となる、 振戦と疲労との関係を示す実験結果 ( すなわち知見) について説明する。 ここで、 振戦の測定対象とできる部位は、 指、 手、 前腕、 上肢、 足、 下腿、 下肢、 頭部、 体幹などである。 以下では、 身 体部位のうち上肢部位を例として、 上肢振戦を測定している。  First, experimental results (that is, findings) showing the relationship between tremor and fatigue, which are the premise of the embodiment of the present invention, will be described. Here, the parts that can be measured for tremor include the fingers, hands, forearms, upper limbs, feet, lower legs, lower limbs, head, and trunk. In the following, upper limb tremor is measured using the upper limb part of the body part as an example.
はじめに、 図 1に示されるように、 椅子に座っている被験者の右腕 1の肘関 節から前腕にかけて負荷 (重り) 2を取り付ける。 負荷 2としては、 被験者間 での負荷強度を一定にするため、 各被験者に対し事前に最大随意収縮筋力 (以 下、 Maximum Voluntary Contraction の頭文字をとり MV Cと称する) を測定 し、 5 %、 1 0 %、 1 5 %、 2 0 %MV Cおよび外部負荷零 (本明細書におい て 「無負荷」 または 「postural」 ということがある) の 5種類の負荷を与える ことにする。 負荷 2は、 手首と肘の中間に取り付けられる。 負荷 2は、 腕 1に 対して移動しないように取り付けることが望ましい。 First, as shown in Fig. 1, a load (weight) 2 is attached from the elbow joint of the right arm 1 of the subject sitting on the chair to the forearm. Load 2 between subjects In order to keep the load intensity constant, the maximum voluntary contraction strength (hereinafter referred to as “MVC” for Maximum Voluntary Contraction) was measured for each subject in advance, and 5%, 10%, 15% %, 20% MVC and zero external load (sometimes referred to as “no load” or “postural” in this specification). Load 2 is mounted midway between the wrist and the elbow. It is desirable to attach load 2 so that it does not move with respect to arm 1.
さらに、 腕 1の手首近傍には、 加速度センサ 3を取り付ける。 加速度センサ としては、 例えば、 日本光電製の M T— 3 Tを用いることができる。 被験者は 、 腕を体幹に対して垂直かつ前方に出し、 回内させた状態 (上肢全体を内側に ひねり、手が地面に対して水平になる状態〉で伸ばしておく。 また、手首および 指の振戦の影響を避けるため、 手首および指は弛緩させておく (図 1 )。  Further, an acceleration sensor 3 is attached near the wrist of the arm 1. As the acceleration sensor, for example, MT-3T manufactured by Nihon Kohden can be used. The subject puts his arm vertically and forward with respect to the trunk, and stretches out with the pronation turned (the entire upper limb is twisted inward and the hand is horizontal to the ground). Keep your wrists and fingers relaxed to avoid the effects of the tremor (Figure 1).
これらの条件下で、 腕 1がマーカー 4からずれないように被験者みずから視 認しつつ (視覚フィードバック)、 一定時間 (通常 1分間)、 同じ姿勢を保持さ せる。 その後、 視覚フィードバックを保ちつつ、 加速度センサ 3によって、 振 戦の振動を取得する。 このデータをフーリエ変換し、 パワースペクトルを求め た。 この実験での被験者は、 男性 1 0名 (平均年齢 2 3 . 4歳) であった。 デ ータとしては、 全被験者間での平均値を採用している。 実験の結果を図 2に示 す。 ここでの振動は、 あくまで、 加速度におけるものである。 スペク トルに]^ 、 高周波ピークと低周波ピークとが存在することがわかる。 上肢振戦のピーク は、 負荷が大きくなるほど大きくなつた。 特に、 高周波ピークにおいては、 そ の傾向が強かった。  Under these conditions, the subject keeps the same posture for a certain period of time (usually 1 minute) while visually observing the subject so that the arm 1 does not deviate from the marker 4 (visual feedback). Then, the vibration of the tremor is acquired by the acceleration sensor 3 while maintaining the visual feedback. This data was subjected to Fourier transform to obtain a power spectrum. The subjects in this experiment were 10 males (average age 23.4 years). As data, the average value among all subjects was adopted. Figure 2 shows the results of the experiment. The vibration here is based on acceleration only. It can be seen that the spectrum has a high-frequency peak and a low-frequency peak. The peak of upper limb tremor increased as the load increased. In particular, the tendency was strong at the high frequency peak.
図 2 (および後述する図 3 ) に示す結果から、 上肢振戦においては、 高周波 ピークの大小は、 大脳の疲労度の大小に対応し、 低周波ピークの大小は、 脊髄 系の疲労度の大小に対応していることが判る。 なお、 身体部位の質量の小さい 指振戦では、 高周波成分が脊髄系の働き、 低周波成分が大脳の働きとなり、 上 肢振戦とは周波数成分の働きが逆となる。  From the results shown in Fig. 2 (and Fig. 3 described later), in upper limb tremor, the magnitude of the high frequency peak corresponds to the magnitude of the cerebral fatigue, and the magnitude of the low frequency peak corresponds to the magnitude of the spinal cord fatigue. It turns out that it corresponds. In finger tremor, where the mass of the body part is small, the high-frequency component works as the spinal system and the low-frequency component works as the cerebrum, and the function of the frequency component is opposite to that of upper limb tremor.
このように判断できる理由は次の通りである。 上肢振戦においては、 図 2に 示す如く外部負荷加重零 (すなわち無負荷または ostural) から 2 0 %MV C へ負荷加重を増加すると、 高周波成分 (上肢の場合は 1 0 H z付近の周波数成 分) が 1 5倍増加する。 一方、 低周波成分 (上肢では 3 H z付近の周波数成分 ) は 4倍となる。 一般に、 負荷加重による上肢姿勢保持は、 脊髄系の働きによ る自動化された機能のみでは行うことができない。 大脳系による意識レベルの 活動が必要となり、 姿勢を調整するために、 上肢部位の振動が大きくなる。 上 肢姿勢保持のためには、 力に相当する成分 (加速度成分) が上肢に加わる。 そ の結果として加速度成分が増加することになる。 したがって、 図 2の 1 0 H z 成分のパワースぺク トルが増加しているということは、 「上肢振戦の 1 O H z 成分の発生起源は大脳の働きによってもたらされたものである」 ことが実験的 に示されたことになる。 ここで、 3 H zの成分も増加した理由は、 大脳の働き が、 その下位機構である脊髄に影響したためであると考えられる。 The reason for this determination is as follows. For upper limb tremor, see Figure 2. As shown, increasing the load weight from zero external load weight (ie, no load or ostural) to 20% MVC increases the high frequency component (frequency component around 10 Hz for the upper limb) by a factor of 15. On the other hand, the low frequency component (frequency component near 3 Hz in the upper limb) is quadrupled. In general, maintaining the posture of the upper limb by applying a load cannot be performed using only the automated functions of the spinal cord. Consciousness level activity by the cerebral system is required, and the upper limb vibrates to adjust the posture. To maintain the posture of the upper limb, a component corresponding to the force (acceleration component) is applied to the upper limb. As a result, the acceleration component increases. Therefore, the increase in the power spectrum of the 10 Hz component in Fig. 2 means that the origin of the 1 OH z component of upper limb tremor is caused by the function of the cerebrum. Is shown experimentally. Here, it is considered that the reason why the 3 Hz component also increased was that the function of the cerebrum affected the spinal cord, which is a subordinate mechanism.
一方、 低周波成分の発生起源を調べるために、 上肢部位を水中に浸した状態 での、 振戦振動のパワースペク トラムを測定した。 その結果を図 3中の太線に 示す。 図中細線は、 空気中での外部負荷加重零での測定結果である。 上肢部位 が水中に浸されると、 そこに加わる浮力のために、 上肢保持にかかわつている 筋肉への負担は軽減する。水中における姿勢保持には、 「反射的に上肢を保持す る、 脊髄を中心とした筋 ·神経機能」 と 「ターゲットに上肢先端を合わせて保 持する、 意識的な筋 ·神経機能」 との 2種類の機能が関与している。 水中では 、 浮力により、 上肢保持力は減少し、 反射的な上肢保持機能は必要なくなり、 それに基づく振動成分は低下する。 図 3において、 空気中 (図中、 無負荷) の 曲線で生じている, 2個のピークのうち、 水中の曲線では、 低周波成分 (3 H z ) が激減し、 高周波成分のみのパワースぺク トルが検出されている。 この結果 により、 3 H Z成分の振動は脊髄系の働きによって発生していることが判る。 さらに、 振戦の振動スぺクトルのトータルパワーと負荷との関係を取得した 。 その結果を図 4に示す。 図 4は、 外部の負荷加重が与えられていない状態 ( 無負荷) から 2 0 %MV Cに加重されている状態までの、 5 %MV Cおきの負 荷状態と、 上肢振戦に関する加速度のパワースぺク トルの和であるトータルパ ヮー (TP) との関係を表現したものである。 その際、 各被験者の無負荷にお ける値を基準値として、 各負荷加重時の値を、 相対値として表現した。 さらにOn the other hand, in order to investigate the origin of the low-frequency components, the power spectrum of the tremor vibration was measured with the upper limb immersed in water. The result is shown by the thick line in FIG. The thin line in the figure is the measurement result at zero external load in air. When the upper limb is immersed in water, the buoyancy added to it reduces the strain on the muscles involved in holding the upper limb. To maintain posture in the water, there are two types of muscles and nerve functions, mainly the spinal cord, which keeps the upper limbs reflexively, and conscious muscles and nerve functions, which keep the upper limbs in contact with the target. Two types of functions are involved. Underwater buoyancy reduces the upper limb holding power, the need for a reflexive upper limb holding function is not required, the vibration component based on it is reduced. In Fig. 3, the low-frequency component (3 Hz) is sharply reduced in the underwater curve of the two peaks generated in the curve in the air (no-load in the figure). A vector has been detected. From this result, it can be seen that the oscillation of the 3 Hz component is generated by the action of the spinal cord system. In addition, the relationship between the total power of the vibration spectrum of tremor and the load was obtained. Fig. 4 shows the results. Figure 4 shows the negative load at every 5% MVC from the state where no external load weight is applied (no load) to the state where the load is applied to 20% MVC. It expresses the relationship between the loading state and the total power (TP), which is the sum of the power spectrum of acceleration related to upper limb tremor. At that time, the value of each subject under no load was used as a reference value, and the value at each load was expressed as a relative value. further
、 全被験者の相対値の平均値 (図 4中、 黒丸) と標準偏差 (図 4中、 縦棒) を 求めて図 4に表示した。 負荷加重の増加にづれて相対的トータルパワー値は増 加する。 特に、 1 5%MVC以上の負荷加重においては、 相対的トータルパヮ 一値は急増する。 図中の 「*」、 「* *」 の印は、 無負荷と他の負荷加重におけ る相対的トータルパワー値との差を統計的に検定 (対データに関する t検定) し、 それぞれ 5%と 1 %で統計的に差 (有意差) があるこ を示している。 こ こで、 骨格筋の負荷について一般に言えることであるが、 1 5%MVC以下の 負荷加重では、 長時間保持可能であり、 1 5%MVCを超えた負荷加重では、 一定時間後に筋疲労が必ず発生する。 図 4の結果は 1 5%MVC以上で急激に トータルパワー値が増加しており、 この現象を説明している。 The average (solid circle in Fig. 4) and standard deviation (vertical bar in Fig. 4) of the relative values of all subjects were calculated and displayed in Fig. 4. As the load weight increases, the relative total power value increases. In particular, at a load weight of 15% MVC or more, the relative total power value sharply increases. The “*” and “**” marks in the figure indicate the difference between the no-load and the relative total power under other load weights statistically tested (t-test for paired data). This indicates that there is a statistical difference (significant difference) between 1% and 1%. Here, generally speaking, the load on skeletal muscle can be maintained for a long time at a load of 15% MVC or less, and muscle fatigue after a certain period of time at a load of 15% MVC or more. Always happens. The results in Fig. 4 show that the total power value increases sharply above 15% MVC, explaining this phenomenon.
さらに、 上肢振戦では、 0. 5〜5 OH zにおける全周波数成分のトータル パワーを 1 00%として、 高周波帯域成分 (5〜50Hz) と低周波帯域成分 (0. 5〜5H z) との、 帯域別スペク トル含有率を求めた。 その結果を図 5 に示した。 この結果は、 図 2の結果を裏付けるものである。 ただし、 無負荷か ら 5%負荷への変化から判るように、 軽度の疲労の場合は、 むしろ高周波成分 比率が低下することもあることが判った。 ただし、 全体的な傾向としては、 負 荷が大きいほど、 高周波成分比率が大きくなることが判る。  Furthermore, in upper limb tremor, the total power of all frequency components at 0.5 to 5 OHz is set to 100%, and the high frequency band component (5 to 50 Hz) and the low frequency band component (0.5 to 5 Hz) The spectral content for each band was determined. Figure 5 shows the results. This result supports the results in Figure 2. However, as can be seen from the change from no load to 5% load, it was found that in the case of mild fatigue, the ratio of the high-frequency component could be rather lowered. However, the overall trend is that the higher the load, the higher the high-frequency component ratio.
本発明は、 以上の知見に基づいている。  The present invention is based on the above findings.
つぎに、 本発明の一実施形態に係る疲労検査装置を、 図 6に基づいて説明す る。 この疲労検査装置は、 振戦の振動を検出する検出部 1 0と、 振動のスぺク トルを解析する解析部 20と、 解析部 20から出力されたデータを表示する表 示部 30とを備えている。  Next, a fatigue inspection device according to one embodiment of the present invention will be described with reference to FIG. This fatigue testing apparatus includes a detecting unit 10 for detecting vibration of tremor, an analyzing unit 20 for analyzing a vibration spectrum, and a display unit 30 for displaying data output from the analyzing unit 20. Have.
検出部 1 0は、 この実施形態では、 加速度センサとなっている。 加速度セン サとしては、 図 1に示される加速度センサ 1と同様のものを用いることができ る。 したがって、 検出部 1 0からは、 加速度に基づく出力 (例えば電圧) が解 析部 2 0に送られる。 The detection unit 10 is an acceleration sensor in this embodiment. An acceleration sensor similar to the acceleration sensor 1 shown in FIG. 1 can be used. You. Therefore, an output (for example, a voltage) based on the acceleration is sent from the detection unit 10 to the analysis unit 20.
解析部 2 0は、 検出部 1 0からの出力を取り込むインタフェースを備えた通 常のコンピュータにより構成できる。 解析部 2 0における機能の例としては、 入力に対して A D変換をする A Dコンバータ、 得られたディジタルデータに対 するフーリエ変換を行って振動スぺク トルを取得する機能、 振動スぺク トルの トータルパヮ一における帯域別のスぺタトル含有率を取得する機能などである 。 これらの機能は、 ソフトウェアとしてもハードウェアとしても容易に実装可 能である。 また、 これらの機能は、 複数の分散要素によって実現されてもよい 。 なお、 本実施形態では、 A D変換の標本時間は 1 0 m sとした。  The analysis unit 20 can be configured by a normal computer having an interface for taking in the output from the detection unit 10. Examples of functions in the analysis unit 20 include an AD converter that performs AD conversion on an input, a function that performs a Fourier transform on the obtained digital data to obtain a vibration spectrum, and a vibration spectrum. It is a function to acquire the status of the statue content for each band in the total part. These functions can be easily implemented as software or hardware. Also, these functions may be realized by a plurality of distributed elements. In the present embodiment, the sampling time of the AD conversion is set to 10 ms.
表示部 3 0は、 解析部 2 0で得られた振動スぺク トルに関するデータをディ スプレイやプリンタを介して表示するものである。  The display unit 30 displays the data on the vibration spectrum obtained by the analysis unit 20 via a display or a printer.
つぎに、 本実施形態における疲労評価方法'について、 図 1を参照しながら説 明する。 また、 疲労評価においても、 負荷 2を装着する。 ここで、 上肢の疲労 評価において装着する負荷の例としては、 図 4に示すように、 5 %MV Cから 可能である。 ただし、 負荷の大きさは、 振戦振動のトータルパワーの増加を示 す時間に逆比例するので、 疲労評価を速やかに行いたい場合は、 1 5 %MV C 以上の負荷を与えるとよい。  Next, the fatigue evaluation method ′ in the present embodiment will be described with reference to FIG. Load 2 is also used for fatigue evaluation. Here, as an example of the load to be worn in the fatigue evaluation of the upper limb, as shown in FIG. 4, the load can be 5% MVC. However, since the magnitude of the load is inversely proportional to the time indicating the increase in the total power of the tremor vibration, it is advisable to apply a load of 15% MVC or more in order to perform a quick fatigue evaluation.
まず、 図 1に示されるように、 対象者の腕 1に、 検出部 1 0としての加速度 センサ 3を取り付ける。 加速度センサ 3から得られた加速度データを、 解析部 2 0で解析する。 これにより、 図 2および図 5に示されるような、 振動スぺク トル、 トータルパワーにおける帯域別スペク トル含有率を得る。 このようなグ ラフは、 表示部 3 0により、 適宜な媒体で表示される。 ここで、 帯域別スぺク トル含有率の導出においては、 上肢振戦の場合は、 高周波成分の周波数帯域を 5 H z〜5 0 H zとし、 低周波成分の周波数帯域を 0 . 5〜 5 H zとしている 具体的な評価は、 次のように行う。 まず、 図 2に示すような上肢振戦のスぺ タトルにおいて、 高周波帯域の成分が多ければ、 大脳系の疲労が大きいと評価 できる。 他方、 低周波帯域の成分が多ければ、 脊髄系の疲労が大きいと評価で きる。 すると、 疲労部位の特性に応じた判断、 例えば、 疲労回復措置の種類な どの判断を適切に行うことが可能となる。 この判断は、 図 5のようなスぺタ ト ル含有率に基づいても行うことが可能である。 ここで、 高周波帯域成分と低周 波帯域成分とを分ける閾値ば、 振動スぺク トルにおける高周波側と低周波側で のピーク周波数 (つまり二つのピーク周波数) の平均値またはその近傍とする ことができる。 前記のように、 平均値またはその近傍の値を閾値とすると、 個 人差による周波数の変動や身体部位の違いに対応して、 振戦振動の周波数成分 を、 合理的に、 高低二つの帯域成分に分割することが可能となる。 First, as shown in FIG. 1, the acceleration sensor 3 as the detection unit 10 is attached to the arm 1 of the subject. The analysis unit 20 analyzes the acceleration data obtained from the acceleration sensor 3. As a result, as shown in FIGS. 2 and 5, the spectrum content of each band in the vibration spectrum and the total power is obtained. Such a graph is displayed on the display unit 30 in an appropriate medium. Here, in deriving the spectrum content rate by band, in the case of upper limb tremor, the frequency band of the high frequency component is set to 5 Hz to 50 Hz, and the frequency band of the low frequency component is set to 0.5 Hz to 0.5 Hz. A specific evaluation of 5 Hz is performed as follows. First, the upper extremity tremor as shown in Fig. 2 If there are many components in the high-frequency band in the tuttle, it can be evaluated that the cerebral system fatigue is large. On the other hand, if there are many components in the low frequency band, it can be evaluated that the spinal cord fatigue is large. Then, it is possible to appropriately make a determination according to the characteristics of the fatigued part, for example, a type of a fatigue recovery measure. This determination can also be made based on the stall content as shown in FIG. Here, the threshold for separating the high frequency band component and the low frequency band component should be the average value of the peak frequencies (that is, two peak frequencies) on the high frequency side and the low frequency side in the vibration spectrum or in the vicinity thereof. Can be. As described above, when the average value or a value in the vicinity thereof is set as the threshold value, the frequency component of the tremor vibration is rationally divided into two bands, high and low, in response to frequency fluctuations due to individual differences and differences in body parts. It can be divided into components.
また、 本実施形態によれば、 スぺク トル含有率を用いて疲労度を定量的に示 すことが可能であるという利点もある。 これにより、 疲労評価を正確に行うこ とが可能になる。  Further, according to the present embodiment, there is an advantage that the degree of fatigue can be quantitatively indicated by using the spectrum content. This makes it possible to accurately perform fatigue evaluation.
さらに、 本実施形態では、 振動を加速度センサからの加速度データ (力を示 すデータ) として得ているので、 スペク トルの変化、 特に高周波スペク ト^^の 増減が明瞭になるという利点もある。  Further, in the present embodiment, since the vibration is obtained as acceleration data (data indicating force) from the acceleration sensor, there is an advantage that the change of the spectrum, particularly, the increase and decrease of the high-frequency spectrum is clear.
なお、 前記実施形態では、 加速度センサを対象者の手首近くに取り付けて、 上肢振戦を測定したが、 他の部位 (例えば、 上腕部) に取り付けてもよい。 ま た、 上肢に限らず、 指、 手、 前腕、 下腿、 下肢、 体幹などの多くの身体部位に 取り付けて、 種々の身体部位の振戦を測定してもよい。 要するに、 振戦を発生 する部位であればよい。 その場合には、 高周波と低周波とを仕切る周波数が変 動する。 この周波数を得るには、 本明細書に記載したように、 事前に、 被験者 に対して実験を行い、 高低のピーク値を得ればよい。 また、 他の身体部位の振 戦において、 身体部位の質量が小さい場合 (例えば指振戦) は、 周波数帯域成 分の働きが、 上肢振戦とは逆の働きをするので、 疲労評価においては、 '周波数 帯の働きを上肢振戦と逆にして行えばよい。  In the above embodiment, the acceleration sensor is attached near the wrist of the subject to measure upper limb tremor, but may be attached to another part (for example, upper arm). Also, the tremor of various body parts may be measured by being attached to many body parts such as fingers, hands, forearms, lower legs, lower limbs, and trunk, not limited to the upper limbs. In short, any part that generates tremor may be used. In that case, the frequency separating the high frequency and the low frequency fluctuates. In order to obtain this frequency, as described in this specification, an experiment is performed on a subject in advance to obtain high and low peak values. Also, in the tremor of other body parts, if the mass of the body part is small (for example, finger tremor), the function of the frequency band component is opposite to that of the upper limb tremor. , 'The function of the frequency band may be reversed from that of upper limb tremor.
なお、 前記実施形態の記載は単なる一例に過ぎず、 本発明に必須の構成を示 したものではない。 各部の構成は、 本発明の趣旨を達成できるものであれば、 上記に限らない。 産業上の利用可能性 Note that the description of the above embodiment is merely an example, and shows an essential configuration of the present invention. It was not done. The configuration of each unit is not limited to the above as long as the purpose of the present invention can be achieved. Industrial applicability
本発明によれば、 対象者の疲労度を簡易な構成で測定することができる疲労 検査装置および疲労評価方法を提供することができる。  According to the present invention, it is possible to provide a fatigue inspection apparatus and a fatigue evaluation method capable of measuring the degree of fatigue of a subject with a simple configuration.

Claims

請 求 の 範 囲 The scope of the claims
1 . 対象者の身体部位における振戦の振動を検出する検出部と、 前記振動の スぺク トルを解析する解析部とを備えた疲労検査装置。 1. A fatigue inspection device comprising: a detection unit that detects vibration of tremor in a body part of a subject; and an analysis unit that analyzes a spectrum of the vibration.
2 . 前記振動は、 加速度におけるものであることを特徴とする請求項 1記載 の疲労検査装置。  2. The fatigue inspection device according to claim 1, wherein the vibration is caused by acceleration.
3 . 前記解析部は、 前記振動のスペク トルにおける高周波帯域成分おょぴ Z または低周波帯域成分を含むデータを出力する構成となっていることを特徴と する請求項 1または 2に記載の疲労検査装置。  3. The fatigue according to claim 1, wherein the analysis unit is configured to output data including a high frequency band component Z or a low frequency band component in the spectrum of the vibration. Inspection equipment.
4 . 前記解析部は、 前記振動のスペク トルのトータルパワーにおける高周波 帯域成分および低周波帯域成分の比率を出力する構成となっていることを特徴 とする請求項 1〜 3のいずれか 1項に記載の疲労検査装置。  4. The analysis unit according to claim 1, wherein the analysis unit is configured to output a ratio of a high frequency band component and a low frequency band component in a total power of the spectrum of the vibration. The fatigue inspection device as described.
5 . 前記検出部は、 加速度センサであることを特徴とする請求項 1〜4のい ずれか 1項に記載の疲労検查装置。  5. The fatigue detection device according to any one of claims 1 to 4, wherein the detection unit is an acceleration sensor.
6 . 前記高周波帯域成分と低周波帯域成分とを分ける閾値は、 前記振動スぺ タ トルにおける高周波側と低周波側でのピーク周波数の平均値またはその近傍 であることを特徴とする請求項 1〜 5のいずれか 1項に記載の疲労検査装置。 6. The threshold value for separating the high-frequency band component and the low-frequency band component is an average value of peak frequencies on the high frequency side and the low frequency side in the vibration tale or in the vicinity thereof. The fatigue inspection device according to any one of claims 1 to 5.
7 . 対象者の身体部位における振戦の振動スぺク トルを取得し、 前記振動ス ぺクトルに基づいて、 前記対象者の疲労状態を評価することを特徴とする疲労 評価方法。 7. A fatigue evaluation method comprising: obtaining a vibration spectrum of a tremor in a body part of a subject; and evaluating the fatigue state of the subject based on the vibration spectrum.
8 . 対象者の身体部位における振戦の振動スペク トルを取得し、 前記振動ス ぺクトルの高周波帯域成分および Zまたは低周波帯域成分の値に基づいて、 前 記対象者の疲労状態を評価することを特徴とする疲労評価方法。  8. Obtain the vibration spectrum of tremor in the body part of the subject, and evaluate the fatigue state of the subject based on the values of the high frequency band component and the Z or low frequency band component of the vibration spectrum. A fatigue evaluation method characterized in that:
9 . 前記高周波帯域成分と低周波帯域成分とを分ける閾値は、 前記振動スぺ クトルにおける高周波側と低周波側でのピーク周波数の平均値またはその近傍 であることを特徴とする請求項 8記載の疲労評価方法。  9. The threshold value for separating the high frequency band component and the low frequency band component is an average value of peak frequencies on the high frequency side and the low frequency side in the vibration spectrum or in the vicinity thereof. Fatigue evaluation method.
PCT/JP2001/010197 2001-05-22 2001-11-22 Fatigue inspection device and fatigue evaluation method WO2002094091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002590816A JPWO2002094091A1 (en) 2001-05-22 2001-11-22 Fatigue inspection device and fatigue evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001152664 2001-05-22
JP2001-152664 2001-05-22

Publications (1)

Publication Number Publication Date
WO2002094091A1 true WO2002094091A1 (en) 2002-11-28

Family

ID=18997298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010197 WO2002094091A1 (en) 2001-05-22 2001-11-22 Fatigue inspection device and fatigue evaluation method

Country Status (2)

Country Link
JP (1) JPWO2002094091A1 (en)
WO (1) WO2002094091A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138930A1 (en) * 2006-05-29 2007-12-06 Sharp Kabushiki Kaisha Fatigue estimation device and electronic apparatus having the fatigue estimation device mounted thereon
JP2011182824A (en) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd Action condition estimating device, action condition learning device, action condition estimation method, the action condition learning method, and program
JP2017169987A (en) * 2016-03-25 2017-09-28 ムノガプローフィリナエ プレドプリヤーチェ エルシス Method of obtaining information regarding psychophysiological state
EP2790579B1 (en) * 2011-12-12 2021-03-31 AusHealth Corporate Pty Ltd Apparatus for detecting the onset of hypoglycaemia
WO2021157026A1 (en) * 2020-02-06 2021-08-12 株式会社竹中土木 Determination device and posture control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238908A (en) * 1996-03-06 1997-09-16 Seiko Epson Corp Relaxedness-measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238908A (en) * 1996-03-06 1997-09-16 Seiko Epson Corp Relaxedness-measuring apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138930A1 (en) * 2006-05-29 2007-12-06 Sharp Kabushiki Kaisha Fatigue estimation device and electronic apparatus having the fatigue estimation device mounted thereon
US8926531B2 (en) 2006-05-29 2015-01-06 Sharp Kabushiki Kaisha Fatigue estimation device and electronic apparatus having the fatigue estimation device mounted thereon
JP2011182824A (en) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd Action condition estimating device, action condition learning device, action condition estimation method, the action condition learning method, and program
EP2790579B1 (en) * 2011-12-12 2021-03-31 AusHealth Corporate Pty Ltd Apparatus for detecting the onset of hypoglycaemia
JP2017169987A (en) * 2016-03-25 2017-09-28 ムノガプローフィリナエ プレドプリヤーチェ エルシス Method of obtaining information regarding psychophysiological state
WO2021157026A1 (en) * 2020-02-06 2021-08-12 株式会社竹中土木 Determination device and posture control device
JPWO2021157026A1 (en) * 2020-02-06 2021-08-12
JP7370021B2 (en) 2020-02-06 2023-10-27 株式会社竹中土木 Determination device and attitude control device

Also Published As

Publication number Publication date
JPWO2002094091A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
Vial et al. How to do an electrophysiological study of tremor
Cappello et al. Robot-aided assessment of wrist proprioception
Garnacho-Castaño et al. Reliability and validity assessment of a linear position transducer
US9402579B2 (en) Real-time assessment of absolute muscle effort during open and closed chain activities
US8167799B2 (en) Apparatus and method for monitoring strain and/or load applied to a mammal
Cerrito et al. Reliability and validity of a smartphone-based application for the quantification of the sit-to-stand movement in healthy seniors
Xu et al. Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation
Fattorini et al. Muscular synchronization and hand-arm fatigue
Yeh et al. Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling
Larivière et al. Do mechanical tests of glove stiffness provide relevant information relative to their effects on the musculoskeletal system? A comparison with surface electromyography and psychophysical methods
WO2002094091A1 (en) Fatigue inspection device and fatigue evaluation method
JP5099152B2 (en) Behavioral state estimation device, behavioral state learning device, behavioral state estimation method, behavioral state learning method, and program
Naeem et al. Electrical stimulator with mechanomyography-based real-time monitoring, muscle fatigue detection, and safety shut-off: a pilot study
Haberland et al. Simultaneous assessment of hand function and neuromuscular quickness through a static object manipulation task in healthy adults
Su et al. Dynamic modelling of heart rate response under different exercise intensity
Chardon et al. An evaluation of passive properties of spastic muscles in hemiparetic stroke survivors
Han et al. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions
Zhang et al. Measuring the local and global variabilities in body sway by nonlinear Poincaré technology
WO2017213066A1 (en) Tremor detection device, stress evaluation system using same, and stress evaluation method
Portela et al. A critical review of position-and velocity-based concepts of postural control during upright stance
Geman et al. A novel device for peripheral neuropathy assessment and rehabilitation
Cooper et al. Muscle‐related differences in mechanomyography–force relationships are model‐dependent
Talib et al. Crosstalk in mechanomyographic signals from elbow flexor muscles during submaximal to maximal isometric flexion, pronation, and supination torque tasks
Drugă et al. Vibration and the human body
Kowalski et al. Research on Simultaneous Impact of Hand–Arm and Whole-Body Vibration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002590816

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase