WO2002093859A1 - Channel decoding apparatus and method in an orthogonal frequency division multiplexing system - Google Patents

Channel decoding apparatus and method in an orthogonal frequency division multiplexing system Download PDF

Info

Publication number
WO2002093859A1
WO2002093859A1 PCT/KR2002/000882 KR0200882W WO02093859A1 WO 2002093859 A1 WO2002093859 A1 WO 2002093859A1 KR 0200882 W KR0200882 W KR 0200882W WO 02093859 A1 WO02093859 A1 WO 02093859A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimate
information bits
symbols
probability values
channel
Prior art date
Application number
PCT/KR2002/000882
Other languages
French (fr)
Inventor
Chung-Gu Kang
Seung-Young Park
Bo-Seok Seo
Jung-Je Son
Original Assignee
Samsung Electronics Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co., Ltd filed Critical Samsung Electronics Co., Ltd
Priority to EP02769627A priority Critical patent/EP1308011A1/en
Publication of WO2002093859A1 publication Critical patent/WO2002093859A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation

Definitions

  • the present invention relates generally to an OFDM (Orthogonal Frequency Division Multiplexing) communication system, and in particular, to a channel decoding apparatus and method using a MAP (Maximum A Posteriori) algorithm.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MAP Maximum A Posteriori
  • OFDM which has recently been used for high-rate data transmission on wired and radio (wireless) channels, is a kind of multi-carrier modulation (MCM) in which a serial symbol sequence is converted to parallel symbol sequences and modulated with multiple orthogonal sub-carriers (or sub-channels) prior to transmission.
  • MCM multi-carrier modulation
  • OFDM has become widespread to digital transmission applications such as DAB (Digital Audio Broadcasting), digital TV broadcast, and WATM (Wireless Asynchronous Transfer Mode). While OFDM did not find wide use due to hardware complexity, it is now widely implemented along with advanced digital signal processing technology including FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform). While OFDM is similar to FDM (Frequency Division Multiplexing), it ensures orthogonality between multiple sub-carriers in transmission. Therefore, the resulting high frequency use efficiency from frequency spectral overlap and resistance against frequency selective fading and multipath fading lead to the best transmission efficiency in high rate data transmission. Furthermore, OFDM reduces inter-symbol interference (ISI) by the use of guard intervals, simplifies equalizers in hardware, and exhibits robustness against impulse noise. Hence OFDM is widely being adopted in communication systems.
  • ISI inter-symbol interference
  • FIG. 1 is a block diagram of a transmitter in a typical OFDM communication system.
  • an encoder (not shown) encodes the information data by a predetermined encoding method.
  • An interleaver interleaves the coded data in an interleaver (not shown) to prevent burst errors.
  • the interleaved information data 1(1, k) is serial data.
  • a serial-to-parallel converter (S/P) 111 generates a plurality of sub-channels by arranging the serial information data 1(1, k) in parallel.
  • a pilot inserter 113 generates preset pilot symbols and inserts them into the sub-channels, that is, the data symbols received from the S/P 111, for channel estimation in a receiver.
  • the pilot symbols, that is, pilot sub-channels are arranged in predetermined transmission positions. The pilot symbol insertion will be described with reference to FIG. 2.
  • FIG. 2 illustrates an example of pilot symbol insertion in the pilot inserter 113 illustrated in FIG. 1.
  • reference character 1 denotes a burst index representing an OFDM frame
  • reference character k denotes a carrier index representing a sub-channel in the OFDM frame, that is, a sub-carrier index.
  • One OFDM frame includes a predetermined number of symbols. For example, if there are 16 sub-channels, one OFDM frame includes 16 symbols.
  • pilot symbols are inserted in every M t
  • an IFFT (Inverse Fast Fourier Transformer) 115 which is a K-point IFFT, frequency-division-multiplexes the output of the pilot inserter 113 and feeds the resulting signal i l n to a guard interval inserter 117.
  • the inverse fast Fourier transformation of symbols transmitted on the sub- channels is expressed as
  • the guard interval inserter 117 inserts a guard interval into the signal, that is, sub-channels received from the IFFT 115 to reduce the influence of ISI and IFI (Inter-Frame Interference).
  • Each guard interval includes a predetermined number of, for example, N G samples.
  • a parallel-to-serial converter (P/S) 119 converts parallel sub-channel signals received from the guard interval inserter 117 to a serial sequence, which can be expressed as
  • An OFDM frame output from the P/S 119 is subjected to RF processing and transmitted .
  • FIG. 3 is a block diagram of a receiver in the typical OFDM communication system.
  • a signal received on a channel having such an impulse response is applied to the input of an S/P 311.
  • the S/P 311 converts the serial input signal, that is, an OFDM frame to a predetermined number of parallel
  • a guard interval remover 313 removes a guard interval from the parallel OFDM symbols n .
  • An FFT (Fast Fourier Transformer) 315 converts the OFDM symbols r, n received from the guard interval remover 313 to a plurality of sub-channel signals R(l, k) by fast Fourier transformation.
  • the receiver estimates the channel gain H(l, k) using pilot symbols at a channel estimator 317.
  • a signal compensator & detrminer 319 compensates the output signal of the FFT 315 by using the channel gain H(l, k).
  • the signal is then converted to serial data by P/S 321.
  • a channel gain estimate H(l, k) and the information data 1(1, k) are in the following relation.
  • H ' (l, k)R(l, k) H * (I, k)H(l, k)I(l, k) + H * (I, k) W(l, k) (7)
  • the information data 1(1, k) can be obtained if it is a PSK (Phase Shift Keying) signal. If the information data 1(1, k) is an MQAM (M-ary
  • Quadrature Amplitude Modulation signal, it is estimated to be ⁇ H(l, k) .
  • the channel gain H(l, k) is a function related to the difference between a sub-carrier index and a burst index
  • the receiver in the typical OFDM communication system estimates a channel gain using pilot sub-channels having pilot symbols and recovers the original information data by channel decoding using the channel gain estimate. If the channel gain estimate is not correct, data decoding performance is seriously deteriorated.
  • Channel estimation accuracy increases in proportional to the number of pilot sub-channels. However, the increase of pilot sub-channels in number results in the decrease of information data transmission efficiency because the pilot sub-channels transmit only pilot symbols.
  • the receiver estimates channels using limited pilot subchannels. This implies that the channel gain is estimated with limited accuracy and thus channel estimation performance is deteriorated due to the channel gain with limited accuracy.
  • SLNR Signal-to- Interference plus Noise Power Ratio
  • an object of the present invention to provide a channel decoding apparatus and method for improving channel estimation performance using data symbols in an OFDM communication system.
  • a decoding apparatus and method in an OFDM communication system.
  • a channel with a given frequency band is divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols are transmitted on predetermined sub-channels, and data symbols are transmitted on the other sub-channels.
  • a channel estimator generates a first channel estimate for each of the data symbols using the pilot symbols, a log likelihood ratio calculator calculates the reception probability of each information bit in the data symbol based on the first channel estimate, and a decoder generates the estimated probability values of the information bits based on the reception probability values of the information bits in the data symbol. Then, the channel estimator generates a second channel estimate for the data symbol based on the estimated probability values of information bits in the data symbol and updates the first channel estimate with the second channel estimate.
  • a first channel estimate is generated for each of the data symbols using the pilot symbols, the reception probability value of each information bit in each of the data symbols is calculated based on the first channel estimate, the data symbols are decoded by generating estimated probability values of the information bits of the data symbol based on the reception probability values of the information bits and soft-deciding the information bits, a second channel estimate for the data symbol is generated based on the estimated probability values of the information bits, and the first channel estimate is updated with the second channel estimate.
  • FIG. 1 is a block diagram of a transmitter in a typical OFDM communication system
  • FIG. 2 illustrates an example of pilot symbol insertion in a pilot inserter illustrated in FIG. 1;
  • FIG. 3 is a block diagram of a receiver in the typical OFDM communication system
  • FIG. 4 is a block diagram of a transmitter in an OFDM communication system according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a receiver in the OFDM communication system to the embodiment of the present invention.
  • FIG. 4 is a block diagram of a transmitter in an OFDM communication system according to an embodiment of the present invention.
  • a convolutional encoder 413 encodes them by convolutional encoding at a predetermined code rate of 1/R and outputs convolutionally coded information bits ⁇ d t ' ⁇ (ie ⁇ 0, 1, 2, . . ., R-l ⁇ ) to a bit- symbol converter 415.
  • the convolutionally coded information bits ⁇ d ⁇ are "aa" and the code rate 1/R is 1/4, the convolutionally coded information bits ⁇ d ⁇ are "aa" and the code rate 1/R is 1/4, the convolutionally coded information bits ⁇ d ⁇ are
  • the bit-symbol converter 415 converts every R bits of the convolutionally coded information bits ⁇ d ⁇ to a single MQAM symbol X t .
  • PSK or any other modulation can substitute for MQAM.
  • An interleaver 417 interleaves the MQAM symbols ⁇ X t ⁇ to prevent burst errors.
  • a frame generator 419 groups the interleaved transmission symbols according to the number of sub-channels. That is, the frame generator 419 divides the successive interleaved symbols into MK-symbol units and generates M successive frames each having K sub-channels. The M frames are produced from information bits to be actually transmitted and the K sub-channels in each frame are data sub-channels of the information bits. One frame including K successive symbols is generated in the frame generator 419 and output to an OFDM modulator 421.
  • the OFDM modulator 421 modulates the serial frame signal received from the frame generator 419 to a predetermined number of parallel signals, that is, sub-channel signals through an S/P. Pilot sub-channels are inserted into the sub-channels for initial channel estimation. The insertion positions of the pilot sub-channels are preset and known to both the transmitter and a receiver in the OFDM communication system. The data sub-channels and the inserted pilot sub-channels are subject to inverse fast Fourier transformation, a guard interval is inserted between the IFFT sub-channels, and the resulting serial OFDM frame
  • ⁇ X ! k ⁇ is output.
  • M OFDM frames are successively transmitted.
  • X I; k is a kth sub-channel in an 1th OFDM frame.
  • a receiver in the OFDM communication system performs channel estimation and data decoding using the transmission signal received from the transmitter illustrated in FIG. 4. This will be described with reference to FIG. 5.
  • FIG. 5 is a block diagram of the receiver in the OFDM communication system according to the embodiment of the present invention.
  • the M successive OFDM frames transmitted from the transmitter arrive at the receiver through a predetermined number of, for example, A antennas (antennas #0 to #(A-1)) from multiple paths.
  • the received OFDM frames are applied to the input of an OFDM demodulator 511.
  • the receiver receives the M successive frames, channel estimation and decoding on a frame basis will be described for clarity of description.
  • the OFDM demodulator 511 outputs an OFDM frame to an S/P (not shown).
  • the S/P converts the serial OFDM symbols to a predetermined number of parallel signals.
  • a guard interval remover removes a guard interval from the parallel signals.
  • An FFT (not shown) fast-Fourier-transforms the parallel signals received from the guard interval remover and feeds the resulting sub-channel signals to a delay 512 and a log likelihood ratio (LLR) calculator 515.
  • the delay 512 delays the sub-channel signals by a predetermined time for timing synchronization to channel estimation.
  • the OFDM demodulator 511 outputs k sub-channel signals from each of the A antennas, represented as ⁇ Y" k ⁇ .
  • ⁇ Y" k ⁇ is an 1th symbol delivered by a kth sub-carrier, that is, a kth sub-channel in an 1th frame, from an ath antenna.
  • a channel estimator 513 estimates the channel gain ⁇ H k ⁇ of the frame signal ⁇ Y" k ⁇ from the ath antenna using only pilot sub-channels of the frame signal in the manner described with reference to FIG. 3.
  • the channel gain estimate ⁇ H° fc ⁇ is an initial channel gain estimate.
  • a LLR calculator 515 calculates the LLR of the transmission bits of the lth symbol on the kth sub-channel using the initial channel gain estimate ⁇ H" k ⁇ and the signal ⁇ Y, a k ⁇ .
  • the LLR is an approximate value of the coded bits of the lth symbol. If the transmitter transmits a signal X and the receiver receives a signal Y, the LLR is the log value of a ratio of X to Y. The LLR is determined by
  • Y l k [Y,° k , Y, J tk , ... , Y, A k ]
  • d k is an ith transmission information bit in the lth symbol transmitted by the kth sub-carrier from the transmitter
  • Pr is the APP (A Posteriori Probability) of the transmission information bits ⁇ d l ' k ⁇ .
  • MAP decoder 519 determines the values of the information bits ⁇ d k ⁇ using the LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines whether each transmission information bit d l ' c is +1 or -1 using the
  • the LLR calculator 515 calculates the LLR of the signal ⁇ Y" k ⁇ using the initial channel gain estimate ⁇ H° k ⁇
  • the signal ⁇ Y" k ⁇ is fed to a deinterleaver 517.
  • the deinterleaver 517 deinterleaves the signal ⁇ Y" k ⁇ by the reverse operation of the interleaving performed in the transmitter.
  • the MAP decoder 519 decodes the deinterleaved signal using the LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines the value of the information bit transmitted from the transmitter based on the LLR.
  • the MAP decoder 519 can be replaced with any other decoder as long as it uses the LLR, such as a Viterbi decoder.
  • a bit-symbol converter 521 converts every R bits of information bits received from the MAP decoder 519 to a single MQAM symbol X l k , which is an estimated symbol for the symbol X [ k transmitted from the transmitter.
  • the estimated transmission symbol X l k is a soft-decision value E ⁇ X ⁇ k ⁇ of the transmission symbol X l k , expressed as
  • the soft-decision value E ⁇ X, ⁇ is interleaved in an interleaver 523 by the interleaving method used in the transmitter.
  • the channel estimator 513 multiplies the delayed signal ⁇ Y t a k ⁇ received from the delay 512 by the interleaved soft-decision value ⁇ X .
  • the initial channel gain estimate ⁇ H? ⁇ k ⁇ is updated using ⁇ Y l a k ⁇ -E ⁇ X l ⁇ k ⁇ in the manner described in connection with FIG. 3.
  • the channel estimator 513 feeds the updated channel gain estimate
  • the updated channel gain estimate ⁇ H U a k ⁇ is obtained using the soft-decision values of information bits transmitted by the transmitter, that is, using data channel symbols as well as pilot symbols. Therefore, the updated channel gain estimate is more accurate because it is calculated using more symbols.
  • the LLR calculator 515 calculates the LLR of the signal ⁇ Y" k ⁇ using the updated channel gain estimate ⁇ H" k ⁇ by Equation (8).
  • the deinterleaver 518 deinterleaves the signal output from the LLR calculator 515.
  • the MAP decoder 519 decodes the deinterleaved signal using the updated LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines the values of the information bits transmitted by the transmitter using the updated LLR.
  • the bit- symbol converter 521 generates every R bits of the information bits received from the MAP decoder 519 to a single MQAM symbol X l ⁇ k .
  • the initial channel gain estimate is calculated using pilot symbols only and updated using data symbols as well as the pilot symbols.
  • the LLR of a transmission information bit is also updated.
  • the channel gain estimation or the LLR calculation is repeated predetermined times or until the maximum difference between LLRs L(d k ) is below a predetermined threshold, i.e., max ⁇ L p+1 (d l ' k )-L p (d l ' k ) ⁇ - ⁇ threshold .
  • L p (d l ' k ) is L(d l ' k ) at a pth iteration. If the maximum difference between
  • LLRs is below the threshold, this implies that the decoding accuracy of the information bits reaches a level at which no errors are generated.
  • the threshold is preset adaptively to the environment of the OFDM system.
  • data symbols as well as pilot symbols are used for channel estimation in an OFDM communication system.
  • the resulting improved channel estimation performance leads to more accurate information data decoding.
  • the additional use of data symbols makes it possible to maintain data transmission efficiency without increasing pilot symbols in number.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

A decoding apparatus and method in an OFDM communication system. A channel with a given frequency band is divided into a plurality of sub-channels, pilot symbols are transmitted on predetermined sub-channels, and data symbols are transmitted on the other sub-channels. A channel estimator generates a first channel estimate for each of the data symbols using the pilot symbols, a log likelihood ratio calculator calculates the reception probability of each information bit in the data symbol based on the first channel estimate, and a decoder generates the estimated probability values of the information bits based on the reception probability values of the information bits in the data symbol. Then, the channel estimator generates a second channel estimate for the data symbol based on the estimated probability values of information bits in the data symbol and updates the first channel estimate with the second channel estimate.

Description

CHANNEL DECODING APPARATUS AND METHOD IN AN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SYSTEM
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to an OFDM (Orthogonal Frequency Division Multiplexing) communication system, and in particular, to a channel decoding apparatus and method using a MAP (Maximum A Posteriori) algorithm.
2. Description of the Related Art
OFDM, which has recently been used for high-rate data transmission on wired and radio (wireless) channels, is a kind of multi-carrier modulation (MCM) in which a serial symbol sequence is converted to parallel symbol sequences and modulated with multiple orthogonal sub-carriers (or sub-channels) prior to transmission.
The first systems using MCM were military HF radio links in the late 1950s and early 1960s. A special form of MCM, OFDM, having densely spaced sub-carriers with overlapping spectra of a modulation signal, was developed in the 1970s, but the challenging task of achieving orthogonal modulation between multiple carriers made actual OFDM system implementation difficult. However, in 1971, Weinstein and Ebert applied DFT (Discrete Fourier Transform) to parallel data transmission systems as part of the modulation and demodulation processes, which dramatically accelerated the development of OFDM. The introduction of insertion of guard intervals represented by cyclic prefixes has further reduced adverse influence of multipath fading and delay spread on OFDM systems. Thus, OFDM has become widespread to digital transmission applications such as DAB (Digital Audio Broadcasting), digital TV broadcast, and WATM (Wireless Asynchronous Transfer Mode). While OFDM did not find wide use due to hardware complexity, it is now widely implemented along with advanced digital signal processing technology including FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform). While OFDM is similar to FDM (Frequency Division Multiplexing), it ensures orthogonality between multiple sub-carriers in transmission. Therefore, the resulting high frequency use efficiency from frequency spectral overlap and resistance against frequency selective fading and multipath fading lead to the best transmission efficiency in high rate data transmission. Furthermore, OFDM reduces inter-symbol interference (ISI) by the use of guard intervals, simplifies equalizers in hardware, and exhibits robustness against impulse noise. Hence OFDM is widely being adopted in communication systems.
FIG. 1 is a block diagram of a transmitter in a typical OFDM communication system. Referring to FIG. 1, upon input of information data, an encoder (not shown) encodes the information data by a predetermined encoding method. An interleaver interleaves the coded data in an interleaver (not shown) to prevent burst errors. The interleaved information data 1(1, k) is serial data. A serial-to-parallel converter (S/P) 111 generates a plurality of sub-channels by arranging the serial information data 1(1, k) in parallel. A pilot inserter 113 generates preset pilot symbols and inserts them into the sub-channels, that is, the data symbols received from the S/P 111, for channel estimation in a receiver. The pilot symbols, that is, pilot sub-channels are arranged in predetermined transmission positions. The pilot symbol insertion will be described with reference to FIG. 2.
FIG. 2 illustrates an example of pilot symbol insertion in the pilot inserter 113 illustrated in FIG. 1. Referring to FIG. 2, reference character 1 denotes a burst index representing an OFDM frame, and reference character k denotes a carrier index representing a sub-channel in the OFDM frame, that is, a sub-carrier index. One OFDM frame includes a predetermined number of symbols. For example, if there are 16 sub-channels, one OFDM frame includes 16 symbols. As illustrated in FIG. 2, pilot symbols are inserted in every Mt
OFDM frames. The pilot symbols are spaced by Mf sub-channels within one OFDM frame. If Mt=8 and M =4, pilot symbols are inserted to the 1st, 9th, 17th , . . . OFDM frames and within each of the OFDM frames, the pilot symbols are inserted to the 1st, 5th, 9th , . . . sub-channels.
Returning to FIG. 1, an IFFT (Inverse Fast Fourier Transformer) 115, which is a K-point IFFT, frequency-division-multiplexes the output of the pilot inserter 113 and feeds the resulting signal il n to a guard interval inserter 117. The inverse fast Fourier transformation of symbols transmitted on the sub- channels is expressed as
Figure imgf000003_0001
(1) where 1(1, k) indicates data transmitted on a kth sub-channel in an 1th OFDM frame and ij n indicates a sequence after inverse fast Fourier transformation.
The guard interval inserter 117 inserts a guard interval into the signal, that is, sub-channels received from the IFFT 115 to reduce the influence of ISI and IFI (Inter-Frame Interference). Each guard interval includes a predetermined number of, for example, NG samples. A parallel-to-serial converter (P/S) 119 converts parallel sub-channel signals received from the guard interval inserter 117 to a serial sequence, which can be expressed as
output aata = {ιl N_Ng, ..., t;ιΛ/_2, ,N-ι> h,o> ,ι> —> 1 I,N-I J (2)
An OFDM frame output from the P/S 119 is subjected to RF processing and transmitted .
Now reception of the OFDM frame will be described below. FIG. 3 is a block diagram of a receiver in the typical OFDM communication system.
It is assumed that a channel transmitting the output data of the transmitter illustrated in FIG. 1 has an impulse response calculated by
L-l h(n) = ~Ϋjhi -h' (n — i)
1=0 (3) where h(n) is a channel characteristic.
Referring to FIG. 3, a signal received on a channel having such an impulse response is applied to the input of an S/P 311. The S/P 311 converts the serial input signal, that is, an OFDM frame to a predetermined number of parallel
OFDM symbols. Here, it is assumed that the receiver receives OFDM signals on a frame basis. Then, a guard interval remover 313 removes a guard interval from the parallel OFDM symbols n.
L-\
= ∑V/.„-/ + w/,II; 0 < n ≤ N -l
;=o
(4) where wls n is a noise component generated during channel transmission.
An FFT (Fast Fourier Transformer) 315 converts the OFDM symbols r, n received from the guard interval remover 313 to a plurality of sub-channel signals R(l, k) by fast Fourier transformation.
l_j -j2πιk j #_ -j2πιk
R(l, k) = I(l,k)∑h,e » + =.∑v N ι=0 -\]ES n=0
= I(l, k) -H(l, k) + W(l' k)
(5) where L should be less than the number NG of samples in the guard interval and H(l, k) is a channel gain.
L-l -j2πιk
H(l, k) = ∑h,e ι=0
(6)
The channel gain H(l, k) can be obtained from N-point fast Fourier transformation of L impulse responses of a channel. For example, if L=10 and N=64, fast Fourier transformation is performed with impulse responses used as the first 10 inputs and zeros used for the remaining 54 inputs, to thereby achieve the channel gain H(l, k).
To detect the information data transmitted by the transmitter from the signal R(l, k) output from the FFT 315, the receiver estimates the channel gain H(l, k) using pilot symbols at a channel estimator 317. A signal compensator & detrminer 319 compensates the output signal of the FFT 315 by using the channel gain H(l, k).The signal is then converted to serial data by P/S 321. A channel gain estimate H(l, k) and the information data 1(1, k) are in the following relation.
H'(l, k)R(l, k) = H* (I, k)H(l, k)I(l, k) + H* (I, k) W(l, k) (7)
In Equation (7), the information data 1(1, k) can be obtained if it is a PSK (Phase Shift Keying) signal. If the information data 1(1, k) is an MQAM (M-ary
Quadrature Amplitude Modulation) signal, it is estimated to be \H(l, k) . Based on the idea that the channel gain H(l, k) is a function related to the difference between a sub-carrier index and a burst index, the channel gain H(l, k) is estimated using pilot symbols. That is, based on the equation p(m, q) = E{H(l, k)H*(l-m, k-q)} , a channel gain for data symbols is estimated using the pilot symbols transmitted in predetermined intervals.
In a radio channel environment, the receiver in the typical OFDM communication system estimates a channel gain using pilot sub-channels having pilot symbols and recovers the original information data by channel decoding using the channel gain estimate. If the channel gain estimate is not correct, data decoding performance is seriously deteriorated. Channel estimation accuracy increases in proportional to the number of pilot sub-channels. However, the increase of pilot sub-channels in number results in the decrease of information data transmission efficiency because the pilot sub-channels transmit only pilot symbols.
Accordingly, the receiver estimates channels using limited pilot subchannels. This implies that the channel gain is estimated with limited accuracy and thus channel estimation performance is deteriorated due to the channel gain with limited accuracy. Especially, under a channel environment such as wireless LANs sharing an ISM (Industrial Science Medical) band with other types of systems and pico-cells in future generation systems, SLNR (Signal-to- Interference plus Noise Power Ratio) is very low due to interference from nearby systems and channel estimation should be accurate even under this severe channel environment. Since pilot sub-channels are inevitably influenced by such channel environment, a low SLNR of the pilot sub-channels deteriorates channel estimation performance.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a channel decoding apparatus and method for improving channel estimation performance using data symbols in an OFDM communication system.
It is another object of the present invention to provide a channel decoding apparatus and method for improving channel estimation performance using soft-decision values from a MAP algorithm. It is a further object of the present invention to provide a channel decoding apparatus and method for improving channel estimation performance using both pilot symbols and data symbols.
The foregoing and other objects of the present invention are achieved by providing a decoding apparatus and method in an OFDM communication system. In the OFDM system, a channel with a given frequency band is divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols are transmitted on predetermined sub-channels, and data symbols are transmitted on the other sub-channels. A channel estimator generates a first channel estimate for each of the data symbols using the pilot symbols, a log likelihood ratio calculator calculates the reception probability of each information bit in the data symbol based on the first channel estimate, and a decoder generates the estimated probability values of the information bits based on the reception probability values of the information bits in the data symbol. Then, the channel estimator generates a second channel estimate for the data symbol based on the estimated probability values of information bits in the data symbol and updates the first channel estimate with the second channel estimate.
In the channel decoding method, a first channel estimate is generated for each of the data symbols using the pilot symbols, the reception probability value of each information bit in each of the data symbols is calculated based on the first channel estimate, the data symbols are decoded by generating estimated probability values of the information bits of the data symbol based on the reception probability values of the information bits and soft-deciding the information bits, a second channel estimate for the data symbol is generated based on the estimated probability values of the information bits, and the first channel estimate is updated with the second channel estimate.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
FIG. 1 is a block diagram of a transmitter in a typical OFDM communication system;
FIG. 2 illustrates an example of pilot symbol insertion in a pilot inserter illustrated in FIG. 1;
FIG. 3 is a block diagram of a receiver in the typical OFDM communication system;
FIG. 4 is a block diagram of a transmitter in an OFDM communication system according to an embodiment of the present invention; and
FIG. 5 is a block diagram of a receiver in the OFDM communication system to the embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A preferred embodiment of the present invention will be described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
FIG. 4 is a block diagram of a transmitter in an OFDM communication system according to an embodiment of the present invention. Referring to FIG. 4, upon input of information bits {bt} 411, a convolutional encoder 413 encodes them by convolutional encoding at a predetermined code rate of 1/R and outputs convolutionally coded information bits { dt' } (ie{0, 1, 2, . . ., R-l}) to a bit- symbol converter 415. For example, if the information bits {bt} 411 are "aa" and the code rate 1/R is 1/4, the convolutionally coded information bits { d } are
"aaaaaaaa". While convolutional coding is adopted in the embodiment of the present invention, other encoding methods can be applied, such as turbo coding and Reed-Solomon coding.
The bit-symbol converter 415 converts every R bits of the convolutionally coded information bits { d } to a single MQAM symbol Xt.
Obviously, PSK or any other modulation can substitute for MQAM.
An interleaver 417 interleaves the MQAM symbols {Xt} to prevent burst errors. A frame generator 419 groups the interleaved transmission symbols according to the number of sub-channels. That is, the frame generator 419 divides the successive interleaved symbols into MK-symbol units and generates M successive frames each having K sub-channels. The M frames are produced from information bits to be actually transmitted and the K sub-channels in each frame are data sub-channels of the information bits. One frame including K successive symbols is generated in the frame generator 419 and output to an OFDM modulator 421.
The OFDM modulator 421 modulates the serial frame signal received from the frame generator 419 to a predetermined number of parallel signals, that is, sub-channel signals through an S/P. Pilot sub-channels are inserted into the sub-channels for initial channel estimation. The insertion positions of the pilot sub-channels are preset and known to both the transmitter and a receiver in the OFDM communication system. The data sub-channels and the inserted pilot sub-channels are subject to inverse fast Fourier transformation, a guard interval is inserted between the IFFT sub-channels, and the resulting serial OFDM frame
{X! k} is output. Such M OFDM frames are successively transmitted. XI; k is a kth sub-channel in an 1th OFDM frame.
A receiver in the OFDM communication system performs channel estimation and data decoding using the transmission signal received from the transmitter illustrated in FIG. 4. This will be described with reference to FIG. 5.
FIG. 5 is a block diagram of the receiver in the OFDM communication system according to the embodiment of the present invention.
As described in connection with FIG. 4, the M successive OFDM frames transmitted from the transmitter arrive at the receiver through a predetermined number of, for example, A antennas (antennas #0 to #(A-1)) from multiple paths. The received OFDM frames are applied to the input of an OFDM demodulator 511. Although the receiver receives the M successive frames, channel estimation and decoding on a frame basis will be described for clarity of description.
The OFDM demodulator 511 outputs an OFDM frame to an S/P (not shown). The S/P converts the serial OFDM symbols to a predetermined number of parallel signals. A guard interval remover (not shown) removes a guard interval from the parallel signals. An FFT (not shown) fast-Fourier-transforms the parallel signals received from the guard interval remover and feeds the resulting sub-channel signals to a delay 512 and a log likelihood ratio (LLR) calculator 515. The delay 512 delays the sub-channel signals by a predetermined time for timing synchronization to channel estimation. Here, the OFDM demodulator 511 outputs k sub-channel signals from each of the A antennas, represented as { Y"k }. { Y"k } is an 1th symbol delivered by a kth sub-carrier, that is, a kth sub-channel in an 1th frame, from an ath antenna. A channel estimator 513 estimates the channel gain { H k } of the frame signal { Y"k } from the ath antenna using only pilot sub-channels of the frame signal in the manner described with reference to FIG. 3. The channel gain estimate { H°fc } is an initial channel gain estimate.
A LLR calculator 515 calculates the LLR of the transmission bits of the lth symbol on the kth sub-channel using the initial channel gain estimate { H"k } and the signal { Y,a k }. The LLR is an approximate value of the coded bits of the lth symbol. If the transmitter transmits a signal X and the receiver receives a signal Y, the LLR is the log value of a ratio of X to Y. The LLR is determined by
Figure imgf000010_0001
(8) where Yl k = [Y,°k, Y,J tk, ... , Y,A k ] , d k is an ith transmission information bit in the lth symbol transmitted by the kth sub-carrier from the transmitter, and Pr is the APP (A Posteriori Probability) of the transmission information bits { dl'k }. A
MAP decoder 519 determines the values of the information bits { d k } using the LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines whether each transmission information bit dl' c is +1 or -1 using the
LLR.
After the LLR calculator 515 calculates the LLR of the signal { Y"k } using the initial channel gain estimate { H°k }, the signal { Y"k } is fed to a deinterleaver 517. The deinterleaver 517 deinterleaves the signal { Y"k } by the reverse operation of the interleaving performed in the transmitter. The MAP decoder 519 decodes the deinterleaved signal using the LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines the value of the information bit transmitted from the transmitter based on the LLR.
The MAP decoder 519 can be replaced with any other decoder as long as it uses the LLR, such as a Viterbi decoder. A bit-symbol converter 521 converts every R bits of information bits received from the MAP decoder 519 to a single MQAM symbol Xl k , which is an estimated symbol for the symbol X[ k transmitted from the transmitter. Here, the estimated transmission symbol Xl k is a soft-decision value E{Xι k} of the transmission symbol Xl k, expressed as
E{Xhk} = ∑Q rfX^ ^C
C,eΩc (9) where Ωc is a set of whole transmission symbols in the frame.
The soft-decision value E{X, } is interleaved in an interleaver 523 by the interleaving method used in the transmitter.
The channel estimator 513 multiplies the delayed signal { Yt a k } received from the delay 512 by the interleaved soft-decision value Ε X . The initial channel gain estimate { H?ιk } is updated using { Yl a k }-E{Xlι k} in the manner described in connection with FIG. 3.
The channel estimator 513 feeds the updated channel gain estimate
{ H"k } to the LLR calculator 515. While the initial channel gain estimate { H°k } is calculated using only pilot sub-channels, the updated channel gain estimate { HU a k } is obtained using the soft-decision values of information bits transmitted by the transmitter, that is, using data channel symbols as well as pilot symbols. Therefore, the updated channel gain estimate is more accurate because it is calculated using more symbols.
The LLR calculator 515 calculates the LLR of the signal { Y"k } using the updated channel gain estimate { H"k } by Equation (8). The deinterleaver 518 deinterleaves the signal output from the LLR calculator 515. The MAP decoder 519 decodes the deinterleaved signal using the updated LLR received from the LLR calculator 515. That is, the MAP decoder 519 determines the values of the information bits transmitted by the transmitter using the updated LLR. The bit- symbol converter 521 generates every R bits of the information bits received from the MAP decoder 519 to a single MQAM symbol Xl<k .
As described above, the initial channel gain estimate is calculated using pilot symbols only and updated using data symbols as well as the pilot symbols. Using the updated channel gain estimate, the LLR of a transmission information bit is also updated.
The channel gain estimation or the LLR calculation is repeated predetermined times or until the maximum difference between LLRs L(d k) is below a predetermined threshold, i.e., max {Lp+1(dl'k)-Lp(dl' k)} -{threshold .
Here, Lp(dl'k) is L(dl'k) at a pth iteration. If the maximum difference between
LLRs is below the threshold, this implies that the decoding accuracy of the information bits reaches a level at which no errors are generated. The threshold is preset adaptively to the environment of the OFDM system.
If the above condition is satisfied, the MAP decoder 519 finally decodes the signal { Y,a k }, that is, recovers the information bits of the signal { Y"k } by Pr{bt = +1}
L(bt) = log
Pr{bt = -1}
In accordance with the present invention as described above, data symbols as well as pilot symbols are used for channel estimation in an OFDM communication system. The resulting improved channel estimation performance leads to more accurate information data decoding. The additional use of data symbols makes it possible to maintain data transmission efficiency without increasing pilot symbols in number.
While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in fonn and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A decoding apparatus in an OFDM (Orthogonal Frequency
Division Multiplexing) communication system having a channel with a given frequency band divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols transmitted on predetermined subchannels, and data symbols transmitted on the other sub-channels, the apparatus comprising: a channel estimator for generating a first channel estimate for each of the data symbols using the pilot symbols, generating a second channel estimate for each of the data symbols based on estimated probability values of information bits in each of the data symbols, and updating the first channel estimate with the second channel estimate; a log likelihood ratio calculator for calculating a reception probability of each information bit in the data symbol based on the first channel estimate; and a decoder for generating the estimated probability values of the information bits based on the reception probability values of the information bits in each of the data symbols.
2. The decoding apparatus of claim 1, wherein the decoder is a
MAP (Maximum A Posteriori) decoder.
3. The decoding apparatus of claim 1, further comprising a bit- symbol converter for converting the information bits to symbols by orthogonal amplitude modulation based on the reception probability values of the information bits.
4. The decoding apparatus of claim 1, wherein a reception probability value is calculated by
Figure imgf000013_0001
where Y1; k is a signal including the data symbols and the pilot symbols input to the decoding apparatus, and dl'k is an ith information bit in an lth symbol transmitted on a kth sub-channel.
5. The decoding apparatus of claim 1, wherein the first channel estimate updating is repeated a predetermined number of times.
6. The decoding apparatus of claim 1, wherein the first channel estimate updating is repeated until the distance between reception probability values is less than a predetermined threshold.
7. The decoding apparatus of claim 6, wherein the reception probability values are successive.
8. A decoding apparatus in an OFDM (Orthogonal Frequency
Division Multiplexing) communication system having a channel with a given frequency band divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols transmitted on predetermined subchannels, and data symbols transmitted on the other sub-channels, the apparatus comprising: a channel estimator for generating a first channel estimate for each of the data symbols using the pilot symbols, generating a second channel estimate for each of the data symbols based on estimated probability values of information bits in each of the data symbols, and updating the first channel estimate with the second channel estimate; a log likelihood ratio calculator for calculating reception probability value of each information bit in the data symbol based on the first channel estimate; a deinterleaver for deinterleaving the data symbols and the pilot symbols ; a decoder for generating the estimated probability values of the information bits in each deinterleaved data symbol based on the reception probability values of the information bits; a bit-symbol converter for converting the information bits to symbols using the reception probability values of the information bits; and an interleaver for interleaving the symbols.
9. The decoding apparatus of claim 8, wherein the decoder is a MAP (Maximum A Posteriori) decoder.
10. The decoding apparatus of claim 8, wherein the bit-symbol converter converts the information bits to the symbols by orthogonal amplitude modulation based on the reception probability values of the information bits.
11. The decoding apparatus of claim 8, wherein a reception probability value is calculated by
Figure imgf000015_0001
where Y1; k is a signal including the data symbols and the pilot symbols input to the decoding apparatus and dl' k is an ith information bit in an lth symbol transmitted on a kth sub-channel.
12. The decoding apparatus of claim 8, wherein the first channel estimate updating is repeated a predetermined number of times.
13. The decoding apparatus of claim 8, wherein the first channel estimate updating is repeated until the distance between reception probability values is less than a predetermined threshold.
14. The decoding apparatus of claim 13, wherein the reception probability values are successive.
15. A decoding method in an OFDM (Orthogonal Frequency Division Multiplexing) communication system having a channel with a given frequency band divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols transmitted on predetermined sub- channels, and data symbols transmitted on the other sub-channels, the method comprising the steps of: generating a first channel estimate for each of the data symbols using the pilot symbols, generating a second channel estimate for each of the data symbols based on estimated probability values of information bits in each of the data symbols, and updating the first channel estimate with the second channel estimate; calculating a reception probability of each information bit in the data symbol based on the first channel estimate; and generating the estimated probability values of the information bits based on the reception probability values of the information bits in each of the data symbols.
16. The decoding method of claim 15, wherein the estimated probability values are generated using a MAP (Maximum A Posteriori) algorithm.
17. The decoding method of claim 15, further comprising the step of converting the information bits to symbols by orthogonal amplitude modulation based on the reception probability values of the information bits.
18. The decoding method of claim 15, wherein a reception probability value is calculated by
Figure imgf000016_0001
where Y1; k is a signal including the data symbols and the pilot symbols input to the decoding apparatus, and dl' is an ith information bit in an lth symbol transmitted on a kth sub-channel.
19. The decoding method of claim 15, wherein the first channel estimate updating is repeated a predetermined number of times.
20. The decoding method of claim 15, wherein the channel estimate updating is repeated until the distance between reception probability values is less than a predetermined threshold.
21. The decoding method of claim 20, wherein the reception probability values are successive.
22. A decoding method in an OFDM (Orthogonal Frequency Division Multiplexing) communication system having a channel with a given frequency band divided into a plurality of sub-channels spaced from one another in predetermined intervals, pilot symbols transmitted on predetermined subchannels, and data symbols transmitted on the other sub-channels, the method comprising the steps of: generating a first channel estimate for each of the data symbols using the pilot symbols; calculating a reception probability value of each information bit in each data symbol based on the first channel estimate; deinterleaving the data symbols and the pilot symbols; calculating the estimated probability values of the information bits in each deinterleaved data symbol based on the reception probability values of the information bits and soft-deciding the information bits; converting the information bits to symbols using the reception probability values of the information bits; interleaving the symbols; and generating a second channel estimate for the data symbol based on the estimated probability values of the information bits and updating the first channel estimate with the second channel estimate
23. The decoding method of claim 22, wherein the soft decision is performed using a MAP (Maximum A Posteriori) algorithm.
24. The decoding method of claim 22, further comprising the step of converting the information bits to symbols by orthogonal amplitude modulation based on the reception probability values of the information bits.
25. The decoding method of claim 22, wherein a reception probability value is calculated by
Figure imgf000017_0001
where Yi; k is a signal including the data symbols and the pilot symbols input to the decoding apparatus and dl' k is an ith information bit in an lth symbol transmitted on a kth sub-channel.
26. The decoding method of claim 22, wherein the first channel estimate updating is repeated a predetermined number of times.
27. The decoding method of claim 22, wherein the first channel estimate updating is repeated until the distance between reception probability values is less than a predetermined threshold.
28. The decoding method of claim 27, wherein the reception probability values are successive.
PCT/KR2002/000882 2001-05-11 2002-05-11 Channel decoding apparatus and method in an orthogonal frequency division multiplexing system WO2002093859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02769627A EP1308011A1 (en) 2001-05-11 2002-05-11 Channel decoding apparatus and method in an orthogonal frequency division multiplexing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001-25944 2001-05-11
KR10-2001-0025944A KR100434473B1 (en) 2001-05-11 2001-05-11 Apparatus for decoding channel and method thereof in orthogonal frequency division multiplexing system

Publications (1)

Publication Number Publication Date
WO2002093859A1 true WO2002093859A1 (en) 2002-11-21

Family

ID=19709379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2002/000882 WO2002093859A1 (en) 2001-05-11 2002-05-11 Channel decoding apparatus and method in an orthogonal frequency division multiplexing system

Country Status (5)

Country Link
US (1) US20030031278A1 (en)
EP (1) EP1308011A1 (en)
KR (1) KR100434473B1 (en)
CN (1) CN1222144C (en)
WO (1) WO2002093859A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463251A2 (en) * 2003-03-27 2004-09-29 KTFreetel Co., Ltd. Multicarrier transmission with channel estimation
WO2006042326A1 (en) * 2004-10-12 2006-04-20 Qualcomm Incorporated Log-likelihood estimation based on channel estimation errors due to guard subbands
EP2086190A3 (en) * 2008-01-29 2009-10-28 Telefonaktiebolaget LM Ericsson (publ) Method for determining system information as well as decoder, terminal and computer program
WO2010085322A3 (en) * 2009-01-26 2010-11-04 Cisco Technology, Inc. Log-likelihood ratio algorithm for use in reducing co-channel interference in wireless communication systems
EP2293503A1 (en) * 2009-09-07 2011-03-09 NTT DoCoMo, Inc. A radio channel estimation using reliability information
US8000296B2 (en) * 2006-08-22 2011-08-16 Ntt Docomo, Inc. Base station and mobile station
EP2391079A1 (en) * 2010-05-25 2011-11-30 Nxp B.V. A mobile OFDM receiver with intercarrier interference compensation

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814011B1 (en) * 2000-09-14 2003-10-24 France Telecom OPTIMAL ESTIMATION METHOD OF A PROPAGATION CHANNEL BASED ONLY ON PILOT SYMBOLS AND CORRESPONDING ESTIMATOR
KR20030014078A (en) * 2001-08-10 2003-02-15 최승국 OFDM wireless transmission system using MMSE channel estimation
AU2003903826A0 (en) * 2003-07-24 2003-08-07 University Of South Australia An ofdm receiver structure
US7609777B2 (en) * 2002-08-30 2009-10-27 Alcatel-Lucent Usa Inc. Maximum likelihood a posteriori probability detector
US7471745B2 (en) * 2002-11-26 2008-12-30 Texas Instruments Incorporated Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
US6904550B2 (en) * 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
JP4109556B2 (en) * 2003-01-31 2008-07-02 松下電器産業株式会社 OFDM signal collision position detection apparatus, OFDM reception apparatus, OFDM signal collision position detection method, and OFDM reception method
DE10321743B4 (en) * 2003-05-14 2005-07-07 Infineon Technologies Ag Improved channel decoding in multicarrier signal transmission by DC offset and carrier frequency offset dependent weighting of reliability information
CN1788476A (en) * 2003-05-14 2006-06-14 皇家飞利浦电子股份有限公司 Iterative channel estimation using pilot signals
WO2004112292A1 (en) * 2003-06-18 2004-12-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a pilot pattern for identification of a base station in an ofdm communication system
US20050059366A1 (en) * 2003-09-16 2005-03-17 Atheros Communications, Inc. Spur mitigation techniques
US7813453B2 (en) * 2004-01-21 2010-10-12 Qualcomm Incorporated Data detection for a hierarchical coded data transmission
JP4398752B2 (en) * 2004-02-19 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ Wireless relay system, wireless relay device, and wireless relay method
US7756003B1 (en) 2004-02-27 2010-07-13 Marvell International Ltd. Adaptive OFDM transmitter based on carrier frequency offset
US7421041B2 (en) * 2004-03-01 2008-09-02 Qualcomm, Incorporated Iterative channel and interference estimation and decoding
US7512185B2 (en) * 2004-03-08 2009-03-31 Infineon Technologies Ag Dual carrier modulator for a multiband OFDM UWB transceiver
KR100922948B1 (en) * 2004-03-11 2009-10-22 삼성전자주식회사 Pilot-aided channel estimation technique in uplink ofdma system
US7672383B2 (en) * 2004-09-17 2010-03-02 Qualcomm Incorporated Noise variance estimation in wireless communications for diversity combining and log-likelihood scaling
KR100810290B1 (en) * 2004-12-14 2008-03-07 삼성전자주식회사 Method and system for allocation data burst in a wireless communication system
US20090279420A1 (en) * 2005-01-11 2009-11-12 Nec Corporation Base station apparatus, radio transmission system, radio base station program, and timing estimation method
US8135088B2 (en) * 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US7590167B2 (en) * 2005-08-30 2009-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for QAM demodulation in a generalized rake receiver
US7609754B2 (en) * 2005-08-30 2009-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for received communication signal processing
KR100889302B1 (en) 2005-12-14 2009-03-18 삼성전자주식회사 Partial iterative detection and decoding receiver and method in multiple antenna system
KR100923915B1 (en) 2005-12-16 2009-10-28 삼성전자주식회사 Iterative detection and decoding receiver and method in multiple antenna system
CN101001136A (en) * 2006-01-13 2007-07-18 北京三星通信技术研究有限公司 Equipment and method of subcarrier mapping of circulation shifting
CN101162975B (en) * 2006-10-09 2011-12-21 华为技术有限公司 Feedback information detecting method and system in wireless communication system
CN101237247B (en) * 2006-10-18 2012-05-16 清华大学 Method for forming a bit log-likelihood ratio from symbol log-likelihood ratio
KR100866982B1 (en) * 2006-12-01 2008-11-05 한국전자통신연구원 Method and apparatus for calculating a log likelihood ratio in the communication system
KR100848057B1 (en) * 2007-01-31 2008-07-23 연세대학교 산학협력단 System and method of adaptive soft decision feedback differential detection combined mrc diversity
CN101320994B (en) * 2007-06-08 2012-08-22 朗讯科技公司 Signal detection method and apparatus for OFDM system
TW200943757A (en) * 2008-04-08 2009-10-16 Ralink Technology Corp Iterative signal receiving method and related iterative receiver
CN101667859B (en) * 2008-09-01 2012-08-29 电信科学技术研究院 Method, system and device for data transmission
EP2887599B1 (en) * 2013-12-19 2017-11-08 Huawei Technologies Co., Ltd. Method and receiver for estimating and correcting fractional frequency offset in ofdm
JP6607101B2 (en) * 2016-03-15 2019-11-20 富士通株式会社 Radio apparatus interference suppression parameter calculation apparatus, radio communication system, radio communication system interference suppression method, base station apparatus, and radio terminal apparatus
US11729028B2 (en) * 2020-12-17 2023-08-15 Skyworks Solutions, Inc. System and method for blind channel estimation and coherent differential equalization in an orthogonal frequency division multiplexing (OFDM) receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032268A1 (en) * 1997-01-15 1998-07-23 Ericsson Inc. Method and apparatus for channel estimation in ofdm transmission system
EP1087585A2 (en) * 1999-09-17 2001-03-28 Lucent Technologies Inc. Identification of a terrestrial repeater using inactive subcarriers of a multicarrier signal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041175B2 (en) * 1993-11-12 2000-05-15 株式会社東芝 OFDM synchronous demodulation circuit
BR9901056A (en) * 1998-04-30 2000-01-18 Lucent Technilogies Inc Channel estimation using temporary decision feedback.
JP3782237B2 (en) * 1998-06-18 2006-06-07 日本放送協会 OFDM signal demodulator
KR100300306B1 (en) * 1999-05-28 2001-09-26 윤종용 Apparatus and method for adaptive map channel decoding for time-varying channel in the wireless telecommunicaion system
US6891897B1 (en) * 1999-07-23 2005-05-10 Nortel Networks Limited Space-time coding and channel estimation scheme, arrangement and method
US6298035B1 (en) * 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
KR100392638B1 (en) * 2000-12-08 2003-07-23 에스케이 텔레콤주식회사 Apparatus for transmitting and receiving a signal in OFDM system
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6611231B2 (en) * 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032268A1 (en) * 1997-01-15 1998-07-23 Ericsson Inc. Method and apparatus for channel estimation in ofdm transmission system
EP1087585A2 (en) * 1999-09-17 2001-03-28 Lucent Technologies Inc. Identification of a terrestrial repeater using inactive subcarriers of a multicarrier signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIGNONE C. ET AL.: "CD3-OFDM: a new channel estimation method to improve the spectrum efficiency in digital terrestrial television systems", IBC95, 1995, pages 122 - 128 *
TEN BRINK S. ET AL.: "Two-dimensional iterative APP channel estimation and decoding for OFDM systems", GLOBECOM'00. IEEE, 27 November 2000 (2000-11-27) - 1 December 2000 (2000-12-01), pages 741 - 745, XP001017185 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155073B2 (en) 2003-03-27 2012-04-10 Kt Corporation Orthogonal frequency division multiplexing wireless communication operable on frequency selective channel, and channel compensation method
EP1463251A3 (en) * 2003-03-27 2007-02-21 KTFreetel Co., Ltd. Multicarrier transmission with channel estimation
US7548522B2 (en) 2003-03-27 2009-06-16 Ktfreetel Co., Ltd. Orthogonal frequency division multiplexing wireless communication operable on frequency selective channel, and channel compensation method
EP1463251A2 (en) * 2003-03-27 2004-09-29 KTFreetel Co., Ltd. Multicarrier transmission with channel estimation
WO2006042326A1 (en) * 2004-10-12 2006-04-20 Qualcomm Incorporated Log-likelihood estimation based on channel estimation errors due to guard subbands
US8325863B2 (en) 2004-10-12 2012-12-04 Qualcomm Incorporated Data detection and decoding with considerations for channel estimation errors due to guard subbands
US8000296B2 (en) * 2006-08-22 2011-08-16 Ntt Docomo, Inc. Base station and mobile station
EP2086190A3 (en) * 2008-01-29 2009-10-28 Telefonaktiebolaget LM Ericsson (publ) Method for determining system information as well as decoder, terminal and computer program
WO2010085322A3 (en) * 2009-01-26 2010-11-04 Cisco Technology, Inc. Log-likelihood ratio algorithm for use in reducing co-channel interference in wireless communication systems
US8238487B2 (en) 2009-01-26 2012-08-07 Cisco Technology, Inc. Log-likelihood ratio algorithm for use in reducing co-channel interference in wireless communication systems
EP2293503A1 (en) * 2009-09-07 2011-03-09 NTT DoCoMo, Inc. A radio channel estimation using reliability information
JP2011071976A (en) * 2009-09-07 2011-04-07 Ntt Docomo Inc Radio channel estimator
EP2391079A1 (en) * 2010-05-25 2011-11-30 Nxp B.V. A mobile OFDM receiver with intercarrier interference compensation
US8687749B2 (en) 2010-05-25 2014-04-01 Nxp, B.V. Mobile OFDM receiver

Also Published As

Publication number Publication date
EP1308011A1 (en) 2003-05-07
CN1222144C (en) 2005-10-05
KR20020086166A (en) 2002-11-18
CN1462533A (en) 2003-12-17
US20030031278A1 (en) 2003-02-13
KR100434473B1 (en) 2004-06-05

Similar Documents

Publication Publication Date Title
WO2002093859A1 (en) Channel decoding apparatus and method in an orthogonal frequency division multiplexing system
KR101280734B1 (en) Incremental redundancy transmission in a mimo communication system
KR100520159B1 (en) Apparatus and method for interference cancellation of ofdm system using multiple antenna
US20030012315A1 (en) System and method for multistage error correction coding wirelessly transmitted information in a multiple antennae communication system
EP1657874A1 (en) Joint Maximum Likelihood estimation of timing and frequency offset in a mobile OFDM communication system
US20050190800A1 (en) Method and apparatus for estimating noise power per subcarrier in a multicarrier system
KR20060106223A (en) Apparatus and method for transmitting bit interleaved and coded modulation in an orthogonal frequency division multiplexing system
JP4130821B2 (en) Apparatus and method for canceling interference signal in orthogonal frequency division multiplexing system using multiple antennas
JP4008915B2 (en) Apparatus and method for canceling interference signal in orthogonal frequency division multiplexing system using multiple antennas
US20040258014A1 (en) Apparatus and method for assigning a dedicated pilot channel for identification of a base station in an OFDM communication system
KR20030038270A (en) Apparatus and method for coding/decoding of sttd in ofdm mobile communication system
JP2007074689A (en) Ofdm transmitter/receiver employing high-efficiency pilot signal
US7468962B2 (en) Method and apparatus for antenna selection using channel response information in a multi-carrier system
Linsalata et al. On the Performance of Soft LLR-based Decoding in Time-Frequency Interleaved Coded GFDM Systems
Sondhi et al. Performance Analysis of Cyclic Prefix and Zero Padding Equalization Technique for MIMO-OFDM System
Khan et al. A joint error correction and ICI cancellation algorithm for OFDM systems
Živić et al. Iterative algorithm for OFDM transmission over Rayleigh channels
Lei et al. Adaptive Interleaving for bandwidth-efficient OFDM systems
Witschnig et al. On the impact of channel coding, Viterbi decoding and SOVA for a single carrier system with frequency domain equalization
Vijayan et al. Analysis of adaptive puncturing schemes for OFDMA system in multi-cell scenario
Assegu et al. Performance of Coded 16-QAM OFDM Modulation with Equalizer Over an Aeronautical Channel
ur Rehman et al. Multicarrier Interleave Division Multiple Access Communication with Adaptive Subchannel Allocation
WO2008085594A2 (en) System and method for demodulating data in an orthogonal frequency division modulation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 028015673

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002769627

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002769627

Country of ref document: EP