WO2002088038A1 - Method and device for bend-forming sheet glass - Google Patents

Method and device for bend-forming sheet glass Download PDF

Info

Publication number
WO2002088038A1
WO2002088038A1 PCT/JP2002/004263 JP0204263W WO02088038A1 WO 2002088038 A1 WO2002088038 A1 WO 2002088038A1 JP 0204263 W JP0204263 W JP 0204263W WO 02088038 A1 WO02088038 A1 WO 02088038A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass sheet
glass plate
glass
bending
rollers
Prior art date
Application number
PCT/JP2002/004263
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Andou
Junji Hori
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2002088038A1 publication Critical patent/WO2002088038A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0305Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/161Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors specially adapted for bent sheets or ribbons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/163Drive means, clutches, gearing or drive speed control means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/165Supports or couplings for roller ends, e.g. trunions, gudgeons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/182Construction of the conveyor rollers ; Materials, coatings or coverings thereof specially adapted for bent sheets or ribbons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/185Construction of the conveyor rollers ; Materials, coatings or coverings thereof having a discontinuous surface for contacting the sheets or ribbons other than cloth or fabric, e.g. having protrusions or depressions, spirally wound cable, projecting discs or tires
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/189Disc rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method and an apparatus for bending a glass plate
  • a flat glass sheet cut into a predetermined shape is heated to a bending forming temperature in a night while being conveyed by rollers in a heating furnace.
  • the glass sheet is bent and formed by a forming die, and then the glass sheet is conveyed to an air-cooling strengthening zone, where it is air-cooled by air jetted from a lower blow head and an upper blow head.
  • an air-cooling strengthening zone where it is air-cooled by air jetted from a lower blow head and an upper blow head.
  • the molding apparatus disclosed in Japanese Patent Application Laid-Open No. 6-127971 discloses a moving device for moving a mold, which is a molding die, in a glass sheet conveying direction in order to realize high-speed molding of a glass sheet. I have it.
  • this forming apparatus first, a glass plate heated to a bending forming temperature in a heating furnace is conveyed by a roller conveyor and then received by a lower ring. After that, the ring is raised, and the glass plate is pressed against a mold arranged above the ring to bend and form.
  • the glass plate is sucked and held by the mold, and the mold is moved in the glass plate transport direction, and the glass plate is transferred to the roller comparator.
  • the glass plate is conveyed to the air-cooling strengthening stage by this roller conveyor.
  • it is necessary to temporarily stop the glass plate conveyed by the roller conveyor on the lower ring before forming by the mold.
  • productivity could not be sufficiently increased.
  • a mold and a roller Due to the speed difference from the conveyor, slippage occurred between the glass plate and the conveyor, and there was also a problem that the glass plate was easily damaged due to this.
  • An object of the present invention is to provide a method and an apparatus for bending a glass sheet, which can improve the productivity as compared with the related art, by solving the problems of the related art. Disclosure of the invention
  • a glass plate is heated to a bending temperature by a heating furnace, and the heated glass plate is transported by a transport unit, and a forming die installed above the transport unit is transported at a transport speed of the glass plate.
  • the transporting means is an opening-conveyor comprising a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers;
  • a roller By moving a roller to be formed up and down in accordance with the transfer position of the glass plate, at least a part of the transfer surface is bent to form a curved surface, and the molding die is pressed against the glass plate on the curved surface. Therefore, it is preferable to bend the glass plate.
  • the transporting unit is a roller conveyor having a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers.
  • the glass sheet is preferably movably provided in the vertical direction and is urged upward.
  • the urging force preferably bends the glass sheet while applying a reaction force suitable for forming the glass sheet to the molding die. .
  • the transfer means includes an air floating means for supporting the glass plate by air floating, and the glass plate is caused to air float by air jetted from the air floating means. It is preferable to press the mold in the state.
  • the glass sheet heated by the heating furnace is conveyed on a conveying surface formed by the plurality of rollers, so that the glass sheet is preliminarily bent by its own weight. After that, it is preferable to perform bending by the above-mentioned mold.
  • the glass plate is preferably used for manufacturing a window glass of an automobile.
  • the present invention relates to a heating furnace for heating a glass sheet to its molding temperature, a conveying means for conveying the heated glass sheet, a forming die installed above the conveying means, A molding die moving means for moving the molding die in the conveying direction and the vertical direction of the glass sheet; and by controlling the driving of the molding die moving means, the molding die is synchronized with the conveyance of the glass sheet. And a control means for bending the glass sheet by pressing the forming die against the glass sheet while conveying the glass sheet.
  • an apparatus for bending a plate is provided.
  • FIG. 1 All #: perspective views showing an embodiment of a glass sheet bending apparatus according to the present invention.
  • Figure 2 Front view showing the structure of the roller lifting device.
  • Figure 3 Illustration showing the operation of bending a glass plate using a mold and a mouth conveyor.
  • Figure 4 Explanatory drawing showing the bending operation by a mouth conveyor.
  • Figure 5 Side view of the mold mover.
  • FIG. 6 is a perspective view showing another embodiment of the roller conveyor.
  • FIG. 7 Structural view showing the support structure of the two-sided rollers of the roller conveyor shown in Fig. 6.
  • Fig. 8 Structural view showing the support structure of the cantilever rollers of the roller conveyor shown in Fig. 6.
  • FIG. 9 is a side view of a main part of the cantilever roller support structure shown in FIG.
  • FIG. 10 is an explanatory view showing a state where a glass sheet is formed into a double curve by the roller conveyor shown in FIG.
  • Fig. 11 Explanatory drawing showing the bending operation using the air-floating device.
  • Fig. 12 Explanatory diagram showing a bending operation using a nose-bending roller at the edge of a glass plate.
  • Fig. 13 Structural diagram showing another embodiment of a support structure of a double-supported roller of a roller conveyor.
  • FIG. 14 Front view showing another embodiment of the roller conveyor.
  • Fig. 15 Structural drawing showing the support structure of the two-sided rollers of the roller conveyor shown in Fig. 14.
  • FIG. 16 is a one-side view of a main part showing another embodiment of the roller conveyor.
  • FIG. 17 is a front view of the roller conveyor shown in FIG.
  • FIG. 18 is an enlarged front view of a main part of the roller conveyor shown in FIG.
  • FIG. 19 is a cross-sectional view showing another embodiment of the rollers constituting the one-to-one conveyor.
  • FIG. 20 is a side view of the roller as viewed from the line 20—20 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the glass sheet bending apparatus 10 shown in FIG. 1 mainly includes a heating furnace 12, a forming zone 14, and an air cooling strengthening apparatus 16.
  • the bending process of the glass plate 18 by the forming apparatus 10 will be described.
  • the glass sheet 18 before bending is positioned at the entrance of the heating furnace 12, the glass sheet 18 is conveyed into the heating furnace 12 by a roller conveyor (not shown).
  • the glass plate 18 is gradually heated by a heater (not shown) installed in the heating furnace 12 while being conveyed in the heating furnace 12. At the outlet, it is heated to the bending temperature (about 680 ° C).
  • the heated glass sheet 18 is conveyed by a roller conveyor 20 for bending (corresponding to the conveying means in the claims) in a forming zone 14 provided on the downstream side of the heating furnace 12.
  • the glass plate 18 is transported by the roller conveyor 20 while the roller conveyor 2 Mold that moves in the glass sheet transport direction in synchronization with the transport speed of 0 (corresponding to the forming die in the claims) 70 Bending to a predetermined curvature by pressing operation of 0 and bending operation by roller conveyor 20 Is done.
  • the bent glass sheet 18 is conveyed from the exit of the forming zone 14 to the air-cooling and strengthening device 16 by the roller conveyor 22 without stopping, and is then cooled by the roller.
  • the air cooling device 16 includes an upper blow head 24 and a lower blow head 26 arranged with the roller conveyor 22 interposed therebetween, and the glass plate 18 has the blow heads 2 4.
  • the air is strengthened by air blown from the glass 26 to the glass plate 18.
  • the cooling capacity of the air-cooling strengthening device 16 is appropriately set according to the thickness of the glass plate 18.
  • the glass plate 18 strengthened by air cooling is conveyed from the outlet of the air cooling strengthening device 16 to the inspection device (not shown) in the next process by the mouth conveyor 28.
  • the roller conveyor 20 is composed of a number of rollers arranged in a horizontal state parallel to each other in the conveying direction of the glass plate 18, and the glass plate 18 is formed on the conveying surface formed by these rollers. Conveyed.
  • Each roller is independently driven to rotate by a rotary drive unit such as a servomotor. Further, among these rollers, for example, 18 forming rollers 20A to 2OR (FIG. 3) arranged at the middle stage and thereafter are vertically moved independently by the vertical driving means. The driving of the rotation driving means and the vertical driving means is controlled by a motion controller 200 (corresponding to a control means in the claims).
  • FIG. 2 is a structural diagram showing the rotation driving means and the vertical driving means of each of the rollers 20A to 2OR. Since the rotary drive means and the vertical drive means of each of the rollers 20A to 2OR have the same structure, the structure of the roller 20A side is described in FIG. The description of the structure on the B-20R side is omitted.
  • the roller 2 OA has a moving frame 30 formed in a substantially concave shape and a bearing 3 at both ends thereof. It is rotatably supported via 2, 32. Further, a spindle 40 of a servo motor 38 is connected to the left end of the roller 2 OA in FIG. 2 via gears 34 and 36, and by driving the servo motor 38, the roller 2 OA It is rotated at an angular speed of.
  • the above is the structure of the rotation driving means. '
  • the moving frame 30 is fixed on both sides via a linear motion guide.
  • the linear motion guide is configured such that guide rails 44 are vertically arranged on the moving frame 30 side, and guide blocks 46 on the fixed frame 42 side are engaged with the guide rails 44. .
  • racks 48 and 48 project downward from both ends of the lower part of the moving frame 30, and pinions 50 and 50 are combined with the racks 48 and 48.
  • the pinions 50, 50 are fixed to a horizontally arranged rotating shaft 52, and the rotating shaft
  • Both ends of 52 are supported by bearings 54 and 54, and the left end of FIG. 2 is connected to a spindle 58 of the support 56.
  • the rotational motion is converted into a linear motion by the feed action between the pinion 50 and the rack 48, so that the moving frame 30 is Roller 2 OA is moved up and down.
  • the above is the structure of the vertical driving means.
  • heaters 60 and 62 for heating the glass sheet are provided.
  • the above-mentioned rotary drive means and vertical drive means are provided for all of the other rollers 20 B to 20 R, and the servo motors 38, 56 of these means are controlled by the motion controller 200. Is controlled.
  • the motion controller 200 will be described.
  • the motion controller 200 controls the angular velocity of the rollers 200A to 2OR corresponding to the curvature of the glass plate 18 of that type.
  • the motion controller controls the servo motor 38 based on the created angular velocity control data and controls the servo motor 56 based on the vertical movement control data. That is, the motion controller 200 is configured such that the glass plate 18 is driven by the rollers 20A to 20R.
  • the rollers 20A to 2OR are multiaxially controlled so that the rollers 20A to 2OR are bent and formed to a desired curvature during conveyance.
  • the moving mechanism of the mold 70 shown in FIG. 5 includes a horizontal moving mechanism and a vertical moving mechanism.
  • the horizontal moving mechanism is composed of a pole screw device 72 and a pair of guide rails 74, 74 (FIG. 1 shows a pair of guide rails, and FIG. 5 shows only one guide rail).
  • the screw rod 75 and the guide rails 74, 74 of the pole screw device 72 are arranged in parallel to the glass sheet transport direction indicated by arrow A in FIG.
  • a nut part 76 is screwed into the screw rod 75, and the moving part body 77 to which the nut part 76 is fixed is slidably engaged with the guide rails 74, 74. I have.
  • a motor 79 of a feed screw device 78 constituting the vertical movement mechanism is fixed to the nut portion 76 with an output shaft (not shown) facing downward, and a screw rod 8 connected to this output shaft is provided.
  • the support part 71 of the mold 70 is screwed to the zero.
  • the supporting portion 71 is supported by the moving portion main body 79 via a linear motion guide 81, 81,.
  • the mold 70 moves in the glass sheet transport direction indicated by the arrow A in FIG. Reciprocate in and the opposite direction.
  • the feed screw device 78 is driven, the mold 70 moves up and down.
  • the lower moving end of the mold 70 is set at a position below the roller conveyor 20 as shown by a two-dot chain line in FIG.
  • the pole screw device 72 is controlled by the motion controller 200 in FIG. 1 so as to move the mold 70 in the horizontal direction in synchronization with the glass sheet transport speed.
  • the pole screw device 78 is controlled by the motion controller 200 so as to move up and down the mold 70 in conjunction with the up and down movement of the forming rollers 20A to 20R described later.
  • the vertical movement of the rollers 20A to 20R is such that the rollers 20A to 20R sequentially move downward and upward in the order of the rollers 2OA to 2OR as the glass plate 18 is conveyed.
  • the rollers 20A to 20R which are multi-axis controlled by the motion controller 200, move the heated glass plate 18 to the entrance side of the roller conveyor 20 as shown in, for example, FIGS. 3 (A) and 4 (A). Is reached, all the rollers 20A to 20R are at the uppermost position, and the transport surface formed by the rollers 20A to 20R is horizontal. Next, as shown in FIGS.
  • the glass plate 18 is continuously conveyed without stopping or decelerating. Then, when the rear end 18A of the glass plate 18 in the conveying direction comes into contact with the mouthpiece 2OA as shown in FIGS. 3 (C) and 4 (C), the rollers 20A to 20I respectively move down by a predetermined amount. Then, the conveying surface formed by the rollers 20A to 20I is deformed into a curved shape corresponding to the curvature of the glass plate 18 to be formed. Thus, when the glass plate 18 passes over the rollers 20A to 20I, the glass plate 18 radiates downward along the curved surfaces of the rollers 20A to 20I due to the weight of the glass plate 18.
  • the mold which is also moving in synchronization with the glass sheet transport speed, descends while moving in the transport direction.
  • the glass plate 18 being conveyed is pressed against the molding surface 7 OA of the mold 70.
  • the glass plate 18 is bent into a glass plate having a desired curvature.
  • the vertical movement amount of each of the rollers 20A to 2OR is controlled such that the curved conveyance surface in FIG. 3C moves parallel to the downstream side along with the conveyance position of the glass plate 18. Then, at the positions shown in FIGS. 3D and 4D which have been conveyed downstream by a predetermined amount from the position shown in FIG. 3C, the mold 70 moves up and retreats from the glass plate 18. Then, the mold 70 moves in the direction opposite to the carrying direction as shown in FIGS. 3 (D) and 4 (D), and returns to the original position shown in FIGS. 3 (A) and 4 (A). Waiting for forming the next glass plate 16. The above is the bending process of the glass plate 18 in the forming zone 14.
  • the mold 70 disposed above the roller conveyor 20 is conveyed at a substantially constant speed without stopping or decelerating the glass plate 18 being conveyed by the roller conveyor 20. Since the molding is performed by pressing against the glass plate 18, the speed difference in the conveying direction between the two during molding becomes zero. Therefore, in the above-mentioned forming method, the glass plate 18 can be formed without reducing the production tact, so that the productivity is increased. Further, since the bending is started in a short time after being carried out of the heating furnace, the glass plate 18 can be bent without lowering the temperature, and the optical quality of the glass plate 18 is improved. Further, since the final shape of the glass plate 18 is formed by the mold 70, various curved surface shapes can be accommodated, and the shape is stabilized.
  • FIG. 6 shows a second embodiment of the roller conveyor 90 arranged in the forming zone.
  • the roller conveyor 90 has two supporting rollers 90A, 90C, 90E, 90G, 901, 90K and 90M, and two supporting rollers 90B, 90D, 90F, 90H, 90J, 90 L and are alternately arranged.
  • FIG. 7 shows a support structure 92 at one end of the two-sided supported rollers 90A, 90C, 90E, 90G, 901, 9OK, and 9OM.
  • the support structure 92 at one end of the roller 90A will be described, and the description of the support structure at the other end of the same structure as the support structure 92 will be omitted.
  • the support structure at both ends of the other rollers 90C, 90E, 90G, 901, 9OK, and 90M is the same as the support structure of the roller 90A, and therefore the description is omitted.
  • one end of the roller 90A is supported by a bracket 96 via a bearing 94.
  • the bracket 96 is supported by a vertical moving guide 100 formed on the upper end side of the moving frame 30 via blocks 102, 102 so as to be movable up and down.
  • the rod 96 of the air cylinder device 104 that applies a reaction force F to the roller 90A is connected to the bracket 96.
  • the vertical moving mechanism of the moving frame 30 is the same as the mechanism shown in FIG. 2, and the description thereof is omitted here.
  • the roller 9 OA moves up and down due to the feed action of the rack 48 and the pinion 50, so that the height of the roller 9 OA is increased. Can be adjusted.
  • the roller 9OA is urged upward by the restoring force of the air cylinder device 104 generated when the mold 70 shown in FIG. 6 is pressed against the glass plate 18. This urging force is the reaction force F, and the reaction force F is set to a value suitable for forming the glass plate 18.
  • FIG. 8 shows one side support structure 110 of a pair of cantilevered rollers 90 B, 90 D, 90 F, 90 H, 90 J and 90 L, respectively.
  • the supporting structure 110 of the roller 90B on one side will be described, and the description of the supporting structure on the other side which is the same as the supporting structure 110 will be omitted.
  • the supporting structure of the other rollers 90D, 90F, 90H, 90J, and 90L is the same as the supporting structure of the roller 9OA, and the description thereof is omitted.
  • one end of the roller 90B is supported by the casing 114 via the bearings 112, 112.
  • pins 1 16 and 1 16 protrude from both ends of the casing 1 14 in the transport direction of the glass plate in parallel with the transport direction of the glass plate.
  • the holder 1 18 is rotatably supported via bearings 120 and 120.
  • the holders 118 are supported by a pedestal 98.
  • an arm 122 is protruded from the casing 114 in the horizontal direction, and a rod 125 of the air cylinder device 124 is connected to the arm 122.
  • roller 90B is urged upward by the restoring force of the air cylinder device 124 generated when the mold 70 shown in FIG. 6 is pressed against the glass plate 18.
  • This urging force becomes a reaction force F, and this reaction force F is set to a value suitable for forming the glass plate 18.
  • a reaction force F suitable for forming the glass plate 18 is applied to the mold 70, so that the bent shape of the glass plate 18 is stable. I do.
  • a reaction force F generated by a double-sided supporter 2OA acts as a reaction force for pressing the central portion of the glass plate 18 against the mold 70.
  • the reaction force F generated by the cantilevered rollers 20 B, 2 OB acts as a reaction force for pressing the peripheral portion of the glass plate 18 against the mold 70. Therefore, the entire surface of the glass plate can be pressed against the mold 70 with an optimal force, so that the glass plate 18 can be bent well. Further, since the glass sheet 18 can be bent in a direction orthogonal to the glass sheet transport direction, it is possible to cope with the bending of the multi-curved glass sheet 18.
  • the reaction force F is generated using the air cylinder devices 104 and 124.
  • the present invention is not limited to this, and the air cylinder devices 104 and 124 may be used.
  • a reaction force generating means such as a spring may be used.
  • a felt-like elastic sheet made of ceramic fiber may be wound around the roller without supporting the roller movably up and down, and the reaction force F may be generated by the elastic restoring force of the sheet.
  • FIG. 11 shows a third embodiment of the roller conveyor 130 arranged in the forming zone.
  • the roller conveyor 130 uses a plurality of rollers located upstream (in the left part of FIG. 11) in the glass sheet transport direction as preforming rollers, and a plurality of rollers following these preforming rollers. These rollers are used as forming rollers.
  • the glass plate 18 When the glass plate 18 is conveyed by the preforming roller, the glass plate 18 is curved along the curved conveying surface formed by the preforming roller only by the action of its own weight, as shown in Fig. 11 (A). You. When the glass sheet 18 is conveyed by the forming roller, the glass sheet 18 moves in synchronization with the curved conveying surface formed by the forming roller and the glass sheet conveying speed as shown in FIGS. 11 (B) to 11 (E). It is bent between the mold 70 and the mold. The operations of the molding roller and the mold 70 are the same as those of the embodiment shown in FIG. 3, and the description thereof is omitted here.
  • the mouth conveyor 130 shown in FIG. 11 has a number of air injection nozzles below the rollers of the molding rollers (which are used as air floating means in the claims). 1) There are 1 32, 1 32 and so on. These air injection nozzles 13 2 and 13 2 are arranged with their injection ports facing upward. Also, air injection nozzle 1
  • the air pressure of the hot air injected from 3 2 and 1 3 2 is set to a pressure that allows the glass plate 18 being transported on the curved transport surface to air float and press against the molding surface 7 OA of the mold 70. Is set. In this way, even when the glass plate 18 is configured to be pressed against the mold 70 by air pressure, the glass plate 18 is not stopped or decelerated at the time of molding, and moves together with the mold 70 in the glass sheet transport direction. To increase production capacity. In addition, since the sheet is bent while being supported by air floating, there is an advantage that the lower surface of the glass plate 18 is not damaged by the roller during the bending.
  • FIG. 12 shows a fourth embodiment of the roller conveyor 140 arranged in the forming zone.
  • This roller conveyor 140 is provided with a so-called nose-bending roller 14 OA on the upstream side of the forming roller in the glass sheet conveying direction, and on the downstream side of the glass sheet conveying direction across a plurality of rollers.
  • a nose-bending roller 140B is disposed in the nose.
  • the rollers 140A and 140B are connected to a moving device (not shown) so as to move at the same speed as the glass plate conveying speed.
  • the glass sheet 18 for automobiles is generally formed such that the curvature of the end of the glass sheet 18 is larger than that of other parts. In such a portion having a large curvature, the bending shape cannot be obtained satisfactorily unless the molding time is made longer than in the other portions.
  • the roller 140 A and 14OB move in the glass sheet conveying direction at the same speed as the glass sheet conveying speed while maintaining this state, as shown in FIG. 12 (C).
  • the end of the glass plate 18 having a large curvature can be formed longer than other portions, so that the shape of the end having a large curvature can be favorably obtained.
  • the operation of the mold 70 is the same as that of the embodiment shown in FIG. 3, and the description thereof is omitted here.
  • FIG. 13 shows another embodiment of the roller support structure shown in FIG.
  • This roller support structure does not employ the mechanism composed of the rack 48 and the pinion 50 shown in FIG. 7 as the vertical movement mechanism of the roller 9 OA, but employs a worm jack device 150 as shown in FIG. It is.
  • the worm jack device 150 has a motor 154 for driving a worm wheel incorporated in the gear box 152, and by driving the motor 154, the worm wheel rotates, and the worm 150 6 moves up and down.
  • An air cylinder device 104 is connected to an upper end of the worm 156, and a rod 106 of the air cylinder device 104 is connected to a bracket 96.
  • FIG. 14 shows an example in which rollers 16 0, 16 0... Having a double-sided structure are alternately tilted to the left and right to cope with bending of a double curved glass.
  • Fig. 15 shows an example of the two-sided support structure.
  • the support structure shown in Fig. 15 is an improvement of the roller support structure shown in Fig. 2, that is, the rotation shaft 52 is divided into a rotation shaft 52A and a rotation shaft 52B, and these rotations are performed.
  • the shafts 52A and 52B are connected to a motor 1664 via an operating gear device (for example, a differential unit of Harmonic Drive Systems) 16.
  • an operating gear device for example, a differential unit of Harmonic Drive Systems
  • the rotating shaft 52 A and the rotating shaft 52 B rotate in the opposite directions by the action of the operating gear device 16 2, so that the left and right moving frames 30 L , 30 R height difference.
  • Figs. 16 to 18 show two cylindrical bumps 170 and 170 on one roller 20.
  • an apparatus is shown in which a glass plate is conveyed by rotating rollers 170 and 170 by rollers 20 and a glass plate is bent and formed by roller 170 and mold 70.
  • the distance between the bumps 170 is changed for each roller as shown in FIG.
  • the roller with the hump 170 outside is controlled higher by the amount calculated from the radius of curvature R.
  • control the lower ones with Cobb 170 inside That is, the value of the roll elevating / lowering is changed and controlled in accordance with the position of each of the knobs 170 in accordance with the compound track R.
  • the roller 180 shown in FIG. 19 is a roller having a double shaft structure composed of a flat roller 20 and a cylindrical roller (hereinafter, referred to as a free port—a roller) 182.
  • the roller 182 is relatively rotatably connected to the roller 184 via bearings 18 and 18.
  • Weight of glass plate per roll Wg (kg)
  • Weight of free roller 182 Wr (kg)
  • Friction force between glass plate and free roller 182 n
  • the glass sheet being conveyed by the conveying means is stopped at the same speed without being stopped or decelerated, and the glass sheet is conveyed at the same speed. Pressing the mold placed on the glass plate and bending it causes the productivity to be higher than before. According to the present invention, it is possible to manufacture glass sheets for transportation equipment such as automobiles, ships, railways, and aircrafts, or for building and other various uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Sheet glass (18) is heated to a bend-forming temperature in a heating furnace (12). This heated sheet glass (18) is conveyed by a conveying means (20), and a mold (14) set above the conveying means (20) is moved in the conveying direction of the sheet glass (18) in synchronization with the conveying speed of the sheet glass (18). The sheet glass (18) is bend-formed by pressing the mold (14) against the sheet glass (18) which is being conveyed.

Description

ガラス板の曲げ成形方法および装置 技術分野  Method and apparatus for bending sheet glass
本発明は、 ガラス板の曲げ成形方法および装置に関する, :  The present invention relates to a method and an apparatus for bending a glass plate,
自動車用の窓ガラスに用いられる湾曲ガラス板の曲げ成形方法は、 まず所定 の形状に切り出されている平板状ガラス板を、 加熱炉でローラ搬送しながらヒ 一夕で曲げ成形温度まで加熱する。 次に、 このガラス板を成形型で曲げ成形し た後、 このガラス板を風冷強化ゾーンに搬送し、 ここの下吹口ヘッドと上吹口 ヘッドとから噴射されるエアーによって風冷強化する。 これによつて、 所望の 湾曲形状のガラス板が製造される。  In a method of bending a curved glass sheet used for a window glass for an automobile, first, a flat glass sheet cut into a predetermined shape is heated to a bending forming temperature in a night while being conveyed by rollers in a heating furnace. Next, the glass sheet is bent and formed by a forming die, and then the glass sheet is conveyed to an air-cooling strengthening zone, where it is air-cooled by air jetted from a lower blow head and an upper blow head. Thus, a glass sheet having a desired curved shape is manufactured.
ところで、 このようなガラス板の曲げ成形装置において、 生産性を向上させ るためには、 ガラス板の高速成形化が必要とされている。 例えば特開平 6—1 2 7 9 6 1号公報に開示された成形装置は、 ガラス板の高速成形を実現するた めに、 成形型であるモールドをガラス板の搬送方向に移動させる移動装置を備 えている。 この成形装置によれば、 まず加熱炉で曲げ成形温度まで加熱された ガラス板を、 ローラコンベアによって搬送した後、 下側のリングで受け取る。 この後、 リングを上昇させて、 リングの上方位置に配置されたモールドにガラ ス板を押し付けて曲げ成形する。 この後、 モールドでガラス板を吸着保持する とともに、 モールドをガラス板搬送方向に移動して、 ガラス板をローラコンペ ァに移載する。 このローラコンベアでガラス板を風冷強化ステージに搬送する。 しかしながら、 特開平 6 — 1 2 7 9 6 1号公報の曲げ成形装置では、 モール ドによる成形前に、 ローラコンベアで搬送されてきたガラス板を下側のリング 上で一旦停止させる必要があるので、 生産性を十分に高めることができないと いう問題点があった。 また、 上記公報の曲げ成形装置では、 モールドとローラ コンベアとの速度差によって、 ガラス板と口一ラコンベアとの間でスリップが 発生し、 これが原因でガラス板に傷が付き易いという問題点もあった。 By the way, in such a glass sheet bending apparatus, high-speed forming of a glass sheet is required in order to improve productivity. For example, the molding apparatus disclosed in Japanese Patent Application Laid-Open No. 6-127971 discloses a moving device for moving a mold, which is a molding die, in a glass sheet conveying direction in order to realize high-speed molding of a glass sheet. I have it. According to this forming apparatus, first, a glass plate heated to a bending forming temperature in a heating furnace is conveyed by a roller conveyor and then received by a lower ring. After that, the ring is raised, and the glass plate is pressed against a mold arranged above the ring to bend and form. Thereafter, the glass plate is sucked and held by the mold, and the mold is moved in the glass plate transport direction, and the glass plate is transferred to the roller comparator. The glass plate is conveyed to the air-cooling strengthening stage by this roller conveyor. However, in the bending apparatus disclosed in Japanese Patent Application Laid-Open No. 6-127961, it is necessary to temporarily stop the glass plate conveyed by the roller conveyor on the lower ring before forming by the mold. However, there was a problem that productivity could not be sufficiently increased. Further, in the bending apparatus of the above publication, a mold and a roller Due to the speed difference from the conveyor, slippage occurred between the glass plate and the conveyor, and there was also a problem that the glass plate was easily damaged due to this.
本発明の目的は、 上記従来技術が有していた問題点を解消することにより、 従来よりも生産性を高められるガラス板の曲げ成形方法および装置を提供する ことを目的とする。 発明の開示  An object of the present invention is to provide a method and an apparatus for bending a glass sheet, which can improve the productivity as compared with the related art, by solving the problems of the related art. Disclosure of the invention
本発明は、 ガラス板を加熱炉で曲げ成形温度まで加熱し、 この加熱されたガ ラス板を搬送手段で搬送するとともに、 前記搬送手段の上方に設置された成形 型を前記ガラス板の搬送速度に同期させて前記ガラス板の搬送方向に移動させ、 前記ガラス板を搬送しながら前記成形型を前記ガラス板に押し付けることによ り、 前記ガラス板を曲げ成形することを特徴とするガラス板の曲げ成形方法を 提供する。  In the present invention, a glass plate is heated to a bending temperature by a heating furnace, and the heated glass plate is transported by a transport unit, and a forming die installed above the transport unit is transported at a transport speed of the glass plate. By moving the glass sheet in the direction of conveyance of the glass sheet in synchronization with the glass sheet and pressing the molding die against the glass sheet while conveying the glass sheet, the glass sheet is bent and formed. Provides a bending method.
また、 本発明の一態様として、 前記搬送手段は、 複数本のローラからなる口 —ラコンベアであり、 前記ガラス板を前記複数本のローラで形成される搬送面 上で搬送し、 前記搬送面を形成するローラを、 前記ガラス板の搬送位置に応じ て上下移動させることにより前記搬送面の少なくとも一部を湾曲させて湾曲面 を形成し、 この湾曲面上のガラス板に前記成形型を押し付けることにより、 前 記ガラス板を曲げ成形することが好ましい。  Further, as one aspect of the present invention, the transporting means is an opening-conveyor comprising a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers; By moving a roller to be formed up and down in accordance with the transfer position of the glass plate, at least a part of the transfer surface is bent to form a curved surface, and the molding die is pressed against the glass plate on the curved surface. Therefore, it is preferable to bend the glass plate.
また、 本発明の一態様として、 前記搬送手段は、 複数本のローラからなる口 一ラコンベアであり、 前記複数本のローラで形成される搬送面上で前記ガラス 板を搬送し、 前記ローラは、 上下方向に移動自在に設けられるとともに上方に 向けて付勢され、 この付勢力によって、 前記ガラス板の成形に適した反力を前 記成形型に与えながら前記ガラス板を曲げ成形することが好ましい。  In one embodiment of the present invention, the transporting unit is a roller conveyor having a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers. The glass sheet is preferably movably provided in the vertical direction and is urged upward. The urging force preferably bends the glass sheet while applying a reaction force suitable for forming the glass sheet to the molding die. .
また、 本発明の一態様として、 前記搬送手段は、 前記ガラス板をエアーフロ 一ティング支持するエアーフローティング手段を備え、 前記ガラス板をこのェ ァーフローティング手段から噴射されたエアーによりエアーフローティングさ せた状態で前記成形型に押し付けることが好ましい。 また、 本発明の一態様として、 前記加熱炉で加熱されたガラス板を、 前記複 数のローラで形成される搬送面上で搬送させることで前記ガラス板の自重によ る予備曲げ成形を実施し、 その後前記成形型による曲げ成形を実施することが 好ましい。 Further, as one aspect of the present invention, the transfer means includes an air floating means for supporting the glass plate by air floating, and the glass plate is caused to air float by air jetted from the air floating means. It is preferable to press the mold in the state. In one embodiment of the present invention, the glass sheet heated by the heating furnace is conveyed on a conveying surface formed by the plurality of rollers, so that the glass sheet is preliminarily bent by its own weight. After that, it is preferable to perform bending by the above-mentioned mold.
また、 本発明の一態様として、 前記ガラス板は、 自動車の窓ガラスの製造に 用いられることが好ましい。  In one embodiment of the present invention, the glass plate is preferably used for manufacturing a window glass of an automobile.
本発明は、 ガラス板をその成形温度まで加熱するための加熱炉と、 この加熱 されたガラス板を搬送するための搬送手段と、 この搬送手段の上方に設置され た成形型と、 この成形型を、 前記ガラス板の搬送方向および鉛直方向に移動さ せるための成形型移動手段と、 この成形型移動手段の駆動を制御することによ り、 前記ガラス板の搬送に同期させて前記成形型を前記ガラス板の搬送方向に 移動させ、 前記ガラス板を搬送しながら前記成形型を前記ガラス板に押し付け ることにより、 前記ガラス板を曲げ成形する制御手段とを備えたことを特徴と するガラス板の曲げ成形装置を提供する。 図面の簡単な説明  The present invention relates to a heating furnace for heating a glass sheet to its molding temperature, a conveying means for conveying the heated glass sheet, a forming die installed above the conveying means, A molding die moving means for moving the molding die in the conveying direction and the vertical direction of the glass sheet; and by controlling the driving of the molding die moving means, the molding die is synchronized with the conveyance of the glass sheet. And a control means for bending the glass sheet by pressing the forming die against the glass sheet while conveying the glass sheet. Provided is an apparatus for bending a plate. BRIEF DESCRIPTION OF THE FIGURES
図 1 :本発明に係るガラス板の曲げ成形装置の一実施形態を示す全 #:斜視図。 図 2 :ローラ昇降装置の構造を示す正面図。  FIG. 1: All #: perspective views showing an embodiment of a glass sheet bending apparatus according to the present invention. Figure 2: Front view showing the structure of the roller lifting device.
図 3 :モールドと口一ラコンベアとによるガラス板の曲げ成形の動作を示す 説明図。  Figure 3: Illustration showing the operation of bending a glass plate using a mold and a mouth conveyor.
図 4 :口一ラコンベアによる曲げ成形動作を示す説明図。  Figure 4: Explanatory drawing showing the bending operation by a mouth conveyor.
図 5 :モ一ルド移動装置の側面図。  Figure 5: Side view of the mold mover.
図 6 :ローラコンベアの他の実施形態を示す斜視図。  FIG. 6 is a perspective view showing another embodiment of the roller conveyor.
図 7 :図 6に示したローラコンベアの両持ちローラの支持構造を示す構造図。 図 8 :図 6に示したローラコンベアの片持ちローラの支持構造を示す構造図。 図 9 :図 8に示す片持ちローラ支持構造の要部側面図。  Fig. 7: Structural view showing the support structure of the two-sided rollers of the roller conveyor shown in Fig. 6. Fig. 8: Structural view showing the support structure of the cantilever rollers of the roller conveyor shown in Fig. 6. FIG. 9 is a side view of a main part of the cantilever roller support structure shown in FIG.
図 1 0 :図 6に示したローラコンベアでガラス板が複曲成形される状態を示 した説明図。 図 1 1 :エア一フローティング装置を用いた曲げ成形動作を示す説明図。 図 1 2 :ガラス板端部の鼻曲げ用ローラを用いた曲げ成形動作を示す説明図 図 1 3 :ローラコンベアの両持ちローラの支持構造の別の実施形態を示す構 造図。 FIG. 10 is an explanatory view showing a state where a glass sheet is formed into a double curve by the roller conveyor shown in FIG. Fig. 11: Explanatory drawing showing the bending operation using the air-floating device. Fig. 12: Explanatory diagram showing a bending operation using a nose-bending roller at the edge of a glass plate. Fig. 13: Structural diagram showing another embodiment of a support structure of a double-supported roller of a roller conveyor.
図 1 4 :ローラコンベアの他の実施形態を示す正面図。  FIG. 14: Front view showing another embodiment of the roller conveyor.
図 1 5 :図 1 4に示したローラコンベアの両持ちローラの支持構造を示す構 造図。  Fig. 15: Structural drawing showing the support structure of the two-sided rollers of the roller conveyor shown in Fig. 14.
図 1 6 ローラコンベアの他の実施形態を示す要部片面図。  FIG. 16 is a one-side view of a main part showing another embodiment of the roller conveyor.
図 1 7 図 1 6に示したローラコンベアの正面図。  FIG. 17 is a front view of the roller conveyor shown in FIG.
図 1 8 図 1 7に示したローラコンベアの要部拡大正面図。  FIG. 18 is an enlarged front view of a main part of the roller conveyor shown in FIG.
図 1 9 口一ラコンベアを構成するローラの他の実施形態を示す断面図。 図 2 0 図 1 9における 2 0— 2 0線から見たローラの側面図。 発明を実施するための最良の形態  FIG. 19 is a cross-sectional view showing another embodiment of the rollers constituting the one-to-one conveyor. FIG. 20 is a side view of the roller as viewed from the line 20—20 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面に従って本発明に係るガラス板の曲げ成形方法および装置の 好ましい実施形態について詳説する。 ただし、 本発明はこれらに限定されるも のではない。  Hereinafter, preferred embodiments of a method and an apparatus for bending a glass sheet according to the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to these.
図 1に示すガラス板の曲げ成形装置 1 0は、 主として、 加熱炉 1 2、 成形ゾ ーン 1 4、 および風冷強化装置 1 6により構成される。  The glass sheet bending apparatus 10 shown in FIG. 1 mainly includes a heating furnace 12, a forming zone 14, and an air cooling strengthening apparatus 16.
まず、 成形装置 1 0によるガラス板 1 8の曲げ成形工程について説明する。 曲げ成形前のガラス板 1 8は、 加熱炉 1 2の入口において搬送位置が位置決め された後、 図示しないローラコンベアによって加熱炉 1 2内に搬送される。 そ して、 ガラス板 1 8は、 加熱炉 1 2内を搬送されている最中に、 加熱炉 1 2内 に設置されたヒータ (図示せず) によって徐々に加熱され、 加熱炉 1 2の出口 において曲げ成形温度 (6 8 0 °C程度) まで加熱される。 加熱されたガラス板 1 8は、 加熱炉 1 2の下流側に設置された成形ゾーン 1 4において、 曲げ成形 用のローラコンベア 2 0 (請求の範囲の搬送手段に相当) で搬送される。 そし て、 ガラス板 1 8は、 口一ラコンベア 2 0による搬送中に、 ローラコンベア 2 0の搬送速度に同期してガラス板搬送方向に移動するモールド (請求の範囲の 成形型に相当) 7 0の押し付け動作と、 ローラコンベア 2 0による曲げ成形動 作とによって所定の曲率に曲げ成形される。 First, the bending process of the glass plate 18 by the forming apparatus 10 will be described. After the glass sheet 18 before bending is positioned at the entrance of the heating furnace 12, the glass sheet 18 is conveyed into the heating furnace 12 by a roller conveyor (not shown). The glass plate 18 is gradually heated by a heater (not shown) installed in the heating furnace 12 while being conveyed in the heating furnace 12. At the outlet, it is heated to the bending temperature (about 680 ° C). The heated glass sheet 18 is conveyed by a roller conveyor 20 for bending (corresponding to the conveying means in the claims) in a forming zone 14 provided on the downstream side of the heating furnace 12. Then, the glass plate 18 is transported by the roller conveyor 20 while the roller conveyor 2 Mold that moves in the glass sheet transport direction in synchronization with the transport speed of 0 (corresponding to the forming die in the claims) 70 Bending to a predetermined curvature by pressing operation of 0 and bending operation by roller conveyor 20 Is done.
曲げ成形されたガラス板 1 8は、 引き続き停止することなく成形ゾーン 1 4 の出口から、 ローラコンベア 2 2によって風冷強化装置 1 6内に搬送され、 こ こで風冷強化される。 風冷強化装置 1 6は、 ローラコンベア 2 2を挟んで配置 された上吹口へッド 2 4と下吹口へッド 2 6とを備え、 ガラス板 1 8はそれら の吹口へッド 2 4、 2 6からガラス板 1 8に向けて吹き出されるエアによって 風冷強化される。 このとき、 風冷強化装置 1 6の冷却能は、 ガラス板 1 8の厚 さに応じて適宜設定されている。 風冷強化されたガラス板 1 8は、 風冷強化装 置 1 6の出口から口一ラコンベア 2 8によって、 次工程の検査装置 (図示せ ず) に向けて搬送される。  The bent glass sheet 18 is conveyed from the exit of the forming zone 14 to the air-cooling and strengthening device 16 by the roller conveyor 22 without stopping, and is then cooled by the roller. The air cooling device 16 includes an upper blow head 24 and a lower blow head 26 arranged with the roller conveyor 22 interposed therebetween, and the glass plate 18 has the blow heads 2 4. The air is strengthened by air blown from the glass 26 to the glass plate 18. At this time, the cooling capacity of the air-cooling strengthening device 16 is appropriately set according to the thickness of the glass plate 18. The glass plate 18 strengthened by air cooling is conveyed from the outlet of the air cooling strengthening device 16 to the inspection device (not shown) in the next process by the mouth conveyor 28.
次に、 成形ゾーン 1 4の口一ラコンベア 2 0について図 1〜図 4を参照しな がら説明する。 ローラコンベア 2 0は、 ガラス板 1 8の搬送方向に互いに平行 に水平状態で配された多数本の口一ラから構成され、 これらのローラで形成さ れた搬送面上でガラス板 1 8が搬送される。  Next, the mouth conveyor 20 of the molding zone 14 will be described with reference to FIGS. The roller conveyor 20 is composed of a number of rollers arranged in a horizontal state parallel to each other in the conveying direction of the glass plate 18, and the glass plate 18 is formed on the conveying surface formed by these rollers. Conveyed.
各ローラは、 サーポモータ等の回転駆動手段により、 各々が独立して回転駆 動される。 また、 これらのローラのうち中段以降に配置された、 例えば 1 8本 の成形用ローラ 2 0 A〜2 O R (図 3 ) が、 上下方向駆動手段によって各々が 独立して上下移動される。 前記回転駆動手段および上下方向駆動手段の駆動は、 モーションコントローラ 2 0 0 (請求の範囲の制御手段に相当) によって制御 される。  Each roller is independently driven to rotate by a rotary drive unit such as a servomotor. Further, among these rollers, for example, 18 forming rollers 20A to 2OR (FIG. 3) arranged at the middle stage and thereafter are vertically moved independently by the vertical driving means. The driving of the rotation driving means and the vertical driving means is controlled by a motion controller 200 (corresponding to a control means in the claims).
図 2は、 各ローラ 2 0 A〜2 O Rの回転駆動手段と上下方向駆動手段とを示 した構造図である。 なお、 各ローラ 2 0 A〜 2 O Rの回転駆動手段と上下方向 駆動手段とは同一の構造を有しているので、 図 2では便宜上ローラ 2 O A側の 構造を説明し、 他のローラ 2 0 B〜2 0 R側の構造についてはその説明を省略 する。  FIG. 2 is a structural diagram showing the rotation driving means and the vertical driving means of each of the rollers 20A to 2OR. Since the rotary drive means and the vertical drive means of each of the rollers 20A to 2OR have the same structure, the structure of the roller 20A side is described in FIG. The description of the structure on the B-20R side is omitted.
ローラ 2 O Aは、 略凹状に形成された移動フレーム 3 0にその両端が軸受 3 2、 3 2を介して回転自在に支持されている。 また、 ローラ 2 O Aの図 2の左 端部には、 ギヤ 3 4、 3 6を介してサーポモー夕 3 8のスピンドル 4 0が連結 され、 このサーポモータ 3 8を駆動することによりローラ 2 O Aは所定の角速 度で回転される。 以上が回転駆動手段の構造である。 ' The roller 2 OA has a moving frame 30 formed in a substantially concave shape and a bearing 3 at both ends thereof. It is rotatably supported via 2, 32. Further, a spindle 40 of a servo motor 38 is connected to the left end of the roller 2 OA in FIG. 2 via gears 34 and 36, and by driving the servo motor 38, the roller 2 OA It is rotated at an angular speed of. The above is the structure of the rotation driving means. '
一方、 移動フレーム 3 0は、 その両側部が直動ガイドを介して固定フレーム On the other hand, the moving frame 30 is fixed on both sides via a linear motion guide.
4 2に上下移動自在に支持されている。 前記直動ガイドは、 移動フレーム 3 0 側にガイドレール 4 4が上下方向に配され、 このガイドレール 4 4に、 固定フ レーム 4 2側のガイドブロック 4 6が係合されて構成されている。 It is supported by 42 so that it can move up and down. The linear motion guide is configured such that guide rails 44 are vertically arranged on the moving frame 30 side, and guide blocks 46 on the fixed frame 42 side are engaged with the guide rails 44. .
また、 移動フレーム 3 0の下部の両端部には、 ラック 4 8、 4 8が下方に向 けて突設され、 このラック 4 8、 4 8にピニオン 5 0、 5 0が嚙合されている。 ピニオン 5 0、 5 0は、 水平方向に配設された回転軸 5 2に固定され、 回転軸 Further, racks 48 and 48 project downward from both ends of the lower part of the moving frame 30, and pinions 50 and 50 are combined with the racks 48 and 48. The pinions 50, 50 are fixed to a horizontally arranged rotating shaft 52, and the rotating shaft
5 2は、 両端が軸受 5 4、 5 4に支持されるとともに、 その図 2の左端部がサ 一ポモ一夕 5 6のスピンドル 5 8に連結されている。 これにより、 サーポモー 夕 5 6で回転軸 5 2を回転させると、 その回転運動がピニオン 5 0とラック 4 8との送り作用によって直線運動に変換されるので、 移動フレーム 3 0が、 す なわちローラ 2 O Aが上下移動される。 以上が上下方向駆動手段の構造である。 なお、 成形ゾーン 1 4内には、 ガラス板を加熱するためのヒータ 6 0、 6 2が 設置されている。 Both ends of 52 are supported by bearings 54 and 54, and the left end of FIG. 2 is connected to a spindle 58 of the support 56. As a result, when the rotary shaft 52 is rotated in the servomotor 56, the rotational motion is converted into a linear motion by the feed action between the pinion 50 and the rack 48, so that the moving frame 30 is Roller 2 OA is moved up and down. The above is the structure of the vertical driving means. In the forming zone 14, heaters 60 and 62 for heating the glass sheet are provided.
前記した回転駆動手段、 および上下方向駆動手段は、 他のローラ 2 0 B〜2 0 R全てに設けられており、 これらの手段のサーポモータ 3 8、 5 6が前記モ —ションコントローラ 2 0 0によって制御されている。  The above-mentioned rotary drive means and vertical drive means are provided for all of the other rollers 20 B to 20 R, and the servo motors 38, 56 of these means are controlled by the motion controller 200. Is controlled.
モーションコントローラ 2 0 0について説明する。 このモーションコント口 ーラ 2 0 0は、 外部入力手段からガラス板 1 8の型式が入力されると、 その型 式のガラス板 1 8の曲率に対応するローラ 2 0 A〜2 O Rの角速度制御データ および上下移動制御データを作成する。 そして、 モーションコントローラは、 前記作成した角速度制御デ一夕に基づきサーポモータ 3 8を制御するとともに、 前記上下移動制御データに基づきサーポモータ 5 6を制御する。 すなわち、 モ ーションコントローラ 2 0 0は、 ガラス板 1 8がローラ 2 0 A〜2 0 Rによる 搬送中に所望の曲率に曲げ成形されるように、 ローラ 2 0 A〜2 O Rを多軸制 御する。 The motion controller 200 will be described. When the model of the glass plate 18 is inputted from an external input means, the motion controller 200 controls the angular velocity of the rollers 200A to 2OR corresponding to the curvature of the glass plate 18 of that type. Create data and vertical movement control data. The motion controller controls the servo motor 38 based on the created angular velocity control data and controls the servo motor 56 based on the vertical movement control data. That is, the motion controller 200 is configured such that the glass plate 18 is driven by the rollers 20A to 20R. The rollers 20A to 2OR are multiaxially controlled so that the rollers 20A to 2OR are bent and formed to a desired curvature during conveyance.
図 5に示すモールド 7 0の移動機構 (請求の範囲の成形型移動手段に相当) は、 水平移動機構および上下移動機構から構成される。 水平移動機構は、 ポー ルねじ装置 7 2および一対のガイドレール 7 4、 7 4 (図 1には一対のガイド レールを図示、 図 5には 1本のガイドレールのみ図示) 等から構成され、 ポー ルねじ装置 7 2のねじ棒 7 5およびガイドレール 7 4、 7 4は、 図 5の矢印 A で示すガラス板搬送方向に対して平行に配設されている。 ねじ棒 7 5には、 図 5の如くナツト部 7 6が螺合され、 ナツト部 7 6が固定された移動部本体 7 7 がガイドレール 7 4、 7 4に摺動自在に係合されている。 また、 ナット部 7 6 には、 前記上下移動機構を構成する送りねじ装置 7 8のモータ 7 9が出力軸 (不図示) を下方に向けて固定され、 この出力軸に連結されたねじ棒 8 0にモ 一ルド 7 0の支持部 7 1が螺合されている。 また、 支持部 7 1は直動ガイド 8 1、 8 1…を介して移動部本体 7 9に上下動自在に支持されている。  The moving mechanism of the mold 70 shown in FIG. 5 (corresponding to the mold moving means in the claims) includes a horizontal moving mechanism and a vertical moving mechanism. The horizontal moving mechanism is composed of a pole screw device 72 and a pair of guide rails 74, 74 (FIG. 1 shows a pair of guide rails, and FIG. 5 shows only one guide rail). The screw rod 75 and the guide rails 74, 74 of the pole screw device 72 are arranged in parallel to the glass sheet transport direction indicated by arrow A in FIG. As shown in FIG. 5, a nut part 76 is screwed into the screw rod 75, and the moving part body 77 to which the nut part 76 is fixed is slidably engaged with the guide rails 74, 74. I have. A motor 79 of a feed screw device 78 constituting the vertical movement mechanism is fixed to the nut portion 76 with an output shaft (not shown) facing downward, and a screw rod 8 connected to this output shaft is provided. The support part 71 of the mold 70 is screwed to the zero. The supporting portion 71 is supported by the moving portion main body 79 via a linear motion guide 81, 81,.
このように構成されたモールド 7 0の移動機構によれば、 ポールねじ装置 7 2のサ一ポモータ 7 3を正転ノ逆転すると、 モールド 7 0が図 5の矢印 Aで示 すガラス板搬送方向、 およびその逆方向に往復移動する。 また、 送りねじ装置 7 8を駆動すると、 モールド 7 0が上下移動する。 モールド 7 0の下降移動端 は、 図 5の二点鎖線で示すように、 ローラコンベア 2 0の下方位置に設定され ている。 ポールねじ装置 7 2は、 ガラス板搬送速度に同期してモールド 7 0を 水平方向に移動するように、 図 1のモーションコントローラ 2 0 0によって制 御される。 また、 ポールねじ装置 7 8は、 後述する形成用ローラ 2 0 A〜 2 0 Rの上下移動動作に連動してモールド 7 0を昇降するように、 モーションコン トローラ 2 0 0によって制御される。  According to the moving mechanism of the mold 70 configured as described above, when the support motor 73 of the pawl screw device 72 rotates forward and backward, the mold 70 moves in the glass sheet transport direction indicated by the arrow A in FIG. Reciprocate in and the opposite direction. When the feed screw device 78 is driven, the mold 70 moves up and down. The lower moving end of the mold 70 is set at a position below the roller conveyor 20 as shown by a two-dot chain line in FIG. The pole screw device 72 is controlled by the motion controller 200 in FIG. 1 so as to move the mold 70 in the horizontal direction in synchronization with the glass sheet transport speed. Further, the pole screw device 78 is controlled by the motion controller 200 so as to move up and down the mold 70 in conjunction with the up and down movement of the forming rollers 20A to 20R described later.
次に、 モーションコントローラ 2 0 0によるローラ 2 0 A〜2 O Rの多軸制 御動作と、 それに連動して制御されるモールド 7 0の移動動作とを説明する。 ローラ 2 0 A〜2 0 Rの上下動は、 ガラス板 1 8の搬送にともない、 ローラ 2 O Aから 2 O Rの順に、 順次下降、 上昇運動するものである。 モーションコント口一ラ 200によって多軸制御されたローラ 20 A〜20 Rは、 例えば図 3 (A) 、 図 4 (A) で示すように、 加熱されたガラス板 18 がローラコンベア 20の入口側に到達した時には、 全てのローラ 20A〜20 Rは最上位置にあり、 ローラ 20A〜20 Rで形成される搬送面は水平である。 次に、 図 3 (B) 、 図 4 (B) で示すように、 ガラス板 18が矢印方向に所 定の距離だけ搬送されると、 ガラス板 18の搬送方向後端部 18 Aがローラ 2 OAに接触する直前で、 同じく搬送方向に同期して移動され且つ下降移動され てきたモールド 70の凸状成形面 7 OAがガラス板 18に当接する。 この時、 前記搬送面は未だ水平を維持している。 Next, the multi-axis control operation of the rollers 20A to 2OR by the motion controller 200 and the movement operation of the mold 70 controlled in conjunction therewith will be described. The vertical movement of the rollers 20A to 20R is such that the rollers 20A to 20R sequentially move downward and upward in the order of the rollers 2OA to 2OR as the glass plate 18 is conveyed. The rollers 20A to 20R, which are multi-axis controlled by the motion controller 200, move the heated glass plate 18 to the entrance side of the roller conveyor 20 as shown in, for example, FIGS. 3 (A) and 4 (A). Is reached, all the rollers 20A to 20R are at the uppermost position, and the transport surface formed by the rollers 20A to 20R is horizontal. Next, as shown in FIGS. 3 (B) and 4 (B), when the glass plate 18 is conveyed by a predetermined distance in the direction of the arrow, the rear end 18A of the glass plate 18 in the conveying direction is Immediately before coming into contact with the OA, the convex forming surface 7 OA of the mold 70, which has also been moved in synchronization with the transport direction and has been moved down, comes into contact with the glass plate 18. At this time, the transport surface is still horizontal.
次いで、 ガラス板 18は停止または減速することなく、 継続して搬送される。 そして、 ガラス板 18の搬送方向後端部 18 Aが図 3 (C) 、 図 4 (C) の如 く、 口一ラ 2 OAに接触すると、 ローラ 20 A〜20 Iが各々所定量下降移動 していき、 ローラ 20 A〜20 Iで形成される搬送面が、 成形されるべきガラ ス板 18の曲率に対応した湾曲状に変形する。 これにより、 ガラス板 18は、 ローラ 20 A〜20 I上を通過する際に、 ガラス板 18の自重によりローラ 2 0 A〜20 Iの湾曲面に沿って下方に橈んでいく。 そして、 ローラ 20A〜2 0 Iの下降移動に連動して、 同じくガラス板搬送速度に同期して移動している モールドが、 搬送方向に移動しながら下降移動していき、 ローラ 20A〜20 Iで搬送中のガラス板 18がモールド 70の成形面 7 OAに押し付けられる。 これにより、 ガラス板 18は、 所望の曲率のガラス板に曲げ成形される。  Next, the glass plate 18 is continuously conveyed without stopping or decelerating. Then, when the rear end 18A of the glass plate 18 in the conveying direction comes into contact with the mouthpiece 2OA as shown in FIGS. 3 (C) and 4 (C), the rollers 20A to 20I respectively move down by a predetermined amount. Then, the conveying surface formed by the rollers 20A to 20I is deformed into a curved shape corresponding to the curvature of the glass plate 18 to be formed. Thus, when the glass plate 18 passes over the rollers 20A to 20I, the glass plate 18 radiates downward along the curved surfaces of the rollers 20A to 20I due to the weight of the glass plate 18. Then, in conjunction with the downward movement of the rollers 20A to 20I, the mold, which is also moving in synchronization with the glass sheet transport speed, descends while moving in the transport direction. The glass plate 18 being conveyed is pressed against the molding surface 7 OA of the mold 70. Thus, the glass plate 18 is bent into a glass plate having a desired curvature.
この状態で各ローラ 20A〜2 ORは、 図 3 (C) の湾曲状搬送面がガラス 板 18の搬送位置に伴って下流側に平行移動するように、 その上下移動量が制 御される。 そして、 図 3 (C) の位置から所定量下流側に搬送された図 3 (D) 、 図 4 (D) の位置において、 モールド 70は上昇移動してガラス板 1 8から退避する。 そして、 モールド 70は、 図 3 (D) 、 図 4 (D) の如く、 搬送方向とは逆方向に移動し、 図 3 (A) 、 図 4 (A) で示した元の位置に復 帰し、 次のガラス板 16を成形するために待機される。 以上が成形ゾーン 14 におけるガラス板 18の曲げ成形工程である。 このように、 前記成形方法によれば、 ローラコンベア 20で搬送されている ガラス板 18を停止または減速させることなくほぼ一定速度で搬送しながら、 ローラコンベア 20の上方に配設されたモールド 70をガラス板 18に押し付 けて成形するので、 成形中の両者の搬送方向の速度差は零になる。 したがって、 前記成形方法では、 生産タクトを落とさずにガラス板 18を成形できるので、 生産性が高まる。 また、 加熱炉から搬出されてから短時間で曲げ成形が開始さ れるため、 温度低下することなくガラス板 18を曲げ成形でき、 ガラス板 18 の光学品質が向上する。 さらに、 ガラス板 18の最終形状をモールド 70で形 づくるので、 種々の曲面形状に対応できるとともに、 形状が安定する。 In this state, the vertical movement amount of each of the rollers 20A to 2OR is controlled such that the curved conveyance surface in FIG. 3C moves parallel to the downstream side along with the conveyance position of the glass plate 18. Then, at the positions shown in FIGS. 3D and 4D which have been conveyed downstream by a predetermined amount from the position shown in FIG. 3C, the mold 70 moves up and retreats from the glass plate 18. Then, the mold 70 moves in the direction opposite to the carrying direction as shown in FIGS. 3 (D) and 4 (D), and returns to the original position shown in FIGS. 3 (A) and 4 (A). Waiting for forming the next glass plate 16. The above is the bending process of the glass plate 18 in the forming zone 14. As described above, according to the forming method, the mold 70 disposed above the roller conveyor 20 is conveyed at a substantially constant speed without stopping or decelerating the glass plate 18 being conveyed by the roller conveyor 20. Since the molding is performed by pressing against the glass plate 18, the speed difference in the conveying direction between the two during molding becomes zero. Therefore, in the above-mentioned forming method, the glass plate 18 can be formed without reducing the production tact, so that the productivity is increased. Further, since the bending is started in a short time after being carried out of the heating furnace, the glass plate 18 can be bent without lowering the temperature, and the optical quality of the glass plate 18 is improved. Further, since the final shape of the glass plate 18 is formed by the mold 70, various curved surface shapes can be accommodated, and the shape is stabilized.
また、 前記成形方法では、 ガラス板 18の搬送位置に対応させてローラコン ベア 20のローラ 20A〜20 Rを上下移動させることで、 ローラ 20A〜2 0 Rからなる搬送面を所望の曲率に湾曲状に形成し、 この湾曲面で搬送中のガ ラス板 18にモールド 70を押し付けたので、 形状安定性が大幅に向上する。 図 6は、 成形ゾーンに配置されるローラコンベア 90の第 2の実施形態を示 す。 この口一ラコンベア 90は、 両持ち支持のローラ 90 A、 90 C、 90E、 90G、 90 1、 90 Kおよび 90Mと、 方持ち支持のローラ 90 B、 90D、 90 F、 90 H、 90 J、 90 Lとが交互に配設されて構成される。  Further, in the forming method, the rollers 20A to 20R of the roller conveyor 20 are moved up and down in accordance with the transfer position of the glass plate 18, so that the transfer surface including the rollers 20A to 20R is curved into a desired curvature. Since the mold 70 is pressed against the glass plate 18 being conveyed on the curved surface, the shape stability is greatly improved. FIG. 6 shows a second embodiment of the roller conveyor 90 arranged in the forming zone. The roller conveyor 90 has two supporting rollers 90A, 90C, 90E, 90G, 901, 90K and 90M, and two supporting rollers 90B, 90D, 90F, 90H, 90J, 90 L and are alternately arranged.
図 7は、 両持ち支持されたローラ 90A、 90 C、 90E、 90 G、 901、 9 OK, 9 OMの一端部側の支持構造 92を示す。 なお、 ここではローラ 90 Aの一端部側の支持構造 92を説明し、 この支持構造 92と同一構造の他端部 側の支持構造の説明を省略する。 他のローラ 90 C、 90 E、 90 G、 901、 9 OKおよび 90Mの両端部の支持構造についても、 ローラ 90Aの支持構造 と同一構造なのでその説明も省略する。  FIG. 7 shows a support structure 92 at one end of the two-sided supported rollers 90A, 90C, 90E, 90G, 901, 9OK, and 9OM. Here, the support structure 92 at one end of the roller 90A will be described, and the description of the support structure at the other end of the same structure as the support structure 92 will be omitted. The support structure at both ends of the other rollers 90C, 90E, 90G, 901, 9OK, and 90M is the same as the support structure of the roller 90A, and therefore the description is omitted.
同図に示すように、 ローラ 90Aの一端部は、 ベアリング 94を介してブラ ケット 96に支持される。 このブラケット 96は、 移動フレーム 30の上端側 部に形成された上下移動用ガイド 100にブロック 102、 102を介して上 下移動自在に支持されている。 また、 ブラケット 96には、 ローラ 90Aに反 力 Fを与えるエアシリンダ装置 104のロッド' 106が連結されている。 なお、 移動フレーム 3 0の上下移動機構は、 図 2に示した機構と同一であり、 ここで はその説明を省略する。 As shown in the figure, one end of the roller 90A is supported by a bracket 96 via a bearing 94. The bracket 96 is supported by a vertical moving guide 100 formed on the upper end side of the moving frame 30 via blocks 102, 102 so as to be movable up and down. The rod 96 of the air cylinder device 104 that applies a reaction force F to the roller 90A is connected to the bracket 96. In addition, The vertical moving mechanism of the moving frame 30 is the same as the mechanism shown in FIG. 2, and the description thereof is omitted here.
これにより、 移動フレーム 3 0の上下移動機構を構成するモータ 5 6を駆動 すると、 ラック 4 8とピニオン 5 0による送り作用によってローラ 9 O Aが上 下に移動するので、 ローラ 9 O Aの高さを調節できる。 また、 ローラ 9 O Aは、 図 6に示すモールド 7 0をガラス板 1 8に押し付けた時に生じるエアシリンダ 装置 1 0 4の復元力で上方に付勢される。 この付勢力が前記反力 Fとなり、 こ の反力 Fは、 ガラス板 1 8の成形に適した値に設定されている。  As a result, when the motor 56 constituting the vertical moving mechanism of the moving frame 30 is driven, the roller 9 OA moves up and down due to the feed action of the rack 48 and the pinion 50, so that the height of the roller 9 OA is increased. Can be adjusted. The roller 9OA is urged upward by the restoring force of the air cylinder device 104 generated when the mold 70 shown in FIG. 6 is pressed against the glass plate 18. This urging force is the reaction force F, and the reaction force F is set to a value suitable for forming the glass plate 18.
図 8は、 片持ち支持された各々一対のローラ 9 0 B、 9 0 D、 9 0 F、 9 0 H、 9 0 Jおよび 9 0 Lの片側の支持構造 1 1 0を示している。 なお、 ここで は片側のローラ 9 0 Bの支持構造 1 1 0を説明することで、 この支持構造 1 1 0と同一構造のもう片側の支持構造の説明を省略する。 また、 他のローラ 9 0 D、 9 0 F、 9 0 H、 9 0 Jおよび 9 0 Lの双方の支持構造についても、 ロー ラ 9 O Aの支持構造と同一構造でありその説明を省略する。  FIG. 8 shows one side support structure 110 of a pair of cantilevered rollers 90 B, 90 D, 90 F, 90 H, 90 J and 90 L, respectively. Here, the supporting structure 110 of the roller 90B on one side will be described, and the description of the supporting structure on the other side which is the same as the supporting structure 110 will be omitted. Further, the supporting structure of the other rollers 90D, 90F, 90H, 90J, and 90L is the same as the supporting structure of the roller 9OA, and the description thereof is omitted.
支持構造 1 1 0によれば、 ローラ 9 0 Bの一端部はベアリング 1 1 2、 1 1 2を介してケーシング 1 1 4に支持される。 このケーシング 1 1 4のガラス板 搬送方向両端面には、 図 9の如くピン 1 1 6、 1 1 6がガラス板搬送方向と平 行に突設され、 このピン 1 1 6、 1 1 6は、 ホルダ 1 1 8にベアリング 1 2 0、 1 2 0を介して回動自在に支持されている。 また、 ホルダ 1 1 8は架台 9 8に 支持されている。 さらに、 ケ一シング 1 1 4にはアーム 1 2 2が水平方向に突 設され、 このアーム 1 2 2にエアシリンダ装置 1 2 4のロッド 1 2 5が連結さ れている。  According to the support structure 110, one end of the roller 90B is supported by the casing 114 via the bearings 112, 112. As shown in Fig. 9, pins 1 16 and 1 16 protrude from both ends of the casing 1 14 in the transport direction of the glass plate in parallel with the transport direction of the glass plate. The holder 1 18 is rotatably supported via bearings 120 and 120. Also, the holders 118 are supported by a pedestal 98. Further, an arm 122 is protruded from the casing 114 in the horizontal direction, and a rod 125 of the air cylinder device 124 is connected to the arm 122.
これにより、 ローラ 9 0 Bは、 図 6に示すモールド 7 0をガラス板 1 8に押 し付けた時に生じるエアシリンダ装置 1 2 4の復元力で上方に付勢される。 こ の付勢力が反力 Fとなり、 この反力 Fはガラス板 1 8の成形に適した値に設定 されている。  Thus, the roller 90B is urged upward by the restoring force of the air cylinder device 124 generated when the mold 70 shown in FIG. 6 is pressed against the glass plate 18. This urging force becomes a reaction force F, and this reaction force F is set to a value suitable for forming the glass plate 18.
したがって、 このローラコンベア 9 0によれば、 モールド 7 0に対し、 ガラ ス板 1 8の成形に適した反力 Fを与えるので、 ガラス板 1 8の曲げ形状が安定 する。 また、 ローラコンベア 9 0によれば、 図 1 0に示すように例えば両持ち 支持の口一ラ 2 O Aによる反力 Fが、 ガラス板 1 8の中央部をモールド 7 0に 押し付ける反力として作用し、 片持ち支持のローラ 2 0 B、, 2 O Bによる反力 Fが、 ガラス板 1 8の周辺部をモールド 7 0に押し付ける反力として作用する。 よって、 ガラス板全面を最適な力でモールド 7 0に押し付けることができるの で、 ガラス板 1 8を良好に曲げ成形できる。 また、 ガラス板搬送方向に直交す る方向にガラス板 1 8を曲げ成形できるので、 複曲ガラス板 1 8の曲げ成形に 対応できる。 Therefore, according to the roller conveyor 90, a reaction force F suitable for forming the glass plate 18 is applied to the mold 70, so that the bent shape of the glass plate 18 is stable. I do. Further, according to the roller conveyor 90, as shown in FIG. 10, for example, a reaction force F generated by a double-sided supporter 2OA acts as a reaction force for pressing the central portion of the glass plate 18 against the mold 70. Then, the reaction force F generated by the cantilevered rollers 20 B, 2 OB acts as a reaction force for pressing the peripheral portion of the glass plate 18 against the mold 70. Therefore, the entire surface of the glass plate can be pressed against the mold 70 with an optimal force, so that the glass plate 18 can be bent well. Further, since the glass sheet 18 can be bent in a direction orthogonal to the glass sheet transport direction, it is possible to cope with the bending of the multi-curved glass sheet 18.
なお、 本実施形態では、 エアシリンダ装置 1 0 4、 1 2 4を使って反力 Fを 生成したが、 本発明はこれに限定されるものではなく、 エアシリンダ装置 1 0 4、 1 2 4に代えてばね等による反力生成手段を用いてもよい。 また、 ローラ を上下移動自在に支持することなく、 ローラにセラミックファイバからなるフ エルト状弾性シートを巻回し、 そのシートの弾性復元力で反力 Fを生成しても よい。  In the present embodiment, the reaction force F is generated using the air cylinder devices 104 and 124. However, the present invention is not limited to this, and the air cylinder devices 104 and 124 may be used. Instead, a reaction force generating means such as a spring may be used. Further, a felt-like elastic sheet made of ceramic fiber may be wound around the roller without supporting the roller movably up and down, and the reaction force F may be generated by the elastic restoring force of the sheet.
図 1 1は、 成形ゾーンに配置されるローラコンベア 1 3 0の第 3の実施形態 を示す。 この口一ラコンベア 1 3 0は、 ガラス板搬送方向上流側 (図 1 1の左 側部分) に位置する複数本のローラを予備成形用ローラとして使用し、 これら の予備成形用ローラに後続する複数本のローラを成形用ローラとして使用して いる。  FIG. 11 shows a third embodiment of the roller conveyor 130 arranged in the forming zone. The roller conveyor 130 uses a plurality of rollers located upstream (in the left part of FIG. 11) in the glass sheet transport direction as preforming rollers, and a plurality of rollers following these preforming rollers. These rollers are used as forming rollers.
予備成形用ローラによるガラス板 1 8の搬送時には、 図 1 1 (A) の如くガ ラス板 1 8は自重のみの作用によって、 予備成形用ローラで形成される湾曲搬 送面に沿って湾曲される。 そして、 成形用ローラによるガラス板 1 8の搬送時 には、 図 1 1 ( B ) 〜 (E ) の如く成形用ローラで形成される湾曲搬送面と、 ガラス板搬送速度に同期して移動してきたモールド 7 0とに挟まれて曲げ成形 される。 成形用ローラとモールド 7 0の動作は、 図 3に示した実施形態と同一 なので、 ここではその説明を省略する。  When the glass plate 18 is conveyed by the preforming roller, the glass plate 18 is curved along the curved conveying surface formed by the preforming roller only by the action of its own weight, as shown in Fig. 11 (A). You. When the glass sheet 18 is conveyed by the forming roller, the glass sheet 18 moves in synchronization with the curved conveying surface formed by the forming roller and the glass sheet conveying speed as shown in FIGS. 11 (B) to 11 (E). It is bent between the mold 70 and the mold. The operations of the molding roller and the mold 70 are the same as those of the embodiment shown in FIG. 3, and the description thereof is omitted here.
また、 図 1 1に示す口一ラコンベア 1 3 0は、 成形用ローラのローラ間の下 方に多数本のエアー噴射ノズル (請求の範囲のエアーフローティング手段に相 当) 1 3 2、 1 3 2…が配置されている。 これらのエアー噴射ノズル 1 3 2、 1 3 2は、 噴射口を上方に向けて配設されている。 また、 エアー噴射ノズル 1In addition, the mouth conveyor 130 shown in FIG. 11 has a number of air injection nozzles below the rollers of the molding rollers (which are used as air floating means in the claims). 1) There are 1 32, 1 32 and so on. These air injection nozzles 13 2 and 13 2 are arranged with their injection ports facing upward. Also, air injection nozzle 1
3 2、 1 3 2から噴射される熱風のエア一圧は、 湾曲搬送面を搬送中のガラス 板 1 8をエアーフローティングさせてモールド 7 0の成形面 7 O Aに押し付け ることが可能な圧力に設定される。 このように、 ガラス板 1 8をエアー圧でモ 一ルド 7 0に押し付けるように構成しても、 ガラス板 1 8は成形時に停止また は減速することなくガラス板搬送方向にモールド 7 0と一緒に移動するので、 生産能力が高まる。 また、 エアーフローティング支持して曲げ成形するので、 曲げ成形時にガラス板 1 8の下面にローラによる傷が付かないという利点もあ る。 The air pressure of the hot air injected from 3 2 and 1 3 2 is set to a pressure that allows the glass plate 18 being transported on the curved transport surface to air float and press against the molding surface 7 OA of the mold 70. Is set. In this way, even when the glass plate 18 is configured to be pressed against the mold 70 by air pressure, the glass plate 18 is not stopped or decelerated at the time of molding, and moves together with the mold 70 in the glass sheet transport direction. To increase production capacity. In addition, since the sheet is bent while being supported by air floating, there is an advantage that the lower surface of the glass plate 18 is not damaged by the roller during the bending.
一方、 エアー噴射ノズル 1 3 2、 1 3 2…は、 不図示の昇降装置によって、 成形用ローラの上下移動に連動して、 同じ距離だけ上下移動するように制御さ れている。 これにより、 成形用ローラが下降移動してもガラス板 1 8はエアー 噴射ノズル 1 3 2に当たらない。 また、 エアー噴射ノズル 1 3 2とガラス板 1 8との距離が常に一定に保たれているので、 エア一フローティング能力が一定 になり、 ガラス板 1 8を安定してエアーフローティング支持することができる。 図 1 2は、 成形ゾーンに配置されるローラコンベア 1 4 0の第 4の実施の形 態を示している。 このローラコンベア 1 4 0は、 成形用ローラのうちガラス板 搬送方向上流側に、 所謂鼻曲げ用ローラ 1 4 O Aを配置し、 且つ、 複数本の口 ーラを隔ててガラス板搬送方向下流側に鼻曲げ用ローラ 1 4 0 Bを配設してい る。 このローラ 1 4 0 A、 1 4 0 Bは、 ガラス板搬送速度と同速度で移動する ように不図示の移動装置に連結されている。  On the other hand, the air injection nozzles 13 2, 13 2... Are controlled by an elevating device (not shown) to move up and down by the same distance in conjunction with the up and down movement of the forming roller. As a result, even if the forming roller moves down, the glass plate 18 does not hit the air injection nozzle 132. In addition, since the distance between the air injection nozzles 13 and 2 and the glass plate 18 is always kept constant, the air-floating ability becomes constant, and the glass plate 18 can be stably supported by air floating. . FIG. 12 shows a fourth embodiment of the roller conveyor 140 arranged in the forming zone. This roller conveyor 140 is provided with a so-called nose-bending roller 14 OA on the upstream side of the forming roller in the glass sheet conveying direction, and on the downstream side of the glass sheet conveying direction across a plurality of rollers. A nose-bending roller 140B is disposed in the nose. The rollers 140A and 140B are connected to a moving device (not shown) so as to move at the same speed as the glass plate conveying speed.
ところで、 自動車用のガラス板 1 8は、 一般的にガラス板 1 8の端部の曲率 が、 他の部分と比較して大きく成形される。 このような曲率の大きい部分では、 他の部分よりも成形時間を長くしなければ、 その曲げ形状を良好に得ることが できない。  By the way, the glass sheet 18 for automobiles is generally formed such that the curvature of the end of the glass sheet 18 is larger than that of other parts. In such a portion having a large curvature, the bending shape cannot be obtained satisfactorily unless the molding time is made longer than in the other portions.
そこで、 口一ラコンベア 1 4 0では、 図 1 2 ( C ) に示すように、 ローラ 1 Therefore, as shown in Fig. 12 (C), roller 1 conveyor 1
4 O A, 1 4 0 Bにそれぞれガラス板 1 8の端部が当接すると、 ローラ 1 4 0 A、 1 4 O Bは、 この状態を維持した状態で図 1 2 ( C ) の如くガラス板搬送 速度と同速度でガラス板搬送方向に移動する。 これにより、 曲率の大きいガラ ス板 1 8の端部を他の部分と比較して長く成形できるので、 曲率の大きい端部 の形状を良好に得ることができる。 モールド 7 0の動作は、 図 3に示した実施 例と同一なので、 ここではその説明を省略した。 When the end of the glass plate 18 comes in contact with 4 OA, 140 B, the roller 140 A and 14OB move in the glass sheet conveying direction at the same speed as the glass sheet conveying speed while maintaining this state, as shown in FIG. 12 (C). Thus, the end of the glass plate 18 having a large curvature can be formed longer than other portions, so that the shape of the end having a large curvature can be favorably obtained. The operation of the mold 70 is the same as that of the embodiment shown in FIG. 3, and the description thereof is omitted here.
また、 モールド 7 0にガラス板を吸着保持する真空吸着機能、 ガラス板をモ 一ルド 7 0から剥離させるためのエアー吹き出し機能が付加されてもよい。 図 1 3は、 図 7に示したローラ支持構造の別実施の形態を示している。 この ローラ支持構造は、 ローラ 9 O Aの上下移動機構として図 7に示したラック 4 8とピニオン 5 0とからなる機構を採用せず、 図 1 3の如くウォームジャッキ 装置 1 5 0を採用したものである。 ウォームジャッキ装置 1 5 0は、 ギアポッ クス 1 5 2に内蔵されたウォームホイールを駆動するモータ 1 5 4を有し、 モ 一夕 1 5 4を駆動することによりウォームホイールが回転し、 ウォーム 1 5 6 が上下方向に移動する。 ウォーム 1 5 6の上端部には、 エアシリンダ装置 1 0 4が連結され、 そして、 エアシリンダ装置 1 0 4のロッド 1 0 6がブラケット 9 6に連結されている。  Further, a vacuum suction function for sucking and holding the glass plate on the mold 70 and an air blowing function for peeling the glass plate from the mold 70 may be added. FIG. 13 shows another embodiment of the roller support structure shown in FIG. This roller support structure does not employ the mechanism composed of the rack 48 and the pinion 50 shown in FIG. 7 as the vertical movement mechanism of the roller 9 OA, but employs a worm jack device 150 as shown in FIG. It is. The worm jack device 150 has a motor 154 for driving a worm wheel incorporated in the gear box 152, and by driving the motor 154, the worm wheel rotates, and the worm 150 6 moves up and down. An air cylinder device 104 is connected to an upper end of the worm 156, and a rod 106 of the air cylinder device 104 is connected to a bracket 96.
図 1 4は、 両持ち構造のローラ 1 6 0、 1 6 0…を左右に交互に傾斜させて 複曲ガラスの曲げ成形に対応させた例を示している。 その両持ち支持構造の一 例を図 1 5に示している。  FIG. 14 shows an example in which rollers 16 0, 16 0... Having a double-sided structure are alternately tilted to the left and right to cope with bending of a double curved glass. Fig. 15 shows an example of the two-sided support structure.
図 1 5の支持構造は、 図 2に示したローラ支持構造を改良したものであり、 すなわち、 回転軸 5 2を回転軸 5 2 Aと回転軸 5 2 Bとに 2分割し、 これらの 回転軸 5 2 A、 5 2 Bを作動歯車装置 (例えば、 ハーモニックドライブシステ ムスのデフアレンシャルュニット) 1 6 2を介してモータ 1 6 4に連結してい る。 かかる構造によれば、 モータ 1 6 4を駆動すると回転軸 5 2 Aと回転軸 5 2 Bとが作動歯車装置 1 6 2の作用により互いに逆方向に回転するので、 左右 の移動フレーム 3 0 L、 3 0 Rの高さに差が生じる。 これにより、 移動フレー ム 3 0 L、 3 O Rに支持されたローラ 1 6 0が傾く。  The support structure shown in Fig. 15 is an improvement of the roller support structure shown in Fig. 2, that is, the rotation shaft 52 is divided into a rotation shaft 52A and a rotation shaft 52B, and these rotations are performed. The shafts 52A and 52B are connected to a motor 1664 via an operating gear device (for example, a differential unit of Harmonic Drive Systems) 16. According to this structure, when the motor 16 4 is driven, the rotating shaft 52 A and the rotating shaft 52 B rotate in the opposite directions by the action of the operating gear device 16 2, so that the left and right moving frames 30 L , 30 R height difference. As a result, the roller 160 supported by the moving frames 30L and 3OR tilts.
図 1 6〜図 1 8は、 1本のローラ 2 0に 2つの筒状のコブ 1 7 0、 1 7 0を 設け、 ローラ 2 0によるコブ 1 7 0、 1 7 0の回転でガラス板を搬送するとと もにコブ 1 7 0とモールド 7 0とによってガラス板を曲げ成形する装置を示し ている。 コブ 1 7 0は、 図 1 6に示すようにその間隔がローラ毎に変更されて いる。 ローラ 2 0の高さ (上下位置) 制御について説明すると、 図 1 8の如く コブ 1 7 0が外側にあるものは曲率半径 Rから計算される分、 高めにコント口 —ルする。 また、 コブ 1 7 0が内側にあるものは低めにコントロールする。 す なわち、 複曲 Rに応じてロール昇降の値を、 それぞれのコブ 1 7 0の位置に応 じて変更制御する。 図 1 6に示す 3本のコブ付きローラ 2 0、 2 0…と、 通常 の平ローラ 2 0とを 1セッ卜とするローラ群を複数セット配設することで複曲 ガラスの曲げ成形が円滑に実施できる。 Figs. 16 to 18 show two cylindrical bumps 170 and 170 on one roller 20. In this figure, an apparatus is shown in which a glass plate is conveyed by rotating rollers 170 and 170 by rollers 20 and a glass plate is bent and formed by roller 170 and mold 70. The distance between the bumps 170 is changed for each roller as shown in FIG. Explaining the control of the height (vertical position) of the roller 20, as shown in FIG. 18, the roller with the hump 170 outside is controlled higher by the amount calculated from the radius of curvature R. Also, control the lower ones with Cobb 170 inside. That is, the value of the roll elevating / lowering is changed and controlled in accordance with the position of each of the knobs 170 in accordance with the compound track R. By arranging a plurality of roller groups, each of which includes three bumped rollers 20, 20... Shown in FIG. 16 and a normal flat roller 20, the bending of the double-curved glass can be smoothly performed. Can be implemented.
図 1 9に示すローラ 1 8 0は、 平ローラ 2 0と筒状ローラ (以下、 フリー口 —ラと称する) 1 8 2とからなる二重軸構造のローラであり、 平ローラ 2 0と フリーローラ 1 8 2とがべァリング 1 8 4、 1 8 4を介して相対的に回転自在 に連結されている。  The roller 180 shown in FIG. 19 is a roller having a double shaft structure composed of a flat roller 20 and a cylindrical roller (hereinafter, referred to as a free port—a roller) 182. The roller 182 is relatively rotatably connected to the roller 184 via bearings 18 and 18.
平ローラ 2 0をモータ 1 8 6で回転させると、 フリーローラ 1 8 2に負荷が かかっていない時は、 ベアリング 1 8 4の摩擦および粘性抵抗によりフリー口 ーラ 1 8 2は回転する。 これにより、 モータ 1 8 6のトルクがフリーローラ 1 8 2を介してガラス板 1 6に与えられる。  When the flat roller 20 is rotated by the motor 186, the free roller 182 rotates due to the friction and viscous resistance of the bearing 184 when no load is applied to the free roller 182. Thus, the torque of the motor 186 is given to the glass plate 16 via the free roller 182.
—方で、 フリーローラ 1 8 2にモールド 7 0の押付力などの負荷がかかると、 ベアリング 1 8 4で空転することにより、 モ一夕 1 8 6のトルクはフリーロー ラ 1 8 2に伝達せず、 ガラス板 1 8にも伝達しない。  When a load such as the pressing force of the mold 70 is applied to the free rollers 18 2, the torque of the motor 18 6 is transmitted to the free rollers 18 2 by idling at the bearings 18 4. Not transmitted to the glass plate 18.
以上の動作により、 モールド 7 0とローラ 1 8 0の速度が不一致の場合には、 ガラス板 1 8の速度はモールド 7 0の速度に一致し、 ローラ 1 8 0側はトルク の伝達がなくなる。 これにより、 ローラ 1 8 0とガラス板 1 8との間にはスリ ップが発生しないので、 ガラス板 1 8がスリップで傷付くのを防止できる。  By the above operation, when the speed of the mold 70 and the speed of the roller 180 do not match, the speed of the glass plate 18 matches the speed of the mold 70, and the transmission of torque to the roller 180 is stopped. As a result, no slip occurs between the roller 180 and the glass plate 18, so that the glass plate 18 can be prevented from being damaged by slippage.
ここで、 上記作用を生じるフリーローラであるための条件は、  Here, the conditions for a free roller that produces the above-described effects are as follows:
フリーローラ 1 8 2の外径: D r (mm)  Outside diameter of free roller 18 2: D r (mm)
ベアリング 1 8 4の平均径: D b (mm) モールド 70によるガラス板の押付力: Fp (kg) Average diameter of bearings 18 4: D b (mm) Pressing force of glass plate by mold 70: Fp (kg)
1本のロールにかかるガラス板の重量: Wg (k g)  Weight of glass plate per roll: Wg (kg)
フリーローラ 182の重量: Wr (kg)  Weight of free roller 182: Wr (kg)
ガラス板とフリーローラ 182の摩擦力: n  Friction force between glass plate and free roller 182: n
ベアリング 184の転がり摩擦係数: b  Rolling friction coefficient of bearing 184: b
とすると、  Then
II - (Fp+Wg) · D r/2> b - (F p+Wg+Wr) ■ Db/2 の関係式が成立するように、 ロール寸法の設計を行う。 産業上の利用可能性  II-(Fp + Wg) · Dr / 2> b-(Fp + Wg + Wr) ■ Design the roll dimensions so that the relational expression of Db / 2 holds. Industrial applicability
以上説明したように本発明に係るガラス板の曲げ成形方法および装置によれ ば、 搬送手段で搬送されているガラス板を停止または減速させることなく、 同 一速度で搬送しながら、 搬送手段の上方に配置した成形型をガラス板に押し付 けて曲げ成形するので、 従来よりも生産性が高まる。 なお、 本発明は、 自動車、 船舶、 鉄道、 航空機などの輸送機器あるいは建築用その他各種用途のガラス板 を製造することができる。  As described above, according to the method and the apparatus for bending a glass sheet according to the present invention, the glass sheet being conveyed by the conveying means is stopped at the same speed without being stopped or decelerated, and the glass sheet is conveyed at the same speed. Pressing the mold placed on the glass plate and bending it causes the productivity to be higher than before. According to the present invention, it is possible to manufacture glass sheets for transportation equipment such as automobiles, ships, railways, and aircrafts, or for building and other various uses.

Claims

請求の範囲 The scope of the claims
1 . ガラス板を加熱炉で曲げ成形温度まで加熱し、 この加熱されたガラス板を 搬送手段で搬送するとともに、 前記搬送手段の上方に設置された成形型を前記 ガラス板の搬送速度に同期させて前記ガラス板の搬送方向に移動させ、 前記ガ ラス板を搬送しながら前記成形型を前記ガラス板に押し付けることにより、 前 記ガラス板を曲げ成形することを特徴とするガラス板の曲げ成形方法。 1. The glass sheet is heated to the bending temperature by a heating furnace, and the heated glass sheet is conveyed by a conveying means, and a forming die installed above the conveying means is synchronized with a conveying speed of the glass sheet. The glass sheet is bent by pressing the forming die against the glass sheet while moving the glass sheet while conveying the glass sheet. .
2 . 前記搬送手段は、 複数本のローラからなるローラコンベアであり、 前記ガ ラス板を前記複数本のローラで形成される搬送面上で搬送し、  2. The transport means is a roller conveyor composed of a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers,
前記搬送面を形成するローラを、 前記ガラス板の搬送位置に応じて上下移動 させることにより前記搬送面の少なくとも一部を湾曲させて湾曲面を形成し、 この湾曲面上のガラス板に前記成形型を押し付けることにより、 前記ガラス板 を曲げ成形することを特徴とする請求の範囲 1に記載のガラス板の曲げ成形方 法。  The roller forming the transfer surface is moved up and down in accordance with the transfer position of the glass plate to bend at least a part of the transfer surface to form a curved surface. 2. The method for bending a glass sheet according to claim 1, wherein the glass sheet is bent by pressing a mold.
3 . 前記搬送手段は、 複数本のローラからなるローラコンベアであり、 前記複 数本のローラで形成される搬送面上で前記ガラス板を搬送し、  3. The transport means is a roller conveyor including a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers,
前記ローラは、 上下方向に移動自在に設けられるとともに上方に向けて付勢 され、 この付勢力によって、 前記ガラス板の成形に適した反力を前記成形型に 与えながら前記ガラス板を曲げ成形することを特徴とする請求の範囲 1に記載 のガラス板の曲げ成形方法。  The roller is provided movably in the up-down direction and is urged upward. The urging force bends the glass sheet while applying a reaction force suitable for forming the glass sheet to the molding die. 2. The method for bending a glass sheet according to claim 1, wherein
4. 前記搬送手段は、 前記ガラス板をエア一フローティング支持するエアーフ ローティング手段を備え、 前記ガラス板をこのエアーフローティング手段から 噴射されたエアーによりエア一フローティングさせた状態で前記成形型に押し 付けることを特徴とする請求の範囲 1に記載のガラス板の曲げ成形方法。  4. The transfer means includes an air floating means for supporting the glass plate in an air floating manner, and presses the glass plate to the molding die in a state where the glass plate is air-floated by air injected from the air floating means. 2. The method for bending a glass sheet according to claim 1, wherein:
5 . 前記加熱炉で加熱されたガラス板を、 前記複数のローラで形成される搬送 面上で搬送させることで前記ガラス板の自重による予備曲げ成形を実施し、 そ の後前記成形型による曲げ成形を実施することを特徴とする請求の範囲 1〜4 の何れか一項に記載のガラス板の曲げ成形方法。 5. The glass plate heated by the heating furnace is conveyed on a conveying surface formed by the plurality of rollers to perform pre-bending by the own weight of the glass plate, and then bend by the forming die. The method for bending a glass sheet according to any one of claims 1 to 4, wherein the method is performed.
6 . 前記ガラス板は、 自動車の窓ガラスの製造に用いられる請求の範囲 1〜5 の何れか一項に記載のガラス板の曲げ成形方法。 6. The method of bending a glass sheet according to any one of claims 1 to 5, wherein the glass sheet is used for manufacturing a window glass of an automobile.
7 . ガラス板をその成形温度まで加熱するための加熱炉と、  7. a heating furnace for heating the glass sheet to its forming temperature;
この加熱されたガラス板を搬送するための搬送手段と、  Conveying means for conveying the heated glass sheet,
この搬送手段の上方に設置された成形型と、  A mold set above the conveying means,
この成形型を、 前記ガラス板の搬送方向および鉛直方向に移動させるための 成形型移動手段と、  Forming mold moving means for moving the forming mold in the direction of transport of the glass sheet and in the vertical direction;
この成形型移動手段の駆動を制御することにより、 前記ガラス板の搬送に同 期させて前記成形型を前記ガラス板の搬送方向に移動させ、 前記ガラス板を搬 送しながら前記成形型を前記ガラス板に押し付けることにより、 前記ガラス板 を曲げ成形する制御手段と  By controlling the driving of the forming die moving means, the forming die is moved in the conveying direction of the glass plate in synchronization with the transfer of the glass plate, and the forming die is transferred while the glass plate is transferred. Control means for bending the glass plate by pressing against the glass plate;
を備えたことを特徴とするガラス板の曲げ成形装置。  An apparatus for bending a glass sheet, comprising:
8 . 前記搬送手段は、 複数本のローラからなるローラコンベアであり、 前記ガ ラス板を前記複数本のローラで形成される搬送面上で搬送し、 8. The transfer means is a roller conveyor including a plurality of rollers, and transfers the glass plate on a transfer surface formed by the plurality of rollers.
前記搬送面を形成するローラを、 前記ガラス板の搬送位置に応じて上下移動 させることにより前記搬送面の少なくとも一部を湾曲させて湾曲面を形成し、 この湾曲面上のガラス板に前記成形型を押し付けることにより、 前記ガラス板 を曲げ成形することを特徴とする請求の範囲 7に記載のガラス板の曲げ成形装  The roller forming the transfer surface is moved up and down in accordance with the transfer position of the glass plate to bend at least a part of the transfer surface to form a curved surface. The glass sheet bending apparatus according to claim 7, wherein the glass sheet is bent by pressing a mold.
9 . 前記搬送手段は、 複数本のローラからなるローラコンベアであり、 前記複 数本のローラで形成される搬送面上で前記ガラス板を搬送し、 9. The transport means is a roller conveyor including a plurality of rollers, and transports the glass plate on a transport surface formed by the plurality of rollers,
前記ローラは、 上下方向に移動自在に設けられるとともに上方に向けて付勢 され、 この付勢力によって、 前記ガラス板の成形に適した反力を前記成形型に 与えながら前記ガラス板を曲げ成形することを特徴とする請求の範囲 7に記載 のガラス板の曲げ成形装置。  The roller is provided movably in the up-down direction and is urged upward. The urging force bends the glass sheet while applying a reaction force suitable for forming the glass sheet to the molding die. 8. The glass sheet bending apparatus according to claim 7, wherein:
1 0 . 前記搬送手段は、 前記ガラス板をエアーフローティング支持するエアー フローティング手段を備え、 前記ガラス板をこのエア一フローティング手段か ら噴射されたエアーによりエアーフローティングさせた状態で前記成形型に押 し付けることを特徴とする請求の範囲 7に記載のガラス板の曲げ成形装置。10. The transfer means includes an air floating means for supporting the glass plate in an air floating manner. The glass plate is pressed against the molding die in a state where the glass plate is air-floated by air jetted from the air-floating means. 8. The apparatus for bending a glass sheet according to claim 7, wherein the glass sheet is bent.
1 1 . 前記制御手段は、 前記加熱炉で加熱されたガラス板を、 前記複数のロー ラで形成される搬送面上で搬送させることで前記ガラス板の自重による予備曲 げ成形を実施し、 その後前記成形型による曲げ成形を実施することを特徴とす る請求の範囲 7〜 1 0の何れか一項に記載のガラス板の曲げ成形装置。 11. The control means carries out pre-bending by the weight of the glass sheet by transferring the glass sheet heated by the heating furnace on a transfer surface formed by the plurality of rollers, The glass sheet bending apparatus according to any one of claims 7 to 10, wherein bending is performed by the forming die thereafter.
1 2 . 前記ガラス板は、 自動車の窓ガラスの製造に用いられる請求の範囲 7〜 1 1の何れか一項に記載のガラス板の曲げ成形装置。  12. The glass sheet bending apparatus according to any one of claims 7 to 11, wherein the glass sheet is used for manufacturing a window glass of an automobile.
PCT/JP2002/004263 2001-04-27 2002-04-26 Method and device for bend-forming sheet glass WO2002088038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-131734 2001-04-27
JP2001131734A JP4817105B2 (en) 2001-04-27 2001-04-27 Method and apparatus for bending glass plate

Publications (1)

Publication Number Publication Date
WO2002088038A1 true WO2002088038A1 (en) 2002-11-07

Family

ID=18979869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004263 WO2002088038A1 (en) 2001-04-27 2002-04-26 Method and device for bend-forming sheet glass

Country Status (2)

Country Link
JP (1) JP4817105B2 (en)
WO (1) WO2002088038A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106356A2 (en) * 2002-06-17 2003-12-24 Nippon Sheet Glass Co., Ltd. Apparatus and method for producing a bent glass sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127961A (en) * 1992-07-02 1994-05-10 Ppg Ind Inc Equipment and method for molding web material
JPH07172855A (en) * 1993-08-31 1995-07-11 Saint Gobain Vitrage Method and apparatus for bending glass plate
JP2000327350A (en) * 1999-05-14 2000-11-28 Asahi Glass Co Ltd Method for molding glass plate and device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR26952A (en) * 1992-02-06 1994-09-12 Nippon Sheet Glass Co Ltd Carrier roller assembly for pre-bending glass sheets.
JP2000290029A (en) * 1999-04-01 2000-10-17 Nippon Sheet Glass Co Ltd Belt for forming glass sheet and production of bent glass sheet using the belt
JP4062717B2 (en) * 1999-06-17 2008-03-19 旭硝子株式会社 Wind cooling strengthening method for glass plate
JP2001002431A (en) * 1999-06-17 2001-01-09 Asahi Glass Co Ltd Bending device for glass sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127961A (en) * 1992-07-02 1994-05-10 Ppg Ind Inc Equipment and method for molding web material
JPH07172855A (en) * 1993-08-31 1995-07-11 Saint Gobain Vitrage Method and apparatus for bending glass plate
JP2000327350A (en) * 1999-05-14 2000-11-28 Asahi Glass Co Ltd Method for molding glass plate and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106356A2 (en) * 2002-06-17 2003-12-24 Nippon Sheet Glass Co., Ltd. Apparatus and method for producing a bent glass sheet
WO2003106356A3 (en) * 2002-06-17 2004-09-23 Nippon Sheet Glass Co Ltd Apparatus and method for producing a glass sheet bent in two directions

Also Published As

Publication number Publication date
JP4817105B2 (en) 2011-11-16
JP2002326829A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
US8387414B2 (en) Method and apparatus for bending a glass sheet
US5286271A (en) Method and apparatus for bending glass sheets
JP5347502B2 (en) Glass plate bending method and glass plate bending apparatus
EP0668249B1 (en) Method and apparatus of bending glass sheets
JP4088744B2 (en) Method and apparatus for bending glass plate
EP1375443B1 (en) Method and apparatus for positioning a glass sheet prior to bending
US20050138967A1 (en) Method for bending a glass sheet and apparatus therefor
ITMI972771A1 (en) PROCEDURE AND EQUIPMENT FOR BENDING MATERIAL IN HEAT-ROLLABLE SHEET IN PARTICULAR GLASS SHEETS
JP4069400B2 (en) Glass plate air cooling strengthening device
EP1484291B1 (en) Method and apparatus for bending a glass sheet using curved rollers.
WO2000078685A1 (en) Device and method for air-cooled reinforcing of glass sheet
US20080072625A1 (en) Method and Apparatus for Heating Sheets of Glass
JPH06508599A (en) Glass sheet forming method and device
JP4688011B2 (en) Glass plate bending apparatus and method
JP3968538B2 (en) Method and apparatus for bending glass plate
WO2002088038A1 (en) Method and device for bend-forming sheet glass
JPS6359975B2 (en)
JP2005015326A (en) Bending system, bending method and curved roller for glass sheet
JP2001002433A (en) Method for bending glass sheet and apparatus therefor
JP3988009B2 (en) Method and apparatus for bending glass plate
JP3941086B2 (en) Method and apparatus for bending glass plate
JP2004059401A (en) Air-quench tempering device for glass sheet
WO2010113979A1 (en) Device and method for bending glass sheet
FI120034B (en) A method for bending and tempering a glass sheet
JP2013136472A (en) Method of bending and molding glass plate and bend molding apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase