WO2002086552A2 - Procede et systeme d'auto-alignement passif d'un reseau de fibres optiques et autres structures avec des guides d'onde optiques d'un substrat - Google Patents

Procede et systeme d'auto-alignement passif d'un reseau de fibres optiques et autres structures avec des guides d'onde optiques d'un substrat Download PDF

Info

Publication number
WO2002086552A2
WO2002086552A2 PCT/US2002/012261 US0212261W WO02086552A2 WO 2002086552 A2 WO2002086552 A2 WO 2002086552A2 US 0212261 W US0212261 W US 0212261W WO 02086552 A2 WO02086552 A2 WO 02086552A2
Authority
WO
WIPO (PCT)
Prior art keywords
alignment member
waveguide
melting point
base
groove
Prior art date
Application number
PCT/US2002/012261
Other languages
English (en)
Other versions
WO2002086552A3 (fr
Inventor
Gregory J. Lukas
Original Assignee
L3 Optics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L3 Optics, Inc. filed Critical L3 Optics, Inc.
Priority to AU2002307402A priority Critical patent/AU2002307402A1/en
Publication of WO2002086552A2 publication Critical patent/WO2002086552A2/fr
Publication of WO2002086552A3 publication Critical patent/WO2002086552A3/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques

Definitions

  • This invention relates to nanophotonic devices and more particularly to aligning optical fibers within a nanophotonic structure such as waveguides.
  • the substrate containing the waveguide it is also known in the art to etch the substrate containing the waveguide to form the optical fiber grooves.
  • the substrate is formed from silicon the silicon layers yield a groove which may have variations in undercut characteristics and side wall angles; leading to misalignment of the optical fiber relative to the waveguide.
  • the subject invention overcomes the deficiencies of the prior art by providing a passive method for self alignment of a waveguide structure for at least one optical fiber.
  • a base is formed having at least one waveguide thereon.
  • a first alignment member is formed on the base a predetermined distance and orientation from the waveguide.
  • a meltable layer of material, having a melting point significantly lower than the melting point of the waveguide, base or alignment member is deposited over the base so as to at least partially cover the base, waveguide and alignment member.
  • a V-groove array has a substrate, at least two V-grooves are formed in the substrate, at least one V-groove being the predetermined distance from the other.
  • the V-groove array substrate having a melting point significantly greater than the meltable layer of material.
  • the V-groove array is then placed on the base in facing relationship with the waveguide so that the at least one V-groove faces the alignment member.
  • the V-groove array and substrate are then heated to a temperature greater than the melting point of the meltable layer and less than the melting point of the V-groove array, waveguide, base and alignment member to allow the V-groove array to penetrate the meltable layer and contact the alignment member.
  • This invention accordingly comprises the features of construction, combination of elements, arrangement of part and steps for performing the method which will be exemplified in the disclosure.
  • Figure 1 is an exploded cross sectional view of a self alignment assembly constructed in accordance with the invention
  • Figure 2 is a cross sectional view of a self alignment assembly constructed in accordance with the invention.
  • Figure 3 is a schematic top plan view of the self aligning assembly in accordance with the invention.
  • Figure 4 is a flow chart of the steps for aligning an optical fiber in accordance with the invention.
  • Waveguide structure 10 includes a substrate 12.
  • a thermal layer 14 is formed on substrate 10 which with substrate 10 forms a base 11 upon which elements are formed.
  • a plurality of waveguides 16 are formed on thermal layer 14.
  • a first alignment member 20 is disposed on thermal layer 14 a predetermined distance from a waveguide 16.
  • a meltable layer is disposed over waveguides 16 and alignment member 20 and at least a portion of thermal layer 14.
  • Waveguide structure 10 is formed using methods known in the art.
  • substrate 12 is made from Si and thermal layer 14 is grown as an Si0 2 layer on substrate 12.
  • Waveguides 14 and alignment member 20 are formed by PECVD depositing Si0 2 /Ge0 on thermal layer 14. The layer of Si0 2 /Ge0 2 is then photolithographically etched to form the waveguide 16 and alignment member 20 pattern on thermal layer 14. Other etching methods and materials may be used as known in the art to form waveguides 16 and alignment member 20, as well as other alignment structures discussed below.
  • Alignment member 20 is always disposed a predetermined distance d and orientation from at least one waveguide 16. Furthermore, during this etching step other alignment members 22, 24 ( Figure 5) may be formed on thermal layer 14. Alignment member 22 has a predetermined height. Alignment member 24 is oriented and shaped to align waveguide structure 10 and V-groove array 30 in a direction which is orthogonal to the direction in which alignment member 20 aligns the two relative to each other.
  • a meltable layer 18 is deposited over waveguides 16 and alignment members 20,
  • meltable layer 18 is formed as a silicate glass made of 80% B 2 0 3 , 5% P 2 0 5 and 87% Si0 2 . These materials are by way of example, however, it is important that meltable layer 18 have a melting point significantly lower than the melting points of substrate 12, thermal layer 14, waveguides 16 or alignment members 20, 22, 24, i.e., meltable layer 18 will reflow at a temperature at which no other element of waveguide structure 12 begins to melt.
  • substrate 12 melts at about 1,410°C
  • thermal layer 14 melts at about 1,710°C
  • waveguides 16 and alignment members 20, 22 24 melt at about 1,710°C
  • meltable layer 18 melts at about 600°C and freely flows at about 1,000°C.
  • V-groove array 30 includes a substrate 32 which is grown in accordance with techniques known in the art. A photolithographic mask is then used to form a plurality of V-grooves 34 in substrate 32.
  • the pattern for V-grooves 34 corresponds to the pattern of waveguides 16, so that each V-groove 34 will align with a respective waveguide 16 when properly placed in a facing relationship.
  • a V-groove 36 is predetermined distance d and orientation from at least one other V-groove 34 so that when V-groove 36 overlies alignment member 20, V-grooves 34 will align with waveguides 16.
  • V-groove array 30 may also include a notch 38 for receiving alignment member 24. Also, V-groove array 30 has a melting point significantly higher than the melting point of meltable layer 18. In this example, substrate 32 is made from silicon and has a melting point of about 1,410°C.
  • waveguide structure 10 may be diced and polished as needed in a step 50.
  • V-groove array 30 may also be diced and polished as needed in a step 52.
  • V-groove array 30 is then placed on waveguide structure 10 in facing relationship in rough alignment of V-groove 34 and V-groove 36 with waveguides 16 and alignment member 20, respectively in a step 54.
  • Waveguide structure 10 with V-groove array 30 disposed thereupon is then heated in a step 56 to a temperature above the melting point of meltable layer 18, but below the melting point of any other element of V-groove array 30 and waveguide structure 10.
  • V-grooves 34, 36 penetrate through meltable layer 18. Because alignment member 20 is the same predetermined distance and mirrored orientation from waveguides 16 as V-groove 36 is from V-groove 34, and the pattern of V-grooves 36 corresponds to the pattern of waveguides 16, when alignment member 20 engages V-groove 36, V-grooves 34 are automatically aligned with waveguides 16. Further, when alignment member 20 engages V-groove 36, V-groove array 30 is anchored in the horizontal direction (x-axis) relative to waveguide structure 10.
  • alignment member 22 having a predetermined height h, working with alignment member 20 prevents V-groove array 30 from over penetration of meltable layer 18.
  • Alignment member 22 contacts V-groove array 30 ( Figure 3) at a height sufficient to allow insertion of an optical fiber 60 along V-grooves 34. This anchors the structure in the y direction.
  • the engagement of alignment member 24 by notch 38 aligns and anchors V-groove array 30 to waveguide structure along the Z axis, i.e., orthogonal to the anchoring direction of alignment member 20 ( Figure 5).
  • the structure is then cooled in a step 58, hardening meltable layer 18 which now bonds waveguide structure 10 to V-groove array 30 in an aligned position.
  • the optical fibers 60 are then prepared by either cleaving, polishing or cutting and are inserted and attached to V-grooves 34 as shown in Figure 4.
  • additional alignment members may be used as needed, furthermore, the alignment assembly can be adapted to align fibers to a single waveguide or a plurality of waveguides.
  • an arrayed fiber may be substituted for the V- groove array.
  • An arrayed fiber includes the v-groove substrate with the fibers pre attached.
  • the melting point of the meltable layer must also be significantly below the melting point of the optical fibers.
  • V-groove array 30 may be applied to V-groove array 30 to assure direct contact of the alignment members 20, 22, 24 with V-grooves 36, substrate 32 and notch 38, respectively. Further, to assure direct engagement of alignment members 20, 22, 24 between waveguide structure 10 and V-groove array 30, waveguide structure 10 and V-groove array 30 are slid relative to each other, as needed, until the alignment members 20, 22, 24 fall into and engage V-groove 36, substrate 32 and notch 38, respectively. The sliding into place allows for only a gross initial alignment and may be accomplished by simply tilting the assembly during heating or by using a spring clamp to allow V-grooves 36 and notch 38 to slide through meltable layer 18 and across base 10 until they engage alignment members 20, 24, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

L'invention concerne un ensemble d'alignement servant à aligner des fibres optiques avec au moins un guide d'onde. L'ensemble d'alignement comprend une base sur laquelle un élément d'alignement et au moins un guide d'onde sont disposés, ledit élément d'alignement se trouvant à une distance et dans une orientation préétablies relativement à au moins un guide d'onde. Une couche fusible est disposée sur au moins une partie de la base et recouvre l'élément d'alignement et au moins un guide d'onde. Un substrat dans lequel plusieurs rainures en V sont formées (une première rainure en V étant située à une distance préétablie d'une seconde rainure en V) est disposé sur la couche fusible de sorte que la pluralité de rainures en V soit placée en face de l'élément d'alignement et au moins d'un guide d'onde. Le substrat, la base, au moins d'un guide d'onde, et l'élément d'alignement, présentent chacun un point de fusion considérablement supérieur à un point de fusion de la couche fusible. L'ensemble d'alignement est formé par chauffage de l'ensemble à une température supérieure au point de fusion de la couche fusible, mais inférieure au point de fusion de tous les autres éléments de l'ensemble, si bien que les rainures en V pénètrent dans la couche fusible pour entrer en prise avec l'élément d'alignement et aligner les rainures en V restantes avec les guides d'onde respectifs. L'ensemble est ensuite refroidi et les réseaux de fibres sont fixés à l'intérieur des rainures en V.
PCT/US2002/012261 2001-04-18 2002-04-18 Procede et systeme d'auto-alignement passif d'un reseau de fibres optiques et autres structures avec des guides d'onde optiques d'un substrat WO2002086552A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002307402A AU2002307402A1 (en) 2001-04-18 2002-04-18 Method and apparatus for passive self alignment of optical fiber arrays and other structures to substrate optical wave guides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28467301P 2001-04-18 2001-04-18
US60/284,673 2001-04-18

Publications (2)

Publication Number Publication Date
WO2002086552A2 true WO2002086552A2 (fr) 2002-10-31
WO2002086552A3 WO2002086552A3 (fr) 2002-12-19

Family

ID=23091090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/012261 WO2002086552A2 (fr) 2001-04-18 2002-04-18 Procede et systeme d'auto-alignement passif d'un reseau de fibres optiques et autres structures avec des guides d'onde optiques d'un substrat

Country Status (2)

Country Link
AU (1) AU2002307402A1 (fr)
WO (1) WO2002086552A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724992B2 (en) 2007-10-29 2010-05-25 Corning Incorporated Glass-based micropositioning systems and methods
US9429718B1 (en) * 2015-06-24 2016-08-30 International Business Machines Corporation Single-mode polymer waveguide connector
US10534140B2 (en) 2016-08-10 2020-01-14 International Business Machines Corporation Single-mode polymer waveguide connector assembly device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778120A (en) * 1995-05-12 1998-07-07 Matsushita Electric Industrial Co., Ltd. Optical module and method for manufacturing the optical modules
US6097871A (en) * 1994-08-26 2000-08-01 De Dobbelaere; Peter Martin Cyriel Method of making an optical waveguide to fibre connector using a free-standing, flexible waveguide sheet
US6377732B1 (en) * 1999-01-22 2002-04-23 The Whitaker Corporation Planar waveguide devices and fiber attachment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097871A (en) * 1994-08-26 2000-08-01 De Dobbelaere; Peter Martin Cyriel Method of making an optical waveguide to fibre connector using a free-standing, flexible waveguide sheet
US5778120A (en) * 1995-05-12 1998-07-07 Matsushita Electric Industrial Co., Ltd. Optical module and method for manufacturing the optical modules
US6377732B1 (en) * 1999-01-22 2002-04-23 The Whitaker Corporation Planar waveguide devices and fiber attachment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724992B2 (en) 2007-10-29 2010-05-25 Corning Incorporated Glass-based micropositioning systems and methods
US9429718B1 (en) * 2015-06-24 2016-08-30 International Business Machines Corporation Single-mode polymer waveguide connector
US10534140B2 (en) 2016-08-10 2020-01-14 International Business Machines Corporation Single-mode polymer waveguide connector assembly device
US10775568B2 (en) 2016-08-10 2020-09-15 International Business Machines Corporation Single-mode polymer waveguide connector assembly device

Also Published As

Publication number Publication date
WO2002086552A3 (fr) 2002-12-19
AU2002307402A1 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
KR960014123B1 (ko) 광도파로와 광파이버의 접속방법
US6118917A (en) Optical fiber passive alignment apparatus using alignment platform
US5471552A (en) Fabrication of static-alignment fiber-guiding grooves for planar lightwave circuits
EP0798579A1 (fr) Circuit optique intégré ayant fibres alignées passivement
US6728450B2 (en) Alignment of optical fibers with an optical device
US9304264B2 (en) Optical fiber subassembly
CN100381847C (zh) 高精度凹型多光纤连接器
EP1326109A2 (fr) Bloc pour fibres optiques avec réseau de rainure en V
US6163639A (en) Passive process for fitting connectors to optical elements with an integrated optical circuit and template for embodiment of the process
JPH09304663A (ja) 光結合回路及びその製造方法
US5535295A (en) Coupling structure for waveguide connection and process of forming the same
US6721479B2 (en) Fiber collimator
JPH1114860A (ja) 光結合構造
US20220206233A1 (en) Waveguide Connection Structure, Waveguide Chip, Connector, and Method of Manufacturing Waveguide Connection Component, and Waveguide Connecting Method
US20030142922A1 (en) Passive alignment of fiber optic array
US6816653B2 (en) Passive alignment of optical fibers with optical elements
US6907178B2 (en) Optoelectronic assembly with embedded optical and electrical components
EP1353205B1 (fr) Alignement d'un assemblage de fibres utilisant des repères d'ajustage
WO2002086552A2 (fr) Procede et systeme d'auto-alignement passif d'un reseau de fibres optiques et autres structures avec des guides d'onde optiques d'un substrat
US20040247248A1 (en) Passive alignment between waveguides and optical components
US20030123833A1 (en) Embedded waveguide with alignment grooves and method for making same
US11914193B2 (en) Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods
De Labachelerie et al. A micromachined connector for the coupling of optical waveguides and ribbon optical fibers
US6254280B1 (en) Substrate based array connector
EP1098213A1 (fr) Méthode de fabrication de nappes de fibres optiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP