WO2002090883A1 - Position detector - Google Patents

Position detector Download PDF

Info

Publication number
WO2002090883A1
WO2002090883A1 PCT/JP2002/004307 JP0204307W WO02090883A1 WO 2002090883 A1 WO2002090883 A1 WO 2002090883A1 JP 0204307 W JP0204307 W JP 0204307W WO 02090883 A1 WO02090883 A1 WO 02090883A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
receiving elements
detecting device
position detecting
Prior art date
Application number
PCT/JP2002/004307
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuyuki Ochi
Yasuaki Amemiya
Original Assignee
Tokimec Construction Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Construction Systems Inc. filed Critical Tokimec Construction Systems Inc.
Publication of WO2002090883A1 publication Critical patent/WO2002090883A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • G01C15/006Detectors therefor

Definitions

  • the present invention relates to a position detection device that receives a light beam and detects the position, and more particularly, has a large number of light receiving elements arranged in a row, and calculates a light receiving center position in the column direction based on the amount of received light.
  • the present invention relates to a position detection device calculated by the device.
  • Such a position detecting device is usually used together with a projector that emits a laser beam while rotating or rotating at a angle of 360 ° or more or less, and when setting the light receiving unit, it is necessary to set the light receiving element in the column direction. Is made as orthogonal as possible to the scanning plane of the light beam, and position detection is performed based on the scanning plane.
  • the leveling control device it is useful for detecting vertical and horizontal positions in civil engineering and construction sites, and is used, for example, for measuring the unevenness of concrete on buildings and roads, and for controlling the leveling of bulldozers.
  • the light receiving section is installed on the blade of the bulldozer, and the blade is automatically moved up and down so that the laser beam scanning surface, which is the finishing reference, is always at a predetermined position such as the center of the light receiving element row.
  • height measuring devices such as motor graders, asphalt finishers, and concrete leveling machines. It is also used for backhoe (excavator) excavation depth control equipment.
  • a conventional position detecting device including a large number of light receiving elements arranged in a row and an arithmetic unit that calculates a light receiving center position in the column direction of the light receiving elements based on the light receiving amounts thereof receives a beam light.
  • calculation is performed such that the mounting position of each light receiving element is weighted by the amount of received light and calculated.
  • only the light beam whose light reception amount has reached a predetermined threshold or more is regarded as valid signal data, and the light reception center position is calculated based on the light reception amount of one or more light receiving elements corresponding to the condition.
  • an optical fiber is provided in front of the light receiving surface of the light receiving element (see JP-A-3-1-22).
  • the position detecting ability is improved by using various methods, and in particular, when an optical fiber is provided in front of the light receiving surface, the pitch is wider than the pitch of the light receiving element.
  • the light receiving position can be detected. Also, in the case of performing the weighting calculation, the light receiving position can be detected with a resolution finer than the pitch of the light receiving elements.
  • the present invention has been made to solve such a problem, and an object of the present invention is to realize a position detecting device in which a restriction imposed on a pitch of a light receiving element by a beam diameter is loose.
  • a position detection device is a position detection device including: a large number of light receiving elements arranged in a row; and an arithmetic unit that calculates a light receiving center position of the light receiving elements in a column direction based on the received light amounts.
  • a diffusion member is provided in front of the light receiving surfaces of the plurality of light receiving elements to transmit or reflect light traveling toward the light receiving surfaces and spread the light in the column direction.
  • the width should not exceed or exceed the width of the light receiving element. It is desirable to narrow down to fit.
  • the position detecting device since the light directed to the light receiving element is spread by the diffusion member while the light is traveling, at least the light in the column direction of the light receiving element is not diffused. Since the light is applied to a range wider than the beam diameter, the pitch of the light receiving elements can be correspondingly widened, and even in such a case, light is received by any of the light receiving elements.
  • the change in the light receiving state due to the diffusion of light may be corrected by an operation based on the diffusion rate or the like.
  • the arrangement pitch of the light receiving elements is narrower or wider than the diameter of the irradiation light, the light is accurately received, and the light receiving position is obtained.
  • a position detection device is the position detection device according to the first solution, wherein the diffusing member spreads a plurality of light receiving elements when spreading the light beam. It is like that.
  • a position detection device is the position detection device according to the first or second solution, wherein the diffusion member is provided in a direction orthogonal to the column direction in comparison with the diffusion in the column direction. Something that reduces diffusion is adopted.
  • a position detection device is the position detection device according to the first to third solutions, wherein a plurality of rows of the light receiving elements are formed around a support member. is there.
  • the support member is preferably a long member such as a bar or a plate, but is not limited thereto, and may be any member in which a plurality of rows of light receiving elements can be arranged on the outer peripheral surface, the outer surface, the front and back surfaces, and the like.
  • the position detecting device since the support member is surrounded by the light receiving elements arranged in a double row, when the light is irradiated toward the support member, the irradiation is Even if the light is emitted from the direction, any light required for position detection is performed by any of the light receiving elements as long as the light hits the outer peripheral surface or the like of the support member. As a result, it is possible to receive light over a wide angle range of approximately 360 °, so that it is not necessary to perform one adjustment such as matching the direction with the projector.
  • the position detecting device of the fifth solution is the position detecting device of the first to fourth solutions.
  • the diffusion member is made of a flexible plate or film.
  • the diffusion member and its support are separately formed and processed, and then the diffusion member is attached to the support. Deforms according to the shape of the support.
  • a position detection device is the position detection device according to any one of the first to fifth solutions, wherein the computing device corresponds to the row of the light receiving elements when calculating the light receiving center position.
  • a maximum value is obtained for the data sequence of the received light amount obtained, and when a plurality of maximum values are obtained, a process of suppressing the data value is performed for each occurrence of the maximum value other than the maximum value. It is.
  • the position can be accurately detected.
  • FIG. 1 relates to a first embodiment of the position detecting device of the present invention, wherein (a) FIG. 2 is a side view of a position detection system in which a projector for rotatingly irradiating a beam and a position detection device of the present invention are combined, and (b) is a perspective view of a light receiving unit in the position detection device of the present invention.
  • FIG. 2 is a block diagram of the arithmetic unit.
  • FIG. 3 shows the operation of the diffusion member in comparison, where (a) relates to a state without the diffusion member and (b) relates to a state where the diffusion member is provided.
  • FIG. 4 shows the effect of the diffusion member on the light receiving element mounting pitch in comparison, wherein (a) relates to a state without the diffusion member and (b) relates to a state where the diffusion member is provided.
  • the two-dot chain line shows the continuous intensity distribution of the laser beam, and the solid line shows the distribution state sampled by the light receiving element.
  • Fig. 5 shows an example of calculation based on the light receiving condition.
  • (A) and (b) show the light receiving condition and (b) the calculating condition with respect to the good light receiving condition.
  • (C) and (d) relate to the light receiving state where small reflections overlap, (c) is the light receiving state, and (d) is the calculation state.
  • the dashed line indicates the threshold value, and the dashed line indicates the portion of the received light amount data that has been reduced by the noise suppression processing. The received light amount data is forcibly set to zero.
  • FIG. 6 shows an example of calculation based on a light receiving state in which large reflection is superimposed on the second embodiment of the position detecting device of the present invention, where (a) is a light receiving state, (b) is an input state, and (c) Is the maximum value detection state, and (d) is the calculation result.
  • the dashed line indicates the threshold value, and the broken line indicates the portion of the received light amount data that has been reduced by the noise suppression processing or the reflection component suppression processing.
  • FIG. 7 shows the structure of a main part of a third embodiment of the position detecting device of the present invention, (a) is a plan view of a light receiving section, (b) is a front view of a light receiving element and a support member, (c) ) Is the right side view.
  • FIG. 8 shows an example of application of a fourth embodiment of the position detecting device of the present invention to a floor unevenness measuring machine, where (a) is a side view and (b) is a plan view.
  • FIG. 9 shows an application example of a bulldozer to a blade control device according to a fifth embodiment of the position detecting device of the present invention
  • (a) is a perspective view of a main part
  • (b) is a height control state
  • (c) relates to the tilt control state.
  • Fig. 10 shows the running conditions, (a) is a plan view and (b) is a side view.
  • FIG. 11 is a perspective view of a main part showing an example of application of a sixth embodiment of the position detecting device of the present invention to a heavy equipment attitude control device.
  • FIGS. 12 and 13 show the overall structure of a position detecting device according to a seventh embodiment of the present invention.
  • FIG. 12 (a) is a perspective view
  • FIG. 12 (b) is a vertical sectional front view
  • FIG. 12 (c) is a cross-sectional plan view.
  • FIG. 13 shows the relationship between the installation position of the diffusion member and the mounting pitch of the light receiving elements in the eighth embodiment of the position detecting device of the present invention
  • FIG. (B) is where the light beam travels between the light receiving elements.
  • Two-beam light (scanning laser light, rotating laser light, turning beam light)
  • Position detection device (height measurement device, moving object, traveling vehicle, heavy equipment)
  • Threshold setting routine (threshold setting means)
  • the first embodiment shown in FIGS. 1 to 5 embodies the first to fifth solutions described above, and the second embodiment shown in FIG.
  • the third embodiment shown in FIG. 7 is a modification of the third embodiment.
  • the fourth embodiment shown in FIG. 8 the fifth embodiment shown in FIGS. 9 and 10, the sixth embodiment shown in FIG. 11, and the sixth embodiment shown in FIG.
  • the seven embodiments are all application examples.
  • the eighth embodiment shown in FIG. 13 is a more specific version of the second solution described above.
  • FIG. 1 shows the basic structure
  • (a) is a side view of a position detecting system in which a projector for rotatingly irradiating a laser beam is combined with the position detecting device of the present invention
  • (b) is a side view of the present invention
  • FIG. 3 is a perspective view of a light receiving unit in the position detecting device of the present invention
  • FIG. 2 is a block diagram of the arithmetic unit.
  • the position detecting device 3 (see Fig. 1 (a)) has a vertically long light receiving portion 3c protruding vertically upward to receive the laser beam light 2 radiated horizontally from the projector 1, and a leg portion on the measuring surface 4.
  • a detection device main body 3b that lowers 3a to support the light receiving unit 3c from below, and a calculation device 3d that is stored in the detection device main body 3b and operates with a storage battery or the like (not shown).
  • the leg portion 3a is provided as appropriate according to the application, and is a fixed leg, a telescopic leg, a rolling wheel, a driving wheel, a steering wheel, a crawler, or the like. Sometimes, they are omitted.
  • the detection device main body 3b is also provided in a variety of forms depending on the ablation, such as a dedicated box-shaped body, a vehicle body, a movable member mounted on a work vehicle or heavy equipment, or an automatic machine. It may be divided into a movable member that supports the light receiving unit 3c and a housing that houses the arithmetic unit 3d.
  • the light receiving section 3c (see FIG. 1 (b)) is often formed as a straight rod having a diameter of several centimeters and a length of several tens of centimeters. It may be thicker, thinner, longer or shorter as long as it can be held in a line in the longitudinal direction.
  • the light receiving elements 14 are arranged at equal pitches on the four side surfaces of the rod-shaped support member 13 having a prismatic shape, with the light-receiving surface facing outward (in the figure, each side surface of the rod-shaped support member 13). Only three light-receiving elements 14 are drawn).
  • the rod-shaped support member 13 is accommodated in the axial center position of the cylindrical outer cylinder 11 in an idle state (the illustration of the fixed state of the end and the like is omitted).
  • the diffusion member 12 is attached to the entire peripheral surface, and the outer cylinder 11 also serving as a cover is made of a transparent material such as acrylic. It comprises a large number of light receiving elements 14 arranged in four rows surrounding 3 and a diffusion member provided at a certain distance in front of the light receiving surfaces.
  • the diffusion member 12 may be a member known in Japanese Patent Application Laid-Open No. 62-74607 or the like, or may be any other member.
  • acryl By subjecting a transparent plastic film such as polycarbonate to appropriate surface treatment or fine unevenness processing, a plate-like or film-like body having a light diffusion function and flexibility is obtained. At that time, the diffusing function also has anisotropy, and the transmitted light is expanded in a certain direction. It should be scattered but not as diffused as possible in the direction perpendicular to it. Then, when attaching the diffusion member 12 to the outer cylinder 11, the diffusion direction is adjusted to the direction of the axis of the outer cylinder 11.
  • the diffusion member 12 spreads the light traveling toward the light receiving surface of the light receiving element 14 in the column direction of the light receiving element 14, the diffusion in the direction orthogonal to the diffusion is smaller than the diffusion. Become.
  • the diameter of the light beam 2 and the diffusion capacity of the diffusion member 12 are taken into consideration, and the diffusion member 1 is selected. Selection is made so that when the light beam 2 passing through 2 reaches the side surface of the rod-shaped support member 13, it spreads at least twice the array pitch of the light receiving elements 14.
  • the diffusing member 12 spreads the light beam 2 over a plurality of light receiving elements 14 when spreading the light beam 2.
  • the light receiving element 14 photoelectrically converts the amount of light received by the light beam 2 received on the light receiving surface and outputs the converted light.
  • parallel connection corresponding to the double row is introduced. That is, the outputs of the respective light receiving elements 14 are OR-coupled to each other in the same order in each column, corresponding to the four columns.
  • the amount of light received at that position is appropriately reflected.
  • the arithmetic unit 3d it is sufficient to process only one row, that is, no matter how many rows of the light receiving elements 14 are arranged, the received light amount data to be input and calculated is It is after being put together.
  • the arithmetic unit 3d calculates the light receiving center position in the row direction of the light receiving elements, that is, in the longitudinal direction of the light receiving section 3c, based on the light receiving amounts of the large number of light receiving elements 1.4.
  • a microphone port processor 24 is provided to process the operation with a programmatic electronic circuit, and an input circuit 21 to 2 for converting the output of the light receiving element 14 into digital data and taking it into the microprocessor 24. 3 are also provided.
  • a start control circuit 25 + 26 for performing timing control such as input start for the input circuits 21 to 23 is also provided.
  • the input circuits 21 to 23 include an amplifier circuit 21 for amplifying the combined output of the four light receiving elements 14 and a reset automatically and repeatedly at a predetermined cycle corresponding to the scanning cycle of the light beam 2. To return to the reset state due to slow discharge, etc. A set of a peak hold circuit 22 that holds the maximum value of the output of the path 21 and an AZD conversion circuit 23 that converts the analog output into a digital value is provided for one row of the light receiving element 14.
  • the start control circuit 25 + 26 includes a D / A conversion circuit 25 for converting the threshold value transmitted from the microprocessor 24 as a digital value into an analog value, the threshold value and the output of each amplification circuit 21. And an AZD control circuit 26 that controls to start A / D conversion operation for all A / D conversion circuits 23 at the same time if even one output exceeds the threshold value. ing.
  • the microprocessor 24 receives the received light amount data from each of the AZD conversion circuits 23 and updates the received light amount data string 24 b in the memory.
  • a center position calculation routine 24c for calculating a light receiving center position by performing a weighting calculation based on 4b, for example, and an output routine 24 for outputting the calculation result to a recording medium or a host processor (not shown) according to the application purpose.
  • the threshold setting routine 24f is installed. Then, those program processes are repeatedly executed at the above-described predetermined cycle.
  • a typical example of the method of calculating the light receiving center position by the center position calculation routine 24c is as follows.
  • a distribution function such as a Gaussian distribution having one peak is applied to the intensity distribution of the laser beam, and the peak of the distribution function is obtained. It calculates the position. Specifically, assuming that the distance from the origin of the mounting position of each light receiving element 14 in the row of light receiving elements 14 to the origin is L n, and the light receiving amount of each light receiving element 14 is P n, the light beam 2
  • the position detecting device 3 detects the light receiving center position with a resolution and accuracy finer than the mounting pitch of the light receiving elements 14.
  • FIG. 1 (a) is a side view of detecting the height of the laser beam scanning surface in combination with a projector for rotatingly irradiating a laser beam.
  • (A) relates to a state without a diffusion member
  • (b) relates to a state with a diffusion member.
  • FIG. 4 shows the effect of the diffusion member on the light-receiving element mounting pitch in comparison, wherein (a) relates to a state without the diffusion member and (b) relates to a state in which the diffusion member is provided.
  • FIG. 5 shows an example of calculation based on the light receiving state.
  • (A) and (b) show the light receiving state
  • (b) shows the calculating state
  • (c) and (b) show the good light receiving state.
  • the light receiving state where small reflections are superimposed is shown in (c)
  • the calculated state is shown in (d).
  • the two-dot chain line indicates the continuous intensity distribution of the laser beam
  • the solid line indicates the distribution state sampled by the light receiving element
  • the one-dot chain line indicates the threshold value
  • the dashed line indicates the amount of received light. The part of the data that was reduced by the noise suppression processing of the input routine 24a is shown.
  • the position detecting device 3 When measuring the height of the measuring surface 4 using the position detecting device 3 and the projector 1 (see Fig. 1 (a)), select one of the points on the measuring surface 4 as a reference point and project it there.
  • the tripod of the projector 1 is adjusted so that the beam light 2 that rotates 360 ° scans one horizontal plane.
  • the position detecting device 3 is placed on the measurement surface 4 where the height is to be measured.
  • the light receiving section 3c pierces the scanning surface of the light beam 2 and keeps a vertical / vertical state as much as possible. Since many light receiving elements 14 face the light receiving surface in all directions, it is not necessary to worry about the direction of the side surface of the position detecting device 3.
  • the light beam 2 that travels horizontally with a diameter of several mm to a few mm and reaches the light receiving portion 3c directly hits the row of the light receiving elements 14 without the diffusion member 12 (FIG. 3 (a).
  • the light-receiving element 14 mounted in that area is sensitive (see Fig. 4 (a)).
  • the diffusion member 12 is provided (see Fig. 3 (b)).
  • the beam diameter expands in the row direction of the light-receiving elements 14, and the light-receiving elements 14 mounted in the wide area are responsive (see Fig. 4 (b)).
  • the mounting pitch of the light receiving element 14 By broadening the mounting pitch of the light receiving element 14 at a ratio that the light beam 2 spreads at the light receiving element 14, almost the same received light amount data can be obtained although the light amount is small. Since the isotropic type is adopted, the decrease in the amount of received light is Of being the spread was an amount corresponding to the suppression gap, the use of the wider of the light receiving surface at low cost to the light receiving element 1 4, it can be avoided.
  • the data of the received light amount (see FIG. 5 (a)) in which the outputs of the light receiving elements 14 in a plurality of rows are put into one row are input to the input circuits 21 to 23.
  • the received light amount data sequence 24b is taken in by the input routine 24a via the input routine 24a.
  • the threshold value is recalculated by the threshold value setting routine 24 f based on the maximum value 24 e and is sent to the A / D control circuit 26 via the D / A conversion circuit 25. Is updated to the latest one according to the immediately preceding sampling result. (See FIG. 5 (b).)
  • the input routine 24a performs noise suppression processing on each data of the received light amount data string 24b, and cuts off the data by the threshold value. That is, the threshold value is subtracted from the data values above the threshold value, and data values below the threshold value are set to " ⁇ ".
  • the position of the light beam 2 is detected by the position detection device 3 every time the beam light 2 is scanned.
  • the mounting pitch of the light receiving elements 14 is expanded, so that a wide range of position detection is inexpensive. Can be done at any time.
  • FIG. 6 shows an example of calculation based on the light receiving state in which large reflection is superimposed.
  • A) is the light receiving state
  • (b) is the input state
  • (c) is the maximum value detection state
  • (d) is the calculation result. is there.
  • a dashed line indicates a threshold value
  • a broken line indicates a portion of the received light amount data which has been reduced by the noise suppression processing or the reflection component suppression processing.
  • This position detection device differs from that of the first embodiment in that the center position calculation routine 24c is modified so as to also perform a reflection component suppression process using an extreme value.
  • the new center position calculation routine 24c performs a process of finding as many local values as possible for the received light amount data sequence 24b prior to the calculation of the center position by the above-described weighting calculation and the like. And a process of suppressing the single value.
  • the data value suppression processing only needs to be performed when a plurality of local maxima are obtained. However, when a plurality of local maximal values other than the maximum value are found, they are applied to each occurrence location.
  • the specific contents of the processing may be that the data value of the location where the local maximum occurs is suddenly set to “0”, or the data value of the location where the local maximum occurs is reduced to a predetermined ratio less than “1”.
  • the maximum value 1 which is also the maximum value is kept as it is, and the data value suppression processing is applied to the occurrence position of the maximum value 2 which is the maximum value other than the maximum value. Then, in the received light amount data string 24b, data values substantially similar to the data values when there is no large reflected light (see FIGS. 5 (b) and 5 (d)) remain (see FIG. 6 ( d) See).
  • FIG. 7 shows the structure of the main part, (a) is a plan view of the light receiving section, (b) is a front view of the light receiving element and the support member, and (c) is a right side view thereof.
  • This position detecting device is different from those of the first and second embodiments in that the supporting member 13 is changed from a square rod shape to a plate shape.
  • a double-sided printed wiring board is used for the support member 13, and a single row of light receiving elements 14 is mounted on one surface with the leads bent at about 90 °, and the light receiving elements 14 are mounted on the other surface. 14 are mounted in parallel with two rows with the lead bent by about 30 °, and the three rows of light-receiving elements 14 change the direction by 120 ° to share 360 °. I have. In this case, the number of light receiving elements 14 can be reduced and the sensitivity change according to the direction can be reduced as compared with the above-described four-row type. Fourth embodiment
  • the floor surface unevenness measuring instrument whose side view and plan view are shown in FIG. 8 employs the above-described position detecting device in its position detecting section.
  • the position detecting device 3 is movable by adopting a rolling wheel on the leg 3a, and is further provided with a moving distance meter for measuring the moving distance.
  • An operating unit 3f is provided at the tip of a handle 3e extending upward from the detection device main body 3b, so that a moving pattern, necessary initial values, and the like can be set.
  • the detection device body 3b includes a recording device that records a series of received light amount data, an information processing device that processes the data to create a contour line, and the like, in addition to the calculation device 3d, or separately. It is provided integrally with the device 3d.
  • a floodlight can be installed over almost the entire measurement surface 4. 1 is set, and then the position detection device 3 is moved according to a preset movement pattern. When setting the movement pattern, enter the type, position, and movement direction of each element of the movement pattern, and move the position detection device 3 on the measurement surface 4 completely (see the arrow in Fig. 8 (b)). See broken line). Then, the position detecting device 3 measures the light receiving height of the light beam 2 while measuring the moving distance with the moving distance meter, obtains a plane position according to the moving pattern and the moving distance, and based on the detected light receiving height, the floor position is obtained. Calculate the unevenness of surface 4. Fifth embodiment
  • the leveling control device whose perspective view is shown in Fig. 9 (a) also uses the above-mentioned position detection device. Specifically, two light receiving sections 3c are implanted in the blade (movable member) of a bulldozer (heavy machine), and based on the position of the light beam 2 received by the light receiving sections 3c, the positions are aligned. (Refer to Fig. 9 (b).) Height control is performed so that the height of blade 6 follows the target value. If both positions are displaced (refer to Fig. 9 (c)), the displacement is eliminated. Such tilt control is also performed.
  • a plurality of projectors 1 are installed along the measurement surface 4 and each projector 1 scans and irradiates.
  • a plurality of reference planes having different allocation ranges and / or different heights are created by the light beam 2 to be emitted.
  • the bulldozer position detecting device 3 has a long light receiving portion 3c extending over both reference surfaces.
  • ground leveling control and attitude control are performed based on the beam light 2, and a plurality of light emitters 1
  • ground control and attitude control are performed based on the strongest light beam 2.
  • ground control and attitude control are performed based on the light beam 2 closest to the center position of the light receiving unit 3c.
  • the reference floodlights 1 are sequentially switched, and the leveling work of the measurement surface 4 by the bulldozer is automatically controlled over a long distance.
  • the heavy equipment attitude control device whose perspective view is shown in FIG. 11 also employs the above-described position detection device for its position detection unit.
  • three light receiving sections 3c are implanted in the movable member 7 of the heavy equipment. Then, when the light beam 2 is emitted from the light projector 1, the light receiving position is detected by each light receiving unit 3c. Since they are arranged corresponding to the positions of the vertices of the triangle, the posture of the movable member 7 and the heavy equipment is tertiarily calculated by performing a predetermined operation based on the positions, that is, an operation of solving an equation based on a known geometric relationship. It can be grasped from the beginning, and its posture (pitching, mouth ring, bowing) can be controlled. Seventh embodiment
  • the position detecting device whose overall structure is shown in FIG. 12 is a small-sized and inexpensive simple type by limiting the range in which the light beam 2 can be received. That is, in the position detecting device 3, the light receiving unit 3c is also combined with the detecting device body 3b in a box shape, and the arithmetic unit 3d is stored in the position detecting device 3 together with the diffusing member 12 and the light receiving element 14. . In addition, an elongate light receiving window 3 g is formed on the outer surface thereof, and a display portion 3 h for numerically indicating the light receiving position is provided on the outer surface.
  • the diffusion member 12 is not a transmission type but a reflection type, and the light receiving elements 14 are mounted in a single row on one surface of the elongated plate-shaped support member 13. Thereby, the position detection device 3 becomes thin and highly portable.
  • the position detecting device 3 is held by hand or attached to the surface to be measured, and the light receiving window 3 g is directed toward the projector 1. Then, the light beam 2 radiated from the light receiving window 3 g is reflected by the surface of the diffusion member 12 and advances toward the light receiving element 14 while spreading only in the longitudinal direction, that is, in the column direction. Then, the light receiving center position in the row of the light receiving elements 14 is obtained based on the light receiving state, and is displayed on the display unit 3h.
  • the light receiving position can be easily known by reading the display value.
  • FIG. 13 shows the relationship between the installation position of the diffusion member 12 and the mounting pitch of the light receiving element 14 .
  • the position detection device uses a diffusion member in order to perform a wide range of measurement with as few light receiving elements 14 as possible.
  • the light beam 2 expanded in step 12 is made to reach two or more light receiving elements 14.
  • the value obtained by multiplying the distance d between the diffusion member 1 2 and the row of the light receiving elements 14 by the tangent (tan ⁇ ) of the diffusion angle 0 of the diffusion member 12 is doubled, and the light beam 2
  • the pitch a and the distance d are determined so that the value obtained by adding the diameter D0 of the light receiving element 14 is twice or slightly larger than the mounting pitch a of the light receiving element 14.
  • the above relational expression is simplified to [a ⁇ d].
  • the distance d between the diffusion member 12 and the row of the light receiving elements 14 be approximately twice the mounting pitch a of the light receiving elements 14.
  • a plurality of received light amount data can be obtained with respect to irradiation of the beam light, so that the pitch of the light receiving element is imposed by the beam diameter.
  • the diffusing member since the diffusing member has anisotropy, not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the selection of the light receiving elements are relaxed. A position detection device was realized.
  • the position detection device of the present invention is capable of receiving light regardless of the direction from which light is received. A position detector with less restrictions on the direction of the position could be realized.
  • the diffusion member and its support are individually formed and deformed so that the diffusion member conforms to the shape of the support, so that the beam diameter can be reduced.
  • the pitch of the light receiving element is imposed by the beam diameter.
  • the restrictions on the operating environment were also lenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A position detector for detecting the position of a light beam by receiving the beam capable of relieving a restriction on the pitch of a light receiving element by a beam diameter, comprising a large number of light receiving elements (14) disposed in a row and a calculator (3d) for calculating a light receiving center position in the direction of the row based on the amount of received light, wherein a diffusion member (12) for diffusing the light (2) moving toward light receiving surfaces in the direction of the row is installed in front of the light receiving faces of the large number of light receiving elements (14), whereby, the light is radiated in a range wider than the light beam diameter obtained before the diffusion, the light beam can be received accurately whether element pitches are small or large, the light beam can be passed through the plurality of light receiving elements when the light beam is diffused, the diffusion in the direction orthogonal to the direction of the row can be reduced, and the light receiving elements can be disposed in multiple rows to surround a bar support member, and a flexible platy body or a film body can be used for the diffusion member.

Description

明細書 位置検出装置 技術分野  Description Position detection device Technical field
この発明は、 ビーム光を受けてその位置を検出する位置検出装置に関し、 詳し くは、 多数の受光素子が列設されていてそれらの受光量に基づきその列方向にお ける受光中心位置を演算装置が算出する位置検出装置に関する。  The present invention relates to a position detection device that receives a light beam and detects the position, and more particularly, has a large number of light receiving elements arranged in a row, and calculates a light receiving center position in the column direction based on the amount of received light. The present invention relates to a position detection device calculated by the device.
このような位置検出装置は、 大抵レーザビームを 3 6 0 ° 以上またはそれ未満 で回転走查 ·旋回走査させながら照射する投光器と共に用いられ、 受光部をセッ 卜する際には受光素子の列方向がビーム光の走査面となるべく直交するようにさ れ、 その走查面を基準とした位置検出を行う。  Such a position detecting device is usually used together with a projector that emits a laser beam while rotating or rotating at a angle of 360 ° or more or less, and when setting the light receiving unit, it is necessary to set the light receiving element in the column direction. Is made as orthogonal as possible to the scanning plane of the light beam, and position detection is performed based on the scanning plane.
土木工事や建設工事の現場などで鉛直方向や水平方向の位置を検出するのに便 利であり、 例えば、 ビルや道路のコンクリート面の凹凸計測機や、 ブルドーザの 整地制御装置に利用される。 整地制御装置では、 ブルドーザのブレードに受光部 を設置しておき、 仕上げ基準となるレーザビーム走査面が常に受光素子列におけ る中央等の所定位置に来るようにブレードを自動制御で上下させることにより、 正確な整地作業が行われる。 その他、 モーターグレーダや, アスファルトフィニ シヤー、 コンクリート均し機械などの高さ計測装置に用いられる。 バックホー ( 掘削機) の掘削深さ制御装置にも利用される。 背景技術  It is useful for detecting vertical and horizontal positions in civil engineering and construction sites, and is used, for example, for measuring the unevenness of concrete on buildings and roads, and for controlling the leveling of bulldozers. In the leveling control device, the light receiving section is installed on the blade of the bulldozer, and the blade is automatically moved up and down so that the laser beam scanning surface, which is the finishing reference, is always at a predetermined position such as the center of the light receiving element row. Thus, accurate leveling work is performed. In addition, it is used for height measuring devices such as motor graders, asphalt finishers, and concrete leveling machines. It is also used for backhoe (excavator) excavation depth control equipment. Background art
列設された多数の受光素子と、 それらの受光量に基づいて受光素子の列方向に おける受光中心位置を算出する演算装置とを備えた従来の位置検出装置では、 ビ 一ム光を受けてその位置を検出する際に、 各受光素子の取付位置を受光量で重み 付けして算出する、 といった演算が行われている。 また、 受光量が所定の閾値以 上に達したビーム光だけを有効な信号 ·データと見なし、 その条件に該当する一 つ又は複数の受光素子の受光量に基づいて受光中心位置の算出を行うものがある 。 さらに、 受光素子の受光面の前に光ファイバを設けたものや (特開平 3— 1 2 2 5 1 6号公報) 、 受光素子の受光面の前に屈折部材 ·拡散部材を設けたものも 有るが (特開昭 6 2— 7 6 4 0 7号公報) 、 その屈折方向 ·拡散方向は、 受光面 に向かって進む光を受光素子の列と直交する方向へ拡げるようになつており、 受 光素子の列方向に拡げるようにはなっていない。 発明の開示 A conventional position detecting device including a large number of light receiving elements arranged in a row and an arithmetic unit that calculates a light receiving center position in the column direction of the light receiving elements based on the light receiving amounts thereof receives a beam light. When detecting the position, calculation is performed such that the mounting position of each light receiving element is weighted by the amount of received light and calculated. In addition, only the light beam whose light reception amount has reached a predetermined threshold or more is regarded as valid signal data, and the light reception center position is calculated based on the light reception amount of one or more light receiving elements corresponding to the condition. There is something. Furthermore, an optical fiber is provided in front of the light receiving surface of the light receiving element (see JP-A-3-1-22). There is also a type in which a refraction member and a diffusion member are provided in front of the light receiving surface of the light receiving element (Japanese Patent Laid-Open No. 62-74607), but the refraction direction and the diffusion direction. Is designed to spread light traveling toward the light receiving surface in a direction orthogonal to the rows of light receiving elements, but not in the direction of the rows of light receiving elements. Disclosure of the invention
このような従来の位置検出装置では、 種々の手法を用いて位置検出能力を向上 させており、 特に、 受光面の前に光ファイバを設けたものでは、 受光素子のピッ チよりも広いピッチで受光位置を検出しうるようになっている。 また、 重み付け 演算を行うものでは、 受光素子のピッチよりも細かい分解能で受光位置を検出し うるようになっている。  In such a conventional position detecting device, the position detecting ability is improved by using various methods, and in particular, when an optical fiber is provided in front of the light receiving surface, the pitch is wider than the pitch of the light receiving element. The light receiving position can be detected. Also, in the case of performing the weighting calculation, the light receiving position can be detected with a resolution finer than the pitch of the light receiving elements.
しかし、 何れにしても、 測定範囲の長さをビーム光の径で除した数より少ない 個数の受光素子では正確な測定が行えないため、 測定距離が長いと、 受光素子や 付加部材の個数が増えて、 コストアップが避けられない、 という不都合がある。 そこで、 コストアップを避けつつ又はコストダウンを図りつつ、 より長い測定 範囲に亘つて位置測定が正確に行えるよう、 具体的には測定距離とビーム径との 比より受光素子数が多ければもとより少数の受光素子でも正確な位置測定が行え るよう、 位置検出装置の構造等に工夫を凝らすことが技術的な課題となる。 この発明は、 このような課題を解決するためになされたものであり、 ピ一ム径 によって受光素子のピッチに課される制約が緩い位置検出装置を実現することを 目的とする。  However, in any case, accurate measurement cannot be performed with a smaller number of light receiving elements than the number obtained by dividing the length of the measurement range by the diameter of the beam light. Therefore, if the measuring distance is long, the number of light receiving elements and additional members is reduced. There is an inconvenience that cost increases are inevitable. Therefore, in order to accurately perform position measurement over a longer measurement range while avoiding cost increase or reducing cost, specifically, the number of light receiving elements is smaller than the ratio of the measurement distance to the beam diameter. It is a technical issue to devise the structure of the position detection device so that accurate position measurement can be performed even with the light-receiving element. The present invention has been made to solve such a problem, and an object of the present invention is to realize a position detecting device in which a restriction imposed on a pitch of a light receiving element by a beam diameter is loose.
以下、 このような課題を解決するために発明された第 1乃至第 6の解決方法に ついて説明する。 第 1の解決方法の位置検出装置は、 列設された多数の受光素子と、 それらの受 光量に基づいて前記受光素子の列方向における受光中心位置を算出する演算装置 とを備えた位置検出装置において、 前記多数の受光素子の受光面の前に、 その受 光面に向かって進む光を透過させて又は反射して前記列方向へ拡げる拡散部材が 設けられている、 というものである。 なお、 列方向と直交する方向にも拡げるか否かは任意であるが、 その直交方向 には、 受光量の減少を防止する観点から、 受光素子の幅を超えては拡げない又は その幅に収まるよう絞るのが望ましい。 Hereinafter, first to sixth solving methods invented to solve such a problem will be described. A position detection device according to a first solution is a position detection device including: a large number of light receiving elements arranged in a row; and an arithmetic unit that calculates a light receiving center position of the light receiving elements in a column direction based on the received light amounts. In the above, a diffusion member is provided in front of the light receiving surfaces of the plurality of light receiving elements to transmit or reflect light traveling toward the light receiving surfaces and spread the light in the column direction. It is optional whether or not it can be expanded in the direction orthogonal to the column direction.However, in the orthogonal direction, from the viewpoint of preventing a decrease in the amount of received light, the width should not exceed or exceed the width of the light receiving element. It is desirable to narrow down to fit.
このような第 1の解決方法の位置検出装置にあっては、 受光素子に向けられた 光が進行中に拡散部材によって拡げられることから、 少なくとも受光素子の列方 向に関しては拡散前の光のビーム径より広い範囲に光が照射されるので、 それに 対応して受光素子のピッチも広くすることができ、 そのようにしても何れかの受 光素子にて受光が行われる。 なお、 光の拡散による受光状態の変化は、 拡散率等 に基づく演算にて補正すれば良い。  In the position detecting device according to the first solution, since the light directed to the light receiving element is spread by the diffusion member while the light is traveling, at least the light in the column direction of the light receiving element is not diffused. Since the light is applied to a range wider than the beam diameter, the pitch of the light receiving elements can be correspondingly widened, and even in such a case, light is received by any of the light receiving elements. The change in the light receiving state due to the diffusion of light may be corrected by an operation based on the diffusion rate or the like.
これにより、 受光素子の列設ピッチが照射光の径より狭いときでも広いときで も、 的確に受光がなされて、 受光位置が求められることとなる。  Thus, even when the arrangement pitch of the light receiving elements is narrower or wider than the diameter of the irradiation light, the light is accurately received, and the light receiving position is obtained.
したがって、 この発明によれば、 ピーム径によって受光素子のピッチに課され る制約が緩い位置検出装置を実現することができる。  Therefore, according to the present invention, it is possible to realize a position detecting device in which the restriction imposed on the pitch of the light receiving elements by the beam diameter is loose.
その結果、 受光素子のピッチを拡げれば、 比較的少数の受光素子でも広い範囲 で位置を検出することが可能となる。 また、 受光素子のピッチが同じであれば、 より多くの受光素子にて同時受光がなされて、 受光量の分布状態を示すデータ量 が増えるので、 演算の自由度や, 精度, 分解能などを高めることが可能となる。 第 2の解決方法の位置検出装置は、 上記の第 1の解決方法の位置検出装置であ つて、 前記拡散部材が、 ビーム光を拡げるに際して前記多数の受光素子のうち複 数個に亘らせるようになつている、 というものである。  As a result, if the pitch of the light receiving elements is increased, a relatively small number of light receiving elements can detect the position in a wide range. Also, if the pitch of the light receiving elements is the same, more light receiving elements receive light at the same time, and the amount of data indicating the distribution of the received light amount increases, so that the degree of freedom of calculation, accuracy, and resolution are improved. It becomes possible. A position detection device according to a second solution is the position detection device according to the first solution, wherein the diffusing member spreads a plurality of light receiving elements when spreading the light beam. It is like that.
このような第 2の解決方法の位置検出装置にあっては、 ビーム光が照射される と、 その受光量データが複数得られる。  In the position detecting device according to the second solution, when the light beam is irradiated, a plurality of received light amount data is obtained.
これにより、 受光中心位置の算出に際して、 重み付け演算や, 近似関数を当て はめる演算, 内挿演算, .外挿演算, 最尤法の演算, ファジー演算など種々の演算 を利用することが可能となる。  As a result, in calculating the light receiving center position, it is possible to use various calculations such as a weighting calculation, a calculation to which an approximate function is applied, an interpolation calculation, an extrapolation calculation, a maximum likelihood calculation, and a fuzzy calculation. .
したがって、 この発明によれば、 ビーム径によって受光素子のピッチに課され る制約が緩いばかりか演算手法に関する制約も緩い位置検出装置を実現すること ができる。 その結果、 正確な位置測定が行える。 第 3の解決方法の位置検出装置は、 上記の第 1 , 第 2の解決方法の位置検出装 置であって、 前記拡散部材に、 前記列方向への拡散に比べてそれと直交する方向 への拡散が少なくなるようなものが採用されている、 というものである。 Therefore, according to the present invention, it is possible to realize a position detecting device in which not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the calculation method are loose. As a result, accurate position measurement can be performed. A position detection device according to a third solution is the position detection device according to the first or second solution, wherein the diffusion member is provided in a direction orthogonal to the column direction in comparison with the diffusion in the column direction. Something that reduces diffusion is adopted.
このような第 3の解決方法の位置検出装置にあっては、 受光素子の列方向と直 交する方向への拡散が少ないので、 照射された光のうち拡散によって受光素子か ら横へ外れてしまう割合も少なくて済む。 .  In the position detecting device according to the third solution, since the diffusion of the light receiving element in the direction orthogonal to the column direction is small, the irradiated light is laterally separated from the light receiving element by the diffusion. The rate of losing is small. .
これにより、 受光素子の前に拡散部材を導入しても、 受光量の減少は抑制 -防 止されるので、 受光素子の感度を上げないでも済むこととなる。  As a result, even if a diffusion member is introduced before the light receiving element, a decrease in the amount of received light is suppressed and prevented, so that the sensitivity of the light receiving element does not need to be increased.
したがって、 この発明によれば、 ビーム径によって受光素子のピッチに課され る制約が緩いばかりか受光素子の採択に関する制約も緩い位置検出装置を実現す ることができる。 第 4の解決方法の位置検出装置は、 上記の第 1〜第 3の解決方法の位置検出装 置であって、 前記受光素子の列が支持部材を囲んで複数形成されている、 という ものである。 なお、 支持部材は、 棒状や板状などの長物が好適であるが、 それに 限らず、 外周面 ·外側面 ·表裏面などに複数列の受光素子を配設可能なものであ れば良い。  Therefore, according to the present invention, it is possible to realize a position detecting device in which not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the selection of the light receiving elements are loose. A position detection device according to a fourth solution is the position detection device according to the first to third solutions, wherein a plurality of rows of the light receiving elements are formed around a support member. is there. The support member is preferably a long member such as a bar or a plate, but is not limited thereto, and may be any member in which a plurality of rows of light receiving elements can be arranged on the outer peripheral surface, the outer surface, the front and back surfaces, and the like.
このような第 4の解決方法の位置検出装置にあつては、 複列化された受光素子 によって支持部材が囲まれているので、 それに向けて光が照射されると、 その照 射が何れの方向からなされたものであっても、 支持部材の外周面等に光が当たり さえすれば、 位置検出に必要な受光が何れかの受光素子によって遂行される。 これにより、 ほぼ 3 6 0 ° の広角な範囲に亘つて受光することが可能となるの で、 投光器と向きを合わせるといった調整を一々行わなくて済むこととなる。 したがって、 この発明によれば、 ビーム径によって受光素子のピッチに課され る制約が緩いばかりか受光の向きに関する制約も緩い位置検出装置を実現するこ とができる。 第 5の解決方法の位置検出装置は、 上記の第 1〜第 4の解決方法の位置検出装 置であって、 前記拡散部材が可撓性の板状体又は膜状体で出来ている、 というも のである。 In the position detecting device according to the fourth solution, since the support member is surrounded by the light receiving elements arranged in a double row, when the light is irradiated toward the support member, the irradiation is Even if the light is emitted from the direction, any light required for position detection is performed by any of the light receiving elements as long as the light hits the outer peripheral surface or the like of the support member. As a result, it is possible to receive light over a wide angle range of approximately 360 °, so that it is not necessary to perform one adjustment such as matching the direction with the projector. Therefore, according to the present invention, it is possible to realize a position detecting device in which not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the light receiving direction are loose. The position detecting device of the fifth solution is the position detecting device of the first to fourth solutions. Wherein the diffusion member is made of a flexible plate or film.
このような第 5の解決方法の位置検出装置にあっては、 拡散部材とその支持体 とが個別に加工形成され、 その後に、 拡散部材が支持体に取り付けられるが、 そ の際、 拡散部材は支持体の形状に適合して変形する。  In the position detecting device according to the fifth solution, the diffusion member and its support are separately formed and processed, and then the diffusion member is attached to the support. Deforms according to the shape of the support.
これにより、 平面に限らず曲面状であっても拡散部材を容易に装備することが 可能となる。  This makes it possible to easily equip the diffusion member not only with a flat surface but also with a curved surface.
したがって、 この発明によれば、 ピ一ム径によって受光素子のピッチに課され る制約が緩いばかりかそれに必要な拡散部材の装備に関する制約も緩い位置検出 装置を実現することができる。 第 6の解決方法の位置検出装置は、 上記の第 1〜第 5の解決方法の位置検出装 置であって、 前記演算装置が、 前記受光中心位置の算出に際して、 前記受光素子 の列に対応した受光量のデータ列について極大値を求め、 極大値を複数得たとき 、 最大値以外の極大値の発現箇所それぞれに対してデータ値を抑制する処理を施 すようになっている、 というものである。  Therefore, according to the present invention, it is possible to realize a position detecting device in which not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter are loose, but also the restrictions on the installation of the necessary diffusion member are loose. A position detection device according to a sixth solution is the position detection device according to any one of the first to fifth solutions, wherein the computing device corresponds to the row of the light receiving elements when calculating the light receiving center position. A maximum value is obtained for the data sequence of the received light amount obtained, and when a plurality of maximum values are obtained, a process of suppressing the data value is performed for each occurrence of the maximum value other than the maximum value. It is.
このような第 6の解決方法の位置検出装置にあっては、 直接の受光に加えて反 射光も有ると、 そしてそれらの受光位置がずれていると、 極大値が複数発現する ことが有りそのまま演算したのでは反射光のデータによって中心位置の算出値が 直接光の位置よりも反射光の位置寄りにずれてしまうところ、 反射光に対応した 極大値の発現箇所についてはデータ値の抑制処理が施されるので、 反射光に起因. する不所望な算出値の変動は回避される又は抑制される。  In such a position detection device of the sixth solution, if there is reflected light in addition to direct light reception, and if those light reception positions are shifted, a plurality of local maximum values may appear and there is no change. The calculated value of the center position shifts closer to the position of the reflected light than the position of the direct light due to the data of the reflected light, but the data value suppression processing is performed for the location where the maximum value corresponding to the reflected light appears Therefore, an undesired change in the calculated value due to the reflected light is avoided or suppressed.
これにより、 反射光があっても位置検出は正確に行われることとなる。  Thus, even if there is reflected light, the position can be accurately detected.
したがって、 この発明によれば、 ビーム径によって受光素子のピッチに課され る制約が緩いばかりか使用環境に関する制約も緩い位置検出装置を実現すること ができる。 図面の簡単な説明  Therefore, according to the present invention, it is possible to realize a position detecting device in which not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the use environment are loose. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の位置検出装置の第 1実施例に関し、 (a ) が、 レ一ザビー ムを回転照射する投光器と本発明の位置検出装置とを組み合わせた位置検出シス テムの側面図であり、 (b) が本発明の位置検出装置における受光部の斜視図で ある。 第 2図.は、 演算装置のブロック図である。 第 3図は、 拡散部材の作用を対 比して示し、 (a) が拡散部材の無い状態、 (b) が拡散部材を設けた状態に関 する。 第 4図は、 拡散部材が受光素子取付ピッチに及ぼす効果を対比して示し、 (a) が拡散部材の無い状態、 (b) が拡散部材を設けた状態に関する。 なお、 二点鎖線は、 レーザビームの連続的な強度分布を示し、 実線は、 受光素子で標本 化した分布状態を示している。 第 5図は、 受光状態に基づく演算例を示し、 (a ) と (b) は良好な受光状態に関して (a) が受光状態で (b) が演算状態であ る。 また、 (c) と (d) は小さな反射の重畳した受光状態に関し、 (c) が受 光状態で、 (d) が演算状態である。 なお、 一点鎖線は、 閾値を示し、 破線は、 受光量デ一夕のうちノィズ抑制処理にて減じられた部分を示す。 強制的に零にさ れた受光量データを示す。 FIG. 1 relates to a first embodiment of the position detecting device of the present invention, wherein (a) FIG. 2 is a side view of a position detection system in which a projector for rotatingly irradiating a beam and a position detection device of the present invention are combined, and (b) is a perspective view of a light receiving unit in the position detection device of the present invention. FIG. 2 is a block diagram of the arithmetic unit. FIG. 3 shows the operation of the diffusion member in comparison, where (a) relates to a state without the diffusion member and (b) relates to a state where the diffusion member is provided. FIG. 4 shows the effect of the diffusion member on the light receiving element mounting pitch in comparison, wherein (a) relates to a state without the diffusion member and (b) relates to a state where the diffusion member is provided. The two-dot chain line shows the continuous intensity distribution of the laser beam, and the solid line shows the distribution state sampled by the light receiving element. Fig. 5 shows an example of calculation based on the light receiving condition. (A) and (b) show the light receiving condition and (b) the calculating condition with respect to the good light receiving condition. (C) and (d) relate to the light receiving state where small reflections overlap, (c) is the light receiving state, and (d) is the calculation state. The dashed line indicates the threshold value, and the dashed line indicates the portion of the received light amount data that has been reduced by the noise suppression processing. The received light amount data is forcibly set to zero.
第 6図は、 本発明の位置検出装置の第 2実施例について、 大きな反射の重畳し た受光状態に基づく演算例を示し、 (a) が受光状態、 (b) が入力状態、 (c ) が極大値検出状態、 (d) が演算結果である。 なお、 一点鎖線は、 閾値を示し 、 破線は、 受光量データのうちノイズ抑制処理や反射成分抑制処理にて減じられ た部分を示す。  FIG. 6 shows an example of calculation based on a light receiving state in which large reflection is superimposed on the second embodiment of the position detecting device of the present invention, where (a) is a light receiving state, (b) is an input state, and (c) Is the maximum value detection state, and (d) is the calculation result. The dashed line indicates the threshold value, and the broken line indicates the portion of the received light amount data that has been reduced by the noise suppression processing or the reflection component suppression processing.
第 7図は、 本発明の位置検出装置の第 3実施例について、 要部の構造を示し、 (a) が受光部の平面図、 (b) が受光素子と支持部材の正面図、 (c) がその 右側面図である。  FIG. 7 shows the structure of a main part of a third embodiment of the position detecting device of the present invention, (a) is a plan view of a light receiving section, (b) is a front view of a light receiving element and a support member, (c) ) Is the right side view.
第 8図は、 本発明の位置検出装置の第 4実施例について、 床面凹凸測定機への 応用例を示し、 (a) が側面図、 (b) が平面図である。  FIG. 8 shows an example of application of a fourth embodiment of the position detecting device of the present invention to a floor unevenness measuring machine, where (a) is a side view and (b) is a plan view.
第 9図は、 本発明の位置検出装置の第 5実施例について、 ブルドーザのブレー ド制御装置への応用例を示し、 (a) が要部の斜視図、 (b) が高さ制御状態、 (c) が傾斜制御状態に関する。 第 10図は、 その走行状況を示し、 (a) が平 面図、 (b) が側面図である。  FIG. 9 shows an application example of a bulldozer to a blade control device according to a fifth embodiment of the position detecting device of the present invention, (a) is a perspective view of a main part, (b) is a height control state, (c) relates to the tilt control state. Fig. 10 shows the running conditions, (a) is a plan view and (b) is a side view.
第 1 1図は、 本発明の位置検出装置の第 6実施例について、 重機姿勢制御装置 への応用例を示す要部の斜視図である。 第 1 2図は、 本発明の位置検出装置の第 7実施例について、 全体構造を示し、 ( a ) が斜視図、 (b ) が縦断正面図、 (c ) が横断平面図である。 FIG. 11 is a perspective view of a main part showing an example of application of a sixth embodiment of the position detecting device of the present invention to a heavy equipment attitude control device. FIGS. 12 and 13 show the overall structure of a position detecting device according to a seventh embodiment of the present invention. FIG. 12 (a) is a perspective view, FIG. 12 (b) is a vertical sectional front view, and FIG. 12 (c) is a cross-sectional plan view.
第 1 3図は、 本発明の位置検出装置の第 8実施例について、 拡散部材の設置位 置と受光素子の取付ピッチとの関係を示し、 (a ) は、 何れかの受光素子に向け てビーム光が進むところ、 (b ) は、 受光素子の間に向けてビーム光が進むとこ ろである。  FIG. 13 shows the relationship between the installation position of the diffusion member and the mounting pitch of the light receiving elements in the eighth embodiment of the position detecting device of the present invention, and FIG. (B) is where the light beam travels between the light receiving elements.
図面に付した符号の説明  Description of reference numerals attached to drawings
1 投光器 (レーザビーム回転照射装置、 発光器)  1 Floodlight (Laser beam rotating irradiation device, light emitter)
2 ビーム光 (走查レ一ザ光、 回転レーザ光、 旋回ビーム光)  Two-beam light (scanning laser light, rotating laser light, turning beam light)
3 位置検出装置 (高さ測定装置、 移動体、 走行車両、 重機)  3 Position detection device (height measurement device, moving object, traveling vehicle, heavy equipment)
3 a 脚部 (足、 車輪、 クロ一ラ)  3a leg (foot, wheel, crawler)
3 b 検出装置本体 (受光部の支持体)  3 b Detector body (support for light-receiving part)
3 c 受光部 (受光素子列設部)  3 c Light-receiving part (light-receiving element array part)
3 d 演算装置 (電子回路)  3d arithmetic unit (electronic circuit)
3 e ハンドル  3 e handle
3 f 操作部  3 f Operation section
3 g 受光窓  3 g receiving window
3 h 表示部  3 h display
4 測定面 (床面、 路面)  4 Measurement surface (floor surface, road surface)
5  Five
6 ブレード (ブルドーザの可動部材、 高さ '傾き制御対象部材)  6 blades (movable member of bulldozer, height controlled object)
7 可動部材 (重機の姿勢制御対象部材)  7 Movable members (objects to control the attitude of heavy machinery)
1 1 外筒 (透明な保護カバ一、 拡散部材の支持体)  1 1 outer cylinder (transparent protective cover, diffusion member support)
1 2 拡散部材 (異方性拡散フィルム)  1 2 Diffusion member (anisotropic diffusion film)
1 3 棒状支持部材 (板状支持部材、 受光素子の支持部材)  1 3 Bar-shaped support member (plate-shaped support member, light-receiving element support member)
1 4 受光素子 (光電変換部材)  1 4 Light receiving element (photoelectric conversion member)
2 1 増幅回路 (アンプ)  2 1 Amplifier circuit (amplifier)
2 2 ピークホールド回路 (オート リセッ ト)  2 2 Peak hold circuit (auto reset)
2 3 A/D変換回路 2 4 マイクロプロセッサ 2 3 A / D conversion circuit 2 4 Microprocessor
2 4 a 入力ルーチン (データサンプリ ング手段)  2 4a Input routine (data sampling means)
2 4 b 受光量データ列 (レーザビームの強度分布データ)  2 4 b Received light amount data string (Laser beam intensity distribution data)
2 4 c 中心位置演算ル一チン  2 4 c Center position calculation routine
2 4 d 出力ルーチン  2 4d output routine
2 4 e 最大値  2 4 e Maximum value
2 4 f 閾値設定ルーチン (閾値設定手段)  2 4 f Threshold setting routine (threshold setting means)
2 5 D/A変換回路 (閾値設定手段)  2 5 D / A conversion circuit (threshold setting means)
2 6 A/D制御回路 (A/ D変換開始制御) 発明を実施するための最良の形態  2 6 A / D control circuit (A / D conversion start control) Best mode for carrying out the invention
本発明の位置検出装置を実施するための具体的な形態を、 以下の第 1〜第 8実 施例により説明する。  Specific embodiments for implementing the position detecting device of the present invention will be described with reference to the following first to eighth embodiments.
第 1図〜第 5図に示した第 1実施例は、 上述した第 1〜第 5の解決方法を具現 化したものであり、 第 6図に示した第 2実施例は、 上述した第 6の解決方法も具 現化したものであり、 第 7図に示した第 3実施例は、 それらの変形例である。 ま た、 第 8図に示した第 4実施例、 第 9図及び第 1 0図に示した第 5実施例、 第 1 1図に示した第 6実施例、 第 1 2図に示した第 7実施例は、 何れも、 応用例であ る。 さらに、 第 1 3図に示した第 8実施例は、 上述した第 2の解決方法をより具 体的にしたものである。  The first embodiment shown in FIGS. 1 to 5 embodies the first to fifth solutions described above, and the second embodiment shown in FIG. The third embodiment shown in FIG. 7 is a modification of the third embodiment. Also, the fourth embodiment shown in FIG. 8, the fifth embodiment shown in FIGS. 9 and 10, the sixth embodiment shown in FIG. 11, and the sixth embodiment shown in FIG. The seven embodiments are all application examples. Further, the eighth embodiment shown in FIG. 13 is a more specific version of the second solution described above.
なお、 それらの図示に際しては、 簡明化等のため、 ベース板や, フレーム, ポ ルト等の締結具, ヒンジ等の連結具などは図示を割愛し、 発明の説明に必要なも のや関連するものを中心に図示した。 第 1実施例  In the drawings, for simplicity and the like, base plates, fasteners such as frames and ports, and coupling tools such as hinges are omitted from the drawings, and are necessary and related to the description of the invention. Those are shown mainly. First embodiment
本発明の位置検出装置の第 1実施例について、 その具体的な構成を、 図面を引 用して説明する。 第 1図は、 その基本構造を示し、 (a ) が、 レ一ザビームを回 転照射する投光器と本発明の位置検出装置とを組み合わせた位置検出システムの 側面図であり、 (b ) が本発明の位置検出装置における受光部の斜視図である。 また、 第 2図は、 演算装置のブロック図である。 A specific configuration of the first embodiment of the position detection device of the present invention will be described with reference to the drawings. Fig. 1 shows the basic structure, (a) is a side view of a position detecting system in which a projector for rotatingly irradiating a laser beam is combined with the position detecting device of the present invention, and (b) is a side view of the present invention. FIG. 3 is a perspective view of a light receiving unit in the position detecting device of the present invention. FIG. 2 is a block diagram of the arithmetic unit.
この位置検出装置 3は (第 1図 (a ) 参照) 、 投光器 1から水平に照射された レーザビーム光 2を受けるため鉛直上方に突き出た縦長の受光部 3 cと、 測定面 4に脚部 3 aを降ろして受光部 3 cを下から支持する検出装置本体 3 bと、 検出 装置本体 3 bに格納され図示しない蓄電池等で動作する演算装置 3 dとを備えて いる。 脚部 3 aは、 アプリケーションに応じて適宜設けられ、 固定脚であったり 、 伸縮脚であったり、 転動輪であったり、 駆動輪であったり、 操舵輪であったり 、 クロ一ラであったり、 省かれたりすることもある。 検出装置本体 3 bも、 アブ リケーシヨンに応じて多岐に亘り、 専用の箱状箧体であったり、 車体であったり 、 作業車や重機に装備された可動部材であったり、 自動機に装備された制御対象 部材であったり、 受光部 3 cを支える可動部材と演算装置 3 dを納める筐体部と に分かれることもある。  The position detecting device 3 (see Fig. 1 (a)) has a vertically long light receiving portion 3c protruding vertically upward to receive the laser beam light 2 radiated horizontally from the projector 1, and a leg portion on the measuring surface 4. A detection device main body 3b that lowers 3a to support the light receiving unit 3c from below, and a calculation device 3d that is stored in the detection device main body 3b and operates with a storage battery or the like (not shown). The leg portion 3a is provided as appropriate according to the application, and is a fixed leg, a telescopic leg, a rolling wheel, a driving wheel, a steering wheel, a crawler, or the like. Sometimes, they are omitted. The detection device main body 3b is also provided in a variety of forms depending on the ablation, such as a dedicated box-shaped body, a vehicle body, a movable member mounted on a work vehicle or heavy equipment, or an automatic machine. It may be divided into a movable member that supports the light receiving unit 3c and a housing that houses the arithmetic unit 3d.
受光部 3 cは (第 1図 (b ) 参照) 、 直径が数 c mで長さが数十 c mの真つ直 ぐな棒状体に形成されることが多いが、 多数の受光素子 1 4を長手方向に列設状 態で保持しうるものであれば、 それより太くても細くても長くても短くても良い 。 この例では、 角柱形をした棒状支持部材 1 3の 4側面それぞれに対し等ピッチ で受光素子 1 4が受光面を外側に向けて列設されている (図では棒状支持部材 1 3の各側面に 3個だけ受光素子 1 4を描いた) 。 この棒状支持部材 1 3が円筒形 の外筒 1 1の軸芯位置に遊揷状態で納められているうえ (端部の固定状態等の図 示は割愛した) 、 その外筒 1 1の内周面には全面的に拡散部材 1 2が付設されて おり、 さらにカバ一兼用の外筒 1 1がアクリル等の透明な部材から作られている ので、 受光部 3 cは、 棒状支持部材 1 3を囲んで 4列形成された多数の受光素子 1 4と、 それらの受光面の前に一定距離をおいて設けられた拡散部材とを具えた ものとなっている。  The light receiving section 3c (see FIG. 1 (b)) is often formed as a straight rod having a diameter of several centimeters and a length of several tens of centimeters. It may be thicker, thinner, longer or shorter as long as it can be held in a line in the longitudinal direction. In this example, the light receiving elements 14 are arranged at equal pitches on the four side surfaces of the rod-shaped support member 13 having a prismatic shape, with the light-receiving surface facing outward (in the figure, each side surface of the rod-shaped support member 13). Only three light-receiving elements 14 are drawn). The rod-shaped support member 13 is accommodated in the axial center position of the cylindrical outer cylinder 11 in an idle state (the illustration of the fixed state of the end and the like is omitted). The diffusion member 12 is attached to the entire peripheral surface, and the outer cylinder 11 also serving as a cover is made of a transparent material such as acrylic. It comprises a large number of light receiving elements 14 arranged in four rows surrounding 3 and a diffusion member provided at a certain distance in front of the light receiving surfaces.
拡散部材 1 2は、 特開昭 6 2— 7 6 4 0 7号公報等で公知のものでもそれ以外 のものでも良いが、 外筒 1 1への貼付等が容易に行えるよう、 例えばァクリル, ポリカーポネィ ト等の透明なプラスチックフィルムに適宜な表面処理や微細凹凸 加工を施すといったことで、 光拡散機能と可撓性とを具備した板状体又は膜状体 にされる。 その際、 拡散機能に異方性も持たせて、 透過する光を或る方向へは拡 散するがそれと直交する方向へはなるべく拡散しないような物にする。 そして、 拡散部材 1 2を外筒 1 1に装着するときに、 拡散方向を外筒 1 1の軸芯の向きに 合わせる。 これにより、 この拡散部材 1 2は、 受光素子 1 4の受光面に向かって 進む光を受光素子 1 4の列方向へ拡げる一方、 その拡散に比べてそれと直交する 方向への拡散は少ないものとなる。 また、 拡散部材 1 2と受光素子 1 4との距離 選定、 あるいは受光素子 1 4のピッチ選定に際しては、 ビーム光 2の径と拡散部 材 1 2の拡散能力とを考慮して、 拡散部材 1 2を通過したビーム光 2が棒状支持 部材 1 3の側面に達したときに受光素子 1 4の列設ピッチの 2倍以上に広がるよ う、 選定を行う。 これにより、 拡散部材 1 2は、 ビーム光 2を拡げるに際して多 数の受光素子 1 4のうち複数個に亘らせるものとなる。 The diffusion member 12 may be a member known in Japanese Patent Application Laid-Open No. 62-74607 or the like, or may be any other member. For example, acryl, By subjecting a transparent plastic film such as polycarbonate to appropriate surface treatment or fine unevenness processing, a plate-like or film-like body having a light diffusion function and flexibility is obtained. At that time, the diffusing function also has anisotropy, and the transmitted light is expanded in a certain direction. It should be scattered but not as diffused as possible in the direction perpendicular to it. Then, when attaching the diffusion member 12 to the outer cylinder 11, the diffusion direction is adjusted to the direction of the axis of the outer cylinder 11. Thus, while the diffusion member 12 spreads the light traveling toward the light receiving surface of the light receiving element 14 in the column direction of the light receiving element 14, the diffusion in the direction orthogonal to the diffusion is smaller than the diffusion. Become. When selecting the distance between the diffusion member 12 and the light receiving element 14 or the pitch of the light receiving element 14, the diameter of the light beam 2 and the diffusion capacity of the diffusion member 12 are taken into consideration, and the diffusion member 1 is selected. Selection is made so that when the light beam 2 passing through 2 reaches the side surface of the rod-shaped support member 13, it spreads at least twice the array pitch of the light receiving elements 14. Thus, the diffusing member 12 spreads the light beam 2 over a plurality of light receiving elements 14 when spreading the light beam 2.
受光素子 1 4は、 受光面に受けたビーム光 2の受光量を光電変換して出力しう. るものであれば、 従来と同じものでも良く、 それ以外のものでも良いが、 その出 力に関しては、 複列化に対応した並列接続が導入されている。 すなわち、 各受光 素子 1 4の出力は、 4列の複列化に対応して各列内で同順に位置する 4個のもの 同士が O R結合されている。 これにより、 棒状支持部材 1 3のどの側面にビーム 光 2が当たってもその位置の受光量が適切に反映されるようになる。 しかも、 演 算装置 3 dにとつては、 一列分だけ処理すれば足りる、 すなわち、 受光素子 1 4 が何列に複列化されていようと、 入力して演算する受光量データがー列に纏めら れた後のものとなる。  The light receiving element 14 photoelectrically converts the amount of light received by the light beam 2 received on the light receiving surface and outputs the converted light. As for, parallel connection corresponding to the double row is introduced. That is, the outputs of the respective light receiving elements 14 are OR-coupled to each other in the same order in each column, corresponding to the four columns. Thus, even if the light beam 2 strikes any side surface of the rod-shaped support member 13, the amount of light received at that position is appropriately reflected. Moreover, for the arithmetic unit 3d, it is sufficient to process only one row, that is, no matter how many rows of the light receiving elements 14 are arranged, the received light amount data to be input and calculated is It is after being put together.
演算装置 3 dは (第 2図参照) 、 多数の受光素子 1. 4の受光量に基づいてその 受光素子の列方向すなわち受光部 3 cの長手方向における受光中心位置を算出す るものであり、 その演算をプログラマプルな電子回路で処理するためにマイク口 プロセッサ 2 4が設けられるとともに、 受光素子 1 4の出力をデジタルデータに してマイクロプロセッサ 2 4に取り込むための入力回路 2 1〜2 3も設けられて いる。 また、 その入力回路 2 1〜2 3に対して入力開始等のタイミング制御を行 う開始制御回路 2 5 + 2 6も付設されている。  The arithmetic unit 3d (see FIG. 2) calculates the light receiving center position in the row direction of the light receiving elements, that is, in the longitudinal direction of the light receiving section 3c, based on the light receiving amounts of the large number of light receiving elements 1.4. In addition, a microphone port processor 24 is provided to process the operation with a programmatic electronic circuit, and an input circuit 21 to 2 for converting the output of the light receiving element 14 into digital data and taking it into the microprocessor 24. 3 are also provided. Further, a start control circuit 25 + 26 for performing timing control such as input start for the input circuits 21 to 23 is also provided.
入力回路 2 1〜2 3には、 4個の受光素子 1 4の結合出力を増幅する増幅回路 2 1と、 ビーム光 2の走査周期等に対応した所定の周期で繰り返し自動的にリセ ッ 卜され或いは緩慢な放電等にてリセッ ト状態に戻りそれぞれの周期内で増幅回 路 2 1の出力の最大値を保持するピークホールド回路 2 2と、 そのアナログ出力 をデジタル値に変換する AZD変換回路 2 3との組が、 受光素子 1 4の一列分、 設けられている。 The input circuits 21 to 23 include an amplifier circuit 21 for amplifying the combined output of the four light receiving elements 14 and a reset automatically and repeatedly at a predetermined cycle corresponding to the scanning cycle of the light beam 2. To return to the reset state due to slow discharge, etc. A set of a peak hold circuit 22 that holds the maximum value of the output of the path 21 and an AZD conversion circuit 23 that converts the analog output into a digital value is provided for one row of the light receiving element 14.
開始制御回路 2 5 + 2 6には、 マイクロプロセッサ 2 4からデジタル値で送出 された閾値をアナログ値に変換する D/A変換回路 2 5と、 その閾値と各増幅回 路 2 1の出力とを比較して出力が一つでも閾値を超えたら一斉に全 A/ D変換回 路 2 3に対して A/ D変換の動作を開始させるといった制御を行う AZD制御回 路 2 6とが設けられている。  The start control circuit 25 + 26 includes a D / A conversion circuit 25 for converting the threshold value transmitted from the microprocessor 24 as a digital value into an analog value, the threshold value and the output of each amplification circuit 21. And an AZD control circuit 26 that controls to start A / D conversion operation for all A / D conversion circuits 23 at the same time if even one output exceeds the threshold value. ing.
マイクロプロセッサ 2 4には、 受光量データを各 AZ D変換回路 2 3から入力 してメモリの受光量データ列 2 4 bを更新する入カル一チン 2 4 aと、 受光量デ 一夕列 2 4 bに基づき例えば重み付け演算を行って受光中心位置を算出する中心 位置演算ルーチン 2 4 cと、 その算出結果を応用目的に応じて図示しない記録媒 体や上位プロセッサ等に出力する出力ルーチン 2 4 dと、 入力ルーチン 2 4 aに よって入力中に求められた受光量データ列 2 4 b内の最大値 2 4 eに基づいて例 えばそれに " 1 " 未満の所定値を掛けて閾値を求めそれを DZA変換回路 2 5に 送出する閾値設定ルーチン 2 4 f とがインス ト一ルされている。 そして、 それら のプログラム処理が、 上述した所定周期で繰り返し、 実行されるようになってい る。  The microprocessor 24 receives the received light amount data from each of the AZD conversion circuits 23 and updates the received light amount data string 24 b in the memory. A center position calculation routine 24c for calculating a light receiving center position by performing a weighting calculation based on 4b, for example, and an output routine 24 for outputting the calculation result to a recording medium or a host processor (not shown) according to the application purpose. Based on d and the maximum value 24 e in the received light amount data string 24 b obtained during input by the input routine 24 a, for example, multiply it by a predetermined value less than “1” to obtain a threshold. Is sent to the DZA conversion circuit 25. The threshold setting routine 24f is installed. Then, those program processes are repeatedly executed at the above-described predetermined cycle.
中心位置演算ルーチン 2 4 cによる受光中心位置の算出手法について典型的な 一例を挙げると、 ピークを一つ持ったガウス分布等の分布関数をレーザビームの 強度分布にあてはめて、 その分布関数のピーク位置を計算するというものである 。 具体的に.は、 受光素子 1 4の列における各受光素子 1 4の取付位置の原点から の距離を L nとし、 各受光素子 1 4の受光量を P nとしたとき、 ビーム光 2の受 光中心位置 L xは、 式 [ L x =∑ ( L n X P η ) / Σ Ρ η ] 等を演算することで 得られる。 これにより、 この位置検出装置 3は、 受光中心位置の検出を受光素子 1 4の取付ピッチよりも細かな分解能 ·精度で行うものとなる。  A typical example of the method of calculating the light receiving center position by the center position calculation routine 24c is as follows. A distribution function such as a Gaussian distribution having one peak is applied to the intensity distribution of the laser beam, and the peak of the distribution function is obtained. It calculates the position. Specifically, assuming that the distance from the origin of the mounting position of each light receiving element 14 in the row of light receiving elements 14 to the origin is L n, and the light receiving amount of each light receiving element 14 is P n, the light beam 2 The light receiving center position Lx can be obtained by calculating the equation [Lx = ∑ (LnXPη) / ΣΣη]. Thus, the position detecting device 3 detects the light receiving center position with a resolution and accuracy finer than the mounting pitch of the light receiving elements 14.
この第 1実施例の位置検出装置について、 その使用態様及び動作を、 図面を引 用して説明する。 第 1図 (a ) は、 レーザピー厶を回転照射する投光器と組み合 わせてレーザビーム走査面の高さを検出しているところの側面図であり、 第 3図 は、 拡散部材の作用を対比して示し、 (a ) が拡散部材の無い状態、 (b ) が拡 散部材を設けた状態に関する。 また、 第 4図は、 拡散部材が受光素子取付ピッチ に及ぼす効果を対比して示し、 (a ) が拡散部材の無い状態、 (b ) が拡散部材 を設けた状態に関する。 さらに、 第 5図は、 受光状態に基づく演算例を示し、 ( a ) と (b ) は良好な受光状態に関して (a ) が受光状態で (b ) が演算状態で あり、 (c ) と (d ) は小さな反射の重畳した受光状態に関して (c ) が受光状 態で (d ) が演算状態である。 なお、 各グラフにおいて、 二点鎖線は、 レーザピ —ムの連続的な強度分布を示し、 実線は、 受光素子で標本化した分布状態を示し 、 一点鎖線は、 閾値を示し、 破線は、 受光量データのうち入力ルーチン 2 4 aの ノイズ抑制処理にて減じられた部分を示す。 The usage and operation of the position detecting device of the first embodiment will be described with reference to the drawings. FIG. 1 (a) is a side view of detecting the height of the laser beam scanning surface in combination with a projector for rotatingly irradiating a laser beam. (A) relates to a state without a diffusion member, and (b) relates to a state with a diffusion member. FIG. 4 shows the effect of the diffusion member on the light-receiving element mounting pitch in comparison, wherein (a) relates to a state without the diffusion member and (b) relates to a state in which the diffusion member is provided. Further, FIG. 5 shows an example of calculation based on the light receiving state. (A) and (b) show the light receiving state, (b) shows the calculating state, and (c) and (b) show the good light receiving state. In (d), the light receiving state where small reflections are superimposed is shown in (c), and the calculated state is shown in (d). In each graph, the two-dot chain line indicates the continuous intensity distribution of the laser beam, the solid line indicates the distribution state sampled by the light receiving element, the one-dot chain line indicates the threshold value, and the dashed line indicates the amount of received light. The part of the data that was reduced by the noise suppression processing of the input routine 24a is shown.
この位置検出装置 3と投光器 1とを用いて測定面 4に関する高さ測定を行う場 合 (第 1図 (a ) 参照) 、 測定面 4の何処か一箇所を基準点に選定しそこに投光 器 1をセッ トする。 その際、 投光器 1の三脚等を調節して、 3 6 0 ° 回転するビ —ム光 2がーつの水平面を走査するようにしておく。 また、 位置検出装置 3は、 測定面 4のうち高さを測定したいところに置く。 その際、 受光部 3 cがビーム光 2の走査面に突き刺さり、 しかも、 なるべく垂直 ·鉛直な状態を保つようにする 。 なお、 多数の受光素子 1 4が受光面を四方に向けているので、 位置検出装置 3 の側面の向きは気にしないで良い。  When measuring the height of the measuring surface 4 using the position detecting device 3 and the projector 1 (see Fig. 1 (a)), select one of the points on the measuring surface 4 as a reference point and project it there. Set optical device 1. At this time, the tripod of the projector 1 is adjusted so that the beam light 2 that rotates 360 ° scans one horizontal plane. In addition, the position detecting device 3 is placed on the measurement surface 4 where the height is to be measured. At this time, the light receiving section 3c pierces the scanning surface of the light beam 2 and keeps a vertical / vertical state as much as possible. Since many light receiving elements 14 face the light receiving surface in all directions, it is not necessary to worry about the direction of the side surface of the position detecting device 3.
そうすると、 数 mm〜" h数 mmの径で水平に進んで受光部 3 cに達したビーム 光 2は、 拡散部材 1 2が無ければそのまま受光素子 1 4の列に当たり (第 3図 ( a ) 参照) その範囲に取り付けられている受光素子 1 4が感応する (第 4図 (a ) 参照) のに対し、 この場合は拡散部材 1 2が設けられているので (第 3図 (b ) 参照) 、 受光素子 1 4の列方向にビーム径が拡がり、 その広い範囲に取り付け られている受光素子 1 4が感応する (第 4図 (b ) 参照) 。 そこで、 拡散部材 1 2の介在に基づいてビーム光 2が受光素子 1 4のところで拡がる比率で受光素子 1 4の取付ピッチも拡げておくことで、 光量こそ少ないものの、 ほぼ同じ受光量 データが得られる。 なお、 拡散部材 1 2に異方性のものが採用されているので、 受光量の減少は、 受光素子 1 4同士の隙間が拡がった分だけに抑制されており、 受光素子 1 4に安価で受光面の広いものを用いれば、 それも回避できる。 そして、 ビーム光 2がー回り走査する度に、 複数列の受光素子 1 4の出力を一 列に纏めた受光量のデータ (第 5図 (a ) 参照) が、 入力回路 2 1〜2 3を介し て入力ルーチン 2 4 aによって受光量データ列 2 4 bに取り込まれる。 その際、 その最大値 2 4 eに基づき閾値設定ルーチン 2 4 f によって閾値が再計算され、 それが D /A変換回路 2 5を介して A/ D制御回路 2 6に送出されるので、 閾値 は直前のサンプリング結果に応じた最新のものに更新される。 また (第 5図 (b ) 参照) 、 受光量データ列 2 4 bの各データについて、 入力ルーチン 2 4 aによ つてノイズ抑制処理が施され、 閾値分だけ足切りがなされる。 すなわち、 閾値以 上のデータ値からは閾値が減じられ、 閾値未満のデータ値は "◦" にされる。 そのため、 投光器 1を出てから位置検出装置 3に達するまでに他の物体に当た つてビーム光 2の走査面から外れた不所望な反射光が重畳した場合でも (第 5図 ( c ) 参照) 、 その受光量が閾値を上回らなければその不所望なデータは切り捨 てられるので、 反射光の無い適正状態とほぼ同様のデータが受光量データ列 2 4 bに得られる (第 5図 (d ) 参照) 。 そして、 それに基づき中心位置演算ルーチ ン 2 4 cによって上述したような所定演算が行われて、 ピ一ム光 2の受光中心位 置が算出され (第 5図 (b ) , ( d ) 参照) 出力ルーチン 2 4 dによって処理さ れる。 Then, the light beam 2 that travels horizontally with a diameter of several mm to a few mm and reaches the light receiving portion 3c directly hits the row of the light receiving elements 14 without the diffusion member 12 (FIG. 3 (a)). (See Fig. 4 (a).) In contrast to this, the light-receiving element 14 mounted in that area is sensitive (see Fig. 4 (a)). In this case, however, the diffusion member 12 is provided (see Fig. 3 (b)). The beam diameter expands in the row direction of the light-receiving elements 14, and the light-receiving elements 14 mounted in the wide area are responsive (see Fig. 4 (b)). By broadening the mounting pitch of the light receiving element 14 at a ratio that the light beam 2 spreads at the light receiving element 14, almost the same received light amount data can be obtained although the light amount is small. Since the isotropic type is adopted, the decrease in the amount of received light is Of being the spread was an amount corresponding to the suppression gap, the use of the wider of the light receiving surface at low cost to the light receiving element 1 4, it can be avoided. Each time the light beam 2 scans in the negative direction, the data of the received light amount (see FIG. 5 (a)) in which the outputs of the light receiving elements 14 in a plurality of rows are put into one row are input to the input circuits 21 to 23. The received light amount data sequence 24b is taken in by the input routine 24a via the input routine 24a. At this time, the threshold value is recalculated by the threshold value setting routine 24 f based on the maximum value 24 e and is sent to the A / D control circuit 26 via the D / A conversion circuit 25. Is updated to the latest one according to the immediately preceding sampling result. (See FIG. 5 (b).) In addition, the input routine 24a performs noise suppression processing on each data of the received light amount data string 24b, and cuts off the data by the threshold value. That is, the threshold value is subtracted from the data values above the threshold value, and data values below the threshold value are set to "◦". Therefore, even if undesired reflected light that deviates from the scanning surface of the light beam 2 and strikes another object before exiting the projector 1 and reaching the position detecting device 3 (see FIG. 5 (c)) If the amount of received light does not exceed the threshold, the undesired data is discarded, so that almost the same data as in the proper state without reflected light is obtained in the received light amount data string 24b (Fig. 5 ( d))). Based on this, the above-described predetermined calculation is performed by the center position calculation routine 24c to calculate the light receiving center position of the beam light 2 (see FIGS. 5 (b) and (d)). Processed by output routine 24d.
こうして、 ビーム光 2の走査毎にその位置が位置検出装置 3によって検出され るが、 拡散部材 1 2の導入によって受光素子 1 4の取付ピッチがビーム光 2の径 による拘束から解放または緩和されるうえ、 演算装置 3 dの演算によって受光中 心位置の検出が受光素子 1 4の取付ピッチによる拘束から解放または緩和されて いるので、 受光素子 1 4の取付ピッチを拡げて広範囲の位置検出を安価に行うこ とができる。 もっとも、 拡散部材 1 2の介在に基づいてビーム光 2が受光素子 1 4のところで拡がる比率と、 受光素子 1 4の取付ピッチの拡大率とを、 一致させ ることは必須で無いので、 受光素子 1 4の取付ピッチを拡げずに或いは拡げるの は少しにして、 僅かなコストアップで又はコストアップ無しで、 位置検出の分解 能や精度の向上を図ることもできる。 第 2実施例 本発明の位置検出装置の第 2実施例について、 その具体的な構成を、 図面を引 用して説明する。 第 6図は、 大きな反射の重畳した受光状態に基づく演算例を示 し、 (a ) が受光状態、 (b ) が入力状態、 (c ) が極大値検出状態、 (d ) が 演算結果である。 なお、 図中、 一点鎖線は、 閾値を示し、 破線は、 受光量データ のうちノィズ抑制処理や反射成分抑制処理にて減じられた部分を示す。 In this manner, the position of the light beam 2 is detected by the position detection device 3 every time the beam light 2 is scanned. In addition, since the detection of the light receiving center position is released or relaxed by the calculation of the arithmetic unit 3d from the restraint due to the mounting pitch of the light receiving elements 14, the mounting pitch of the light receiving elements 14 is expanded, so that a wide range of position detection is inexpensive. Can be done at any time. However, it is not essential that the ratio at which the light beam 2 spreads at the light receiving element 14 based on the interposition of the diffusion member 1 and the enlargement rate of the mounting pitch of the light receiving element 14 be equal. It is also possible to improve the resolution and accuracy of position detection with little or no increase in the mounting pitch of 14 with little or no increase. Second embodiment A specific configuration of a second embodiment of the position detection device of the present invention will be described with reference to the drawings. Fig. 6 shows an example of calculation based on the light receiving state in which large reflection is superimposed. (A) is the light receiving state, (b) is the input state, (c) is the maximum value detection state, and (d) is the calculation result. is there. In the figure, a dashed line indicates a threshold value, and a broken line indicates a portion of the received light amount data which has been reduced by the noise suppression processing or the reflection component suppression processing.
この位置検出装置が上述した第 1実施例のものと相違するのは、 中心位置演算 ルーチン 2 4 cが極値を利用して反射成分抑制処理も行うように改造されている 点である。  This position detection device differs from that of the first embodiment in that the center position calculation routine 24c is modified so as to also perform a reflection component suppression process using an extreme value.
すなわち、 新たな中心位置演算ルーチン 2 4 cは、 上述した重み付け演算等に よる中心位置の算出に先だち、 受光量データ列 2 4 bに対して、 極大値を存在す るだけ見つけ出す処理と、 デ一タ値を抑制する処理とを行うようになっている。 データ値抑制処理は、 極大値が複数得られたときだけ行えば良いが、 最大値以外 の極大値が複数見出されたときにはそれぞれの発現箇所に対して施される。 その 処理の具体的内容は、 極大値発現箇所のデータ値をいきなり " 0 " にするのでも 良く、 極大値発現箇所のデータ値を " 1 " 未満の所定割合に減ずるのでも良く、 反射光の強度分布にもガウス分布等を仮定して極大値発現箇所ばかりかその近隣 のデータ値も抑制するようにしても良い。 何れにしても、 最大値以外に極大値が 見出せなくなるまで処理が繰り返される。 なお、 それによつて "◦" を下回るこ ととなつたデータ値は、 強制的に " 0 " にされる。  In other words, the new center position calculation routine 24c performs a process of finding as many local values as possible for the received light amount data sequence 24b prior to the calculation of the center position by the above-described weighting calculation and the like. And a process of suppressing the single value. The data value suppression processing only needs to be performed when a plurality of local maxima are obtained. However, when a plurality of local maximal values other than the maximum value are found, they are applied to each occurrence location. The specific contents of the processing may be that the data value of the location where the local maximum occurs is suddenly set to “0”, or the data value of the location where the local maximum occurs is reduced to a predetermined ratio less than “1”. Assuming a Gaussian distribution or the like as the intensity distribution, it is also possible to suppress not only the location where the local maximum value appears but also the data value in the vicinity thereof. In any case, the process is repeated until no maximum value other than the maximum value can be found. The data value which falls below "◦" is forcibly set to "0".
この場合、 上述の場合 (第 5図 (c ) 参照) と対比して説明するために、 その ときより反射光の受光量が増えているものとするが (第 6図 (a ) 参照) 、 それ が閾値を上回っていると、 閾値を減ずるノイズ抑制処理を施してもそのデータ値 は "◦" にならないで受光量データ列 2 4 bにとどまる (第 6図 (b ) 参照) 。 そして、 この受光量データ列 2 4 bについて極大値の探索が行われると直接光に 対応した極大値 1と反射光に対応した極大値 2とが見出される (第 6図 (c ) 参 照) 。 それらのうち最大値でもある極大値 1のところはそのままで、 最大値以外 の極大値である極大値 2の発現箇所に対し、 データ値抑制処理が施される。 そうすると、 受光量データ列 2 4 bには、 大きな反射光の無かったときのデ一 タ値 (第 5図 (b ) , ( d ) 参照) とほぼ同様のデータ値が残る (第 6図 (d ) 参照) 。 In this case, for the sake of comparison with the above-mentioned case (see FIG. 5 (c)), it is assumed that the amount of reflected light received has increased from that time (see FIG. 6 (a)). If it exceeds the threshold, the data value does not become “◦” but stays in the received light amount data string 24b even if noise suppression processing is performed to reduce the threshold (see Fig. 6 (b)). When the local maximum value is searched for this received light amount data sequence 24b, a local maximum value 1 corresponding to direct light and a local maximum value 2 corresponding to reflected light are found (see Fig. 6 (c)). . Among them, the maximum value 1 which is also the maximum value is kept as it is, and the data value suppression processing is applied to the occurrence position of the maximum value 2 which is the maximum value other than the maximum value. Then, in the received light amount data string 24b, data values substantially similar to the data values when there is no large reflected light (see FIGS. 5 (b) and 5 (d)) remain (see FIG. 6 ( d) See).
こうして、 この場合は、 閾値を上回る大きな反射光があっても、 その影響を排 除することができる。 第 3実施例  Thus, in this case, even if there is large reflected light exceeding the threshold value, the effect can be eliminated. Third embodiment
本発明の位置検出装置の第 3実施例について、 その具体的な構成を、 図面を引 用して説明する。 第 7図は、 要部の構造を示し、 (a ) が受光部の平面図、 (b ) が受光素子と支持部材の正面図、 (c ) がその右側面図である。  A specific configuration of a third embodiment of the position detection device of the present invention will be described with reference to the drawings. FIG. 7 shows the structure of the main part, (a) is a plan view of the light receiving section, (b) is a front view of the light receiving element and the support member, and (c) is a right side view thereof.
この位置検出装置が上述した第 1, 第 2実施例のものと相違するのは、 支持部 材 1 3が角棒状のものから板状のものになっている点である。  This position detecting device is different from those of the first and second embodiments in that the supporting member 13 is changed from a square rod shape to a plate shape.
支持部材 1 3には、 両面プリント配線基板が採用され、 その一方の面に受光素 子 1 4がリードを約 9 0 ° 曲げた状態で 1列だけ実装され、 他方の面には受光素 子 1 4がリードを約 3 0 ° 曲げた状態で 2列平行に実装されて、 3列の受光素子 1 4が 1 2 0 ° ずつ向きを変えて 3 6 0 ° を分担し合うようになっている。 この方が、 上述の 4列のものに比べて、 受光素子 1 4を少なくできるうえ、 向 きに応じた感度変化も少なくなる。 第 4実施例  A double-sided printed wiring board is used for the support member 13, and a single row of light receiving elements 14 is mounted on one surface with the leads bent at about 90 °, and the light receiving elements 14 are mounted on the other surface. 14 are mounted in parallel with two rows with the lead bent by about 30 °, and the three rows of light-receiving elements 14 change the direction by 120 ° to share 360 °. I have. In this case, the number of light receiving elements 14 can be reduced and the sensitivity change according to the direction can be reduced as compared with the above-described four-row type. Fourth embodiment
第 8図に側面図と平面図を示した床面凹凸測定機は、 その位置検出部に上述の 位置検出装置を採用したものである。  The floor surface unevenness measuring instrument whose side view and plan view are shown in FIG. 8 employs the above-described position detecting device in its position detecting section.
この位置検出装置 3は、 脚部 3 aに転動輪が採用されて移動可能になっており 、 さらに、 その移動距離を計測する移動距離計が付設されている。 また、 検出装 置本体 3 bから上に延びたハンドル 3 eの先端には操作部 3 f が装備されていて 、 移動パターンや必要な初期値等を設定することができるようになっている。 さ らに、 検出装置本体 3 bには、 一連の受光量データを記録する記録装置や、 その データを処理して等高線を作成する情報処理装置なども、 演算装置 3 dに加えて 別に又は演算装置 3 dと一体的に、 設けられている。  The position detecting device 3 is movable by adopting a rolling wheel on the leg 3a, and is further provided with a moving distance meter for measuring the moving distance. An operating unit 3f is provided at the tip of a handle 3e extending upward from the detection device main body 3b, so that a moving pattern, necessary initial values, and the like can be set. In addition, the detection device body 3b includes a recording device that records a series of received light amount data, an information processing device that processes the data to create a contour line, and the like, in addition to the calculation device 3d, or separately. It is provided integrally with the device 3d.
このような床面凹凸測定機を用いて、 新築した又は床の補修等を施した建屋 5 の床面 4の凹凸を測定する場合、 測定面 4のほぼ全体を見渡せるところに投光器 1をセッ トし、 それから位置検出装置 3を予め設定された移動パターンに従って 移動させる。 その移動パターンを設定する際、 移動パターンの各要素の種類や位 置と移動方向を入力して、 測定面 4上で隈無く位置検出装置 3を移動させる (第 8図 (b ) の矢印付き破線を参照) 。 すると、 位置検出装置 3は、 移動距離計で 移動距離を計測しながら、 ビーム光 2の受光高さを計測し、 移動パターンと移動 距離に従って平面位置を求め、 検出した受光高さに基づいて床面 4の凹凸を算出 する。 第 5実施例 When measuring the unevenness of the floor 4 of a newly built or repaired building 5 using such a floor unevenness measuring instrument, a floodlight can be installed over almost the entire measurement surface 4. 1 is set, and then the position detection device 3 is moved according to a preset movement pattern. When setting the movement pattern, enter the type, position, and movement direction of each element of the movement pattern, and move the position detection device 3 on the measurement surface 4 completely (see the arrow in Fig. 8 (b)). See broken line). Then, the position detecting device 3 measures the light receiving height of the light beam 2 while measuring the moving distance with the moving distance meter, obtains a plane position according to the moving pattern and the moving distance, and based on the detected light receiving height, the floor position is obtained. Calculate the unevenness of surface 4. Fifth embodiment
第 9図 (a ) に要部の斜視図を示した整地制御装置も、 上述の位置検出装置を 利用したものである。 具体的には、 ブルドーザ (重機) のブレード (可動部材) に二本の受光部 3 cを植設するとともに、 それらが受けたビーム光 2の位置に基 づいて、 その位置が揃っているときには (第 9図 (b ) 参照) ブレード 6の高さ を目標値に追従させる高さ制御を行うとともに、 両位置がずれているいるときに は (第 9図 (c ) 参照) そのずれを無くすような傾き制御も行うようになってい る。  The leveling control device whose perspective view is shown in Fig. 9 (a) also uses the above-mentioned position detection device. Specifically, two light receiving sections 3c are implanted in the blade (movable member) of a bulldozer (heavy machine), and based on the position of the light beam 2 received by the light receiving sections 3c, the positions are aligned. (Refer to Fig. 9 (b).) Height control is performed so that the height of blade 6 follows the target value. If both positions are displaced (refer to Fig. 9 (c)), the displacement is eliminated. Such tilt control is also performed.
また (第 1 0図参照) 、 このブルドーザで広い範囲や高低差の大きな道路面等 を整地する場合、 測定面 4に沿って複数の投光器 1を設置しておき、 それぞれの 投光器 1により走査照射されるビーム光 2にて、 分担範囲の異なる及び/:又は高 さの異なる複数の基準面を作っておく。 また、 ブルドーザ (位置検出装置 3 ) に は、 両基準面に亘る長い受光部 3 cを搭載しておく。 そして、 ブルド一ザを走行 させると、 一つの投光器 1からだけビーム光 2を受光しているときは、 そのピ一 ム光 2に基づいて整地制御や姿勢制御が行われ、 複数の投光器 1からビーム光 2 を受光しているときは、 最も強いビーム光 2に基づいて整地制御や姿勢制御が行 われる。 あるいは、 受光部 3 cの中心位置に最も近いビーム光 2に基づいて整地 制御や姿勢制御が行われる。 こうして、 基準となる投光器 1が順次入れ替わり、 ブルドーザによる測定面 4の整地作業は長距離に亘つて自動制御される。 第 6実施例 第 1 1図に要部の斜視図を示した重機姿勢制御装置も、 その位置検出部に上述 の位置検出装置を採用したものである。 (See Fig. 10) Also, when leveling a wide area or a road surface with a large difference in elevation with this bulldozer, a plurality of projectors 1 are installed along the measurement surface 4 and each projector 1 scans and irradiates. A plurality of reference planes having different allocation ranges and / or different heights are created by the light beam 2 to be emitted. The bulldozer (position detecting device 3) has a long light receiving portion 3c extending over both reference surfaces. Then, when the bulldozer is running, if the light beam 2 is received from only one light emitter 1, ground leveling control and attitude control are performed based on the beam light 2, and a plurality of light emitters 1 When light beam 2 is received, ground control and attitude control are performed based on the strongest light beam 2. Alternatively, ground control and attitude control are performed based on the light beam 2 closest to the center position of the light receiving unit 3c. In this way, the reference floodlights 1 are sequentially switched, and the leveling work of the measurement surface 4 by the bulldozer is automatically controlled over a long distance. Sixth embodiment The heavy equipment attitude control device whose perspective view is shown in FIG. 11 also employs the above-described position detection device for its position detection unit.
この場合、 重機の可動部材 7に三本の受光部 3 cが植設される。 そして、 それ に投光器 1からビーム光 2が照射されると、 それぞれの受光部 3 cで受光位置が 検出される。 それらは三角形の頂点位置に対応して配置されているので、 それに 基づいて所定の演算すなわち既知の幾何学的関係に基づく方程式を解く演算を行 うことで、 可動部材 7や重機の姿勢を三次元的に把握することができ、 その姿勢 (ピッチング, 口一リング, ョ一イング) を制御することもできる。 第 7実施例  In this case, three light receiving sections 3c are implanted in the movable member 7 of the heavy equipment. Then, when the light beam 2 is emitted from the light projector 1, the light receiving position is detected by each light receiving unit 3c. Since they are arranged corresponding to the positions of the vertices of the triangle, the posture of the movable member 7 and the heavy equipment is tertiarily calculated by performing a predetermined operation based on the positions, that is, an operation of solving an equation based on a known geometric relationship. It can be grasped from the beginning, and its posture (pitching, mouth ring, bowing) can be controlled. Seventh embodiment
第 1 2図に全体構造を示した位置検出装置は、 ビーム光 2を受光可能な範囲を 限定することで小形かつ安価にした簡易形のものである。 すなわち、 この位置検 出装置 3は、 受光部 3 cが検出装置本体 3 bを兼ねて箱形に纏められ、 その中に 拡散部材 1 2ゃ受光素子 1 4と共に演算装置 3 dも格納される。 また、 その外面 には、 細長い受光窓 3 gが形成されるとともに、 受光位置を外面に数値で示す表 示部 3 hも付設される。 拡散部材 1 2には透過型のもので無く反射型のものが採 用され、 受光素子 1 4は細長い板状支持部材 1 3の一面上に一列だけ実装される 。 これにより、 位置検出装置 3は薄型で携帯性に富むものとなる。  The position detecting device whose overall structure is shown in FIG. 12 is a small-sized and inexpensive simple type by limiting the range in which the light beam 2 can be received. That is, in the position detecting device 3, the light receiving unit 3c is also combined with the detecting device body 3b in a box shape, and the arithmetic unit 3d is stored in the position detecting device 3 together with the diffusing member 12 and the light receiving element 14. . In addition, an elongate light receiving window 3 g is formed on the outer surface thereof, and a display portion 3 h for numerically indicating the light receiving position is provided on the outer surface. The diffusion member 12 is not a transmission type but a reflection type, and the light receiving elements 14 are mounted in a single row on one surface of the elongated plate-shaped support member 13. Thereby, the position detection device 3 becomes thin and highly portable.
この場合、 位置検出装置 3は、 手で持たれて或いは測定対象面に添着等されて 、 受光窓 3 gが投光器 1の方に向けられる。 そうすると、 受光窓 3 gから射し込 んだビーム光 2は、 拡散部材 1 2の表面で反射するとともに長手方向すなわち列 方向にだけ拡がりながら受光素子 1 4に向かって進む。 そして、 その受光状況に 基づいて受光素子 1 4の列における受光中心位置が求められ、 それが表示部 3 h に表示される。 こうして、 この場合も、 表示値を読むことで簡便に、 受光位置を 知ることができる。  In this case, the position detecting device 3 is held by hand or attached to the surface to be measured, and the light receiving window 3 g is directed toward the projector 1. Then, the light beam 2 radiated from the light receiving window 3 g is reflected by the surface of the diffusion member 12 and advances toward the light receiving element 14 while spreading only in the longitudinal direction, that is, in the column direction. Then, the light receiving center position in the row of the light receiving elements 14 is obtained based on the light receiving state, and is displayed on the display unit 3h. Thus, also in this case, the light receiving position can be easily known by reading the display value.
なお、 図示は割愛したが、 携帯性を高めるべく電池駆動にする場合、 適宜なバ ッテリパックを内蔵するか、 着脱可能に外付けすると良い。 第 8実施例 第 13図に拡散部材 1 2の設置位置と受光素子 1 4の取付ピッチとの関係を示 した位置検出装置は、 広い範囲の計測をなるベく少ない受光素子 1 4で行うため に、 拡散部材 1 2で拡げられたビーム光 2が 2個以上の受光素子 1 4に届くよう にしたものである。 Although illustration is omitted, when battery operation is used to enhance portability, it is advisable to incorporate an appropriate battery pack or detachably attach an external battery pack. Eighth embodiment FIG. 13 shows the relationship between the installation position of the diffusion member 12 and the mounting pitch of the light receiving element 14 .The position detection device uses a diffusion member in order to perform a wide range of measurement with as few light receiving elements 14 as possible. The light beam 2 expanded in step 12 is made to reach two or more light receiving elements 14.
具体的には、 拡散部材 1 2と受光素子 1 4の列との距離 dに拡散部材 12の拡 散角度 0の正接 (tan Θ) を乗じて得た値を 2倍してそれにビーム光 2の直径 D 0を加えた値が受光素子 14の取付ピッチ aの 2倍か又はそれより少し大きくな るよう、 ピッチ a及び距離 dが定められている。  Specifically, the value obtained by multiplying the distance d between the diffusion member 1 2 and the row of the light receiving elements 14 by the tangent (tan の) of the diffusion angle 0 of the diffusion member 12 is doubled, and the light beam 2 The pitch a and the distance d are determined so that the value obtained by adding the diameter D0 of the light receiving element 14 is twice or slightly larger than the mounting pitch a of the light receiving element 14.
関係式で表せば、 [ 2 x a ≤ D o + 2 X d xtan0 ] を満たす。  If expressed by the relational expression, [2 x a ≤ D o + 2 X d xtan0] is satisfied.
その典型的な数値例を一つ挙げると、  One typical numerical example is
受光素子 1 4の取付ピッチ a = 12. 7mm  Mounting pitch of light receiving element 14 a = 12.7 mm
拡散部材 1 2と受光素子 14との距離 d = 25mm  Distance between diffusion member 1 2 and light receiving element 14 d = 25 mm
レーザビームビーム光 2の直径 Do=3mm  Laser beam diameter 2 Do = 3mm
拡散部材 1 2の拡散角度 0 = 40°  Diffusion angle of diffusion member 1 2 0 = 40 °
である。  It is.
また、 この場合、 tan0 = l、 D o = 0 との近似値を採用すると、 上記の 関係式が [a≤d] と簡略化される。 しかし、 受光素子 14の有効強度や部 品のばらつきを考慮すると、 関係式 [2 x a ≤ d] を課すことが実用的 な設計条件となる。 すなわち、 拡散部材 1 2と受光素子 14の列との距離 dが受 光素子 1 4の取付ピッチ aのほぼ 2倍になるようにすると良い。 以上の説明から明らかなように、 本発明の位置検出装置にあっては、 拡散前の 光のビーム径より広い範囲に光が照射されるようにしたことにより、 受光素子の 列設ピッチが照射光の径ょり狭いときでも広いときでも的確に受光がなされ、 そ の結果、 ビーム径によって受光素子のピッチに課される制約が緩い位置検出装置 を実現することができた。  In this case, if the approximate values of tan0 = l and Do = 0 are adopted, the above relational expression is simplified to [a≤d]. However, in consideration of the effective strength of the light receiving element 14 and the variation in components, it is a practical design condition to impose the relational expression [2 x a ≤ d]. That is, it is preferable that the distance d between the diffusion member 12 and the row of the light receiving elements 14 be approximately twice the mounting pitch a of the light receiving elements 14. As is clear from the above description, in the position detecting device of the present invention, the light is applied to a wider range than the beam diameter of the light before diffusion, so that the arrangement pitch of the light receiving elements is increased. Light was accurately received regardless of whether the light diameter was narrow or wide, and as a result, a position detection device in which the restrictions imposed on the pitch of the light receiving elements by the beam diameter were loose was realized.
また、 本発明の位置検出装置にあっては、 ピ一ム光の照射に対して受光量デ一 タが複数得られるようにもしたことにより、 ビーム径によつて受光素子のピッチ に課される制約が緩いばかりか演算手法に関する制約も緩い位置検出装置を実現 することができた。 Further, in the position detecting device of the present invention, a plurality of received light amount data can be obtained with respect to irradiation of the beam light, so that the pitch of the light receiving element is imposed by the beam diameter. A position detection device that is not only less restrictive but also less restrictive regarding the calculation method We were able to.
さらに、 本発明の位置検出装置にあっては、 拡散部材に異方性を持たことによ り、 ビーム径によって受光素子のピッチに課される制約が緩いばかりか受光素子 の採択に関する制約も緩い位置検出装置を実現することができた。  Further, in the position detecting device of the present invention, since the diffusing member has anisotropy, not only the restrictions imposed on the pitch of the light receiving elements due to the beam diameter but also the restrictions on the selection of the light receiving elements are relaxed. A position detection device was realized.
また、 本発明の位置検出装置にあっては、 どの向きから照射されても受光しう るようにもしたことにより、 ビーム径によつて受光素子のピッチに課される制約 が緩いばかりか受光の向きに関する制約も緩い位置検出装置を実現することがで きた。  In addition, the position detection device of the present invention is capable of receiving light regardless of the direction from which light is received. A position detector with less restrictions on the direction of the position could be realized.
また、 本発明の位置検出装置にあっては、 拡散部材とその支持体とを個別に加 ェ形成して拡散部材を支持体形状に適合変形させるようにもしたことにより、 ビ ーム径によつて受光素子のピツチに課される制約が緩いばかりかそれに必要な拡 散部材の装備に関する制約も緩い位置検出装置を実現することができた。  Further, in the position detecting device of the present invention, the diffusion member and its support are individually formed and deformed so that the diffusion member conforms to the shape of the support, so that the beam diameter can be reduced. As a result, it was possible to realize a position detection device in which not only the restrictions imposed on the pitch of the light receiving element but also the restrictions on the installation of the necessary diffusion member were loose.
また、 本発明の位置検出装置にあっては、 反射光の受光量データを抑制して直 接光の受光量データを残すようにもしたことにより、 ビ一ム径によって受光素子 のピッチに課される制約が緩いばかりか使用環境に関する制約も緩い位置検出装 置を実現することができた。  Further, in the position detection device of the present invention, by suppressing the received light amount data of the reflected light and leaving the received light amount data of the direct light, the pitch of the light receiving element is imposed by the beam diameter. In addition to the strict restrictions imposed on the position detection device, the restrictions on the operating environment were also lenient.

Claims

請求の範囲 The scope of the claims
1 . 列設された多数の受光素子と、 それらの受光量に基づいて前記受光素子の列 方向における受光中心位置を算出する演算装置とを備えた位置検出装置において 、 前記多数の受光素子の受光面の前に、 その受光面に向かって進む光を前記列方 向へ拡げる拡散部材が設けられていることを特徴とする位置検出装置。 1. A position detecting device comprising: a large number of light receiving elements arranged in a row; and a calculating device for calculating a light receiving center position in a column direction of the light receiving elements based on the amount of received light, the light receiving of the large number of light receiving elements A position detecting device, further comprising a diffusion member provided in front of the surface to spread light traveling toward the light receiving surface in the column direction.
2 . 前記拡散部材が、 ビーム光を拡げるに際して前記多数の受光素子のうち複数 個に亘らせるものであることを特徴とする請求の範囲第 1項に記載された位置検 出装置。  2. The position detecting device according to claim 1, wherein the diffusing member spreads the beam light over a plurality of the plurality of light receiving elements.
3 . 前記拡散部材が、 前記列方向への拡散に比べてそれと直交する方向への拡散 は少ないものであることを特徴とする請求の範囲第 1項に記載された位置検出装 置。 3. The position detection device according to claim 1, wherein the diffusion member has less diffusion in a direction orthogonal to the diffusion direction than in the column direction.
4. 前記受光素子の列が支持部材を囲んで複数形成されていることを特徴とする 請求の範囲第 1項に記載された位置検出装置。  4. The position detecting device according to claim 1, wherein a plurality of rows of the light receiving elements are formed so as to surround a support member.
5 . 前記拡散部材が、 可撓性の板状体又は膜状体からなることを特徴とする請求 の範囲第 1項に記載された位置検出装置。 5. The position detecting device according to claim 1, wherein the diffusion member is formed of a flexible plate or a film.
6 . 前記演算装置が、 前記受光中心位置の算出に際して、 前記受光素子の列に対 応した受光量のデータ列について極大値を求め、 極大値を複数得たとき、 最大値 以外の極大値の発現箇所それぞれに対してデータ値を抑制する処理を施すもので あることを特徴とする請求の範囲第 1項に記載された位置検出装置。  6. When calculating the light receiving center position, the arithmetic unit obtains a local maximum value for the data sequence of the light receiving amount corresponding to the row of the light receiving elements, and when a plurality of local maximum values are obtained, the local maximum value other than the maximum value is calculated. 2. The position detecting device according to claim 1, wherein a process for suppressing a data value is performed for each of the occurrence locations.
7 . 列設された多数の受光素子と、 それらの受光量に基づいて前記受光素子の列 方向における受光中心位置を算出する演算装置とを備えた位置検出装置において 、 前記受光素子の受光面に向かって進むビーム光を前記列方向へ拡げる拡散部材 が前記受光面の前に設けられ、 前記拡散部材と前記受光素子の列との距離に前記 拡散部材の拡散角度の正接を乗じた値の 2倍に前記ビーム光の直径を加えた値が 前記受光素子の取付ピッチの 2倍以上であることを特徴とする位置検出装置。 7. A position detecting device comprising: a large number of light receiving elements arranged in a row; and a calculating device for calculating a light receiving center position in a column direction of the light receiving elements based on the light receiving amounts thereof. A diffusing member for spreading the light beam traveling toward the column direction is provided in front of the light receiving surface, and a value obtained by multiplying a distance between the diffusing member and the row of light receiving elements by a tangent of a diffusion angle of the diffusing member is 2 A position detecting device, wherein a value obtained by adding the diameter of the light beam to twice the diameter is at least twice the mounting pitch of the light receiving elements.
8 . 列設された多数の受光素子と、 それらの受光量に基づいて前記受光素子の列 方向における受光中心位置を算出する演算装置とを備えた位置検出装置において 、 前記受光素子の受光面に向かって進むビーム光を前記列方向へ拡げる拡散部材 が前記受光面の前に設けられ、 前記拡散部材と前記受光素子の列との距離が前記 受光素子の取付ピッチのほぼ 2倍であることを特徴とする位置検出装置。 8. A position detecting device comprising: a large number of light receiving elements arranged in a row; and a calculating device for calculating a light receiving center position of the light receiving elements in a column direction based on the light receiving amounts thereof, wherein a light receiving surface of the light receiving elements is A diffusing member for expanding the light beam traveling toward the column direction A position detecting device provided in front of the light receiving surface, wherein a distance between the diffusion member and the row of the light receiving elements is substantially twice a mounting pitch of the light receiving elements.
PCT/JP2002/004307 2001-05-07 2002-04-30 Position detector WO2002090883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001135906A JP2002328006A (en) 2001-05-07 2001-05-07 Device for detecting position
JP2001-135906 2001-05-07

Publications (1)

Publication Number Publication Date
WO2002090883A1 true WO2002090883A1 (en) 2002-11-14

Family

ID=18983291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004307 WO2002090883A1 (en) 2001-05-07 2002-04-30 Position detector

Country Status (2)

Country Link
JP (1) JP2002328006A (en)
WO (1) WO2002090883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881000A (en) * 2010-06-11 2010-11-10 中国人民解放军国防科学技术大学 Photographic measurement system and method for pavement evenness
WO2017042399A2 (en) * 2015-09-13 2017-03-16 Androtec Gmbh Position-sensitive optoelectronic detector arrangement, and laser beam receiver using same
CN112611368A (en) * 2020-12-01 2021-04-06 西南交通大学 Automatic aligning beacon device of ground precision detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179952B1 (en) 2010-06-18 2012-09-10 한국표준과학연구원 3-demensional measureing system using a noncontact type probe simultaneously
US9222772B2 (en) * 2012-12-29 2015-12-29 Robert Bosch Gmbh Rotary laser level with automated level calibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618217A (en) * 1992-06-29 1994-01-25 Akitsugu Fujieda Wide range position detector
JPH0763512A (en) * 1993-08-24 1995-03-10 Sekisui Chem Co Ltd Light position detecting device
JPH09313011A (en) * 1996-05-28 1997-12-09 Kubota Corp Control device for tilling height

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196143A (en) * 1985-02-27 1986-08-30 Asahi Eng Kk Optical type defect inspection equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618217A (en) * 1992-06-29 1994-01-25 Akitsugu Fujieda Wide range position detector
JPH0763512A (en) * 1993-08-24 1995-03-10 Sekisui Chem Co Ltd Light position detecting device
JPH09313011A (en) * 1996-05-28 1997-12-09 Kubota Corp Control device for tilling height

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881000A (en) * 2010-06-11 2010-11-10 中国人民解放军国防科学技术大学 Photographic measurement system and method for pavement evenness
WO2017042399A2 (en) * 2015-09-13 2017-03-16 Androtec Gmbh Position-sensitive optoelectronic detector arrangement, and laser beam receiver using same
WO2017042399A3 (en) * 2015-09-13 2017-05-26 Androtec Gmbh Position-sensitive optoelectronic detector arrangement, and laser beam receiver using same
US10670398B2 (en) 2015-09-13 2020-06-02 Androtec Gmbh Position-sensitive optoelectronic detector arrangement, and laser beam receiver using same comprising at least two weighting networks with network nodes respectively connected via a photodiode
US11105626B2 (en) 2015-09-13 2021-08-31 Androtec Gmbh Position-sensitive optoelectronic detector arrangement, and laser beam receiver using same comprising an elongated light guiding structure between an elongated window and light sensitive regions
CN112611368A (en) * 2020-12-01 2021-04-06 西南交通大学 Automatic aligning beacon device of ground precision detector
CN112611368B (en) * 2020-12-01 2022-08-05 西南交通大学 Automatic aligning beacon device of ground precision detector

Also Published As

Publication number Publication date
JP2002328006A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP5051468B2 (en) Sensor calibration apparatus and sensor calibration method
US6654007B2 (en) Coordinate input and detection device and information display and input apparatus
US7714993B2 (en) Position indicating and guidance system and method thereof
US20070109527A1 (en) System and method for generating position information
KR101241000B1 (en) Method of measuring relative movement in two dimensions of an object and an optical input device using a single self-mixing laser
WO2005045660A3 (en) Apparatus and method for determining an inclination of an elongate object contacting a plane surface
EP2502712A1 (en) Working tool positioning system
CN112368597A (en) Optical distance measuring device
CN1605927A (en) Projector and projector accessory
US20120261548A1 (en) Two-Dimensional Position Sensing Systems and Sensors Therefor
US20120113057A1 (en) Coordinate input apparatus, control method therefor and program
US10564033B2 (en) Procedure for comparing a reception beam impinging on a laser receiver with a rotating laser beam
US20130319122A1 (en) Laser-based edge detection
WO2022142248A1 (en) Method and system for calibrating laser scanner
WO2002090883A1 (en) Position detector
US20120013576A1 (en) Piezo-type scanning apparatus and touch screen using the same
CN212228033U (en) Auxiliary measuring device
JP4766478B2 (en) Frontage dimension measuring device
JP2019101001A (en) Position estimation device, and, position estimation method
JP2003082990A (en) Position measuring device of tunnel boring machine
JP4911113B2 (en) Height measuring apparatus and height measuring method
US10928196B2 (en) Vision laser receiver
JP4001775B2 (en) Laser bending amount determination apparatus, laser bending amount determination method, laser bending amount determination program, and recording medium
US7180583B2 (en) Apparatus for indicating position of an incident light beam
CN220795465U (en) Laser radar course angle detection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase