WO2002088853A1 - Systeme d'entree a base de deplacement pour dispositifs tenus a la main - Google Patents

Systeme d'entree a base de deplacement pour dispositifs tenus a la main Download PDF

Info

Publication number
WO2002088853A1
WO2002088853A1 PCT/US2002/013181 US0213181W WO02088853A1 WO 2002088853 A1 WO2002088853 A1 WO 2002088853A1 US 0213181 W US0213181 W US 0213181W WO 02088853 A1 WO02088853 A1 WO 02088853A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
input system
tap
based input
command
Prior art date
Application number
PCT/US2002/013181
Other languages
English (en)
Inventor
Christopher Verplaetse
David W. Lee
Thomas P. Evans
Jerry Nicholas Laneman
Original Assignee
Caveo Technology, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caveo Technology, Llc filed Critical Caveo Technology, Llc
Publication of WO2002088853A1 publication Critical patent/WO2002088853A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1636Sensing arrangement for detection of a tap gesture on the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1637Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/7243User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • This invention relates to a motion-based input system and more particularly, to a motion-based input system for use with electronic devices.
  • PDAs personal data assistants
  • Typical prior art devices employ a mouse to position a pointer over an icon, and a "double click" is required to select the desired program associated with the icon.
  • Other prior art devices use a combination of stylus and/or an "enter” key or button to select a desired program or to perform other actions.
  • Other prior art devices employ a combination of position commands (e.g., tilting) to move the cursor and an "enter” key to select and activate the desired program.
  • position commands e.g., tilting
  • Such a device is cumbersome and complicated because it requires both a position command and a gesture command to control and operate the device and requires the user to memorize each of the various gesture motions associated with the commands stored in the database. Moreover, because the gesture commands require dexterity of the hand, operation of this device is difficult and/or impossible for handicapped persons with limited hand motion.
  • This invention results from the realization that a truly innovative motion-based input system which is simple and easy to operate requires only a tap on a device for one type of action (e.g., "enter”) and motion of the device for a different action (e.g., cursor movement) or a combination of motions and taps in order to completely control and operate the device.
  • This invention features a motion-based input system comprising a motion sensor coupled to a device, the motion sensor providing a motion signal corresponding to the movement of the device, and a processor responsive to the motion signal and configured to distinguish between a tap command and a position command and to provide, in response to a tap command, one or more actions, and in response to a position command, one or more different actions to control and operate the device.
  • the processor detects a tap command by computing the power spectral density of the motion signal and comparing the energy level of the computed power spectral density of the motion signal with a predetermined threshold energy level for a predetermined threshold frequency range.
  • the predetermined threshold levels are configurable to adjust the sensitivity of the tap detected by the processor.
  • the predetermined threshold frequency detected by the processor is greater than or equal to 5 Hz.
  • the predetermined threshold levels are stored in a memory.
  • the processor of the motion-based input system of this invention is a microprocessor.
  • the motion-based input system of this invention may further include an interface between the processor an operating system resident on the device.
  • the motion-based input system further includes controlling software to control and operate the device based on the processor actions.
  • the motion sensor of the motion-based input system of this invention is an accelerometer and is coupled to an electronic device.
  • the controlling software is programmed to display a graphical representation which indicates the direction of a current or a proposed position command.
  • a continuous input mode provides continuous cursor or pointer movement in the direction of the current position command.
  • the rate of cursor or pointer movement provided by the continuous input mode is proportional to the magnitude of the position command.
  • the controlling software may be programmed to display a graphical representation to indicate the direction of the continuous cursor or pointer movement.
  • a stepped input mode indicates the direction of a proposed position command and moves the cursor or pointer in the direction of the proposed position command in response to a tap command.
  • the controlling software is programmed to display a graphical representation to indicate the direction of the proposed position command.
  • the processor of the motion-based input system of this invention is configured to select a continuous input mode or a stepped input mode depending on the active software application.
  • This invention also features a motion-based input system comprising a motion sensor coupled to a device, the motion sensor providing a motion signal corresponding to the movement of the device, and a processor, responsive to the motion signal and configured to detect a tap command, and provide, in response to the tap command, one or more actions to operate and control the device.
  • the processor is responsive to the motion signal and may be configured to detect an impulse command, and provide, in response to the impulse command, one or more actions to control and operate the device.
  • the processor responsive to the motion signal may be configured to distinguish between a tap command and a tilt command and to provide, in response to the tap command one or more actions and in response to the tilt command, one or more different actions to control and operate the device.
  • This invention further features a motion-based input system comprising a motion . sensor coupled to a device, the motion sensor providing a series of motion signals corresponding to movements of the device, and a processor, responsive to the series of motion signals, configured to detect a series of tap commands, and to provide, in response to the series of tap commands, one or more actions to operate and control the device.
  • the processor responsive to the motion signals may be configured to distinguish between a series of tap commands and a series of position commands on the device, and to provide in response to the series of tap commands, one or more actions, and in response to the series of position commands, one or more different actions to operate and control the device.
  • This invention further features a motion-based input system comprising motion sensing means coupled to a device for sensing motion and providing a motion signal corresponding to the movement of the device, and processing means responsive to the motion signal and configured to distinguish between tap commands and position commands and to provide, in response to the tap commands one or more actions and in response to the position commands one or more different actions to control and operate the device.
  • This invention also features a method for processing input commands for a device.
  • the method includes detecting a motion signal corresponding to movement of the device, analyzing the motion signal to distinguish between a tap command and a position command, and providing, in response to a tap command, one or more actions and providing in response to a position command, one or more different action, to control and operate the device.
  • the motion-based input system of this invention typically includes a motion sensor coupled to a device, the motion sensor providing a motion signal corresponding to the movement of the device, and a first action or series of actions associated with a tap on the device, a second action or series of actions associated with other movement of the device, a processor responsive to the motion signal and configured to distinguish between a tap on the device and other movement of the device; and to provide, in response to a tap, said first action or series of actions and in response to the other movement, said second action or series of actions to control and operate the device.
  • Figs. 1A-1F are schematic three-dimensional views of a typical prior art motion based input system employed in a PDA;
  • Figs. 2A-2D are schematic three-dimensional views showing one example of the motion based input system of the subject invention also employed in a PDA;
  • Figs. 3A-3E are schematic three-dimensional views of another example of the motion based input system of this invention employed in a cellular telephone.
  • Fig. 4 is a partially broken away schematic view showing the primary components associated with the motion based input system of this invention when employed in a PDA;
  • FIGs. 5 A and 5B are schematic three-dimensional views of another example of the motion based input system in accordance with this invention employed in PDA;
  • Fig. 6 is a partially broken away schematic view showing the primary components associated with the motion based input system of the subject invention when employed in a computer mouse;
  • Fig. 7 is graph showing a waveform representing a tilt of a device, gesture motion of the device, and a tap on the device;
  • Figs. 8A-8C are graphs showing in greater detail the waveforms for the motion events shown in Fig. 7;
  • Fig. 9A-9C are graphs showing frequency content in terms of spectral density for each motion event shown in Figs. 8A-8C;
  • Fig. 10 is a flow chart of one embodiment of the motion-based method for processing commands for an electronic device in accordance with the present invention.
  • Fig. 1 As explained in the Background section above, prior art motion-based input system 10, Fig. 1 as employed in handheld electronic device 12 such as a PDA, requires a combination of position commands (which relate to a particular angular orientation of electronic device 12) and gesture commands (time varying positions expressed as a unique pattern of movement in an interval of time) to control and operate electronic device 12. See U.S. Patent No. 6,347,290. As shown in Fig. 1 A, icon 18 on screen 16 of electronic device 12 is not highlighted or selected. In order to select the desired program associated with icon 18 a user typically performs a position command by tilting electronic device 12, as shown in Fig. IB to highlight or focus on icon 18. After returning electronic device 12 to its original position as shown in Fig.
  • prior art motion-based input system 10 requires a gesture command to invoke the "enter” command and to select the desired program associated with icon 18.
  • This gesture command is a time varying position expressed by a unique memorized pattern of movement, such as the somewhat cumbersome pattern between Figs. ID and IE over a specific interval of time to activate the selected program associated with icon 18, such as calendar program 20, Fig. IF.
  • prior art motion-based input system 10 requires a user to first input all the user's gesture commands into the system, store the various gesture commands associated with the unique patterns of movements in a database, and then memorize the patterns of movements associated with the user's selected gesture commands.
  • system 10 suffers from several distinct disadvantages.
  • the device is cumbersome and complicated to operate because it requires both position commands to perform selections and gesture commands to enter or activate the selection.
  • system 10 requires the user to input and memorize the patterns of movements associated with chosen gesture commands stored in a database.
  • prior art motion-based input system 10 employs gesture commands which require hand dexterity, and therefore system 10 is not useful by handicapped persons with limited hand dexterity.
  • System 50 includes a motion sensor (not shown in Fig. 2) coupled to (e.g., directly within, on, or indirectly attached to) device 54, such as a PDA, a hand held computer, or any other small handheld electronic or other device.
  • the motion sensor provides a motion signal corresponding to movement of device 54.
  • a processor also not shown in Fig.
  • motion-based input system 50 is designed and configured to respond to tap commands as well as motion commands, a user, in one example, need only tilt device 54 to select a desired action or position command, then simply tap the device 54 to "enter" or activate the selected action.
  • the result is a motion-based input system which is simple and easy to operate, which eliminates the need to memorize patterns of movement (e.g., gesture commands) to select commands stored in a database, and a unique system can be more easily used by persons with limited hand dexterity.
  • patterns of movement e.g., gesture commands
  • a user can highlight or focus on icon 60 located on screen 59 of device 54 to select the particular application associated with icon 60 (such as a calendar program, or any other of the vast array of software programs available on hand held electronic devices) by tilting device 54 down to the right as shown in Fig. 2B.
  • the motion sensor detects this motion of device 54 and provides a motion signal to the processor which responds by providing the appropriate commands to focus or highlight icon 60, as shown by icon 60 now being highlighted.
  • the user simply taps electronic device 54, as shown at 55, Fig 2C.
  • the uniquely configured processor responsive to the motion signal output by the sensor, detects the tap command and provides the appropriate actions to activate, in this example, calendar program 62, Fig. 2D, that is, an "enter" command is invoked, but without an enter button, mouse click, or gesture command.
  • the robust design of the motion-based input system of this invention detects a tap on device 54 and in response to the tap provides one or more actions to control and operate a device 54, a vast array of actions based on a simple tap or a series of taps can be invoked on a wide variety of electronic and even other devices.
  • motion-based input system 50' Fig. 3 A also includes a motion sensor coupled to electronic device 70, here a cellular telephone.
  • the motion sensor provides a motion signal corresponding to movement of electronic device 70 and the processor detects a tap command as shown at 71, Fig. 3B and provides, in response to the tap command, action 72 which causes the cellular phone to dial the user's workplace.
  • the processor detects a different tap command, for example a tap with more intensity, as shown at 73 in Fig. 3C and provides, in response to the tap command, action 74, which invokes the wireless phone to check a user's voice mail.
  • the processor of motion-based input system 50' may be configured to detect a series of tap commands, shown at 75 in Fig. 3D and at 77 in Fig. 3E, and respond to the series of tap commands by providing, in this example, action 76 which causes the cellular telephone to dial and check a user's e-mail.
  • the result is a motion-based input system which provides the ability to perform a wide range of actions or commands based on a simple tap or series of taps on the device without the need for buttons, a mouse, a keyboard, and without the need to perform gesture commands, to store the gesture commands in a database, or to memorize the gesture commands.
  • any device which employs the motion based input system of this invention can be easily used by persons having limited hand dexterity.
  • motion-based input system 50 of this invention typically includes motion sensor 80 coupled to device 54.
  • motion sensor 80 is an accelerometer, such as multi-axis MEMS accelerometer (for example part no. ADXL 202 available from Analog Devices, Inc., Wilmington, MA).
  • Motion sensor 80 provides a motion signal corresponding to movement of device 54.
  • processor 82 is uniquely configured to distinguish between tap commands (e.g., "enter") on device 54 and position commands (e.g., tilting) of device 54 and provides, in response to a tap command, one or more actions, and provides in response to position commands, one or more different actions to control and operate device 54.
  • tap commands e.g., "enter”
  • position commands e.g., tilting
  • motion-based input system 50 may include interface 84 which provides the interconnection between processor 82 and operating system 86 of the particular device 54.
  • motion-based input system 50 includes controlling software 88 which controls and operates device 54 in response to commands issued by processor 82.
  • Processor 82 may be a separate processor or a processor already associated with the electronic device.
  • controlling software 88 is programmed to display a small compass like icon on the screen with graphical elements such as arrows, to indicate the direction of the current position command (e.g., tilting).
  • Tilt based position commands are performed by rotating device 54 to cause an angular deflection with respect to a reference orientation "neutral".
  • a tilt of a sufficient magnitude occurs the compass will show a graphical arrow in the direction of that tilt and will move the cursor, pointer, or equivalent software entity in the same direction.
  • the rate of cursor motion may optionally be proportional to the angle of deflection. This example is typically referred to as a "continuous" input mode. If a tap command occurs while the device is tilted, the neutral reference orientation will be redefined to be the current orientation. If a tap command occurs while device 54 is in its neutral orientation, a select, enter, or equivalent software action will be performed.
  • the compass like icon on the screen will display the same graphical elements, such as arrows and the like, to indicate the direction of the proposed position command.
  • a tilt motion of sufficient magnitude will cause the compass to show a graphical arrow in the direction of that tilt, but software 88 will not move the cursor or pointer until a tap command is performed while device 54 is tilted. If a tap command occurs while device 54 is tilted, software 88 moves the cursor. If a tap command occurs while device 54 is in neutral, software 88 performs a select or enter action.
  • a new neutral reference orientation may be set by tilting device 54 to the desired neutral orientation and not tapping it for a predetermined length of time.
  • processor 82 is configured to select a continuous input mode or a stepped input mode depending on the active software application on device 54.
  • software 88 may be programmed select a continuous input mode or a stepped input mode depending on the active software application on device 54.
  • Fig. 5 A is an electronic spreadsheet and a user desires to move the active cell 202 from location B3 one cell to the left (cell A3), the position command of tilting device 54 to the left, as shown in Fig. 5B, causes controlling software 88 to display compass 204 on screen 206.
  • Arrow 208 of compass 204 indicates the direction of the proposed movement of the active cell.
  • a tap command as shown at 212 is detected by the motion sensor, and as discussed supra, processor 82 detects the tap command and provides, in response to the tap command, the action of moving the active cell to the left one cell, or to cell 210 at location A3.
  • position commands such as tilting electronic device to the right, down, or up will cause controlling software 88 to display compass 204 with arrow 208 pointing in the direction of the proposed movement which will be completed after the tap command is performed.
  • controlling software 88 is programmed to detect the current application or program being used on device 54. Controlling software 88 is further uniquely programmed to determine the best motion-based input method for the application active on device 54. For example, if a flight simulator game is active on device 54, the best motion-based input system is the continuous mode. In this example, position commands (e.g., tilting) of the device provide the actions associated with controlling the simulated airplane and tap commands fire weapons. In another example, such as an electronic phone book, the stepped input mode, which uses a combination of tap commands and position commands, is the best motion-based input method to issue the appropriate actions of scrolling through the phone book.
  • motion-based input system 50 Fig. 6 of this invention is employed in buttonless computer mouse 90, where a tap on mouse 90 serves as the "click” button and movement of the mouse (i.e., position commands) serve as the "point".
  • Motion sensor 80 provides a motion signal corresponding to movement of mouse 90 and processor 82 is responsive to the motion signal and configured to distinguish between a tap command on mouse 90 and a position command (e.g., movement) of mouse 90 and to provide, in response to a tap command, a click action and, in response to the position command, point actions to operate computer 100.
  • Motion-based input system 50" typically includes interface 84', such as a serial link, which is remotely located from motion sensor 80 and processor 82, and provides an interconnection between processor 82 and operating system 86' of computer 100.
  • interface 84' is remotely located from mouse 90
  • interface 84' may be coupled within mouse 90. The result is a completely buttonless mouse which can be operated by simple tap commands and position commands of mouse 90, hence eliminating the need for any buttons which significantly extends the lifetime of mouse 90 and provides for simple operation of the mouse.
  • graph 250 depicts three signals corresponding to motion input events or commands, e.g., a tilt, a gesture and a tap, which can be detected by a typical motion sensor.
  • a tilt as shown by section 252, is characterized as a change from one angular orientation to another. This type of motion or command produces a gradual shift of DC offset and generally has a low frequency content.
  • a gesture motion command as shown by section 254, is characterized as a dynamic and continuous changing signal over a period of time having a low to medium frequency content.
  • a tap command as shown by section 256, is an impulse type signal produced over a short period of time and has a high frequency content. Tap commands are also known as impulse commands because of the impulse nature of the motion caused by a tap command.
  • Figs. 8A, 8B, and 8C Detailed views of the tilt, gesture and tap signals shown in Fig. 7 is shown in Figs. 8A, 8B, and 8C, respectively.
  • processor 80 detects a tap or impulse command, as shown at 256, Figs. 7 and 8C by computing the power spectral density (PSD) of the motion signal and comparing the power level for a predetermined frequency range with a predetermined power level threshold.
  • PSD power spectral density
  • the PSD describes how the power (or variance) of a time series is distributed with frequency. It is defined, in mathematical terms, as the Fourier Transform of the autocorrelation sequence of the time series and it has units of power per unit of frequency.
  • the computed PSD of the tap command signal shown by graph 256, Fig. 8C is shown as waveform 258, Fig. 9C.
  • the computed PSD of the tilt command signal shown by graph 252, Fig. 8A is shown by waveform 260, Fig. 9A.
  • the computed PSD of gesture command signal shown by graph 254, Fig. 8B is shown by waveform 262, Fig. 9B.
  • a tap command has a significantly higher energy level and frequency content than the computed PSD for tilt command, as shown by waveform 260, Fig. 9A, and the computed PSD for a gesture command, as shown by waveform 262, Fig. 9B.
  • Processor 80 of motion-based input system 50 of this invention is uniquely configured to detect the higher energy level and frequency from the computed PSD of a tap command as discussed above.
  • processor 80 is configured to detect predetermined threshold frequency greater than or equal to 5 Hz.
  • the predetermined threshold levels are stored in a memory within processor 80, although the predetermined threshold levels may also be stored in an external memory.
  • the threshold levels detected by processor 80 are configurable to adjust the sensitivity of the tap detected by processor 56. This unique feature renders motion-based input system 50 able to distinguish between an inadvertent tap command on device 54 which is not intended to invoke any commands, and a tap which is intended to issue commands.
  • processor 82 also detects a tilt command (e.g., angular deflection) of device 54.
  • processor 82 is a microprocessor which is programmed to distinguish between a tap command on device 54 and a position command of device 54.
  • input commands are processed for a device, which includes the steps of detecting a motion signal corresponding to movement of the device, step 300, Fig. 10; analyzing the motion signal to distinguish between a tap command and a position command, step 302; and providing, in response to the tap command, one or more actions and providing, in response to a position command, one or more different actions, step 304, to control and operate the device.
  • a tap is associated with an action such as "enter” but different series of taps may be associated with, in a memory, for example, with a number of different actions as explained above with reference to Fig. 3.
  • different motions are associated, also perhaps in a memory, with different position commands. For example a tilt to the right means move the cursor to the right and the like. See also co-pending application Serial No. 09/773,165 filed January 31, 2001 incorporated herein by this reference.
  • the robust motion-based input system of this invention is uniquely designed to detect tap commands and further designed to distinguish between tap commands on an electronic device and position commands of the electronic device.
  • the robust design not only distinguishes between tap commands and position commands, but also provides one or more actions in response to the tap commands, and one or more different actions in response to the position commands.
  • This unique feature provides the ability to perform a vast combination of actions based on a simple tap, or a combination of taps and/or position commands.
  • the ability to detect a tap and perform one or more actions eliminates the need to perform the complex gesture commands of the prior art, which are often difficult and/or impossible to perform by persons of limited hand dexterity.
  • the system of this invention is simple and easy to operate and can even be applied to mouse- technology to provide for a completely buttonless mouse which does not need to be lifted or require elaborate motions to invoke certain commands. Moreover, there is no need to configure the system by performing elaborate gesture commands which must be stored in a database, or memorizing the patterns of movement associated with the gesture commands. Moreover, enter keys and buttons can be eliminated in any electronic device.

Abstract

L'invention concerne un système d'entrée à base de déplacement comprenant un capteur de déplacement couplé à un dispositif. Ledit capteur de déplacement fournit un signal de déplacement correspondant au déplacement dudit dispositif. Le système comprend également un processeur sensible au signal de déplacement, configuré de façon à faire une distinction entre une commande de tapotement et une commande de position, et fournissant, en réponse à la commande de tapotement, une ou plusieurs action(s), et en réponse à la commande de position, une ou plusieurs action(s) différente(s) afin de commander et de faire fonctionner ledit dispositif.
PCT/US2002/013181 2001-04-26 2002-04-25 Systeme d'entree a base de deplacement pour dispositifs tenus a la main WO2002088853A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28686001P 2001-04-26 2001-04-26
US60/286,860 2001-04-26

Publications (1)

Publication Number Publication Date
WO2002088853A1 true WO2002088853A1 (fr) 2002-11-07

Family

ID=23100483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/013181 WO2002088853A1 (fr) 2001-04-26 2002-04-25 Systeme d'entree a base de deplacement pour dispositifs tenus a la main

Country Status (1)

Country Link
WO (1) WO2002088853A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008947A1 (fr) 2004-07-20 2006-01-26 Vodafone K.K. Terminal de communication mobile, programme d’application, appareil de commande d’affichage d’image, dispositif electronique et procede de commande d’affichage d’image
EP1631049A1 (fr) * 2004-08-27 2006-03-01 Samsung Electronics Co., Ltd. Dispositif et procédé de contrôle de reproduction de musique dans un terminal de communication mobile utilisant un détecteur de mouvement
WO2006094739A1 (fr) * 2005-03-07 2006-09-14 Sony Ericsson Mobile Communications Ab Terminal de communication avec detecteur de bruit de claquement
EP1708075A2 (fr) * 2005-03-31 2006-10-04 Microsoft Corporation Système et procédé pour l'interaction sans regard avec un dispositif informatique par la sensibilisation à l'environnement
WO2006124381A2 (fr) * 2005-05-13 2006-11-23 Robert Bosch Gmbh Interface permettant de commander des systemes via un tapotement des doigts d'un utilisateur
WO2009093056A1 (fr) 2008-01-25 2009-07-30 Inputdynamics Ltd Procédés et dispositifs pour effectuer des entrées dans un appareil électronique
EP2131263A1 (fr) * 2008-05-13 2009-12-09 Sony Ericsson Mobile Communications Japan, Inc. Appareil de traitement d'informations, procédé de traitement d'informations, programme de traitement d'informations et terminal mobile
EP2184673A1 (fr) 2008-10-30 2010-05-12 Sony Corporation Appareil de traitement d'informations, procédé et programme de traitement d'informations
GB2475571A (en) * 2009-11-20 2011-05-25 Askey Computer Corp An Electronic Product Start Up Device
WO2011156789A1 (fr) * 2010-06-10 2011-12-15 Qualcomm Incorporated Lecture anticipée d'informations sur la base des gestes et/ou de l'emplacement
WO2012030509A1 (fr) * 2010-08-31 2012-03-08 Motorola Solutions, Inc. Commandes automatisées pour interface utilisateur activée par un capteur
EP2530575A1 (fr) * 2011-05-30 2012-12-05 LG Electronics Inc. Terminal mobile et son procédé de contrôle
US8773260B2 (en) 2004-04-06 2014-07-08 Symbol Technologies, Inc. System and method for monitoring a mobile computing product/arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787051A (en) * 1986-05-16 1988-11-22 Tektronix, Inc. Inertial mouse system
US5181181A (en) * 1990-09-27 1993-01-19 Triton Technologies, Inc. Computer apparatus input device for three-dimensional information
US5694340A (en) * 1995-04-05 1997-12-02 Kim; Charles Hongchul Method of training physical skills using a digital motion analyzer and an accelerometer
US5874942A (en) * 1993-04-02 1999-02-23 Vir Systems Pty. Ltd. Sensor data processing
US5899963A (en) * 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US6188392B1 (en) * 1997-06-30 2001-02-13 Intel Corporation Electronic pen device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787051A (en) * 1986-05-16 1988-11-22 Tektronix, Inc. Inertial mouse system
US5181181A (en) * 1990-09-27 1993-01-19 Triton Technologies, Inc. Computer apparatus input device for three-dimensional information
US5874942A (en) * 1993-04-02 1999-02-23 Vir Systems Pty. Ltd. Sensor data processing
US5694340A (en) * 1995-04-05 1997-12-02 Kim; Charles Hongchul Method of training physical skills using a digital motion analyzer and an accelerometer
US5899963A (en) * 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US6188392B1 (en) * 1997-06-30 2001-02-13 Intel Corporation Electronic pen device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773260B2 (en) 2004-04-06 2014-07-08 Symbol Technologies, Inc. System and method for monitoring a mobile computing product/arrangement
EP1783592A4 (fr) * 2004-07-20 2011-12-07 Vodafone Plc Terminal de communication mobile, programme d'application, appareil de commande d'affichage d'image, dispositif electronique et procede de commande d'affichage d'image
EP1783592A1 (fr) * 2004-07-20 2007-05-09 Vodafone K.K. Terminal de communication mobile, programme d'application, appareil de commande d'affichage d'image, dispositif electronique et procede de commande d'affichage d'image
WO2006008947A1 (fr) 2004-07-20 2006-01-26 Vodafone K.K. Terminal de communication mobile, programme d’application, appareil de commande d’affichage d’image, dispositif electronique et procede de commande d’affichage d’image
US8619028B2 (en) 2004-07-20 2013-12-31 Vodafone Group Plc Mobile communication terminal, application program, image display control apparatus, electronic apparatus, and image display control method
EP1631049A1 (fr) * 2004-08-27 2006-03-01 Samsung Electronics Co., Ltd. Dispositif et procédé de contrôle de reproduction de musique dans un terminal de communication mobile utilisant un détecteur de mouvement
WO2006094739A1 (fr) * 2005-03-07 2006-09-14 Sony Ericsson Mobile Communications Ab Terminal de communication avec detecteur de bruit de claquement
US7966084B2 (en) 2005-03-07 2011-06-21 Sony Ericsson Mobile Communications Ab Communication terminals with a tap determination circuit
EP1708075A2 (fr) * 2005-03-31 2006-10-04 Microsoft Corporation Système et procédé pour l'interaction sans regard avec un dispositif informatique par la sensibilisation à l'environnement
EP1708075A3 (fr) * 2005-03-31 2012-06-27 Microsoft Corporation Système et procédé pour l'interaction sans regard avec un dispositif informatique par la sensibilisation à l'environnement
WO2006124381A2 (fr) * 2005-05-13 2006-11-23 Robert Bosch Gmbh Interface permettant de commander des systemes via un tapotement des doigts d'un utilisateur
WO2006124381A3 (fr) * 2005-05-13 2007-06-14 Bosch Gmbh Robert Interface permettant de commander des systemes via un tapotement des doigts d'un utilisateur
WO2009093056A1 (fr) 2008-01-25 2009-07-30 Inputdynamics Ltd Procédés et dispositifs pour effectuer des entrées dans un appareil électronique
US8451254B2 (en) 2008-01-25 2013-05-28 Inputdynamics Limited Input to an electronic apparatus
US8587530B2 (en) 2008-05-13 2013-11-19 Sony Corporation Information processing apparatus, information processing method, information processing program, and mobile terminal
EP2287703A3 (fr) * 2008-05-13 2014-08-13 Sony Mobile Communications Japan, Inc. Appareil de traitement d'informations, procédé de traitement d'informations, programme de traitement d'informations et terminal mobile
EP2131263A1 (fr) * 2008-05-13 2009-12-09 Sony Ericsson Mobile Communications Japan, Inc. Appareil de traitement d'informations, procédé de traitement d'informations, programme de traitement d'informations et terminal mobile
US9507507B2 (en) 2008-10-30 2016-11-29 Sony Corporation Information processing apparatus, information processing method and program
EP2184673A1 (fr) 2008-10-30 2010-05-12 Sony Corporation Appareil de traitement d'informations, procédé et programme de traitement d'informations
GB2475571A (en) * 2009-11-20 2011-05-25 Askey Computer Corp An Electronic Product Start Up Device
JP2013538472A (ja) * 2010-06-10 2013-10-10 クアルコム,インコーポレイテッド ジェスチャーおよび/または位置に基づく情報のプリフェッチ
WO2011156789A1 (fr) * 2010-06-10 2011-12-15 Qualcomm Incorporated Lecture anticipée d'informations sur la base des gestes et/ou de l'emplacement
US8874129B2 (en) 2010-06-10 2014-10-28 Qualcomm Incorporated Pre-fetching information based on gesture and/or location
EP3276989A1 (fr) * 2010-06-10 2018-01-31 QUALCOMM Incorporated Lecture anticipée d'informations sur la base des gestes
CN103097979A (zh) * 2010-08-31 2013-05-08 摩托罗拉解决方案公司 用于传感器使能的用户界面的自动化控制
US9164542B2 (en) 2010-08-31 2015-10-20 Symbol Technologies, Llc Automated controls for sensor enabled user interface
WO2012030509A1 (fr) * 2010-08-31 2012-03-08 Motorola Solutions, Inc. Commandes automatisées pour interface utilisateur activée par un capteur
EP2530575A1 (fr) * 2011-05-30 2012-12-05 LG Electronics Inc. Terminal mobile et son procédé de contrôle

Similar Documents

Publication Publication Date Title
US6861946B2 (en) Motion-based input system for handheld devices
US7401300B2 (en) Adaptive user interface input device
US10338798B2 (en) Haptically enabled user interface
JP6121102B2 (ja) 近接感知による触覚的効果
EP2652580B1 (fr) Utilisation du mouvement d'un dispositif informatique pour améliorer l'interprétation d'événements d'entrée générés lors de l'interaction avec le dispositif informatique
JP5456529B2 (ja) グラフィカル・ユーザ・インターフェース・オブジェクトを操作する方法及びコンピュータシステム
US20100259499A1 (en) Method and device for recognizing a dual point user input on a touch based user input device
JP2011517810A5 (fr)
JP2009540471A (ja) タッチパッド上における挙動を認識してスクロール機能を制御し既定の場所でのタッチダウンによってスクロールを活性化する方法
WO2002088853A1 (fr) Systeme d'entree a base de deplacement pour dispositifs tenus a la main
JP5992976B2 (ja) ポインティング・スティックの入力を処理する方法、コンピュータおよびコンピュータ・プログラム
KR100808990B1 (ko) 포인팅 디바이스를 이용하여 메뉴를 선택하는 장치 및 그방법
KR100859882B1 (ko) 터치 기반 사용자 입력 장치상의 듀얼 포인트 사용자입력을 인지하기 위한 방법 및 장치
KR100780437B1 (ko) 포인팅 장치를 구비한 휴대 단말기의 포인터 제어 방법
Gao et al. Yet another user input method: Accelerometer assisted single key input

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP