WO2002092743A1 - Antibacterial liquid dish cleaning compositions having improved viscosity - Google Patents

Antibacterial liquid dish cleaning compositions having improved viscosity Download PDF

Info

Publication number
WO2002092743A1
WO2002092743A1 PCT/US2002/014126 US0214126W WO02092743A1 WO 2002092743 A1 WO2002092743 A1 WO 2002092743A1 US 0214126 W US0214126 W US 0214126W WO 02092743 A1 WO02092743 A1 WO 02092743A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
surfactant
acid
alkyl
surfactants
Prior art date
Application number
PCT/US2002/014126
Other languages
French (fr)
Inventor
Evangelia Arvanitidou
Christine Toussaint
David Suriano
Jean Massaux
Robert D'ambrogio
Robert Heffner
Original Assignee
Colgate-Palmolive Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/853,791 external-priority patent/US6441037B1/en
Priority claimed from US09/998,543 external-priority patent/US6586014B2/en
Priority claimed from US10/085,556 external-priority patent/US6583178B2/en
Application filed by Colgate-Palmolive Company filed Critical Colgate-Palmolive Company
Priority to CA002446790A priority Critical patent/CA2446790A1/en
Publication of WO2002092743A1 publication Critical patent/WO2002092743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • This invention relates to an antibacterial liquid dish cleaning composition of lower active surfactant level, having improved viscosity which is designed to disinfect the surface being treated while maintaining good foaming grease cutting, rinsing and mildness properties.
  • the present invention relates to novel light duty liquid detergent compositions with an improved viscosity, high foaming and good grease cutting properties as well as disinfecting properties.
  • 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di- ethanolamide.
  • U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8 to 20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic.
  • U.S. Patent No. 4,329,334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants.
  • 3,935,129 discloses a liquid cleaning composition containing an alkali metal silicate, urea, glycerin, triethanolamine, an anionic detergent and a nonionic detergent.
  • the silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition.
  • the foaming properties of these detergent compositions are not discussed therein.
  • U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwitterionic surfactants as suds modifiers.
  • U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwitterionic surfactants as suds modifiers.
  • 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents, namely, an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient.
  • a specific group of nonionic detergents namely, an ethylene oxide of a secondary alcohol
  • anionic detergents namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol
  • amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient.
  • the prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos. 4,154,706 and 4,329,336 wherein the shampoo compositions contain a plurality of particular nonionic surfactants in order to affect desirable foaming and detersive properties despite the fact that nonionic surfactants are usually deficient in such properties.
  • U.S. Patent No. 4,013,787 discloses a piperazine based polymer in conditioning and shampoo compositions which may contain all nonionic surfactant or all anionic surfactant.
  • U.S. Patent No. 4,450,091 discloses high viscosity shampoo compositions containing a blend of an amphoteric betaine surfactant, a polyoxybutylenepolyoxyethylene nonionic detergent, an anionic surfactant, a fatty acid alkanolamide and a polyoxyalkylene glycol fatty ester. But, none of the exemplified compositions contain an active ingredient mixture wherein the nonionic detergent is present in major proportion which is probably due to the low foaming properties of the polyoxybutylene polyoxyethylene nonionic detergent.
  • U.S. Patent No. 4,595,526 describes a composition comprising a nonionic surfactant, a betaine surfactant, an anionic surfactant and a C12-C-14 fatty acid monoethanolamide foam stabilizer.
  • an antibacterial liquid dish cleaning composition having improved viscosity can be formulated with three different anionic surfactants, a zwitterionic surfactant, polyethylene glycol, a hydroxy aliphatic acid, an organic thickener, and water which has desirable cleaning and foaming properties.
  • An object of this invention is to provide an antibacterial liquid dish cleaning composition which comprises a sulfate surfactant, two sulfonate anionic surfactants, a zwitterionic surfactant, an organic thickener, polyethylene glycol, a hydroxy aliphatic acid and water, wherein the composition does not contain any silicas, abrasives, acyl isoethionate, 2-hydroxy-4,2',4'-trichloridiphenyl ether, phosphoric acid, phosphonic acid, boric acid, alkali metal carbonates, alkaline earth metal carbonates, alkyl glycine surfactant, cyclic imidinium surfactant, or more than 3 wt. % of a fatty acid or salt thereof.
  • Another object of this invention is to provide an antibacterial liquid dish cleaning composition having improved viscosity and with desirable high foaming and cleaning properties which kills bacteria.
  • This invention relates to an antibacterial liquid dish cleaning composition which comprises approximately by weight:
  • any grease release agents such as choline,
  • anionic sulfonate surfactants which may be used in the detergent of this invention are selected from the consisting of water soluble and include the sodium, potassium, ammonium, magnesium and ethanolammonium salts of linear C8-C16 alkyl benzene sulfonates; C10-C20 paraffin sulfonates, alpha olefin sulfonates containing about 10-24 carbon atoms and C8-C18 alkyl sulfates and mixtures thereof.
  • the paraffin sulfonates may be monosulfonates or di-sulfonates and usually are mixtures thereof, obtained by sulfonating paraffins of 10 to 20 carbon atoms.
  • Preferred paraffin sulfonates are those of C12-I 8 carbon atoms chains, and more preferably they are of C14-17 chains.
  • Paraffin sulfonates that have the sulfonate group(s) distributed along the paraffin chain are described in U.S. Patents 2,503,280; 2,507,088; 3,260,744; and 3,372,188; and also in German Patent 735,096. Such compounds may be made to specifications and desirably the content of paraffin sulfonates outside the C14-17 range will be minor and will be minimized, as will be any contents of di- or poly- sulfonates.
  • Suitable other sulfonated anionic detergents are the well known higher alkyl mononuclear aromatic sulfonates, such as the higher alkylbenzene sulfonates containing 9 to 18 or preferably 9 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, or C ⁇ -15 alkyl toluene sulfonates.
  • a preferred alkylbenzene sulfonate is a linear alkylbenzene sulfonate having a higher content of 3- phenyl (or higher) isomers and a correspondingly lower content (well below 50%) of 2- phenyl (or lower) isomers, such as those sulfonates wherein the benzene ring is attached mostly at the 3 or higher (for example 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
  • Preferred materials are set forth in U.S. Patent
  • the C8-18 ethoxylated alkyl ether sulfate surfactants have the structure
  • n is about 1 to about 22 more preferably 1 to 3 and R is an alkyl group having about 8 to about 18 carbon atoms, more preferably 12 to 15 and natural cuts, for example, C12-I4 or C12-I6 and M is an ammonium cation or a metal cation, most preferably sodium.
  • the ethoxylated alkyl ether sulfate may be made by sulfating the condensation product of ethylene oxide and C8-10 alkanol, and neutralizing the resultant product.
  • the ethoxylated alkyl ether sulfates differ from one another in the number of carbon atoms in the alcohols and in the number of moles of ethylene oxide reacted with one mole of such alcohol.
  • Preferred ethoxylated alkyl ether polyethenoxy sulfates contain 12 to 15 carbon atoms in the alcohols and in the alkyl groups thereof, e.g., sodium myhstyl (3 EO) sulfate.
  • Ethoxylated C ⁇ -18 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule are also suitable for use in the invention compositions.
  • These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.
  • the concentration of the ethoxylated alkyl ether sulfate surfactant is about 1 to about 8 wt. %.
  • the water-soluble zwitterionic surfactant which is an essential ingredient of present liquid detergent composition, provides good foaming properties and mildness to the present nonionic based liquid detergent.
  • the zwitterionic surfactant is a water soluble betaine having the general formula:
  • is an alkyl group having 10 to 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical:
  • R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4;
  • R2 and R3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon;
  • R4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group.
  • Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N- decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N, N- dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl diemethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc.
  • the amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like.
  • a preferred betaine is coco (C ⁇ -Ci ⁇ ) amidopropyl dimethyl betaine.
  • the hydroxy containing organic acid is ortho hydroxy benzoic acid or preferably a hydroxy aliphatic acid selected from the group consisting of lactic acid, citric acid, salicylic acid and glycolic and mixtures thereof.
  • Polyethylene glycol which is used in the instant composition has a molecular weight of 200 to 1 ,000, wherein the polyethylene glycol has the structure HO(CH 2 CH2 ⁇ ) n H wherein n is 4 to 52.
  • the concentration of the polyethylene glycol in the instant composition is 0.1 % to 7 wt. %, more preferably 0.1 wt. % to 5 wt. %.
  • the instant light duty liquid nonmicroemulsion compositions can contain about 0 wt. % to about 10 wt. %, more preferably about 1 wt. % to about 8 wt. %, of at least one solubilizing agent selected from the group consisting of a C2-5 mono, dihydroxy or polyhydroxy alkanols such as ethanol, isopropanol, glycerol ethylene glycol, diethylene glycol, propylene glycol, and hexylene glycol and mixtures thereof and alkali metal cumene or xylene sulfonates such as sodium cumene sulfonate and sodium xylene sulfonate.
  • the solubilizing agents are included in order to control low temperature cloud clear properties.
  • the organic thickener used in the instant compositions are selected from the group consisting of polyvinyl pyrrolidone of molecular weight between 1 ,000,000 to 2,000,000 (Luviskal K90, BASF), a polyethylene glycol having a molecular weight of 100,000 to 500,000 such as Polyox WSR-N750 from Dow Chemical and a polyquaterium-10 such as Ucare JR-125 from Amerchol which is quatemized hydroxyethyl cellulose.
  • alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
  • the final essential ingredient in the inventive compositions having improved interfacial tension properties is water.
  • the proportion of water in the compositions generally is in the range of 10% to 95%.
  • the liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
  • Colors or dyes in amounts up to 0.5% by weight; bactericides in amounts up to 1 % by weight; preservatives, UV absorbents, or antioxidizing agents, such as formalin, 5-bromo-5- nitro-dioxan-1 ,3; 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; HEDTA for color improvement under stressed sun conditions, up to 1 % and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed.
  • up to 4% by weight of an opacifier may be added.
  • the instant compositions exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 0°C to 50°C, especially 5°C to 43°C. Such compositions exhibit a pH of 3 to 5.
  • the Modified Germicidal Spray Test was used to determine the surface disinfection profile.
  • the Modified Germicidal Spray test protocol was designed by MicroBiotest Inc., Sterling Virginia, to determine percentage of 99.9% of germs killed on hard surfaces such as dishware.
  • the method determines the efficacy of products intended to be used for one-step cleaning and germ killing on surface of dishware and is based on the Germicidal Spray Products test, Official Methods of Analysis, Sixteenth edition, 1995, AOAC.
  • Example 1 The following compositions are listed as a wt. %. The reported viscosity was measured using a Brookfield model RVTDV-II with spindle #21 at 20 rpm and 25C temperature. Target viscosity was 450+75 cps.
  • Example 2 The following compositions are listed as a wt. %. The reported viscosity was measured using a Brookfield model RVTDV-II with spindle #21 at 20 rpm and 25C temperature. Target viscosity was 450+75 cps.

Abstract

An antibacterial liquid dish cleaning composition with desirable cleansing properties comprising a C8-18 ethoxylated alkyl ether sulfate, two anionic surfactant, a betaine surfactant, a hydroxy containing organic acid, an organic thickener, polyethylene glycol and water.

Description

ANTIBACTERIAL LIQUID DISH CLEANING COMPOSITIONS HAVING IMPROVED
VISCOSITY
Field of Invention
This invention relates to an antibacterial liquid dish cleaning composition of lower active surfactant level, having improved viscosity which is designed to disinfect the surface being treated while maintaining good foaming grease cutting, rinsing and mildness properties. Background of the Invention
The present invention relates to novel light duty liquid detergent compositions with an improved viscosity, high foaming and good grease cutting properties as well as disinfecting properties.
The prior art is replete with light duty liquid detergent compositions containing nonionic surfactants in combination with anionic and/or betaine surfactants wherein the nonionic detergent is not the major active surfactant. In U.S. Patent No. 3,658,985 an anionic based shampoo contains a minor amount of a fatty acid alkanolamide. U.S. Patent No. 3,769,398 discloses a betaine-based shampoo containing minor amounts of nonionic surfactants. This patent states that the low foaming properties of nonionic detergents renders its use in shampoo compositions non-preferred. U.S. Patent No. 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di- ethanolamide. U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8 to 20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic. U.S. Patent No. 4,329,334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants. U.S. Patent No. 3,935,129 discloses a liquid cleaning composition containing an alkali metal silicate, urea, glycerin, triethanolamine, an anionic detergent and a nonionic detergent. The silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition. However, the foaming properties of these detergent compositions are not discussed therein.
U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwitterionic surfactants as suds modifiers. U.S. Patent No. 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents, namely, an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient.
The prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos. 4,154,706 and 4,329,336 wherein the shampoo compositions contain a plurality of particular nonionic surfactants in order to affect desirable foaming and detersive properties despite the fact that nonionic surfactants are usually deficient in such properties.
U.S. Patent No. 4,013,787 discloses a piperazine based polymer in conditioning and shampoo compositions which may contain all nonionic surfactant or all anionic surfactant.
U.S. Patent No. 4,450,091 discloses high viscosity shampoo compositions containing a blend of an amphoteric betaine surfactant, a polyoxybutylenepolyoxyethylene nonionic detergent, an anionic surfactant, a fatty acid alkanolamide and a polyoxyalkylene glycol fatty ester. But, none of the exemplified compositions contain an active ingredient mixture wherein the nonionic detergent is present in major proportion which is probably due to the low foaming properties of the polyoxybutylene polyoxyethylene nonionic detergent.
U.S. Patent No. 4,595,526 describes a composition comprising a nonionic surfactant, a betaine surfactant, an anionic surfactant and a C12-C-14 fatty acid monoethanolamide foam stabilizer.
U.S. Patent 6,147,039 teaches an antibacterial hand cleaning composition having a low surfactant content. Summary of the Invention
It has now been found that an antibacterial liquid dish cleaning composition having improved viscosity can be formulated with three different anionic surfactants, a zwitterionic surfactant, polyethylene glycol, a hydroxy aliphatic acid, an organic thickener, and water which has desirable cleaning and foaming properties.
An object of this invention is to provide an antibacterial liquid dish cleaning composition which comprises a sulfate surfactant, two sulfonate anionic surfactants, a zwitterionic surfactant, an organic thickener, polyethylene glycol, a hydroxy aliphatic acid and water, wherein the composition does not contain any silicas, abrasives, acyl isoethionate, 2-hydroxy-4,2',4'-trichloridiphenyl ether, phosphoric acid, phosphonic acid, boric acid, alkali metal carbonates, alkaline earth metal carbonates, alkyl glycine surfactant, cyclic imidinium surfactant, or more than 3 wt. % of a fatty acid or salt thereof.
Another object of this invention is to provide an antibacterial liquid dish cleaning composition having improved viscosity and with desirable high foaming and cleaning properties which kills bacteria.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. Detailed Description of the Invention
This invention relates to an antibacterial liquid dish cleaning composition which comprises approximately by weight:
(a) 4% to 16% of a sodium salt of a Cβ-Ci 6 linear alkyl benzene sulfonate surfactant;
(b) 4% to 16% of a magnesium salt of a C8-C16 linear alkyl benzene sulfonate surfactant;
(c) 4% to 16% of an ammonium or sodium salt of an ethoxylated C8-C18 alkyl ether sulfate surfactant; (d) 0.1 % to 5% of a zwitterionic surfactant;
(e) 0.5% to 5%, more preferably 0.5% to 4% of a hydroxy containing organic acid;
(f) 0.1 % to 7% of polyethylene glycol having a molecular weight of about 200 to 1 ,000; (g) 0.1 % to 2%, more preferably 0.2%, more preferably 0.2% to 1.5% of an organic thickener; and
(h) the balance being water, wherein the composition has a pH of 3 to 4 and has a viscosity of 200 to 800 cps, more preferably 200 to 600 cps at 25°C using a #21 spindle at 20 rpm as measured on a Brookfield RVTDV-II viscometer, wherein the composition does not contain any grease release agents such as choline, chloride or buffering system which is a nitrogenous buffer which is ammonium or alkaline earth carbonate, amine oxide surfactants, guanidine derivates, alkoxylalkyl amines and alkyleneamines C3-C7 alkyl and alkenyl monobasic and dibasic acids such as C4-C7 aliphatic carboxylic diacids which do not contain a hydroxy group, boric acid, phosphoric acid, ethoxylated nonionic surfactants, amino alkylene phosphonic acid and alkyl polyglucoside surfactants.
The anionic sulfonate surfactants which may be used in the detergent of this invention are selected from the consisting of water soluble and include the sodium, potassium, ammonium, magnesium and ethanolammonium salts of linear C8-C16 alkyl benzene sulfonates; C10-C20 paraffin sulfonates, alpha olefin sulfonates containing about 10-24 carbon atoms and C8-C18 alkyl sulfates and mixtures thereof.
The paraffin sulfonates may be monosulfonates or di-sulfonates and usually are mixtures thereof, obtained by sulfonating paraffins of 10 to 20 carbon atoms. Preferred paraffin sulfonates are those of C12-I 8 carbon atoms chains, and more preferably they are of C14-17 chains. Paraffin sulfonates that have the sulfonate group(s) distributed along the paraffin chain are described in U.S. Patents 2,503,280; 2,507,088; 3,260,744; and 3,372,188; and also in German Patent 735,096. Such compounds may be made to specifications and desirably the content of paraffin sulfonates outside the C14-17 range will be minor and will be minimized, as will be any contents of di- or poly- sulfonates.
Examples of suitable other sulfonated anionic detergents are the well known higher alkyl mononuclear aromatic sulfonates, such as the higher alkylbenzene sulfonates containing 9 to 18 or preferably 9 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, or Cδ-15 alkyl toluene sulfonates. A preferred alkylbenzene sulfonate is a linear alkylbenzene sulfonate having a higher content of 3- phenyl (or higher) isomers and a correspondingly lower content (well below 50%) of 2- phenyl (or lower) isomers, such as those sulfonates wherein the benzene ring is attached mostly at the 3 or higher (for example 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low. Preferred materials are set forth in U.S. Patent
3,320,174, especially those in which the alkyls are of 10 to 13 carbon atoms.
The C8-18 ethoxylated alkyl ether sulfate surfactants have the structure
- + R-(OCHCH2)nOSO3M wherein n is about 1 to about 22 more preferably 1 to 3 and R is an alkyl group having about 8 to about 18 carbon atoms, more preferably 12 to 15 and natural cuts, for example, C12-I4 or C12-I6 and M is an ammonium cation or a metal cation, most preferably sodium. The ethoxylated alkyl ether sulfate may be made by sulfating the condensation product of ethylene oxide and C8-10 alkanol, and neutralizing the resultant product.
The ethoxylated alkyl ether sulfates differ from one another in the number of carbon atoms in the alcohols and in the number of moles of ethylene oxide reacted with one mole of such alcohol. Preferred ethoxylated alkyl ether polyethenoxy sulfates contain 12 to 15 carbon atoms in the alcohols and in the alkyl groups thereof, e.g., sodium myhstyl (3 EO) sulfate.
Ethoxylated Cβ-18 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule are also suitable for use in the invention compositions. These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.
The concentration of the ethoxylated alkyl ether sulfate surfactant is about 1 to about 8 wt. %.
The water-soluble zwitterionic surfactant, which is an essential ingredient of present liquid detergent composition, provides good foaming properties and mildness to the present nonionic based liquid detergent. The zwitterionic surfactant is a water soluble betaine having the general formula:
Figure imgf000007_0001
wherein R-| is an alkyl group having 10 to 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical:
Figure imgf000007_0002
wherein R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4; R2 and R3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon; R4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group. Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N- decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N, N- dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl diemethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc. The amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like. A preferred betaine is coco (Cβ-Ciδ) amidopropyl dimethyl betaine.
The hydroxy containing organic acid is ortho hydroxy benzoic acid or preferably a hydroxy aliphatic acid selected from the group consisting of lactic acid, citric acid, salicylic acid and glycolic and mixtures thereof.
Polyethylene glycol which is used in the instant composition has a molecular weight of 200 to 1 ,000, wherein the polyethylene glycol has the structure HO(CH2CH2θ)nH wherein n is 4 to 52. The concentration of the polyethylene glycol in the instant composition is 0.1 % to 7 wt. %, more preferably 0.1 wt. % to 5 wt. %.
The instant light duty liquid nonmicroemulsion compositions can contain about 0 wt. % to about 10 wt. %, more preferably about 1 wt. % to about 8 wt. %, of at least one solubilizing agent selected from the group consisting of a C2-5 mono, dihydroxy or polyhydroxy alkanols such as ethanol, isopropanol, glycerol ethylene glycol, diethylene glycol, propylene glycol, and hexylene glycol and mixtures thereof and alkali metal cumene or xylene sulfonates such as sodium cumene sulfonate and sodium xylene sulfonate. The solubilizing agents are included in order to control low temperature cloud clear properties.
The organic thickener used in the instant compositions are selected from the group consisting of polyvinyl pyrrolidone of molecular weight between 1 ,000,000 to 2,000,000 (Luviskal K90, BASF), a polyethylene glycol having a molecular weight of 100,000 to 500,000 such as Polyox WSR-N750 from Dow Chemical and a polyquaterium-10 such as Ucare JR-125 from Amerchol which is quatemized hydroxyethyl cellulose.
The instant formulas explicitly exclude alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
The final essential ingredient in the inventive compositions having improved interfacial tension properties is water. The proportion of water in the compositions generally is in the range of 10% to 95%.
The liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer. The following are mentioned by way of example: Colors or dyes in amounts up to 0.5% by weight; bactericides in amounts up to 1 % by weight; preservatives, UV absorbents, or antioxidizing agents, such as formalin, 5-bromo-5- nitro-dioxan-1 ,3; 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; HEDTA for color improvement under stressed sun conditions, up to 1 % and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed. Furthermore, if opaque compositions are desired, up to 4% by weight of an opacifier may be added.
In final form, the instant compositions exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 0°C to 50°C, especially 5°C to 43°C. Such compositions exhibit a pH of 3 to 5.
The following examples illustrate the liquid body cleaning compositions of the described invention. Unless otherwise specified, all percentages are by weight. The exemplified compositions are illustrative only and do not limit the scope of the invention. Unless otherwise specified, the proportions in the examples and elsewhere in the specification are by weight.
The Modified Germicidal Spray Test was used to determine the surface disinfection profile. The Modified Germicidal Spray test protocol was designed by MicroBiotest Inc., Sterling Virginia, to determine percentage of 99.9% of germs killed on hard surfaces such as dishware. The method determines the efficacy of products intended to be used for one-step cleaning and germ killing on surface of dishware and is based on the Germicidal Spray Products test, Official Methods of Analysis, Sixteenth edition, 1995, AOAC.
Example 1 The following compositions are listed as a wt. %. The reported viscosity was measured using a Brookfield model RVTDV-II with spindle #21 at 20 rpm and 25C temperature. Target viscosity was 450+75 cps.
Figure imgf000010_0001
Example 2 The following compositions are listed as a wt. %. The reported viscosity was measured using a Brookfield model RVTDV-II with spindle #21 at 20 rpm and 25C temperature. Target viscosity was 450+75 cps.
Figure imgf000011_0001

Claims

What Is Claimed:
1. An antibacterial liquid dish cleaning composition which comprises approximately by weight:
(a) 4% to 16% of a sodium salt of a C8-C16 linear alkyl benzene sulfonate surfactant;
(b) 4% to 16% of a magnesium salt of a Cs-Ci 6 linear alkyl benzene sulfonate surfactant;
(c) 4% to 16% of an ammonium or sodium salt of an ethoxylated Cs-Ci 8 alkyl ether sulfate surfactant; (d) 0.1 % to 5% of a zwitterionic surfactant;
(e) 0.5% to 5% of a hydroxy containing organic acid;
(f) 0.1 % to 7% of polyethylene glycol;
(g) 0.1% to 2% of an organic thickener; and
(h) the balance being water, wherein the composition has a pH of 3 to 4 and has a viscosity of 100 to 1 ,000 cps at 25°C using a #21 spindle at 20 rpm as measured on a Brookfield RVTDV-II viscometer, wherein the composition does not contain any choline chloride ammonium or alkaline earth carbonate, amine oxide surfactants, guanidine derivates, alkoxylalkyl amines and alkyleneamines C3-C7 alkyl and alkenyl monobasic and dibasic acids such as C4-C7 aliphatic carboxylic diacids which do not contain a hydroxy group, boric acid, phosphoric acid, ethoxylated nonionic surfactants, amino alkylene phosphonic acid and alkyl polyglucoside surfactants and the composition is pourable and not a gel has a complex viscosity at 1 rads"1 of less than 0.4 Pascal seconds.
2. The composition of Claim 1 , wherein said organic thickener is selected from the group consisting of polyethylene glycol having a molecular weight of 100,000 to 500,000, a polyvinyl pyrrolidone having a molecular weight of 1 ,000,000 to 2,000,000 and a quaternized hydroxyethyl cellulose.
PCT/US2002/014126 2001-05-11 2002-05-02 Antibacterial liquid dish cleaning compositions having improved viscosity WO2002092743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002446790A CA2446790A1 (en) 2001-05-11 2002-05-02 Antibacterial liquid dish cleaning compositions having improved viscosity

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US09/853,791 2001-05-11
US09/853,791 US6441037B1 (en) 2001-05-11 2001-05-11 Antibacterial liquid dish cleaning compositions
US09/998,543 2001-11-30
US09/998,543 US6586014B2 (en) 2001-05-11 2001-11-30 Liquid dish cleaning compositions containing hydrogen peroxide
US8552902A 2002-02-27 2002-02-27
US10/085,556 US6583178B2 (en) 2001-05-11 2002-02-27 Antibacterial liquid dish cleaning compositions having improved viscosity
US10/085,529 2002-02-27
US10/085,556 2002-02-27

Publications (1)

Publication Number Publication Date
WO2002092743A1 true WO2002092743A1 (en) 2002-11-21

Family

ID=27491972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/014126 WO2002092743A1 (en) 2001-05-11 2002-05-02 Antibacterial liquid dish cleaning compositions having improved viscosity

Country Status (2)

Country Link
CA (1) CA2446790A1 (en)
WO (1) WO2002092743A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080786A1 (en) * 2002-03-21 2003-10-02 Colgate-Palmolive Company Antibacterial liquid dish cleaning compositions
WO2003080783A1 (en) * 2002-03-21 2003-10-02 Colgate-Palmolive Company Antibacterial liquid dish cleaning compositions
CN1301649C (en) * 2005-07-04 2007-02-28 北京瑞雪环球科技有限公司 Poisonless biological degradable pesticide
WO2009155312A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154615A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154614A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154616A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155313A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155308A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155314A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2010088165A1 (en) * 2009-02-02 2010-08-05 The Procter & Gamble Company Liquid hand dishwashing detergent composition
US8247362B2 (en) 2008-06-17 2012-08-21 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
US8361239B2 (en) 2009-02-02 2013-01-29 The Procter & Gamble Company Liquid hand diswashing detergent composition
US8575083B2 (en) 2009-02-02 2013-11-05 The Procter & Gamble Company Liquid hand diswashing detergent composition
US9382503B2 (en) 2011-03-09 2016-07-05 Reckitt Benckiser Vanish B.V. Carpet cleaning composition
US10329521B2 (en) 2014-05-21 2019-06-25 Colgate-Palmolive Company Aqueous liquid dishwashing composition comprising an ammonium alkyl ether sulfate and alkylamidopropyl betaine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055572A1 (en) * 1997-06-06 1998-12-10 Colgate-Palmolive Company Light duty liquid cleaning compositions
US5853743A (en) * 1997-08-05 1998-12-29 Colgate Palmolive Company Light duty liquid cleaning compositions
US5962388A (en) * 1997-11-26 1999-10-05 The Procter & Gamble Company Acidic aqueous cleaning compositions
US6010992A (en) * 1999-06-01 2000-01-04 Colgate-Palmolive Co. Liquid detergent composition containing amine oxide and citric acid
US6159925A (en) * 2000-04-06 2000-12-12 Colgate-Palmolive Co. Acidic liquid crystal compositions
US6291419B1 (en) * 2001-01-09 2001-09-18 Colgate-Palmolive Co. Grease cutting light duty liquid detergent comprising lauryol diamine triacetate
US6313084B1 (en) * 2001-01-09 2001-11-06 Colgate Palmolive Co. Grease cutting light duty liquid detergent comprising Lauroyl Ethylene Diamine Triacetate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055572A1 (en) * 1997-06-06 1998-12-10 Colgate-Palmolive Company Light duty liquid cleaning compositions
US5853743A (en) * 1997-08-05 1998-12-29 Colgate Palmolive Company Light duty liquid cleaning compositions
US5962388A (en) * 1997-11-26 1999-10-05 The Procter & Gamble Company Acidic aqueous cleaning compositions
US6010992A (en) * 1999-06-01 2000-01-04 Colgate-Palmolive Co. Liquid detergent composition containing amine oxide and citric acid
US6159925A (en) * 2000-04-06 2000-12-12 Colgate-Palmolive Co. Acidic liquid crystal compositions
US6291419B1 (en) * 2001-01-09 2001-09-18 Colgate-Palmolive Co. Grease cutting light duty liquid detergent comprising lauryol diamine triacetate
US6313084B1 (en) * 2001-01-09 2001-11-06 Colgate Palmolive Co. Grease cutting light duty liquid detergent comprising Lauroyl Ethylene Diamine Triacetate

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080786A1 (en) * 2002-03-21 2003-10-02 Colgate-Palmolive Company Antibacterial liquid dish cleaning compositions
WO2003080783A1 (en) * 2002-03-21 2003-10-02 Colgate-Palmolive Company Antibacterial liquid dish cleaning compositions
CN1301649C (en) * 2005-07-04 2007-02-28 北京瑞雪环球科技有限公司 Poisonless biological degradable pesticide
US7718595B2 (en) 2008-06-17 2010-05-18 Colgate Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof comprising organic acids
AU2009260264B2 (en) * 2008-06-17 2011-09-01 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154614A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154616A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155313A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155308A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155314A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009155312A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
AU2009260264C1 (en) * 2008-06-17 2013-05-16 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
WO2009154615A1 (en) * 2008-06-17 2009-12-23 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
US8022028B2 (en) 2008-06-17 2011-09-20 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof comprising organic acids
AU2008358055B2 (en) * 2008-06-17 2012-03-22 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
US8309504B2 (en) 2008-06-17 2012-11-13 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
US8247362B2 (en) 2008-06-17 2012-08-21 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
JP2012516910A (en) * 2009-02-02 2012-07-26 ザ プロクター アンド ギャンブル カンパニー Liquid detergent composition for dishwashing
US8361239B2 (en) 2009-02-02 2013-01-29 The Procter & Gamble Company Liquid hand diswashing detergent composition
WO2010088165A1 (en) * 2009-02-02 2010-08-05 The Procter & Gamble Company Liquid hand dishwashing detergent composition
US8575083B2 (en) 2009-02-02 2013-11-05 The Procter & Gamble Company Liquid hand diswashing detergent composition
US9382503B2 (en) 2011-03-09 2016-07-05 Reckitt Benckiser Vanish B.V. Carpet cleaning composition
US10329521B2 (en) 2014-05-21 2019-06-25 Colgate-Palmolive Company Aqueous liquid dishwashing composition comprising an ammonium alkyl ether sulfate and alkylamidopropyl betaine

Also Published As

Publication number Publication date
CA2446790A1 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
US6475967B1 (en) Liquid dish cleaning compositions containing a peroxide source
US6605579B1 (en) Antibacterial liquid dish cleaning compositions
CA2536907C (en) Liquid dish cleaning compositions
US6444636B1 (en) Liquid dish cleaning compositions containing hydrogen peroxide
US6441037B1 (en) Antibacterial liquid dish cleaning compositions
WO2002092743A1 (en) Antibacterial liquid dish cleaning compositions having improved viscosity
US6482788B1 (en) Light duty liquid composition containing an acid and zinc chloride
US6583178B2 (en) Antibacterial liquid dish cleaning compositions having improved viscosity
US20040101504A1 (en) Mild antibacterial liquid dish cleaning composition having improved stability
US6593284B2 (en) Antibacterial liquid dish cleaning compositions
US6586014B2 (en) Liquid dish cleaning compositions containing hydrogen peroxide
US20030144218A1 (en) Mild antibacterial liquid dish cleaning compositions having improved stability
EP1492862B1 (en) Color stable liquid dish cleaning compositions containing a peroxide source
WO2003080782A1 (en) Mild antibacterial liquid dish cleaning compositions containing peroxide
WO2003080784A1 (en) Foamstable antimicrobial liquid dish cleaning compositions
AU2002309641A1 (en) Antibacterial liquid dish cleaning compositions having improved viscosity
WO2003083024A1 (en) Liquid dish cleaning compositions having improved preservative system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2446790

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002309641

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP