WO2002085035A1 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
WO2002085035A1
WO2002085035A1 PCT/JP2002/003301 JP0203301W WO02085035A1 WO 2002085035 A1 WO2002085035 A1 WO 2002085035A1 JP 0203301 W JP0203301 W JP 0203301W WO 02085035 A1 WO02085035 A1 WO 02085035A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
signal
imaging device
solid
Prior art date
Application number
PCT/JP2002/003301
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Juen
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002582631A priority Critical patent/JPWO2002085035A1/en
Publication of WO2002085035A1 publication Critical patent/WO2002085035A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to a solid-state imaging device having a color filter array in which three color filters are arranged.
  • a single-chip solid-state imaging device having a color filter array in which three color filters are arranged has performed multi-line output for each color.
  • FIG. 8 is a diagram schematically showing a typical conventional solid-state imaging device.
  • a plurality of pixels are arranged in a two-dimensional matrix. On these pixels, R (red), G (green), and ⁇ (blue) are associated with each pixel. There is a color fill array in which the three colors are arranged in a stripe pattern. Pixels that are arranged in the same column and are associated with the same color color filter are connected to the same vertical signal line, and each vertical signal line has a color fill color color. Depending on the difference, it is connected to one of the three output lines OUT1, OUT2, OUT3 via a transistor for column selection.
  • the solid-state imaging device shown in Fig. 8 can output three lines for each color of R, G, and B, and can operate at high speed.
  • FIG. 9 is a diagram showing an outline of the solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 2000-12819.
  • a plurality of pixels are arranged in a two-dimensional matrix. On these pixels, R (red), G (green), and B (blue) are associated with each pixel.
  • a color filter array in which the three color filters are arranged in a layer is provided. Pixels arranged in two adjacent columns are alternately connected to the same vertical signal line for each row, and each vertical signal line is connected to two output lines OUT 1 through a transistor for column selection. , OUT 2 alternately. So from 0 UT 1 to G A color signal (hereinafter simply referred to as a G signal) can be output, and R and B color signals (hereinafter simply referred to as an RB signal) can be output from OUT 2. That is, in the solid-state imaging device shown in FIG. 9, the G signal and the RB signal can be output independently and simultaneously, so that high-speed operation is possible.
  • FIG. 10 is a diagram schematically showing a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688.
  • a plurality of pixels are arranged in a row in a state of being offset by 1 Z 2 pixel pitch in a horizontal direction. Also, color fills of three colors, W (white), C (cyan), and Y (yellow), are offset horizontally by a 3/2 pixel pitch for each row, and Is provided with a color filter array arranged in the order of W, C; Further, pixels arranged on the same straight line in the vertical direction and associated with a color filter of the same color are connected to the same vertical signal line. Further, each vertical signal line is alternately connected to two output lines OUT 1 and OUT2 via a transistor for column selection.
  • the solid-state imaging device shown in FIG. 10 is used for an in-line race by an in-line race scanning unit (not shown). When driven, two adjacent rows are selected simultaneously via the vertical scanning circuit.
  • the two-line output signal is supplied to a signal processing circuit (not shown) at the subsequent stage, where it is subjected to matrix mixing and converted into a luminance signal, an R signal, and a B signal.
  • a signal processing circuit not shown
  • the signals from the pixels associated with the same color filter are output by the solid-state imaging device shown in FIG.
  • the output is divided and output to different output lines.
  • the solid-state imaging device shown in FIG. 10 uses color filters of complementary colors of W, C, and Y.
  • solid-state imaging devices using complementary color filters do not have the color filters of the primary colors. It is known that color reproducibility is lower than that of a solid-state imaging device using a filter.
  • FIG. 11 is a view schematically showing a solid-state imaging device disclosed in Japanese Patent No. 2654081.
  • the signals from the two rows of offset pixels are simultaneously output, so that the vertical signal line and the horizontal scanning switch have one. Twice the number of pixels per row is required. Therefore, two vertical signal lines must be passed between the offset pixels.
  • Such a vertical signal line wiring is realized by a two-layer wiring or a wiring in which two signal lines are arranged close to each other, but a defect such as a disconnection short-circuit easily occurs.
  • the color filter in order to further increase the speed and achieve the same multi-line output signal band while achieving the same multi-line output signal bandwidth, the color filter must be used. Due to the restrictions on the arrangement of the signals, the G signal and the RB signal must be output separately for each of two or more lines.
  • the number of pixels associated with the green color filter is 1/3 of the total number of pixels arranged in the horizontal direction. Therefore, the horizontal resolution of the solid-state imaging device shown in FIG. 8 is reduced to 2/3 as compared with the solid-state imaging device shown in FIG.
  • the solid-state imaging devices shown in FIGS. 10 and 11 do not have a fixed pattern noise suppression circuit.
  • MOS-type or amplification-type solid-state imaging devices are used.
  • the fixed pattern noise suppression circuit mounted on the imaging device requires at least as many temporary storage units as the vertical signal lines (or the horizontal scanning switches). Therefore, when this type of fixed-pattern noise suppression circuit is introduced into the solid-state imaging device shown in Figs. 10 and 11, the temporary storage unit needs to be twice the number of pixels per row, making miniaturization difficult. . Disclosure of the invention
  • the present invention provides a solid-state imaging device capable of outputting image signals at high speed by performing independent 3-line output for each color while maintaining high resolution by reading out one row at a time.
  • the purpose is to provide a device.
  • Another object of the present invention is to provide a solid-state imaging device capable of efficiently suppressing fixed pattern noise.
  • the solid-state imaging device includes a plurality of pixels that are arranged in a zigzag manner in the vertical direction by being offset by 1/2 pixel pitch in a horizontal direction for each row, and generate a signal corresponding to incident light;
  • the three color filters of the first, second and third colors are horizontally offset by 3/2 pixel pitch for each row, and for each row, the first color, the second color,
  • a color filter array arranged in the order of the third color, and a signal provided by each of the plurality of pixels arranged in a zigzag manner with respect to the same straight line in the vertical direction.
  • Two adjacent vertical signal transfers Switching the two vertical signal transfer units to one specific output unit that is determined based on the color of the same color filter associated with each pixel for each unit Supplies the signal generated by the pixel associated with the first color to the first output unit, and outputs the signal generated by the pixel associated with the second color of the color
  • a vertical signal transfer switching unit that supplies a signal generated by a pixel associated with the color of the third color to the third output unit.
  • one specific output unit connected to two adjacent vertical signal transfer units is as follows.
  • the specific one output unit is the first output unit. Further, when the color of the same color filter associated with the pixel connected to the two adjacent vertical signal transfer units is the second color, one specific output unit is the second output unit. is there. Further, when the color of the same color corresponding to the pixel connected to the two adjacent vertical signal transfer units is the third color, one specific output unit is the third output unit. is there.
  • Two color fill filters are associated with each other, and the (j + 2) -th pixel in the i-th row is associated with a third color force filter. Also, the j-th pixel on the (i + 1) -th row is associated with the third color filter, and the. (J + 1) -th pixel on the (i + 1) -th row is the first color. And the (j + 1) -th pixel in the (i + 1) -th row is associated with the second-color color filter.
  • the color filter of the first color is associated with the pixel j of the i-th row
  • the color filter of the first color and the color filter of the third color are transmitted to the j-th vertical signal transfer unit. Pixels that are alternately associated with the filters are connected.
  • the (j + 1) -th S direct signal transfer unit is connected to pixels in which color filters of the second color and color filters of the first color are alternately associated with each other.
  • the pixel in which the third color filter and the second color filter are alternately connected is connected to the (j + 2) -th vertical signal transfer section.
  • the (j + 1) th vertical signal transfer unit is connected to the j′th vertical signal transfer unit via the vertical signal transfer switching unit. Since the connection with the output unit is switched, the first output unit is supplied with a signal generated by the pixel associated with the color filter of the first color. In the (j + 1) th vertical signal transfer unit, the connection with the second output unit is switched between the (j + 1) th vertical signal transfer unit and the second output unit. Is supplied with a signal generated by the pixel associated with the second color.
  • connection with the third output unit is switched between the (j + 3) th vertical signal transfer unit via the vertical signal transfer switching unit. Therefore, a signal generated by the pixel associated with the third color filter is supplied to the third output unit.
  • the first color filter is generated by the associated pixel.
  • the first signal is supplied to the first output unit, and the signal generated by the pixel associated with the second color filter is supplied to the second output unit, and the third color filter is supplied.
  • the signal generated by the attached pixel will be supplied to the third output unit.
  • a signal is generated in accordance with incident light by offsetting by 1/2 pixel pitch in a horizontal direction for each row so as to be zigzag in the vertical direction.
  • the power of the three colors of the first, second, and third colors are offset horizontally by 3/2 pixel pitch for each row, and for each row,
  • a color fill array arranged in the order of the first color, the second color, and the third color; and provided for each of the plurality of pixels arranged in a zigzag manner with respect to a same vertical line,
  • a plurality of vertical signal transfer units for vertically transferring signals generated by pixels in which two different color filters are alternately associated; and horizontally transferring signals vertically transferred by the vertical signal transfer unit.
  • 1st or 3rd output part that outputs as image signal
  • the signal generated by the pixel associated with the color filter is supplied to the first output unit, and the signal generated by the pixel associated with the color filter is output to the second output unit.
  • a vertical signal transfer switching unit that supplies a signal generated by a pixel associated with the color of the third color to the third output unit.
  • two specific output units connected to the vertical signal transfer unit by the vertical signal transfer switching unit are as follows.
  • the two specific output units are the first output unit and the specific output unit.
  • the specific two output units are connected to the second output unit.
  • a third output unit when a pixel in which the color fill of the third color and the color fill of the first color are connected to the vertical signal transfer unit, the specific two output units are connected to the third output unit.
  • the vertical signal transfer unit connected to the pixel in which the color fill of the first color and the color fill of the second color are associated with each other includes the first output unit and the second output unit.
  • the vertical signal transfer unit which is connected to the two output units of the output unit and is connected to the pixel associated with the color filter of the second color and the color filter of the third color, is connected to the second output unit.
  • the transfer unit is switched and connected to two output units, a third output unit and a first output unit.
  • the signal generated by the pixel associated with the first color filter is supplied to the first output unit, and the signal generated by the pixel associated with the second color filter is supplied to the first output unit.
  • the signal generated is supplied to the second output unit, and the signal generated by the pixel associated with the color fill of the third color is supplied to the third output unit.
  • the vertical signal transfer switching unit may switch connection between the vertical signal transfer unit and the output unit for each row.
  • the first to third output units enable signals supplied via the vertical signal transfer switching unit to be horizontally transferred and output at the same timing. May be.
  • the pixel includes: a photoelectric conversion unit that generates and accumulates electric charge according to incident light; and an amplification unit that amplifies the electric charge generated and accumulated by the photoelectric conversion unit. And an amplification type pixel having a portion.
  • the amplifying unit may be a junction-type field effect transistor.
  • a sampling circuit for performing correlated double sampling may be provided between the first and third output units.
  • a buffer circuit may be provided between the first and third output units.
  • signals individually output from the first to third output units are taken in association with the arrangement of the plurality of pixels, and each signal is lost in each pixel.
  • An interpolation processing unit for interpolating a color signal using a signal associated with a pixel located around the pixel may be provided.
  • FIG. 1 is a diagram schematically illustrating the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a circuit diagram of the solid-state imaging device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration of an imaging device according to the second embodiment.
  • FIG. 5 is a diagram illustrating the interpolation processing.
  • FIG. 6 is a diagram showing an array of data in the memory ignoring the offset.
  • FIG. 7 is a diagram illustrating an array conversion process.
  • FIG. 8 is a diagram schematically showing a typical conventional solid-state imaging device.
  • FIG. 9 is a diagram schematically illustrating a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 2000-12819.
  • FIG. 10 is a diagram schematically showing a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688.
  • FIG. 11 is a view schematically showing a solid-state imaging device disclosed in Japanese Patent No. 2654081. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 11 is a view schematically showing a solid-state imaging device disclosed in Japanese Patent No. 2654081. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram schematically illustrating the solid-state imaging device according to the first embodiment.
  • the solid-state imaging device illustrated in FIG. 1 is an amplification-type solid-state imaging device, and a plurality of pixels are arranged in a pixel unit 1 in a state where each pixel is offset in a horizontal direction by a 1/2 pixel pitch in each row. . That is, these pixels are arranged in a zigzag manner at a pitch of 1/2 pixel in the vertical direction.
  • the pixels arranged in zigzag in this way are connected to the same vertical signal line 2. Therefore, the pixels arranged in the arbitrary i-th row and the pixels arranged in the (i + 1) -th row are horizontally separated by 1 to 2 pixel pitches. The i-th pixel and the j-th pixel in the (i + 1) -th row are connected to the same vertical signal line 2.
  • the arrangement of pixels is similar to that of the solid-state imaging device shown in FIG. 10 (the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688).
  • the connection relationship with the vertical signal lines is different from the solid-state imaging device shown in FIG.
  • the solid-state imaging device shown in FIG. 1 has a vertical scanning circuit 3, a vertical signal line switching switch array 4, an output buffer array 5, a horizontal switch array 6, and a horizontal output circuit in addition to the pixel unit 1 and the vertical signal line 2. It comprises lines 7a, 7b, 7c, output amplifiers 8a, 8b, 8c, reset switches 9a, 9b, 9c, and a horizontal scanning circuit 10.
  • the vertical scanning circuit 3 is connected to each pixel in the pixel unit 1 for each row.
  • the output buffer array 5 is composed of a plurality of clamped buffers 5a, 5b, and 5c (corresponding to a form of a solid-state noise suppression circuit), and each of the clamped buffers 5a, 5b, and 5c. Then, clamp-type CDS (correlated double sampling) described later is performed.
  • the vertical signal lines 2 are connected to the buffers with clamps 5a, 5b, and 5c via the vertical signal line switching switch array 4.
  • the horizontal switch array 6 includes horizontal scan switches 6a, 6b, and 6c provided for each of R, G, and B colors. The horizontal switch array 6 in the output buffer array 5 responds to drive pulses supplied from the horizontal scan circuit 10.
  • each buffer with clamp 5a, 5b, 5c is horizontally scanned for each color and the horizontal output lines 7a, Output to 7b and 7c.
  • the output amplifiers 8a, 8b, 8c output the respective color signals on the horizontal output lines 7a, 7b, 7c to the outside, and the reset switches 9a, 9b, 9c output the horizontal output lines 7a, 9b, 9c. Reset the signals on a, 7b, and 7c according to the predetermined horizontal reset pulse.
  • three color filters of R, G, and B are offset horizontally by a 3/2 pixel pitch for each row, and each row is Has a color filter array arranged in the order of R, G, B.
  • the j-th pixel in the i-th row (corresponding to the pixel assigned (j, i) in FIG. 1) is a pixel that outputs a signal corresponding to the light transmitted through the R color filter , R signal pixels),
  • the (j + 1) th pixel in the i-th row is a pixel that outputs a signal corresponding to the light transmitted through the G color filter (hereinafter, G signal).
  • G signal G color filter
  • the (j + 2) -th pixel in the i-th row is a pixel that outputs a signal corresponding to the light transmitted through the color filter of B (hereinafter, referred to as a B signal pixel).
  • the j-th pixel in the (i + 1) -th row becomes a B signal pixel
  • the (j + 1) -th pixel in the (i + 1) -th row becomes an R signal pixel
  • the (i + 1) -th row is a G signal pixel.
  • FIG. 2 is a circuit diagram of the solid-state imaging device according to the first embodiment.
  • FIG. 2 shows only a portion related to an arbitrary j-th pixel on the i-th row (corresponding to a pixel to which (j, i) is added in FIG. 1) for convenience.
  • the pixel shown in FIG. 2 is composed of a photodiode 11 that generates and accumulates electric charge according to incident light, and a junction field-effect transistor (JFET) that outputs a signal corresponding to the electric charge from a source by a source follower operation.
  • An amplifying unit 12 comprising a JFET); a transfer unit (P-ch MOS transistor) 13 for transferring the charge from the photodiode 11 to the gate of the amplifying unit 12; and a reset unit (reset unit) for resetting the gate of the amplifying unit 12.
  • PchMOS transistor 14.
  • the transfer unit gate line 15 is connected to the gate of the transfer unit 13 and a transfer pulse is supplied.
  • a reset section gate line 16 is connected to the gate of the reset section 14 to supply a reset pulse.
  • a reset bias line 17 for supplying a reset bias voltage is connected to a drain of the reset unit 14.
  • signal switching switches 18a and 18b constituting the vertical signal line switching switch array 4 of FIG. 1 are provided, and correspond to the buffered buffer 5a constituting the output buffer array 5 of FIG.
  • a vertical signal line output buffer amplifier 19, a clamp capacitor 20 (corresponding to one form of a time storage unit), and a clamp switch 21 are provided.
  • the horizontal scanning switch 6a, the horizontal output line 7a, the output amplifier 8a, and the horizontal reset switch 9a corresponding to the horizontal scanning switch 22a, the horizontal output line 23, the output amplifier 24, and the horizontal reset switch of FIG. 25 are provided.
  • the R signal pixel to which (j, i) is added is expressed as “R signal pixel (j, i)” and the R signal pixel (j, i)
  • the vertical signal line 2 connected to is denoted as “j-th vertical signal line 2”. The same applies to other pixels and other vertical signal lines 2.
  • the pixels arranged in the row selected by the vertical scanning circuit 3 are driven, and the output from the pixel is supplied to the vertical signal line 2.
  • the output from the R signal pixel (j, i) is supplied to the j-th vertical signal line 2.
  • the output from the R signal pixel (j + 1, i + 1) is output to the (j + 1) -th vertical signal line 2.
  • an R color filter is associated with the j′-th vertical signal line 2 and the (j + 1) -th vertical signal line 2 according to the row selected by the vertical scanning circuit 3.
  • the outputs from the pixels that have been supplied are supplied alternately.
  • the (j + 1) th vertical signal line 2 and the (j + 2) th vertical signal line 2 alternately supply the output from the pixel to which the G color filter is assigned.
  • the (j + 2) th vertical signal line 2 and the (j + 3) th vertical signal line 2 are alternately supplied with the output from the pixel to which the B color filter is applied. Will be.
  • the output of the G signal pixel connected to the (j + 1) th vertical signal line 2 and the (j + 2) th vertical signal line 2 The output of the connected G signal pixel is sequentially supplied.
  • the output of the B signal pixel connected to the (j + 2) th vertical signal line 2 and the output of the (j + 3) th vertical signal line 2 The output of the B signal pixel is sequentially supplied.
  • the clamped buffers 5a, 5b, and 5c output valid signals (corresponding to the photosensitive signal Vp—dark signal Vd) by the clamp-type CDS (correlated double sampling) described later. You.
  • Each of the horizontal scanning switches 6a, 6b, 6c in the horizontal switch array 6 is simultaneously turned on in response to a horizontal read pulse supplied from the horizontal scanning circuit 10. Therefore, the valid signals output from the buffers with clamps 5a, 5b, 5c are simultaneously supplied to the horizontal output lines 7a, 7b, 7c for each color.
  • a valid signal for the R signal pixel (j, i) is supplied to the horizontal output line 7a from the buffer with clamp 5a, and the buffer with clamp 5 b outputs a valid signal for the G signal pixel (j + l, i) to the horizontal output line 7b, and the clamped buffer 5c outputs a valid signal for the B signal pixel (j + 2, i). It is supplied to horizontal output line 7c.
  • the horizontal output lines 7a, 7b, and 7b are set by reset switches 9a, 9b, and 9c.
  • the horizontal output line 7a has a valid signal for the R signal pixel (j + l, i + 1).
  • a valid signal for the G signal pixel (j + 2, i + 1) is supplied to the horizontal output line 7b, and the B signal pixel (j + 3, i + 1) is supplied to the horizontal output line 7c. ) Is supplied.
  • an R signal is output from the output amplifier 8a
  • a G signal is output from the output amplifier 8b
  • a B signal is output from the output amplifier 8c.
  • the solid-state imaging device can perform independent three-line output for each color, it can output image signals corresponding to three color signals at high speed.
  • a color filter array in which color filters of three colors of;, G, and B are arranged is provided. Even if a color filter array in which color filters of (white) and ⁇ (magenta) and color filters of ⁇ (yellow), W (white) and C (cyan) are arranged is provided. Independent three-line output can be performed for each color.
  • the solid-state imaging device according to the first embodiment is different from the solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688, in that each line is formed using a primary color color filter. The charge can be read. Therefore, the color reproducibility and the vertical resolution can be maintained higher than those of the solid-state imaging device disclosed in Japanese Patent Application No. 58-316688.
  • the matrix mixing required in the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688 is unnecessary. Yes, offset correction and gain correction between the three output lines can be performed in the same way as normal RGB signal correction. Therefore, errors due to these corrections do not adversely affect the image quality.
  • the photodiode 11 when the i-th row is in the non-selected state, in the pixel shown in FIG. 2, the photodiode 11 generates and accumulates electric charges according to incident light.
  • a low-level transfer pulse indicating off via the transfer unit gate line 15 is applied to the gate of the transfer unit 13. Is supplied, and the photodiode 11 is separated from the amplifier 12.
  • a reset pulse of ON level indicating ON is supplied to the gate of the reset unit 14 via the reset unit gate line 16, and the gate of the amplifier unit 12 is reset by the reset bias line 17. Fixed at the bias voltage. That is, the amplifier unit 12 holds the non-selected state, and there is no signal output from the pixel to the vertical signal line 2.
  • the charge readout from the photodiode .11 is performed as follows. It is done.
  • the reset pulse supplied to the gate of the reset section 14 via the reset section gate line 16 is changed from low level (indicating ON) to high level (indicating OFF), and the reset section 14 is reset.
  • the gate of the amplifier section 12 is biased to the read voltage through the power coupling capacitance with the reset gate line 16. Therefore, the dark signal Vd is output to the vertical signal line 2.
  • the ⁇ signal Vd is a signal that includes noise when the amplifying unit 12 is reset, solid pattern noise, and the like.
  • the horizontal clamp switch 21 is on, the horizontal switch 22 side of the clamp capacitor 20 is fixed to the reference voltage Vref, and the dark signal Vd is accumulated in the clamp capacitor 20. .
  • the solid-state imaging device of the first embodiment noise when resetting the amplification unit 12 and solid-state power noise are removed by the clamp-type CDS (correlated double sampling).
  • the obtained image signal can be obtained.
  • the clamp capacitors 20 functioning as a temporary storage unit can be provided by the number of pixels per row. good. Therefore, the fixed pattern noise can be suppressed while the circuit scale is suppressed, and the solid-state imaging device shown in FIG. 10 (the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688) and Miniaturization, which has been difficult with the solid-state imaging device shown in FIG. 11 (the solid-state imaging device disclosed in Japanese Patent No. 2654081), can be easily realized.
  • the solid-state imaging device is an amplification-type solid-state imaging device including an amplification unit 12 composed of a JFET.
  • Such an amplification unit 12 connects the vertical signal line 2 to a low impedance. , Voltage fluctuations of the vertical signal line 2 due to noise generated when the switching switches 18a and 18b are switched can be suppressed.
  • the vertical signal line output buffer amplifier 19 is provided between the signal switching switches 18 a and 18 b and the clamp capacitance 20, the clamp capacitance 20 Therefore, the effect of noise generated when the signal switching switches 18a and 18b are switched can be reduced.
  • the solid-state imaging device including the amplifying unit 12 composed of the JFET has been described as an example.
  • the present invention is not limited to the solid-state imaging device having such a configuration, and a MOS transistor may be used. Also, the present invention can be applied to a solid-state imaging device provided with an amplifying unit including a bipolar transistor.
  • an embedded photodiode may be used as the photodiode 11 in order to reduce the occurrence of a dark signal and the like.
  • an imaging device for example, an electronic camera or the like
  • the solid-state imaging device of the first embodiment will be examined.
  • FIG. 3 is a diagram illustrating a spatial frequency response to the solid-state imaging device according to the first embodiment.
  • f s V is a spatial frequency determined by a vertical sampling pitch
  • f sh is a spatial frequency determined by a horizontal pixel pitch of each row.
  • the basic pitch is the same in the horizontal and vertical directions, and the phase is ignored. For simplicity, only the first quadrant is shown.
  • the ⁇ (circle) marks in the figure indicate the positions at which modulated carriers occur in achromatic colors.
  • the carrier in the horizontal 0 degree direction is (2 f sh, 0)
  • the closest carrier occurs at (0, f sv), and the next closest carrier occurs at (fsh, 1/2 ⁇ fsv).
  • the achromatic signal reproduction range two-dimensional Nyquist range in the state of white balance is the area A and B in the figure.
  • the mouth (square) in the figure is the position where carriers of each color of R, G, B are generated.
  • the closest carrier occurs at (1/3 ⁇ fsh, 1/2 ⁇ fsv), the next closest carrier occurs at (SZS 'fsh, 0), and an image with resolution near these two carriers.
  • SZS 'fsh, 0 the next closest carrier occurs at (SZS 'fsh, 0)
  • an image with resolution near these two carriers causes color moiré.
  • the gamut of the chromatic signal without moiré is the area A in the figure.
  • an OLPF Optical Low Pass Filter
  • the 0 L PF to be disposed before the solid-state imaging device according to the first embodiment can be configured by combining a birefringent plate having a notch at the position of the C line and the D line in the figure.
  • the luminance signal close to achromatic can reproduce the regions A and B almost as theoretically.
  • Such a region is a two-dimensional Nyquist range in a solid-state imaging device having a square pixel array having the same basic pixel pitch and the same number of pixels, that is, (1/2 ⁇ f It is almost equivalent to the area enclosed by the (sh, y) line and the (x, 1/2 ⁇ fsv) line.
  • the solid-state imaging device is a single-chip solid-state imaging device, but is comparable to a black-and-white solid-state imaging device having a square pixel array having the same number of pixels when capturing an object that is close to achromatic. High resolution can be realized.
  • each pixel of the single-chip solid-state imaging device is associated with only one color filter of the three colors R, G, and B, color signals of the other two colors are lost. I have. Therefore, in an imaging device having a single-plate solid-state imaging device, an interpolation process for interpolating two color signals missing in each pixel is performed.
  • an image signal obtained by the solid-state imaging device according to the first embodiment is subjected to interpolation processing performed by an existing imaging device (an imaging device having a single-plate solid-state imaging device having a square pixel array). It cannot be applied as is.
  • an imaging device that performs interpolation processing on an image signal output from the solid-state imaging device of the first embodiment and records the image signal will be described.
  • FIG. 4 is a diagram illustrating a configuration of an imaging device according to the second embodiment.
  • a solid-state imaging device 41 is the solid-state imaging device of the first embodiment.
  • the imaging device shown in FIG. 4 includes, in addition to the solid-state imaging device 41, a timing generator circuit 42, analog front-end circuits 43a, 43b, 43c, and AD conversion circuits 44a, 44b, 44. c, a pixel interpolation circuit 45, a memory 46, a square pixel array conversion circuit 47, and a recording device 48.
  • an imaging optical system not shown
  • the above-described 0 LPF are provided in front of the solid-state imaging device 41.
  • the evening imaging generator circuit 42 includes a drive pulse 49 for driving the solid-state imaging device 41 and a control pulse for controlling other circuits in the imaging device in accordance with a sequence control signal supplied from a sequence control unit (not shown). Generates control signal 50.
  • the analog front-end circuits 43a, 43b, and 43c perform DC reproduction (clamping) and sensitivity adjustment (gain) for the R, G, and B color signals supplied as image signals from the solid-state imaging device 41. ), And perform processing such as offset adjustment.
  • the color signal of each color subjected to such processing is subjected to AD conversion by AD conversion circuits 44a, 44b, and 44c, and is supplied to a pixel interpolation circuit 45.
  • the pixel interpolation circuit 45 performs an interpolation process described later on the color signals of the respective colors supplied in this manner, and supplies the color signals to the square pixel array conversion circuit 47.
  • the square pixel array conversion circuit 47 performs an array conversion process described later on the color signals of each color supplied from the pixel interpolation circuit 45 and supplies the color signals to the recording device 48.
  • the recording device 48 records the color signal of each color supplied from the square pixel array conversion circuit 47 on a predetermined recording medium, but in some cases, such as gamma conversion, color space conversion, sub-sampling, image compression, etc. Signal processing may be performed.
  • the pixel interpolation circuit 45 associates data corresponding to the color signals of each color digitized by the AD conversion circuits 44 a, 44 b, and 44 c with the arrangement of pixels in the solid-state imaging device 41. Store in memory 46. Then, a color signal missing in each pixel is interpolated based on a predetermined interpolation formula.
  • an interpolation formula for averaging the R signals obtained from adjacent R signal pixels with a weight corresponding to the reciprocal of the distance between the pixels may be applied.
  • FIG. 5 is a diagram illustrating the interpolation processing performed in this manner.
  • the pixel to be interpolated is a pixel that is close to the left, a pixel that is close to the upper right, and a pixel that is closer to the lower right.
  • Interpolate the first color signal with reference to the color signal obtained from the pixel.
  • the second What is necessary is to interpolate the color signal.
  • the color signal of each color supplied from the AD conversion circuits 44a, 44b, and 44c is provided.
  • a pseudo empty data must be inserted at a position where no pixel exists. Therefore, twice as much space is required as storing only valid data ⁇
  • FIG. 6 is a diagram showing an array of data in the memory 46 ignoring the offset.
  • FIG. 6 shows a case where the even rows are offset rightward by a 1/2 pixel pitch. Further, a position corresponding to the actual pixel arrangement in the solid-state imaging device 41 is referred to as “real space position”, and the pixel arrangement ignoring the offset is referred to as “memory arrangement”.
  • the R signal is interpolated by referring to the data of the R signal pixels arranged in the left, diagonally upward, and diagonally right directions.
  • the B signal is interpolated with reference to the data of the B signal pixels arranged in the up, down, and up directions.
  • the R signal is interpolated by referring to the data of the R signal pixels arranged leftward, upward, and downward, O Interpolates the B signal with reference to the data of the B signal pixels arranged diagonally down left o
  • the color signal of each color in the state where the interpolation processing is performed in this manner is an array of pixels in the solid-state imaging device 41 (an array in which each pixel is offset by 1Z2 pixel pitch for each row).
  • the position of each pixel in the square pixel array is indicated by ⁇ (square), and the case where the even-numbered row is offset rightward by 1 Z 2 pixel pitch is shown. The same position is used for the R and B signals.
  • the square pixel array conversion circuit 47 performs an array conversion process of converting such color signals of each color into a signal corresponding to an image conforming to the square pixel array.
  • the square pixel array conversion circuit 47 realizes, for example, an array conversion process for the G signal by interpolating the G signal at a position indicated by “g” in FIG. Note that such interpolation can be performed by averaging the data of the G signal adjacent to the upper, lower, left, and right directions in even rows, as in the interpolation method 1 in FIG. As shown in 2, this can be done by averaging the data of the G signals that are adjacent in two directions, left and right.
  • the square pixel array conversion circuit 47 performs array conversion processing on the R signal and the B signal in the same manner as the G signal. Then, the color signals of the respective colors for which the array conversion processing has been completed are supplied to the recording device 48.
  • the solid-state imaging device in which the arrangement of each pixel is offset by 1 pixel pitch for each row (corresponding to the solid-state imaging device of the first embodiment) ) Can be reliably interpolated for the image signal output from.
  • an image signal on which interpolation processing has been performed can be converted into an image signal conforming to a square pixel array. Therefore, various types of signal processing conventionally performed can be easily applied to the image signal obtained by the imaging device according to the second embodiment.
  • a smoother image can be obtained by applying an interpolation process that quadruples the number of pixels.
  • a vertical signal transfer unit is provided for each pixel in which the color fills are alternately associated, and the vertical signal transfer switching unit generates the pixels by the pixels in which the color fills are associated.
  • a signal can be output from the first output unit, and a signal generated by a pixel associated with the color filter of the second color can be output from the second output unit.
  • a signal generated by the pixel associated with the filter can be output from the third output unit.
  • a plurality of pixels are arranged in a state where each pixel is offset in the horizontal direction by a 1/2 pixel pitch, and a first color, a second color, and a third color are filled in a row.
  • a solid-state imaging device having a color filter array that is offset in the horizontal direction by a 3/2 pixel pitch every time, and for each row, a first color, a second color, and a third color are arranged in this order.
  • independent 3-wire output for each color can be realized.
  • the number of vertical signal lines may be the same as the number of pixels per row, and there is no need to pass two vertical signal lines between pixels, so that an unnecessary increase in the number of vertical signal lines can be suppressed.
  • the resolution in the vertical direction can be reliably maintained high.
  • the signals supplied via the vertical signal transfer switching unit are horizontally transferred and output at the same timing by the first to third output units, the image signal can be output reliably and at high speed. it can.
  • the vertical signal transfer unit can be driven with a low impedance voltage, so that the vertical signal transfer unit is switched to the output unit. Voltage fluctuations in the vertical signal transfer unit due to noise generated when connecting to the terminal can be suppressed.
  • a sampling circuit for performing correlated double sampling is provided between the vertical signal transfer switching unit and the first to third output units, noise or noise generated when the amplification unit is reset by correlated double sampling is provided. Therefore, the effects of solid pattern noise and the like can be reduced.
  • a buffer circuit is provided between the vertical signal transfer switching section and the first to third output sections, the influence of noise generated when the vertical signal transfer section is switched and connected to the output section is reduced. It can be reduced. Therefore, a highly accurate image signal can be obtained.
  • the signals individually output from the first to third output units are output to the plurality of pixels.
  • the interpolation processing unit interpolates the signals of the two colors missing in each pixel.
  • the missing two-color signals are interpolated using the signals associated with the pixels located in the vicinity, and the three-color signals can be associated with all the pixels.
  • a signal corresponding to an image conforming to an array of a plurality of pixels is converted into a signal corresponding to an image conforming to a square pixel array in which offsets are not performed at a half pixel pitch in the horizontal direction for each row.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

A solid-state imaging device comprising pixels, pixels in one line being offset by a 1/2 pixel pitch in a horizontal direction from those in the adjacent line, a color filter array in which first- to third-color color filters in one line are offset by a 3/2 pixel pitch in a horizontal direction from those in the adjacent line and are arranged in each line in the order of the first to third color, a vertical signal transfer elements provided for each set of pixels arranged in zigzag with respect to vertical identical lines, first to third output elements, and vertical signal switching elements that switch two adjacent vertical signal transfer elements to one specific output element and connect them to thereby supply separately a pixel signal for the first-color color filter, a pixel signal for the second-color color filter, and a pixel signal for the third-color color filter to the first to third output elements. Accordingly, a line-for-line reading can provide the fast output of image signals by using independent 3-wire outputs for respective colors while maintaining a high resolution.

Description

明細書 固体撮像装置 技術分野  Description Solid-state imaging device Technical field
本発明は、 3色のカラーフィル夕が配列されたカラ一フィル夕アレイを有する 固体撮像装置に関する。 背景技術  The present invention relates to a solid-state imaging device having a color filter array in which three color filters are arranged. Background art
従来から、 3色のカラーフィルタが配列されたカラ一フィル夕アレイを有する 単板式の固体撮像装置では、 色別の多線出力が行われている。  2. Description of the Related Art Conventionally, a single-chip solid-state imaging device having a color filter array in which three color filters are arranged has performed multi-line output for each color.
図 8は、 従来の代表的な固体撮像装置の概略を示す図である。  FIG. 8 is a diagram schematically showing a typical conventional solid-state imaging device.
図 8に示した固体撮像装置では、 2次元マトリクス状に複数の画素が配列され、 これらの画素上には、 各々の画素に対応付けて、 R (赤) ,G (緑) ,Β (青) の 3色のカラ一フィル夕がストライブ状に配列されたカラーフィル夕アレイが設け られている。 また、 同一の列に配列され、 かつ、 同色のカラ一フィル夕が対応付 けられている画素は、 同一の垂直信号線に接続され、 各々の垂直信号線は、 カラ —フィル夕の色の違いに応じて、 列選択用のトランジスタを介して 3つの出力線 O U T 1, O U T 2, O U T 3の何れかに接続される。  In the solid-state imaging device shown in FIG. 8, a plurality of pixels are arranged in a two-dimensional matrix. On these pixels, R (red), G (green), and Β (blue) are associated with each pixel. There is a color fill array in which the three colors are arranged in a stripe pattern. Pixels that are arranged in the same column and are associated with the same color color filter are connected to the same vertical signal line, and each vertical signal line has a color fill color color. Depending on the difference, it is connected to one of the three output lines OUT1, OUT2, OUT3 via a transistor for column selection.
したがって、 図 8に示した固体撮像装置では、 R,G,Bの色別に 3線出力が行 え、 高速動作が可能である。  Therefore, the solid-state imaging device shown in Fig. 8 can output three lines for each color of R, G, and B, and can operate at high speed.
図 9は、 特開 2 0 0 0— 1 2 8 1 9号公報に開示されている固体撮像装置の概 略を示す図である。  FIG. 9 is a diagram showing an outline of the solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 2000-12819.
図 9に示した固体撮像装置では、 2次元マトリクス状に複数の画素が配列され、 これらの画素上には、 各々の画素に対応付けて、 R (赤) ,G (緑) ,B (青) の 3色のカラ一フィル夕がペイァ配列されたカラ一フィルタアレイが設けられてい る。 また、 隣り合う 2つの列に配列された画素は、 行毎に交互に同一の垂直信号 線に接続され、 各々の垂直信号線は、 列選択用のトランジスタを介して 2つの出 力線 O U T 1 , O U T 2に交互に接続されている。 そのため、 0 U T 1から Gの 色信号 (以下、 単に G信号と称する。 ) を出力することができ、 O U T 2から R および Bの色信号 (以下、 単に R B信号と称する。 ) を出力することができる。 すなわち、 図 9に示した固体撮像装置では、 G信号と R B信号とを独立して同 時に出力できるので、 高速動作が可能である。 In the solid-state imaging device shown in FIG. 9, a plurality of pixels are arranged in a two-dimensional matrix. On these pixels, R (red), G (green), and B (blue) are associated with each pixel. A color filter array in which the three color filters are arranged in a layer is provided. Pixels arranged in two adjacent columns are alternately connected to the same vertical signal line for each row, and each vertical signal line is connected to two output lines OUT 1 through a transistor for column selection. , OUT 2 alternately. So from 0 UT 1 to G A color signal (hereinafter simply referred to as a G signal) can be output, and R and B color signals (hereinafter simply referred to as an RB signal) can be output from OUT 2. That is, in the solid-state imaging device shown in FIG. 9, the G signal and the RB signal can be output independently and simultaneously, so that high-speed operation is possible.
また、 図 8および図 9に示した固体撮像装置では、 同色の色信号は異なる線に 分かれることなく、 同一の出力線から出力される。 したがって、 後段の信号処理 において、 同色の色信号に対して、 異なる出力線間のオフセッ ト補正やゲイン補 正が不要であり、 これらの補正の誤差による画質の劣化が生じることがない。 図 1 0は、 特開昭 5 8 - 3 1 6 8 8号公報に開示されている固体撮像装置の概 略を示す図である。  Further, in the solid-state imaging device shown in FIGS. 8 and 9, the same color signal is output from the same output line without being divided into different lines. Therefore, in subsequent signal processing, offset correction and gain correction between different output lines are not required for color signals of the same color, and image quality does not deteriorate due to errors in these corrections. FIG. 10 is a diagram schematically showing a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688.
図 1 0に示した固体撮像装置では、 行毎に水平方向に 1 Z 2画素ピッチずっォ フセッ トされた状態で複数の画素が配列されている。 また、 W (ホワイ ト) , C (シアン) ,Y (黄色) の 3色のカラ一フィル夕が、 行毎に水平方向に 3 / 2画 素ピッチずつオフセッ トされ、 かつ、 各行に対しては W、 C;、 Yの順で配列され たカラーフィルタアレイが設けられている。 さらに、 垂直方向の同一直線上に配 列され、 かつ、 同色のカラ一フィルタが対応付けられた画素は、 同一の垂直信号 線に接続される。 また、 各々の垂直信号線は、 列選択用のトランジスタを介して 2つの出力線 O U T 1, O U T 2に交互に接続されている。  In the solid-state imaging device shown in FIG. 10, a plurality of pixels are arranged in a row in a state of being offset by 1 Z 2 pixel pitch in a horizontal direction. Also, color fills of three colors, W (white), C (cyan), and Y (yellow), are offset horizontally by a 3/2 pixel pitch for each row, and Is provided with a color filter array arranged in the order of W, C; Further, pixels arranged on the same straight line in the vertical direction and associated with a color filter of the same color are connected to the same vertical signal line. Further, each vertical signal line is alternately connected to two output lines OUT 1 and OUT2 via a transistor for column selection.
特閧昭 5 8 - 3 1 6 8 8号公報に開示されている技術では、 図 1 0に示した固 体撮像装置を不図示のィン夕一レース走査部によってィン夕一レース用に駆動し、 垂直走査回路を介して隣接する 2つの行が同時に選択される。  According to the technology disclosed in Japanese Patent Publication No. 58-316168, the solid-state imaging device shown in FIG. 10 is used for an in-line race by an in-line race scanning unit (not shown). When driven, two adjacent rows are selected simultaneously via the vertical scanning circuit.
すなわち、 任意のフィールドに対して、 1行目と 2行目とのペア、 3行目と 4 行目とのペアで同時に 2線出力が行われると、 次のフィールドに対しては、 2行 目と 3行目とのペア、 4行目と 5行目とのペアで同時に 2線出力が行われる。 そして、 このように 2線出力された信号は、 後段の信号処理回路 (図示省略) に供給されてマトリックス混合され、輝度信号と R信号と B信号とに変換される。 すなわち、 特開昭 5 8 - 3 1 6 8 8号公報に開示されている技術では、 図 1 0 に示した固体撮像装置によって、 同色のカラーフィル夕が対応付けられた画素か らの信号が異なる出力線に分かれて出力されるが、 後段の信号処理回路における 信号処理によって、 異なる出力線間のオフセッ ト補正やゲイン補正を行うことな く、 画像信号を得ることができる。 That is, if two lines are output simultaneously for a pair of the first line and the second line and a pair of the third line and the fourth line for an arbitrary field, two lines will be output for the next field. Two-wire output is performed simultaneously for the pair of the third and fourth lines and the pair of the fourth and fifth lines. The two-line output signal is supplied to a signal processing circuit (not shown) at the subsequent stage, where it is subjected to matrix mixing and converted into a luminance signal, an R signal, and a B signal. In other words, according to the technology disclosed in Japanese Patent Application Laid-Open No. 58-31688, the signals from the pixels associated with the same color filter are output by the solid-state imaging device shown in FIG. The output is divided and output to different output lines. By the signal processing, an image signal can be obtained without performing offset correction and gain correction between different output lines.
しかし、 図 1 0に示した固体撮像装置では 2つの行が平均化されて 2線出力が 行われるため、 2線出力された信号から得られる画像信号は、 垂直方向の解像度 が低下してしまう。 また、 図 1 0に示した固体撮像装置では、 W,C,Yの補色の カラーフィル夕が用いられているが、 一般に、 補色のカラ一フィルタを用いた固 体撮像装置は、 原色のカラーフィルタを用いた固体撮像装置よりも色再現性が低 くなることが知られている。  However, in the solid-state imaging device shown in FIG. 10, two rows are averaged and two-line output is performed, so that the image signal obtained from the two-line output signal has reduced vertical resolution. . In addition, the solid-state imaging device shown in FIG. 10 uses color filters of complementary colors of W, C, and Y. However, in general, solid-state imaging devices using complementary color filters do not have the color filters of the primary colors. It is known that color reproducibility is lower than that of a solid-state imaging device using a filter.
そこで、 補色のカラ一フィル夕を R,G,Bの原色のカラ一フィル夕に変更し、 隣接する 2つの行を別々に選択することによって、 色再現性や垂直方向の解像度 の向上を図ることが考えられる。  Therefore, by changing the color fill of the complementary color to the color fill of the primary colors of R, G, and B, and by selecting two adjacent rows separately, the color reproducibility and the resolution in the vertical direction are improved. It is possible.
しかし、 図 1 0に示した固体撮像装置において、 カラ一フィル夕の色を以下の ように変更し、 Y→R  However, in the solid-state imaging device shown in FIG. 10, the color of the color fill was changed as follows, and Y → R
C→  C →
垂直走査回路を介して、 隣接する 2つの行を単に別々に選択させるだけでは、 同 色の色信号が異なる線に分かれて出力されてしまう。 そのため、 後段の信号処理 回路において、 異なる出力線間のオフセッ ト補正、 ゲイン補正が必要になり、 こ れらの補正による誤差が縦筋などとなって画質に悪影響を与えるという問題が発 生する。 Simply selecting two adjacent rows separately via the vertical scanning circuit would result in the same color signal being output on different lines. Therefore, in the subsequent signal processing circuit, offset correction and gain correction between different output lines are required, and errors due to these corrections become vertical streaks and adversely affect image quality. .
図 1 1は、 特許第 2 6 5 4 0 8 1号公報に開示されている固体撮像装置の概略 を示す図である。  FIG. 11 is a view schematically showing a solid-state imaging device disclosed in Japanese Patent No. 2654081.
図 1 1に示した固体撮像装置では、 図 1 0に示した固体撮像装置と同様な構成 により、 隣接する 2つの行が同時に選択されるが、 色別に 3線出力が行われるの で、 後段の信号処理において、 オフセッ トの補正などによる誤差が発生すること はない。  In the solid-state imaging device shown in FIG. 11, two adjacent rows are selected at the same time by the same configuration as the solid-state imaging device shown in FIG. 10, but 3-line output is performed for each color. In the signal processing, no error due to offset correction or the like occurs.
しかし、 図 1 0や図 1 1に示した固体撮像装置では、 オフセッ トされた 2行の 画素からの信号を同時に出力するために、 垂直信号線と水平走査スィツチとが 1 行当たりの画素数の 2倍必要である。 そのため、 垂直信号線はオフセッ トされた 画素の間を 2本ずつ通さなければならない。 このような垂直信号線の配線は、 2 層配線や、 2本の信号線を近接に並べる配線によって実現されるが、 断線ゃショ ートなどの不良が発生し易い。 However, in the solid-state imaging device shown in FIGS. 10 and 11, the signals from the two rows of offset pixels are simultaneously output, so that the vertical signal line and the horizontal scanning switch have one. Twice the number of pixels per row is required. Therefore, two vertical signal lines must be passed between the offset pixels. Such a vertical signal line wiring is realized by a two-layer wiring or a wiring in which two signal lines are arranged close to each other, but a defect such as a disconnection short-circuit easily occurs.
また、 図 9に示した固体撮像装置では、 一層の高速化を狙って、 多線出力の各 線の信号帯域を同等にしつつ、 より多くの多線出力を実現しょうとすると、 カラ —フィル夕の配列の制限により、 G信号と R B信号とをそれぞれ 2線以上に分け て出力しなければならない。  Also, in the solid-state imaging device shown in Fig. 9, in order to further increase the speed and achieve the same multi-line output signal band while achieving the same multi-line output signal bandwidth, the color filter must be used. Due to the restrictions on the arrangement of the signals, the G signal and the RB signal must be output separately for each of two or more lines.
そのため、 例えば、 G信号を異なる線に分けて同時に出力する場合、 後段の信 号処理として、 異なる出力線間のオフセット補正やゲイン補正が必要になり、 上 述したように画質に悪影響を与えるという問題が発生する。 また、 R B信号を R 信号と B信号とに分けて同時に出力する場合には特に問題は無いが、 R信号と B 信号とをそれぞれ異なる出力線に分けて同時に出力する場合には、 同様の問題が 発生する。  Therefore, for example, if the G signal is divided into different lines and output at the same time, offset correction and gain correction between different output lines will be required as signal processing at the subsequent stage, which will adversely affect image quality as described above. Problems arise. There is no particular problem when the RB signal is divided into R and B signals and output at the same time.However, when the R and B signals are divided into different output lines and output at the same time, the same problem occurs. Occurs.
また、 図 8に示した固体撮像装置では、 緑色のカラーフィル夕が対応付けられ た画素数は、 水平方向に配列される全ての画素数の 1 / 3である。 そのため、 図 8に示した固体撮像装置における水平方向の解像度は、 図 9に示した固体撮像装 置に比べて、 2 / 3に低下してしまう。  In the solid-state imaging device shown in FIG. 8, the number of pixels associated with the green color filter is 1/3 of the total number of pixels arranged in the horizontal direction. Therefore, the horizontal resolution of the solid-state imaging device shown in FIG. 8 is reduced to 2/3 as compared with the solid-state imaging device shown in FIG.
ところで、 図 1 0や図 1 1に示した固体撮像装置には、 固定パターンノイズ抑 圧回路は実装されていないが、 一般的に、 これらの固体撮像装置のように M O S 型または増幅型の固体撮像撮像装置に実装される固定パターンノイズ抑圧回路で は、 少なくとも、 垂直信号線 (または、 水平走査スィッチ) と同数の一時蓄積部 が必要である。 そのため、 この種の固定パターンノイズ抑圧回路を、 図 1 0や図 1 1に記載の固体撮像装置に導入する場合、 一時蓄積部が 1行当たりの画素数の 2倍必要となり、 微細化が難しい。 発明の開示  By the way, the solid-state imaging devices shown in FIGS. 10 and 11 do not have a fixed pattern noise suppression circuit. However, in general, as in these solid-state imaging devices, MOS-type or amplification-type solid-state imaging devices are used. The fixed pattern noise suppression circuit mounted on the imaging device requires at least as many temporary storage units as the vertical signal lines (or the horizontal scanning switches). Therefore, when this type of fixed-pattern noise suppression circuit is introduced into the solid-state imaging device shown in Figs. 10 and 11, the temporary storage unit needs to be twice the number of pixels per row, making miniaturization difficult. . Disclosure of the invention
本発明は、 1行ずつの読み出しで、 高い解像度を維持しつつ、 色別に独立した 3線出力を行うことによって画像信号を高速に出力することができる固体撮像装 置を提供することを目的とする。 本発明の別の目的は、 効率良く固定パターンノ ィズを抑圧することができる固体撮像装置を提供することにある。 The present invention provides a solid-state imaging device capable of outputting image signals at high speed by performing independent 3-line output for each color while maintaining high resolution by reading out one row at a time. The purpose is to provide a device. Another object of the present invention is to provide a solid-state imaging device capable of efficiently suppressing fixed pattern noise.
本発明の固体撮像装置は、 行毎に水平方向に 1 / 2画素ピッチずつオフセッ ト されることによって垂直方向に対してジグザグに配列され、 入射光に応じた信号 を生成する複数の画素と、 第 1色、 第 2色、 第 3色の 3色のカラーフィル夕が、 行毎に水平方向に 3 / 2画素ピッチずつオフセットされ、 かつ、 各行に対しては 第 1色、 第 2色、 第 3色の順で配列されたカラ一フィル夕アレイと、 前記複数の 画素のうち垂直方向の同一直線に対レてジグザグに配列された画素毎に設けられ、 当該画素によって生成される信号を垂直転送する複数の垂直信号転送部と、 前記 垂直信号転送部によって垂直転送される信号を水平転送し、 画像信号として出力 する第 1ないし第 3の出力部と、 前記複数の垂直信号転送部のうち隣接する 2つ の垂直信号転送部毎に、 各々の画素に対応付けられている同色のカラーフィル夕 が如何なる色であるかに基づいて決められる特定の 1つの出力部に、 当該 2つの 垂直信号転送部を切り替えて接続することによって、 第 1色のカラ一フィル夕が 対応付けられた画素によって生成された信号を第 1の出力部へ供給し、 第 2色の カラ一フィル夕が対応付けられた画素によって生成された信号を第 2の出力部へ 供給し、 第 3色のカラ一フィル夕が対応付けられた画素によって生成された信号 を第 3の出力部へ供給する垂直信号転送切替部とを備えている。  The solid-state imaging device according to the present invention includes a plurality of pixels that are arranged in a zigzag manner in the vertical direction by being offset by 1/2 pixel pitch in a horizontal direction for each row, and generate a signal corresponding to incident light; The three color filters of the first, second and third colors are horizontally offset by 3/2 pixel pitch for each row, and for each row, the first color, the second color, A color filter array arranged in the order of the third color, and a signal provided by each of the plurality of pixels arranged in a zigzag manner with respect to the same straight line in the vertical direction. A plurality of vertical signal transfer units for vertically transferring, a first to a third output unit for horizontally transferring a signal vertically transferred by the vertical signal transfer unit and outputting the image signals, and a plurality of the vertical signal transfer units. Two adjacent vertical signal transfers Switching the two vertical signal transfer units to one specific output unit that is determined based on the color of the same color filter associated with each pixel for each unit Supplies the signal generated by the pixel associated with the first color to the first output unit, and outputs the signal generated by the pixel associated with the second color of the color And a vertical signal transfer switching unit that supplies a signal generated by a pixel associated with the color of the third color to the third output unit.
なお、 本発明の固体撮像装置において、 隣接する 2つの垂直信号転送部に接続 される特定の 1つの出力部は、 以下の通りである。  Note that, in the solid-state imaging device of the present invention, one specific output unit connected to two adjacent vertical signal transfer units is as follows.
隣接する 2つの垂直信号転送部に接続される画素に対応付けられる同色のカラ —フィル夕の色が第 1色である場合、 特定の 1つの出力部は、 第 1の出力部であ る。 また、 隣接する 2つの垂直信号転送部に接続される画素に対応付けられる同 色のカラーフィル夕の色が第 2色である場合、 特定の 1つの出力部は、 第 2の出 力部である。 さらに、 隣接する 2つの垂直信号転送部に接続される画素に対応付 けられる同色のカラ一フィル夕の色が第 3色である場合、特定の 1つの出力部は、 第 3の出力部である。  If the color of the same color corresponding to the pixels connected to the two adjacent vertical signal transfer units is the first color, the specific one output unit is the first output unit. Further, when the color of the same color filter associated with the pixel connected to the two adjacent vertical signal transfer units is the second color, one specific output unit is the second output unit. is there. Further, when the color of the same color corresponding to the pixel connected to the two adjacent vertical signal transfer units is the third color, one specific output unit is the third output unit. is there.
ここで、 隣接する 2つの垂直信号転送部を特定の出力部に切り替えて接続する ことによって、 第 1色のカラーフィル夕を対応付けた画素によって生成された信 号が第 1の出力部へ供給され、 第 2色のカラ一フィル夕を対応付けた画素によつ て生成された信号が第 2の出力部へ供給され、 第 3色のカラーフィルタを対応付 けた画素によって生成された信号が第 3の出力部へ供給される動作を説明する。 本発明の固体撮像装置では、 任意の i行目の j番目の画素に第 1色のカラーフ ィル夕が対応付けられている場合、 i行目の ( j + l ) 番目の画素には第 2色の カラーフィル夕が対応付けられ、 i行目の ( j + 2 ) 番目の画素には第 3色の力 ラ一フィル夕が対応付けらることになる。 また、 ( i + 1 ) 行目の j番目の画素 には第 3色のカラーフィル夕が対応付けられ、 (i + 1 ) 行目の .( j + 1 ) 番目 の画素には第 1色のカラーフィル夕が対応付けら、 ( i + 1 ) 行目の ( j + 2 ) 番目の画素には第 2色のカラーフィル夕が対応付けらることになる。 Here, by switching two adjacent vertical signal transfer units to a specific output unit and connecting them, a signal generated by a pixel associated with the first color filter is connected. Signal is supplied to the first output unit, and the signal generated by the pixel associated with the color filter of the second color is supplied to the second output unit, and the color filter of the third color is supplied. An operation in which a signal generated by the attached pixel is supplied to the third output unit will be described. In the solid-state imaging device of the present invention, when the color filter of the first color is associated with the j-th pixel in an arbitrary i-th row, the (j + 1) -th pixel in the i-th row is assigned to the j-th pixel. Two color fill filters are associated with each other, and the (j + 2) -th pixel in the i-th row is associated with a third color force filter. Also, the j-th pixel on the (i + 1) -th row is associated with the third color filter, and the. (J + 1) -th pixel on the (i + 1) -th row is the first color. And the (j + 1) -th pixel in the (i + 1) -th row is associated with the second-color color filter.
したがって、 i行目の j番目の画素に第 1色のカラーフィル夕が対応付けられ ている場合、 j番目の垂直信号転送部には、 第 1色のカラーフィル夕と第 3色の カラ一フィル夕とが交互に対応付けられた画素が接続されることになる。 また、 ( j + 1 ) 番目の S直信号転送部には、 第 2色のカラーフィル夕と第 1色のカラ —フィルタとが交互に対応付けられた画素が接続されることになり、 ( j + 2 ) 番目の垂直信号転送部には、 第 3色のカラーフィル夕と第 2色のカラーフィル夕 とが交互に対応付けられた画素が接続されることになる。  Therefore, when the color filter of the first color is associated with the pixel j of the i-th row, the color filter of the first color and the color filter of the third color are transmitted to the j-th vertical signal transfer unit. Pixels that are alternately associated with the filters are connected. Further, the (j + 1) -th S direct signal transfer unit is connected to pixels in which color filters of the second color and color filters of the first color are alternately associated with each other. The pixel in which the third color filter and the second color filter are alternately connected is connected to the (j + 2) -th vertical signal transfer section.
このような 3つの垂直信号転送部のうち、 ( j + 1 ) 番目の垂直信号転送部で は、 垂直信号転送切替部を介して、 j '番目の垂直信号転送部との間で第 1の出力 部との接続が切り替えて行われるため、 第 1の出力部には、 第 1色のカラ一フィ ル夕が対応付けられた画素によって生成された信号が供給される。 また、 (j + 1 ) 番目の垂直信号転送部では、 (j + 2 ) 番目の垂直信号転送部との間で第 2 の出力部との接続が切り替えて行われるため、 第 2の出力部には、 第 2色のカラ 一フィル夕が対応付けられた画素によって生成された信号が供給される。  Of the three vertical signal transfer units, the (j + 1) th vertical signal transfer unit is connected to the j′th vertical signal transfer unit via the vertical signal transfer switching unit. Since the connection with the output unit is switched, the first output unit is supplied with a signal generated by the pixel associated with the color filter of the first color. In the (j + 1) th vertical signal transfer unit, the connection with the second output unit is switched between the (j + 1) th vertical signal transfer unit and the second output unit. Is supplied with a signal generated by the pixel associated with the second color.
同様に、 (j + 2 )番目の垂直信号転送部では、 垂直信号転送切替部を介して、 ( j + 3 ) 番目の垂直信号転送部との間で第 3の出力部との接続が切り替えて行 われるため、 第 3の出力部には、 第 3色のカラーフィル夕が対応付けられた画素 によって生成された信号が供給される。  Similarly, in the (j + 2) th vertical signal transfer unit, the connection with the third output unit is switched between the (j + 3) th vertical signal transfer unit via the vertical signal transfer switching unit. Therefore, a signal generated by the pixel associated with the third color filter is supplied to the third output unit.
したがって、 第 1色のカラーフィル夕が対応付けられた画素によって生成され た信号が第 1の出力部へ供給され、 第 2色のカラーフィル夕が対応付けられた画 素によって生成された信号が第 2の出力部へ供給され、 第 3色のカラーフィル夕 が対応付けられた画素によって生成された信号が第 3の出力部へ供給されること になる。 Therefore, the first color filter is generated by the associated pixel. The first signal is supplied to the first output unit, and the signal generated by the pixel associated with the second color filter is supplied to the second output unit, and the third color filter is supplied. The signal generated by the attached pixel will be supplied to the third output unit.
本発明の固体撮像装置の別の態様としては、 行毎に水平方向に 1 / 2画素ピッ チずつオフセッ 卜されることによって垂直方向に対してジグザグに配列され、 入 射光に応じた信号を生成する複数の画素と、 第 1色、 第 2色、 第 3色の 3色の力 ラ一フィル夕が、行毎に水平方向に 3 / 2画素ピッチずつオフセットされ、 かつ、 各行に対しては第 1色、 第 2色、 第 3色の順で配列されたカラ一フィル夕アレイ と、 前記複数の画素のうち垂直方向の同一直線に対してジグザグに配列された画 素毎に設けられ、 異なる 2色のカラ一フィル夕が交互に対応付けられた画素によ つて生成される信号を垂直転送する複数の垂直信号転送部と、 前記垂直信号転送 部によって垂直転送された信号を水平転送し、 画像信号として出力する第 1ない し第 3の出力部と、 各垂直信号転送部毎に、 各々の画素に対応付けられたカラー フィル夕の色に基づいて決められる特定の 2つの出力部に、 当該垂直信号転送部 を切り替えて接続することによって、 第 1色のカラ一フィル夕が対応付けられた 画素によって生成された信号を第 1の出力部へ供給し、 第 2色のカラーフィル夕 が対応付けられた画素によって生成された信号を第 2の出力部へ供給し、 第 3色 のカラ一フィル夕が対応付けられた画素によって生成された信号を第 3の出力部 へ供給する垂直信号転送切替部とを備えるようにしても良い。  In another embodiment of the solid-state imaging device according to the present invention, a signal is generated in accordance with incident light by offsetting by 1/2 pixel pitch in a horizontal direction for each row so as to be zigzag in the vertical direction. And the power of the three colors of the first, second, and third colors are offset horizontally by 3/2 pixel pitch for each row, and for each row, A color fill array arranged in the order of the first color, the second color, and the third color; and provided for each of the plurality of pixels arranged in a zigzag manner with respect to a same vertical line, A plurality of vertical signal transfer units for vertically transferring signals generated by pixels in which two different color filters are alternately associated; and horizontally transferring signals vertically transferred by the vertical signal transfer unit. 1st or 3rd output part that outputs as image signal By switching and connecting the vertical signal transfer unit to two specific output units determined based on the color of the color filter associated with each pixel for each vertical signal transfer unit, The signal generated by the pixel associated with the color filter is supplied to the first output unit, and the signal generated by the pixel associated with the color filter is output to the second output unit. And a vertical signal transfer switching unit that supplies a signal generated by a pixel associated with the color of the third color to the third output unit.
なお、 本発明の固体撮像装置の別の態様において、 垂直信号転送切替部によつ て垂直信号転送部に接続される特定の 2つの出力部は、 以下の通りである。  In another embodiment of the solid-state imaging device according to the present invention, two specific output units connected to the vertical signal transfer unit by the vertical signal transfer switching unit are as follows.
例えば、 垂直信号転送部に第 1色のカラ一フィル夕と第 2色のカラーフィル夕 とが対応付けられた画素が接続される場合、 特定の 2つの出力部は、 第 1の出力 部と第 2の出力部との 2つの出力部である。 また、 垂直信号転送部に第 2色の力 ラーフィル夕と第 3色のカラ一フィル夕とが対応付けられた画素が接続される場 合、 特定の 2つの出力部は、 第 2の出力部と第 3の出力部との 2つの出力部であ る。 さらに、 垂直信号転送部に第 3色のカラ一フィル夕と第 1色のカラ一フィル 夕とが対応付けられた画素が接続される場合、 特定の 2つの出力部は、 第 3の出 力部と第 1の出力部との 2つの出力部である。 For example, when a pixel in which a color fill of the first color and a color fill of the second color are connected to the vertical signal transfer unit, the two specific output units are the first output unit and the specific output unit. The second output unit and the two output units. Further, when a pixel in which the color filter of the second color and the color filter of the third color are connected to the vertical signal transfer unit, the specific two output units are connected to the second output unit. And a third output unit. Further, when a pixel in which the color fill of the third color and the color fill of the first color are connected to the vertical signal transfer unit, the specific two output units are connected to the third output unit. There are two output units, a power unit and a first output unit.
すなわち、 垂直信号転送切替部では、 第 1色のカラーフィル夕と第 2色のカラ ーフィル夕とが対応付けられた画素に接続される垂直信号転送部は、 第 1の出力 部と第 2の出力部との 2つの出力部に切り替えて接続され、 第 2色のカラ一フィ ル夕と第 3色のカラーフィルタとが対応付けられた画素に接続される垂直信号転 送部は、 第 2の出力部と第 3の出力部との 2つの出力部に切り替えて接続され、 第 3色のカラーフィル夕と第 1色のカラーフィル夕とが対応付けられた画素に接 続される垂直信号転送部は、 第 3の出力部と第 1の出力部との 2つの出力部に切 り替えて接続されることになる。  That is, in the vertical signal transfer switching unit, the vertical signal transfer unit connected to the pixel in which the color fill of the first color and the color fill of the second color are associated with each other includes the first output unit and the second output unit. The vertical signal transfer unit, which is connected to the two output units of the output unit and is connected to the pixel associated with the color filter of the second color and the color filter of the third color, is connected to the second output unit. A vertical signal that is switched and connected to the two output units of the third color output unit and the third output unit, and is connected to the pixel in which the third color filter and the first color filter are associated with each other. The transfer unit is switched and connected to two output units, a third output unit and a first output unit.
その結果、 第 1色のカラーフィル夕が対応付けられた画素によって生成された 信号が第 1の出力部へ供給され、 第 2色のカラ一フィル夕が対応付けられた画素 によつて生成された信号が第 2の出力部へ供給され、 第 3色のカラ一フィル夕が 対応付けられた画素によって生成された信号が第 3の出力部へ供給されることに なる。  As a result, the signal generated by the pixel associated with the first color filter is supplied to the first output unit, and the signal generated by the pixel associated with the second color filter is supplied to the first output unit. The signal generated is supplied to the second output unit, and the signal generated by the pixel associated with the color fill of the third color is supplied to the third output unit.
本発明の固体撮像装置の別の態様としては、 前記垂直信号転送切替部は、 垂直 信号転送部と出力部との接続の切り替えを行毎に行えるようにしても良い。  In another aspect of the solid-state imaging device according to the present invention, the vertical signal transfer switching unit may switch connection between the vertical signal transfer unit and the output unit for each row.
本発明の固体撮像装置の別の態様としては、 前記第 1ないし第 3の出力部は、 前記垂直信号転送切替部を介して供給される信号を同一のタイミングで水平転送 して出力できるようにしても良い。  According to another aspect of the solid-state imaging device of the present invention, the first to third output units enable signals supplied via the vertical signal transfer switching unit to be horizontally transferred and output at the same timing. May be.
本発明の固体撮像装置の別の態様としては、 前記画素は、 入射光に応じた電荷 を生成して蓄積する光電変換部と、 該光電変換部によって生成されて蓄積された 電荷を増幅する増幅部とを有する増幅型画素であっても良い。  According to another aspect of the solid-state imaging device of the present invention, the pixel includes: a photoelectric conversion unit that generates and accumulates electric charge according to incident light; and an amplification unit that amplifies the electric charge generated and accumulated by the photoelectric conversion unit. And an amplification type pixel having a portion.
本発明の固体撮像装置の別の態様としては、 前記増幅部は、 接合型電解効果ト ランジス夕であっても良い。  In another aspect of the solid-state imaging device according to the present invention, the amplifying unit may be a junction-type field effect transistor.
本発明の固体撮像装置の別の態様としては、 前記垂直信号転送切替部と前記第 According to another aspect of the solid-state imaging device of the present invention, the vertical signal transfer switching unit and the second
1ないし第 3の出力部との間に、 相関 2重サンプリングを行うサンプリング回路 を備えるようにしても良い。 A sampling circuit for performing correlated double sampling may be provided between the first and third output units.
本発明の固体撮像装置の別の態様としては、 前記垂直信号転送切替部と前記第 According to another aspect of the solid-state imaging device of the present invention, the vertical signal transfer switching unit and the second
1ないし第 3の出力部との間にバッファ回路を備えるようにしても良い。 本発明の固体撮像装置の別の態様としては、 前記第 1ないし第 3の出力部から 個別に出力される信号を前記複数の画素の配列に対応付けて取り込み、 各々の画 素に欠落する 2色の信号を当該画素の周辺に位置する画素に対応付けられた信号 を用いて補間する補間処理部を備えるようにしても良い。 A buffer circuit may be provided between the first and third output units. According to another aspect of the solid-state imaging device of the present invention, signals individually output from the first to third output units are taken in association with the arrangement of the plurality of pixels, and each signal is lost in each pixel. An interpolation processing unit for interpolating a color signal using a signal associated with a pixel located around the pixel may be provided.
本発明の固体撮像装置の別の態様としては、 前記複数の画素の配列に準拠した 画像に相当する信号を、 行毎の水平方向に対する 1 / 2画素ピッチずつのオフセ ッ卜がなされない正方画素配列に準拠した画像に相当する信号に変換する配列変 換部を備えるようにしても良い。  In another embodiment of the solid-state imaging device according to the present invention, a signal corresponding to an image conforming to the arrangement of the plurality of pixels is a square pixel having an offset of 1/2 pixel pitch in a horizontal direction for each row. An array conversion unit for converting a signal corresponding to an image conforming to the array may be provided.
なお、 本発明の更なる目的および特徴については、 添付された図と以下の説明 に記載される通りである。 図面の簡単な説明  Further objects and features of the present invention are as described in the attached drawings and the following description. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1の実施形態の固体撮像装置の概略を示す図である。  FIG. 1 is a diagram schematically illustrating the solid-state imaging device according to the first embodiment.
図 2は、 第 1の実施形態の固体撮像装置の回路図である。  FIG. 2 is a circuit diagram of the solid-state imaging device according to the first embodiment.
図 3は、 第 1の実施形態の固体撮像装置に対する空間周波数応答を示す図であ る o  FIG. 3 is a diagram showing a spatial frequency response to the solid-state imaging device according to the first embodiment.
図 4は、 第 2の実施形態の撮像装置の構成を示す図である。  FIG. 4 is a diagram illustrating a configuration of an imaging device according to the second embodiment.
図 5は、 補間処理を説明する図である。  FIG. 5 is a diagram illustrating the interpolation processing.
図 6は、 オフセットを無視したメモリ内のデータの配列を示す図である。  FIG. 6 is a diagram showing an array of data in the memory ignoring the offset.
図 7は、 配列変換処理を説明する図である。  FIG. 7 is a diagram illustrating an array conversion process.
図 8は、 従来の代表的な固体撮像装置の概略を示す図である。  FIG. 8 is a diagram schematically showing a typical conventional solid-state imaging device.
図 9は、 特開 2 0 0 0 - 1 2 8 1 9号公報に開示されている固体撮像装置の概 略を示す図である。  FIG. 9 is a diagram schematically illustrating a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 2000-12819.
図 1 0は、 特開昭 5 8 - 3 1 6 8 8号公報に開示されている固体撮像装置の概 略を示す図である。  FIG. 10 is a diagram schematically showing a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688.
図 1 1は、 特許第 2 6 5 4 0 8 1号公報に開示されている固体撮像装置の概略 を示す図である。 発明を実施するための最良の形態 以下、 図面に基づいて、 本発明の実施形態について詳細を説明する。 FIG. 11 is a view schematically showing a solid-state imaging device disclosed in Japanese Patent No. 2654081. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
《第 1の実施形態の説明》  << Description of First Embodiment >>
図 1は、 第 1の実施形態の固体撮像装置の概略を示す図である。  FIG. 1 is a diagram schematically illustrating the solid-state imaging device according to the first embodiment.
図 1に示した固体撮像装置は、 増幅型固体撮像装置であり、 画素部 1には、 行 毎に水平方向に 1/2画素ピッチずつオフセヅ 卜された状態で複数の画素が配列 されている。 すなわち、. これらの画素は、 垂直方向に対して、 1/2画素ピッチ ずつジグザグに配列されることになる。  The solid-state imaging device illustrated in FIG. 1 is an amplification-type solid-state imaging device, and a plurality of pixels are arranged in a pixel unit 1 in a state where each pixel is offset in a horizontal direction by a 1/2 pixel pitch in each row. . That is, these pixels are arranged in a zigzag manner at a pitch of 1/2 pixel in the vertical direction.
また、 図 1に示した固体撮像装置では、 このようにジグザグに配列された画素 は、 同一の垂直信号線 2に接続される。 そのため、 任意の i行目に配列された画 素と、 (i + 1)行目に配列される画素とは、 水平方向に 1ノ2画素ピッチ分ず れているが、 i行目の j番目の画素と ( i + 1 ) 行目の j番目の画素とは、 同一 の垂直信号線 2に接続されることになる。  Further, in the solid-state imaging device shown in FIG. 1, the pixels arranged in zigzag in this way are connected to the same vertical signal line 2. Therefore, the pixels arranged in the arbitrary i-th row and the pixels arranged in the (i + 1) -th row are horizontally separated by 1 to 2 pixel pitches. The i-th pixel and the j-th pixel in the (i + 1) -th row are connected to the same vertical signal line 2.
すなわち、 第 1の実施形態の固体撮像装置では、 画素の配列は、 図 10に示す 固体撮像装置 (特開昭 58 - 31688号公報に開示されている固体撮像装置) に類似するが、 画素と垂直信号線との接続関係については、 図 10に示す固体撮 像装置と異なる。  That is, in the solid-state imaging device according to the first embodiment, the arrangement of pixels is similar to that of the solid-state imaging device shown in FIG. 10 (the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688). The connection relationship with the vertical signal lines is different from the solid-state imaging device shown in FIG.
また、 図 1に示した固体撮像装置は、 画素部 1や垂直信号線 2の他に、 垂直走 查回路 3、 垂直信号線切り替えスィッチアレイ 4、 出力バッファアレイ 5、 水平 スイッチアレイ 6、 水平出力線 7 a, 7 b, 7 c、 出力アンプ 8 a, 8 b, 8 c、 リ セッ トスイッチ 9 a, 9b, 9 c、 水平走査回路 10から構成される。  The solid-state imaging device shown in FIG. 1 has a vertical scanning circuit 3, a vertical signal line switching switch array 4, an output buffer array 5, a horizontal switch array 6, and a horizontal output circuit in addition to the pixel unit 1 and the vertical signal line 2. It comprises lines 7a, 7b, 7c, output amplifiers 8a, 8b, 8c, reset switches 9a, 9b, 9c, and a horizontal scanning circuit 10.
垂直走査回路 3は、 画素部 1内の各画素に行毎に接続されている。 出力パッフ ァアレイ 5は、 複数のクランプ付きバッファ 5 a, 5 b, 5 c (固体パ夕一ンノィ ズ抑圧回路の一形態に相当する) から成り、 各クランプ付きバッファ 5 a, 5 b, 5 cでは、 後述するクランプ型 CDS (相関 2重サンプリング) が行われる。 ま た、 各クランプ付きバッファ 5 a, 5 b, 5 cには、 垂直信号線切り替えスィッチ アレイ 4を介して垂直信号線 2が接続される。 水平スィツチアレイ 6は、 R,G, Bの色別に設けられた水平走査スィツチ 6 a, 6b, 6 cから成り、 水平走査回路 10から供給される駆動パルスに応じて、 出力バッファアレイ 5内の各クランプ 付きバッファ 5 a, 5 b, 5 cからの出力を色別に水平走査して水平出力線 7 a, 7b,7 cに出力する。 出力アンプ 8 a, 8 b, 8 cは、 水平出力線 7 a, 7b, 7 c上の各々の色信号を外部に出力し、 リセッ トスィツチ 9 a, 9 b, 9 cは、 水平 出力線 7 a, 7 b, 7 c上の信号を所定の水平リセッ トパルスに応じてリセッ トす る。 The vertical scanning circuit 3 is connected to each pixel in the pixel unit 1 for each row. The output buffer array 5 is composed of a plurality of clamped buffers 5a, 5b, and 5c (corresponding to a form of a solid-state noise suppression circuit), and each of the clamped buffers 5a, 5b, and 5c. Then, clamp-type CDS (correlated double sampling) described later is performed. The vertical signal lines 2 are connected to the buffers with clamps 5a, 5b, and 5c via the vertical signal line switching switch array 4. The horizontal switch array 6 includes horizontal scan switches 6a, 6b, and 6c provided for each of R, G, and B colors. The horizontal switch array 6 in the output buffer array 5 responds to drive pulses supplied from the horizontal scan circuit 10. The output from each buffer with clamp 5a, 5b, 5c is horizontally scanned for each color and the horizontal output lines 7a, Output to 7b and 7c. The output amplifiers 8a, 8b, 8c output the respective color signals on the horizontal output lines 7a, 7b, 7c to the outside, and the reset switches 9a, 9b, 9c output the horizontal output lines 7a, 9b, 9c. Reset the signals on a, 7b, and 7c according to the predetermined horizontal reset pulse.
また、 図 1に示した固体撮像装置には、 R,G,Bの 3色のカラ一フィル夕が、 行毎に水平方向に 3/2画素ピッチずつオフセッ トされ、 かつ、 各行に対しては R、 G、 Bの順で配列されたカラ一フィル夕アレイが設けられている。  Also, in the solid-state imaging device shown in FIG. 1, three color filters of R, G, and B are offset horizontally by a 3/2 pixel pitch for each row, and each row is Has a color filter array arranged in the order of R, G, B.
例えば、 i行目の j番目の画素 (図 1において、 (j, i) を付与した画素に 相当する)が、 Rのカラーフィル夕を透過した光に応じた信号を出力する画素(以 下、 R信号画素と称する) であると仮定すると、 i行目の (j +1) 番目の画素 は、 Gのカラ一フィル夕を透過した光に応じた信号を出力する画素 (以下、 G信 号画素と称する) となり、 i行目の (j +2) 番目の画素は、 Bのカラ一フィル 夕を透過した光に応じた信号を出力する画素 (以下、 B信号画素と称する) とな る。 また、 (i + 1) 行目の j番目の画素は、 B信号画素となり、 (i + 1) 行 目の (j + 1) 番目の画素は R信号画素となり、 (i + 1) 行目の (j +2) 番 目の画素は G信号画素となる。  For example, the j-th pixel in the i-th row (corresponding to the pixel assigned (j, i) in FIG. 1) is a pixel that outputs a signal corresponding to the light transmitted through the R color filter , R signal pixels), the (j + 1) th pixel in the i-th row is a pixel that outputs a signal corresponding to the light transmitted through the G color filter (hereinafter, G signal). The (j + 2) -th pixel in the i-th row is a pixel that outputs a signal corresponding to the light transmitted through the color filter of B (hereinafter, referred to as a B signal pixel). You. Also, the j-th pixel in the (i + 1) -th row becomes a B signal pixel, the (j + 1) -th pixel in the (i + 1) -th row becomes an R signal pixel, and the (i + 1) -th row The (j + 2) th pixel is a G signal pixel.
図 2は、 第 1の実施形態の固体撮像装置の回路図である。  FIG. 2 is a circuit diagram of the solid-state imaging device according to the first embodiment.
ただし、 図 2では、 便宜上、 i行目の j番目の任意の画素 (図 1において、 (j, i) を付与した画素に相当する) に関わる部分のみを示している。  However, FIG. 2 shows only a portion related to an arbitrary j-th pixel on the i-th row (corresponding to a pixel to which (j, i) is added in FIG. 1) for convenience.
図 2に示した画素は、 入射光に応じた電荷を生成して蓄積するフォトダイォ一 ド 1 1と、 ソ一スフォロワ動作により上記電荷に応じた信号をソースから出力す る接合型電界効果トランジスタ (以下、 JFETという)から成る増幅部 12と、 上記電荷をフォトダイオード 11から増幅部 12のゲートへ転送する転送部 (P chMOSトランジスタ) 13と、 増幅部 12のゲートをリセッ 卜するリセッ ト 部 (P c hMO Sトランジスタ) 14とから構成されている。  The pixel shown in FIG. 2 is composed of a photodiode 11 that generates and accumulates electric charge according to incident light, and a junction field-effect transistor (JFET) that outputs a signal corresponding to the electric charge from a source by a source follower operation. An amplifying unit 12 comprising a JFET); a transfer unit (P-ch MOS transistor) 13 for transferring the charge from the photodiode 11 to the gate of the amplifying unit 12; and a reset unit (reset unit) for resetting the gate of the amplifying unit 12. PchMOS transistor) 14.
転送部 13のゲートには、 転送部ゲート線 15が接続され、 転送パルスが供給 される。 リセッ ト部 14のゲートには、 リセッ ト部ゲート線 16が接続され、 リ セッ トパルスが供給される。 リセッ ト部 14のドレインには、 リセッ トバイアス 電圧を供給するリセッ トバイアス線 17が接続される。 また、 図 2では、 図 1の垂直信号線切り替えスィッチアレイ 4を構成する信号 切り替えスィッチ 18 a, 18 bが設けられており、 図 1の出力バッファアレイ 5を構成するクランプ付きバッファ 5 aに相当する垂直信号線出力バッファアン プ 19、 クランプ容量 20 (—時蓄積部の一形態に相当する) 、 クランプスイツ チ 21が設けられている。 The transfer unit gate line 15 is connected to the gate of the transfer unit 13 and a transfer pulse is supplied. A reset section gate line 16 is connected to the gate of the reset section 14 to supply a reset pulse. A reset bias line 17 for supplying a reset bias voltage is connected to a drain of the reset unit 14. Also, in FIG. 2, signal switching switches 18a and 18b constituting the vertical signal line switching switch array 4 of FIG. 1 are provided, and correspond to the buffered buffer 5a constituting the output buffer array 5 of FIG. A vertical signal line output buffer amplifier 19, a clamp capacitor 20 (corresponding to one form of a time storage unit), and a clamp switch 21 are provided.
さらに、 図 2では、 図 1の水平走査スィッチ 6 a、 水平出力線 7a、 出力アン プ 8 a、 水平リセッ トスィツチ 9 aに相当する水平走査スィツチ 22 水平出力 線 23、 出力アンプ 24、 水平リセッ トスィッチ 25が設けられている。  Further, in FIG. 2, the horizontal scanning switch 6a, the horizontal output line 7a, the output amplifier 8a, and the horizontal reset switch 9a corresponding to the horizontal scanning switch 22a, the horizontal output line 23, the output amplifier 24, and the horizontal reset switch of FIG. 25 are provided.
以下、 図 1を参照して、 第 1の実施形態の固体撮像装置の大まかな動作を説明 し、 その後、 図 2を参照して、 クランプ型 CDS (相関 2重サンプリング) を含 む詳細な動作を説明する。  Hereinafter, a rough operation of the solid-state imaging device according to the first embodiment will be described with reference to FIG. 1, and thereafter, a detailed operation including a clamp type CDS (correlated double sampling) will be described with reference to FIG. Will be described.
まず、 固体撮像装置の大まかな動作を説明する。 ただし、 以下では、 説明を簡 単にするため、 図 1において、 (j, i) を付与した R信号画素を 「R信号画素 ( j , i) 」 と表現し、 R信号画素 (j, i) に接続された垂直信号線 2を 「j 番目の垂直信号線 2」 と表現する。 また、 他の画素や他の垂直信号線 2について も同様に表現する。  First, a rough operation of the solid-state imaging device will be described. However, in the following, for simplicity of description, in FIG. 1, the R signal pixel to which (j, i) is added is expressed as “R signal pixel (j, i)” and the R signal pixel (j, i) The vertical signal line 2 connected to is denoted as “j-th vertical signal line 2”. The same applies to other pixels and other vertical signal lines 2.
図 1に示した固体撮像装置では、 垂直走査回路 3によって選択された行に配列 された画素が駆動され、 その画素からの出力が垂直信号線 2に供給される。  In the solid-state imaging device shown in FIG. 1, the pixels arranged in the row selected by the vertical scanning circuit 3 are driven, and the output from the pixel is supplied to the vertical signal line 2.
例えば、 垂直走査回路 3によって i行目が選択された場合、 j番目の垂直信号 線 2には、 R信号画素 (j, i) からの出力が供給される。 また、 垂直走査回路 3によって (i + 1) 行目が選択された場合、 (j +1)番目の垂直信号線 2に は、 R信号画素 (j + l, i + 1) からの出力が供給されることになる。  For example, when the i-th row is selected by the vertical scanning circuit 3, the output from the R signal pixel (j, i) is supplied to the j-th vertical signal line 2. When the (i + 1) -th row is selected by the vertical scanning circuit 3, the output from the R signal pixel (j + 1, i + 1) is output to the (j + 1) -th vertical signal line 2. Will be supplied.
そのため、 j '番目の垂直信号線 2と (j + 1)番目の垂直信号線 2とには、 垂 直走査回路 3によって選択される行に応じて、 Rのカラーフィル夕が対応付けら れた画素からの出力が交互に供給されることになる。 同様に、 (j + 1) 番目の 垂直信号線 2と (j +2) 番目の垂直信号線 2とには、 Gのカラ一フィル夕が対 応付けられた画素からの出力が交互に供給され、 (j +2) 番目の垂直信号線 2 と (j +3) 番目の垂直信号線 2とには、 Bのカラーフィル夕が対応^"けられた 画素からの出力が交互に供給されることになる。 垂直信号線切り替えスィツチアレイ 4では、 出力バッファアレイ 5内の各クラ ンプ付きバッファ 5 a, 5 b, 5 cに、 同色のカラ一フィル夕が対応付けられた画 素からの出力を供給できるように、各信号線切り替えスィツチが切り替えられる。 例えば、 クランプ付きバッファ 5 aに着目すると、 垂直走査回路 3によって i 行目が選択された場合、 クランプ付きバッファ 5 aには j番目の垂直信号線 2が 接続され、 垂直走査回路 3によって ( i + 1 ) 行目が選択された場合、 クランプ 付きバッファ 5 aには (j + 1 )番目の垂直信号線 2が接続される。 したがって、 クランプ付きバッファ 5 aに対しては、 j番目の垂直信号線 2に接続された R信 号画素の出力と、 (j + 1 ) 番目の垂直信号線 2に接続された R信号画素の出力 とが順次供給されることになる。 Therefore, an R color filter is associated with the j′-th vertical signal line 2 and the (j + 1) -th vertical signal line 2 according to the row selected by the vertical scanning circuit 3. The outputs from the pixels that have been supplied are supplied alternately. Similarly, the (j + 1) th vertical signal line 2 and the (j + 2) th vertical signal line 2 alternately supply the output from the pixel to which the G color filter is assigned. The (j + 2) th vertical signal line 2 and the (j + 3) th vertical signal line 2 are alternately supplied with the output from the pixel to which the B color filter is applied. Will be. The vertical signal line switching switch array 4 can supply the output from the pixel associated with the same color filter to each of the buffered buffers 5a, 5b, and 5c in the output buffer array 5. Then, each signal line switching switch is switched. For example, focusing on the buffer with clamp 5 a, when the i-th row is selected by the vertical scanning circuit 3, the j-th vertical signal line 2 is connected to the buffer with clamp 5 a and (i +1) When the row is selected, the (j + 1) th vertical signal line 2 is connected to the buffer with clamp 5a. Therefore, the output of the R signal pixel connected to the jth vertical signal line 2 and the output of the R signal pixel connected to the (j + 1) th vertical signal line 2 are output to the buffer 5a with clamp. And will be supplied sequentially.
また、 同様にして、 クランプ付きバッファ 5 bに対しては、 (j + 1 ) 番目の 垂直信号線 2に接続された G信号画素の出力と、 ( j + 2 ) 番目の垂直信号線 2 に接続された G信号画素の出力とが順次供給されることになる。 さらに、 クラン プ付きバッファ 5 cに対しては、 ( j + 2 ) 番目の垂直信号線 2に接続された B 信号画素の出力と、 (j + 3 ) 番目の垂直信号線 2に接続された B信号画素の出 力とが順次供給されることになる。  Similarly, for the buffer 5b with clamp, the output of the G signal pixel connected to the (j + 1) th vertical signal line 2 and the (j + 2) th vertical signal line 2 The output of the connected G signal pixel is sequentially supplied. Further, for the buffer with clamp 5c, the output of the B signal pixel connected to the (j + 2) th vertical signal line 2 and the output of the (j + 3) th vertical signal line 2 The output of the B signal pixel is sequentially supplied.
なお、 各クランプ付きバッファ 5 a , 5 b, 5 cからは、 後述するクランプ型 C D S (相関 2重サンプリング) によって、 有効な信号 (感光信号 V p—暗信号 V dに相当する) が出力される。  The clamped buffers 5a, 5b, and 5c output valid signals (corresponding to the photosensitive signal Vp—dark signal Vd) by the clamp-type CDS (correlated double sampling) described later. You.
水平スィッチアレイ 6内の各水平走査スィッチ 6 a, 6 b, 6 cは、 水平走査回 路 1 0から供給される水平読み出しパルスに応じて、 同時にオンされる。 そのた め、 各クランプ付きバッファ 5 a , 5 b , 5 cから出力される有効な信号は、 色別 の水平出力線 7 a、 7 b、 7 cに同時に供給される。  Each of the horizontal scanning switches 6a, 6b, 6c in the horizontal switch array 6 is simultaneously turned on in response to a horizontal read pulse supplied from the horizontal scanning circuit 10. Therefore, the valid signals output from the buffers with clamps 5a, 5b, 5c are simultaneously supplied to the horizontal output lines 7a, 7b, 7c for each color.
例えば、 垂直走査回路 3によって i行目が選択されると、 クランプ付きバッフ ァ 5 aからは R信号画素 (j , i ) に対する有効な信号が水平出力線 7 aに供給 され、 クランプ付きバッファ 5 bからは G信号画素 (j + l, i ) に対する有効 な信号が水平出力線 7 bに供給され、 クランプ付きバッファ 5 cからは B信号画 素 ( j + 2, i ) に対する有効な信号が水平出力線 7 cに供給される。  For example, when the i-th row is selected by the vertical scanning circuit 3, a valid signal for the R signal pixel (j, i) is supplied to the horizontal output line 7a from the buffer with clamp 5a, and the buffer with clamp 5 b outputs a valid signal for the G signal pixel (j + l, i) to the horizontal output line 7b, and the clamped buffer 5c outputs a valid signal for the B signal pixel (j + 2, i). It is supplied to horizontal output line 7c.
そして、 リセッ トスイッチ 9 a、 9 b、 9 cによって、 水平出力線 7 a、 7 b、 7 c上の信号がリセッ 卜され、 垂直走査回路 3によって ( i + 1 ) 行目が選択さ れると、 水平出力線 7 aには R信号画素 (j + l, i + 1 ) に対する有効な信号 が供給され、 水平出力線 7 bには G信号画素 ( j + 2, i + 1 ) に対する有効な 信号が供給され、 水平出力線 7 cには B信号画素 ( j + 3, i + 1 ) に対する有 効な信号が供給される。 The horizontal output lines 7a, 7b, and 7b are set by reset switches 9a, 9b, and 9c. When the signal on 7c is reset and the (i + 1) -th row is selected by the vertical scanning circuit 3, the horizontal output line 7a has a valid signal for the R signal pixel (j + l, i + 1). A valid signal for the G signal pixel (j + 2, i + 1) is supplied to the horizontal output line 7b, and the B signal pixel (j + 3, i + 1) is supplied to the horizontal output line 7c. ) Is supplied.
その結果、 出力アンプ 8 aからは R信号、 出力アンプ 8 bからは G信号、 出力 アンプ 8 cからは B信号が同時に出力される。  As a result, an R signal is output from the output amplifier 8a, a G signal is output from the output amplifier 8b, and a B signal is output from the output amplifier 8c.
すなわち、 第 1の実施形態の固体撮像装置は、 色別に独立した 3線出力を行う ことができるため、 3色の色信号に相当する画像信号を高速に出力することがで きる。 なお、 第 1の実施形態の固体撮像装置では、 ; , G , Bの 3色のカラ一フィ ル夕が配列されたカラ一フィルタアレイが設けられているが、例えば、 Y (黄色), W (ホワイ ト) ,Μ (マゼンダ) のカラ一フィル夕や Υ (黄色) ,W (ホワイ ト) , C (シアン) のカラーフィル夕を配列されたカラ一フィルタアレイを設けた場合 であっても、 色別に独立した 3線出力を行うことができる。  That is, since the solid-state imaging device according to the first embodiment can perform independent three-line output for each color, it can output image signals corresponding to three color signals at high speed. In the solid-state imaging device according to the first embodiment, a color filter array in which color filters of three colors of;, G, and B are arranged is provided. Even if a color filter array in which color filters of (white) and Μ (magenta) and color filters of Υ (yellow), W (white) and C (cyan) are arranged is provided. Independent three-line output can be performed for each color.
また、 第 1の実施形態の固体撮像装置は、 特開昭 5 8— 3 1 6 8 8号公報に開 示されている固体撮像装置と異なり、 原色のカラ一フィル夕を用いて各行毎に電 荷の読み出しが行える。 そのため、 特閧昭 5 8 - 3 1 6 8 8号公報に開示されて いる固体撮像装置と比べて、 色再現性や垂直方向の解像度を高く維持することが できる。  Further, the solid-state imaging device according to the first embodiment is different from the solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 58-31688, in that each line is formed using a primary color color filter. The charge can be read. Therefore, the color reproducibility and the vertical resolution can be maintained higher than those of the solid-state imaging device disclosed in Japanese Patent Application No. 58-316688.
さらに、 第 1の実施形態の固体撮像装置の後段の信号処理では、 特開昭 5 8— 3 1 6 8 8号公報に開示されている固体撮像装置で必要であったマトリックス混 合が不要であり、 3つの出力線間のオフセッ ト補正、 ゲイン補正も通常の R G B 信号の補正と同様に行える。 そのため、 これらの補正による誤差が画質に悪影響 を与えることがない。  Further, in the signal processing at the subsequent stage of the solid-state imaging device according to the first embodiment, the matrix mixing required in the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688 is unnecessary. Yes, offset correction and gain correction between the three output lines can be performed in the same way as normal RGB signal correction. Therefore, errors due to these corrections do not adversely affect the image quality.
以下、 図 2を参照して、 クランプ型 C D S (相関 2重サンプリング) を中心に 第 1の実施形態の固体撮像装置の詳細な動作を説明する。  Hereinafter, with reference to FIG. 2, a detailed operation of the solid-state imaging device according to the first embodiment will be described focusing on a clamp type CDS (correlated double sampling).
まず、 i行目が非選択状態のとき、 図 2に示す画素では、 フォトダイオード 1 1によって入射光に応じた電荷の生成および蓄積が行われる。 また、 転送部 1 3 のゲー卜には、 転送部ゲート線 1 5を介してオフを示すローレベルの転送パルス が供給され、 フォトダイオード 1 1は増幅部 1 2から切り離されている。さらに、 リセッ ト部 1 4のゲートには、 リセッ ト部ゲート線 1 6を介してオンを示す口一 レベルのリセッ トパルスが供給され、 増幅部 1 2のゲートは、 リセッ トバイアス 線 1 7によってリセットバイアス電圧に固定される。 すなわち、 増幅部 1 2は非 選択状態を保持し、 画素から垂直信号線 2への信号の出力はない。 First, when the i-th row is in the non-selected state, in the pixel shown in FIG. 2, the photodiode 11 generates and accumulates electric charges according to incident light. In addition, a low-level transfer pulse indicating off via the transfer unit gate line 15 is applied to the gate of the transfer unit 13. Is supplied, and the photodiode 11 is separated from the amplifier 12. Further, a reset pulse of ON level indicating ON is supplied to the gate of the reset unit 14 via the reset unit gate line 16, and the gate of the amplifier unit 12 is reset by the reset bias line 17. Fixed at the bias voltage. That is, the amplifier unit 12 holds the non-selected state, and there is no signal output from the pixel to the vertical signal line 2.
次に、 i行目が選択され、 信号切り替えスィッチ 1 8 aがオンされて信号切り 替えスィッチ 1 8 bがオフされると、 フォトダイオード.1 1からの電荷の読み出 しは、 以下のようにして行われる。  Next, when the i-th row is selected and the signal switching switch 18a is turned on and the signal switching switch 18b is turned off, the charge readout from the photodiode .11 is performed as follows. It is done.
まず、 リセッ ト部ゲート線 1 6を介してリセット部 1 4のゲートに供給される リセッ トパルスがローレペル (オンを示す) からハイレベル (オフを示す) に変 化され、 リセッ ト部 1 4がオフされると、 増幅部 1 2のゲートは、 リセッ トゲ一 ト線 1 6との力ヅプリング容量を通じて読み出し電圧にバイァスされる。 そのた め、 垂直信号線 2には、 暗信号 V dが出力されることになる。 なお、 この喑信号 V dは、 増幅部 1 2をリセッ 卜した際のノイズや、 固体パターンノイズなどを含 んだ信号である。  First, the reset pulse supplied to the gate of the reset section 14 via the reset section gate line 16 is changed from low level (indicating ON) to high level (indicating OFF), and the reset section 14 is reset. When turned off, the gate of the amplifier section 12 is biased to the read voltage through the power coupling capacitance with the reset gate line 16. Therefore, the dark signal Vd is output to the vertical signal line 2. The 喑 signal Vd is a signal that includes noise when the amplifying unit 12 is reset, solid pattern noise, and the like.
この時、 水平クランプスィヅチ 2 1はオンされており、 クランプ容量 2 0の水 平スィツチ 2 2側は基準電圧 V r e f に固定され、 クランプ容量 2 0には暗信号 V dが蓄積されることになる。  At this time, the horizontal clamp switch 21 is on, the horizontal switch 22 side of the clamp capacitor 20 is fixed to the reference voltage Vref, and the dark signal Vd is accumulated in the clamp capacitor 20. .
次に、 水平クランプスィツチ 2 1がオフされると、 クランプ容量 2 0の水平ス イッチ 2 2側がフローティング状態となる。 この時、 転送部ゲ一ト線 1 5を介し て転送部 1 2のゲートに供給される転送パルスがハイレベル (オンを示す) から 口一レベル (オフを示す) に変化されると、 フォトダイオード 1 1に蓄積された 電荷が増幅部 1 2のゲートへ転送される。 そのため、 垂直信号線出力バッファァ ンプ 1 9には、 このような電荷に応じた感光信号 V p (有効な信号に喑信号 V d が重畳された信号に相当する) が出力され、 クランプ容量 2 0には、 感光信号 V Pが入力されることになる。 この時、 クランプ容量 2 0には、 既に上述した喑信 号 V dが保持されている。  Next, when the horizontal clamp switch 21 is turned off, the horizontal switch 22 side of the clamp capacitor 20 is in a floating state. At this time, when the transfer pulse supplied to the gate of the transfer section 12 via the transfer section gate line 15 changes from a high level (indicating ON) to a single level (indicating OFF), the photo The charge stored in the diode 11 is transferred to the gate of the amplifier 12. Therefore, a photosensitive signal V p (corresponding to a signal obtained by superimposing the 喑 signal V d on an effective signal) corresponding to such charges is output to the vertical signal line output buffer 19, and the clamp capacitance 20 is output. Receives the exposure signal VP. At this time, the above-mentioned signal Vd is already held in the clamp capacitor 20.
したがって、 クランプ容量 2 0の水平走査スィッチ 2 2側からは、 感光信号 V Pから暗信号 V dが除去された有効な信号が出力されることになる。 すなわち、 クランプ容量 2 0を介してクランプ型 C D S (相関 2重サンプリング) が実現さ れたことになる。 Therefore, a valid signal in which the dark signal Vd is removed from the photosensitive signal VP is output from the horizontal scanning switch 22 of the clamp capacitor 20. That is, This means that clamp-type CDS (correlated double sampling) has been realized via the clamp capacitor 20.
このような状態で、 水平リセットスィツチ 2 5がオン、 オフされて水平出力線 2 3がリセッ トされた後に、 水平走査スィッチ 2 2がオンされると、 有効な信号 が出力アンプ 2 4から出力されることになる。  In this state, when the horizontal scan switch 22 is turned on after the horizontal reset switch 25 is turned on and off and the horizontal output line 23 is reset, a valid signal is output from the output amplifier 24. Will be done.
以上説明したように、 第 1の実施形態の固体撮像装置によれば、 クランプ型 C D S (相関 2重サンプリング) によって、 増幅部 1 2をリセッ トした際のノイズ や、 固体パ夕ーンノイズなどが取り除かれた画像信号を得ることができる。  As described above, according to the solid-state imaging device of the first embodiment, noise when resetting the amplification unit 12 and solid-state power noise are removed by the clamp-type CDS (correlated double sampling). The obtained image signal can be obtained.
また、 第 1の実施形態の固体撮像装置では、 クランプ型 C D S (相関 2重サン プリング) を行う際に一時蓄積部として機能するクランプ容量 2 0を、 1行当た りの画素数だけ設ければ良い。 そのため、 固定パターンノイズの抑圧を回路規模 を抑えつつ行うことができ、 図 1 0に示す固体撮像装置 (特開昭 5 8 - 3 1 6 8 8号公報に開示されている固体撮像装置) や図 1 1に示す固体撮像装置 (特許第 2 6 5 4 0 8 1号公報に開示されている固体撮像装置) では難しかった微細化が 容易に実現される。  In addition, in the solid-state imaging device according to the first embodiment, when the clamp type CDS (correlated double sampling) is performed, the clamp capacitors 20 functioning as a temporary storage unit can be provided by the number of pixels per row. good. Therefore, the fixed pattern noise can be suppressed while the circuit scale is suppressed, and the solid-state imaging device shown in FIG. 10 (the solid-state imaging device disclosed in Japanese Patent Laid-Open No. 58-31688) and Miniaturization, which has been difficult with the solid-state imaging device shown in FIG. 11 (the solid-state imaging device disclosed in Japanese Patent No. 2654081), can be easily realized.
さらに、 第 1の実施形態の固体撮像装置は、 J F E Tから成る増幅部 1 2を備 えた増幅型固体撮像装置であり、 このような増幅部 1 2は、 垂直信号線 2を低ィ ンピ一ダンスで電圧駆動できるので、 切り替えスィッチ 1 8 a, 1 8 bを切り替 える際に発生するノイズによる垂直信号線 2の電圧変動を抑制することができる。 また、 第 1の実施形態の固体撮像装置では、 信号切り替えスィッチ 1 8 a , 1 8 bとクランプ容量 2 0との間に垂直信号線出力バッファアンプ 1 9を設けてい るため、 クランプ容量 2 0に対しても、 信号切り替えスィツチ 1 8 a , 1 8 bを 切り替える際に発生するノイズの影響を低減することができる。  Further, the solid-state imaging device according to the first embodiment is an amplification-type solid-state imaging device including an amplification unit 12 composed of a JFET. Such an amplification unit 12 connects the vertical signal line 2 to a low impedance. , Voltage fluctuations of the vertical signal line 2 due to noise generated when the switching switches 18a and 18b are switched can be suppressed. Further, in the solid-state imaging device according to the first embodiment, since the vertical signal line output buffer amplifier 19 is provided between the signal switching switches 18 a and 18 b and the clamp capacitance 20, the clamp capacitance 20 Therefore, the effect of noise generated when the signal switching switches 18a and 18b are switched can be reduced.
なお、 第 1の実施形態では、 J F E Tから成る増幅部 1 2を備えた固体撮像装 置を例として説明を行ったが、 本発明はこのような構成の固体撮像装置に限定さ れず、 M O S トランジスタやバイポーラ トランジスタから成る増幅部を備えた固 体撮像装置にも適用できる。  In the first embodiment, the solid-state imaging device including the amplifying unit 12 composed of the JFET has been described as an example. However, the present invention is not limited to the solid-state imaging device having such a configuration, and a MOS transistor may be used. Also, the present invention can be applied to a solid-state imaging device provided with an amplifying unit including a bipolar transistor.
また、 第 1の実施形態では、 暗信号の発生などを低減するために、 フォトダイ オード 1 1として埋込型のフォトダイオードを適用しても良い。 ここで、 第 1の実施形態の固体撮像装置を有する撮像装置 (例えば、 電子カメ ラなど) によって得られる画像の解像度について検討してみる。 In the first embodiment, an embedded photodiode may be used as the photodiode 11 in order to reduce the occurrence of a dark signal and the like. Here, the resolution of an image obtained by an imaging device (for example, an electronic camera or the like) having the solid-state imaging device of the first embodiment will be examined.
図 3は、 第 1の実施形態の固体撮像装置に対する空間周波数応答を示す図であ る。  FIG. 3 is a diagram illustrating a spatial frequency response to the solid-state imaging device according to the first embodiment.
図 3において、 f s Vは垂直方向のサンプリングピッチから決まる空間周波数 であり、 f s hは各行の水平方向の画素ピッチから決定される空間周波数である。 ただし、 図 3では、 基本ピッチが水平方向と垂直方向とで同じであるとし、 位相 は無視している。 また、 簡単のために、 第 1象限のみを示している。  In FIG. 3, f s V is a spatial frequency determined by a vertical sampling pitch, and f sh is a spatial frequency determined by a horizontal pixel pitch of each row. However, in FIG. 3, the basic pitch is the same in the horizontal and vertical directions, and the phase is ignored. For simplicity, only the first quadrant is shown.
図中の〇 (丸) 印は、 無彩色で変調キャリアが発生する位置を示している。 第 1の実施形態では、 行毎に水平方向に 1/2画素ピッチずつオフセッ トされた状 態で複数の画素が配列されているので、 水平 0度方向のキャリアは (2 f sh, 0) で発生し、 最近接のキャリアは (0, f sv) で発生し、 次に近いキャリア は (f s h, 1/2 · f s v) で発生する。 その結果、 ホワイ トバランスを行つ た状態での無彩色信号の再現域 (2次元ナイキスト範囲) は、 図中の A、 Bの領 域となる。  The 図 (circle) marks in the figure indicate the positions at which modulated carriers occur in achromatic colors. In the first embodiment, since a plurality of pixels are arranged in a state of being offset by 1/2 pixel pitch in the horizontal direction for each row, the carrier in the horizontal 0 degree direction is (2 f sh, 0) The closest carrier occurs at (0, f sv), and the next closest carrier occurs at (fsh, 1/2 · fsv). As a result, the achromatic signal reproduction range (two-dimensional Nyquist range) in the state of white balance is the area A and B in the figure.
図中の口 (四角) は、 R,G,B各色のキャリアが発生する位置である。 最近接 のキャリアは ( 1/3 · f s h, 1/2 · f s v) で発生し、 次に近いキヤリァ は (SZS ' f sh, 0) で発生し、 これら 2つのキャリアの近傍の解像度の画 像には色モアレが発生する。 有彩色信号のモアレ無しの再現域 (色信号の 2次元 ナイキスト範囲) は図中の Aの領域である。  The mouth (square) in the figure is the position where carriers of each color of R, G, B are generated. The closest carrier occurs at (1/3 · fsh, 1/2 · fsv), the next closest carrier occurs at (SZS 'fsh, 0), and an image with resolution near these two carriers. Causes color moiré. The gamut of the chromatic signal without moiré (two-dimensional Nyquist range of the color signal) is the area A in the figure.
通常、 単板式の固体撮像装置を有する撮像装置では、 色モアレを抑制するため に OLPF (光学的低域通過フィル夕 : Optical Low Pass Filter) が固体撮像 装置の前に配置される。 第 1の実施形態の固体撮像装置の前に配置すべき 0 L P Fは、 図の C線、 D線の位置にノッチが入るような複屈折板を組み合わせて構成 することが可能である。  Usually, in an image pickup device having a single-plate solid-state image pickup device, an OLPF (Optical Low Pass Filter) is arranged in front of the solid-state image pickup device to suppress color moiré. The 0 L PF to be disposed before the solid-state imaging device according to the first embodiment can be configured by combining a birefringent plate having a notch at the position of the C line and the D line in the figure.
このような構成の 0 L P Fが第 1の実施形態の固体撮像装置の前に配置された 撮像装置による撮影では、 無彩色に近い輝度信号は、 ほぼ、 理論通りに A、 Bの 領域を再現できる。 このような領域は、 同じ基本画素ピッチで同じ画素数の正方 画素配列の固体撮像装置における 2次元ナイキスト範囲、 つまり、 (1/2 · f sh, y) 線と (x, 1/2 · f s v) 線で囲まれる領域とほぼ同等である。 すなわち、 第 1の実施形態の固体撮像装置は、 単板式の固体撮像装置でありな がら、 無彩色に近い被写体の撮影に際しては、 同じ画素数の正方画素配列の白黒 の固体撮像装置に匹敵する高解像度を実現することができる。 In the imaging by the imaging device in which the 0 LPF having such a configuration is arranged in front of the solid-state imaging device of the first embodiment, the luminance signal close to achromatic can reproduce the regions A and B almost as theoretically. . Such a region is a two-dimensional Nyquist range in a solid-state imaging device having a square pixel array having the same basic pixel pitch and the same number of pixels, that is, (1/2 · f It is almost equivalent to the area enclosed by the (sh, y) line and the (x, 1/2 · fsv) line. That is, the solid-state imaging device according to the first embodiment is a single-chip solid-state imaging device, but is comparable to a black-and-white solid-state imaging device having a square pixel array having the same number of pixels when capturing an object that is close to achromatic. High resolution can be realized.
ところで、 単板式の固体撮像装置の各画素には、 R,G,Bの 3色のうち、 1色 のカラ一フィルタしか対応付けられていないので、 他の 2色の色信号が欠落して いる。 そのため、 単板式の固体撮像装置を有する撮像装置では、 各画素に欠落す る 2色の色信号を補間するための補間処理が行われている。 しかし、 第 1の実施 形態の固体撮像装置によって得られる画像信号には、 既存の撮像装置 (正方画素 配列の単板式の固体撮像装置を有する撮像装置) で行われている補間処理を、 そ のまま適用することはできない。  By the way, since each pixel of the single-chip solid-state imaging device is associated with only one color filter of the three colors R, G, and B, color signals of the other two colors are lost. I have. Therefore, in an imaging device having a single-plate solid-state imaging device, an interpolation process for interpolating two color signals missing in each pixel is performed. However, an image signal obtained by the solid-state imaging device according to the first embodiment is subjected to interpolation processing performed by an existing imaging device (an imaging device having a single-plate solid-state imaging device having a square pixel array). It cannot be applied as is.
そこで、 第 2の実施形態では、 第 1の実施形態の固体撮像装置から出力される 画像信号に対して補間処理を行って記録する撮像装置の説明を行う。  Therefore, in a second embodiment, an imaging device that performs interpolation processing on an image signal output from the solid-state imaging device of the first embodiment and records the image signal will be described.
《第 2の実施形態の説明》  << Description of Second Embodiment >>
図 4は、 第 2の実施形態の撮像装置の構成を示す図である。  FIG. 4 is a diagram illustrating a configuration of an imaging device according to the second embodiment.
図 4において、 固体撮像装置 41は、 第 1の実施形態の固体撮像装置である。 図 4に示した撮像装置は、 このような固体撮像装置 41の他に、 タイミングジ エネレー夕回路 42、 アナログフロントエンド回路 43 a, 43 b, 43 c、 AD 変換回路 44 a, 44 b, 44 c、 画素補間回路 45、 メモリ 46、 正方画素配列 変換回路 47、 記録装置 48から構成される。 また、 固体撮像装置 41の前には 不図示の撮影光学系および上述した 0 LP Fが設けられているものとする。  In FIG. 4, a solid-state imaging device 41 is the solid-state imaging device of the first embodiment. The imaging device shown in FIG. 4 includes, in addition to the solid-state imaging device 41, a timing generator circuit 42, analog front-end circuits 43a, 43b, 43c, and AD conversion circuits 44a, 44b, 44. c, a pixel interpolation circuit 45, a memory 46, a square pixel array conversion circuit 47, and a recording device 48. In addition, it is assumed that an imaging optical system (not shown) and the above-described 0 LPF are provided in front of the solid-state imaging device 41.
夕イミングジェネレータ回路 42は、 不図示のシーケンス制御部から供給され るシーケンス制御信号に応じて、 固体撮像装置 41を駆動するための駆動パルス 49や、 撮像装置内の他の回路を制御するための制御信号 50を発生する。  The evening imaging generator circuit 42 includes a drive pulse 49 for driving the solid-state imaging device 41 and a control pulse for controlling other circuits in the imaging device in accordance with a sequence control signal supplied from a sequence control unit (not shown). Generates control signal 50.
アナログフロントエンド回路 43 a, 43 b, 43 cは、 固体撮像装置 41から 画像信号として供給される R,G,Bの各色の色信号に対して、 DC再生 (クラン プ) 、 感度調整 (ゲイン) 、 オフセッ ト調整などの処理を行う。  The analog front-end circuits 43a, 43b, and 43c perform DC reproduction (clamping) and sensitivity adjustment (gain) for the R, G, and B color signals supplied as image signals from the solid-state imaging device 41. ), And perform processing such as offset adjustment.
このような処理が行われた各色の色信号は、 AD変換回路 44 a, 44 b, 44 cによって AD変換され、 画素補間回路 45に供給される。 画素補間回路 4 5は、 このようにして供給された各色の色信号に対して後述す る補間処理を行って、 正方画素配列変換回路 4 7に供給する。 The color signal of each color subjected to such processing is subjected to AD conversion by AD conversion circuits 44a, 44b, and 44c, and is supplied to a pixel interpolation circuit 45. The pixel interpolation circuit 45 performs an interpolation process described later on the color signals of the respective colors supplied in this manner, and supplies the color signals to the square pixel array conversion circuit 47.
正方画素配列変換回路 4 7は、 画素補間回路 4 5から供給された各色の色信号 に対して後述する配列変換処理を行って、 記録装置 4 8に供給する。  The square pixel array conversion circuit 47 performs an array conversion process described later on the color signals of each color supplied from the pixel interpolation circuit 45 and supplies the color signals to the recording device 48.
記録装置 4 8は、 正方画素配列変換回路 4 7から供給された各色の色信号を所 定の記録媒体に記録するが、 場合によっては、 ガンマ変換、 色空間変換、 サブサ ンプリング、 画像圧縮などの信号処理を行っても良い。  The recording device 48 records the color signal of each color supplied from the square pixel array conversion circuit 47 on a predetermined recording medium, but in some cases, such as gamma conversion, color space conversion, sub-sampling, image compression, etc. Signal processing may be performed.
以下、 画素補間回路 4 5によって行われる補間処理の説明を行い、 その後、 正 方画素配列変換回路 4 7によって行われる配列変換処理の説明を行う。  Hereinafter, the interpolation processing performed by the pixel interpolation circuit 45 will be described, and then the array conversion processing performed by the square pixel array conversion circuit 47 will be described.
画素補間回路 4 5は、 A D変換回路 4 4 a , 4 4 b , 4 4 cによってディジタル 化された各色の色信号に相当するデータを固体撮像装置 4 1内の画素の配列に対 応付けてメモリ 4 6に格納する。 そして、 所定の補間式に基づいて各画素に欠落 する色信号を補間する。  The pixel interpolation circuit 45 associates data corresponding to the color signals of each color digitized by the AD conversion circuits 44 a, 44 b, and 44 c with the arrangement of pixels in the solid-state imaging device 41. Store in memory 46. Then, a color signal missing in each pixel is interpolated based on a predetermined interpolation formula.
例えば、 G信号画素に: R信号を補間する場合には、 近接する R信号画素から得 られる R信号を、 画素間の距離の逆数に応じた重みで平均化する補間式を適用す れば良い。  For example, when interpolating an R signal to a G signal pixel, an interpolation formula for averaging the R signals obtained from adjacent R signal pixels with a weight corresponding to the reciprocal of the distance between the pixels may be applied. .
図 5は、 このようにして行われる補間処理を説明する図である。  FIG. 5 is a diagram illustrating the interpolation processing performed in this manner.
図 5では、 G信号画素に R信号を補間する場合には、 その G信号画素に近接す る 3つの R信号画素 (左方向に近接する R信号画素、 右斜め上方向に近接する R 信号画素、 右斜め下方向に近接する R信号画素) から得られる R信号が参照され ることを示している。 また、 G信号画素に B信号を補間する場合には、 その G信 号画素に近接する 3つの B信号画素 (右方向に近接する B信号画素、 左斜め上方 向に近接する B信号画素、 左斜め下方向に近接する B信号画素) から得られる B 信号が参照されることを示している。 さらに、 B信号画素や R信号画素に対する 補間の場合にも、 同様に、 近傍の画素から得られる色信号が参照されることを示 している。  In Fig. 5, when the R signal is interpolated into the G signal pixel, three R signal pixels adjacent to the G signal pixel (an R signal pixel adjacent to the left direction and an R signal pixel adjacent to the right diagonal upward direction) This indicates that the R signal obtained from the R signal pixel adjacent in the diagonally lower right direction is referred to. When a B signal is interpolated to a G signal pixel, three B signal pixels adjacent to the G signal pixel (a B signal pixel adjacent to the right direction, a B signal pixel adjacent to the diagonally upper left direction, and a left B signal pixel This indicates that the B signal obtained from the B signal pixel that is close to the diagonally downward direction is referred to. Further, in the case of the interpolation for the B signal pixel and the R signal pixel, the color signal obtained from the neighboring pixel is similarly referred to.
すなわち、 任意の画素に欠落する 2つの色信号を補間する場合、 補間の対象と なる画素に対して、 左方向に近接する画素、 右斜め上方向に近接する画素、 右斜 め下方向に近接する画素から得られる色信号を参照して、 1つ目の色信号を補間 し、 補間の対象となる画素に対して、 右方向に近接する画素、 左斜め上方向に近 接する画素、 左斜め下方向に近接する画素から得られる色信号を参照して、 2つ 目の色信号を補間すれば良いことになる。 In other words, when interpolating two color signals that are missing in an arbitrary pixel, the pixel to be interpolated is a pixel that is close to the left, a pixel that is close to the upper right, and a pixel that is closer to the lower right. Interpolate the first color signal with reference to the color signal obtained from the pixel Then, with reference to the color signals obtained from the pixels that are close to the right, the pixels that are close to the upper left, and the pixels that are close to the lower left, the second What is necessary is to interpolate the color signal.
ところで、 固体撮像装置 4 1内の画素は、 行毎に 1 / 2画素ピッチ分オフセッ トされているので、 A D変換回路 4 4 a, 4 4 b , 4 4 cから供給される各色の色 信号に相当するデータを実際の画素の配列に忠実に対応付けてメモリ 4 6に格納 するには、 画素が存在しない位置に擬似的に空のデ一夕を挿入しなければならな い。 そのため、 有効なデ一夕のみを格納する場合に比べて 2倍の容量が必要であ ο  By the way, since the pixels in the solid-state imaging device 41 are offset by a half pixel pitch for each row, the color signal of each color supplied from the AD conversion circuits 44a, 44b, and 44c is provided. In order to store the data corresponding to in the memory 46 in a manner that is faithfully associated with the actual pixel arrangement, a pseudo empty data must be inserted at a position where no pixel exists. Therefore, twice as much space is required as storing only valid data ο
そこで、 実際の補間処理では、 固体撮像装置 4 1内の 1 / 2画素ピッチ分のォ フセヅ トを無視し、 正方画素配列のように格納すると良い。  Therefore, in the actual interpolation processing, it is preferable to ignore the offset of the 1/2 pixel pitch in the solid-state imaging device 41 and store the offset as a square pixel array.
図 6は、 オフセヅ トを無視したメモリ 4 6内のデ一夕の配列を示す図である。 図 6では、 偶数行が右方向に 1 / 2画素ピッチ分オフセヅ 卜されている場合を 示している。また、固体撮像装置 4 1内の実際の画素の配列に対応する位置を「実 空間位置」 と称し、 オフセッ トを無視した画素の配列を 「メモリ内配列」 と称し ている。  FIG. 6 is a diagram showing an array of data in the memory 46 ignoring the offset. FIG. 6 shows a case where the even rows are offset rightward by a 1/2 pixel pitch. Further, a position corresponding to the actual pixel arrangement in the solid-state imaging device 41 is referred to as “real space position”, and the pixel arrangement ignoring the offset is referred to as “memory arrangement”.
ただし、 このようにオフセッ トを無視したメモリ内配列では、 偶数行に配列さ れた画素に対する補間と、 奇数行に配列された画素に対する補間とで、 補間方法 を切り替える必要がある。  However, in the in-memory array where the offset is ignored, it is necessary to switch the interpolation method between the interpolation for the pixels arranged in the even rows and the interpolation for the pixels arranged in the odd rows.
例えば、 偶数行に配列された G信号画素に対しては、 左方向、 右斜め上方向、 右斜め下方向に配列された R信号画素のデ一夕を参照して R信号を補間し、 右方 向、 上方向、 下方向に配列された B信号画素のデータを参照して B信号を補間す る。 一方、 奇数行に配列された G信号画素に対しては、 左方向、 上方向、 下方向 に配列された R信号画素のデータを参照して R信号を補間し、 右方向、 左斜め上 方向、 左斜め下方向に配列された B信号画素のデ一夕を参照して B信号を補間す る o  For example, for the G signal pixels arranged in even rows, the R signal is interpolated by referring to the data of the R signal pixels arranged in the left, diagonally upward, and diagonally right directions. The B signal is interpolated with reference to the data of the B signal pixels arranged in the up, down, and up directions. On the other hand, for the G signal pixels arranged in odd rows, the R signal is interpolated by referring to the data of the R signal pixels arranged leftward, upward, and downward, O Interpolates the B signal with reference to the data of the B signal pixels arranged diagonally down left o
ところで、 このようにして補間処理が行われた状態の各色の色信号は、 固体撮 像装置 4 1内の画素の配列 (各画素が行毎に 1 Z 2画素ピッチ分オフセッ 卜され た配列) に準拠した画像に相当する。 したがって、 例えば、 正方画素配列変換回路 4 7に供給された時点での G信号 のデータは、 図 7の 「G」 のように、 行毎に 1ノ2画素ピッチ分ずれた位置に配 列されることになる。 ただし、 図 7では、 正方画素配列における各画素の位置を □ (四角) で示しており、 偶数行が右方向に 1 Z 2画素ピッチ分オフセッ 卜され ている場合を示している。 また、 R信号や B信号のデ一夕についても同様の位置 に配列される。 By the way, the color signal of each color in the state where the interpolation processing is performed in this manner is an array of pixels in the solid-state imaging device 41 (an array in which each pixel is offset by 1Z2 pixel pitch for each row). This corresponds to an image conforming to. Therefore, for example, the data of the G signal at the time when it is supplied to the square pixel array conversion circuit 47 is arranged at a position shifted by one pixel pitch and two pixel pitches for each row as shown by “G” in FIG. Will be. However, in FIG. 7, the position of each pixel in the square pixel array is indicated by □ (square), and the case where the even-numbered row is offset rightward by 1 Z 2 pixel pitch is shown. The same position is used for the R and B signals.
正方画素配列変換回路 4 7では、 このような各色の色信号を、 正方画素配列に 準拠した画像に相当する信号に変換する配列変換処理が行われる。  The square pixel array conversion circuit 47 performs an array conversion process of converting such color signals of each color into a signal corresponding to an image conforming to the square pixel array.
正方画素配列変換回路 4 7は、 例えば、 G信号に対する配列変換処理を、 図 7 の 「g」 が記載された位置に G信号を補間することによって実現する。 なお、 こ のような補間は、 図 7の補間方法 1のように、 偶数行に対して、 上下左右の 4方 向に近接する G信号のデ一夕を平均化したり、 図 7の補間方法 2のように、 左右 の 2方向に近接する G信号のデータを平均化することによって行える。  The square pixel array conversion circuit 47 realizes, for example, an array conversion process for the G signal by interpolating the G signal at a position indicated by “g” in FIG. Note that such interpolation can be performed by averaging the data of the G signal adjacent to the upper, lower, left, and right directions in even rows, as in the interpolation method 1 in FIG. As shown in 2, this can be done by averaging the data of the G signals that are adjacent in two directions, left and right.
また、 正方画素配列変換回路 4 7は、 R信号や B信号に対しても、 G信号と同 様に配列変換処理を行う。 そして、 このようにして配列変換処理が完了した各色 の色信号は記録装置 4 8に供給される。  In addition, the square pixel array conversion circuit 47 performs array conversion processing on the R signal and the B signal in the same manner as the G signal. Then, the color signals of the respective colors for which the array conversion processing has been completed are supplied to the recording device 48.
以上説明したように、 第 2の実施形態の撮像装置では、 各画素の配列が行毎に 1 / 2画素ピッチ分オフセッ 卜されている固体撮像装置 (第 1の実施形態の固体 撮像装置に相当する) から出力される画像信号に対して、 補間処理を確実に行う ことができる。  As described above, in the imaging device of the second embodiment, the solid-state imaging device in which the arrangement of each pixel is offset by 1 pixel pitch for each row (corresponding to the solid-state imaging device of the first embodiment) ) Can be reliably interpolated for the image signal output from.
また、 第 2の実施形態の撮像装置では、 補間処理が行われた画像信号を正方画 素配列に準拠した画像信号に変換することができる。 したがって、 第 2の実施形 態の撮像装置によって得られる画像信号には、 従来から行われている様々な信号 処理を容易に適用することができる。  Further, in the imaging device according to the second embodiment, an image signal on which interpolation processing has been performed can be converted into an image signal conforming to a square pixel array. Therefore, various types of signal processing conventionally performed can be easily applied to the image signal obtained by the imaging device according to the second embodiment.
なお、 第 2の実施形態の撮像装置では、 画素数を 4倍にする補間処理を適用す ることによって、 より滑らかな画像を得ることができる。 産業上の利用の可能性  In addition, in the imaging device according to the second embodiment, a smoother image can be obtained by applying an interpolation process that quadruples the number of pixels. Industrial applicability
本発明の固体撮像装置では、 垂直方向に対してジグザグに配列されて異なる 2 色のカラ一フィル夕が交互に対応付けられた画素毎に垂直信号転送部が設けられ、 垂直信号転送切替部によって、 第 1色のカラ一フィル夕が対応付けられた画素に よって生成される信号を第 1の出力部から出力することができ、 第 2色のカラー フィル夕が対応付けられた画素によって生成される信号を第 2の出力部から出力 することができ、 第 3色のカラーフィル夕が対応付けられた画素によって生成さ れる信号を第 3の出力部から出力することができる。 In the solid-state imaging device of the present invention, different zigzag arrangements are provided in the vertical direction. A vertical signal transfer unit is provided for each pixel in which the color fills are alternately associated, and the vertical signal transfer switching unit generates the pixels by the pixels in which the color fills are associated. A signal can be output from the first output unit, and a signal generated by a pixel associated with the color filter of the second color can be output from the second output unit. A signal generated by the pixel associated with the filter can be output from the third output unit.
すなわち、 行毎に水平方向に 1 / 2画素ピッチずつオフセッ トされた状態で複 数の画素が配列され、 第 1色、 第 2色、 第 3色の 3色のカラ一フィル夕が、 行毎 に水平方向に 3 / 2画素ピッチずつオフセッ トされ、 かつ、 各行に対しては第 1 色、 第 2色、 第 3色の順で配列されたカラーフィル夕アレイを有する固体撮像装 置において、 色別に独立した 3線出力を実現することができる。 また、 垂直信号 線は 1行当たりの画素数と同数で良く、 画素間に 2本の垂直信号線を通す必要が 無く、 垂直信号線の不要な増加を抑えることができる。  In other words, a plurality of pixels are arranged in a state where each pixel is offset in the horizontal direction by a 1/2 pixel pitch, and a first color, a second color, and a third color are filled in a row. In a solid-state imaging device having a color filter array that is offset in the horizontal direction by a 3/2 pixel pitch every time, and for each row, a first color, a second color, and a third color are arranged in this order. However, independent 3-wire output for each color can be realized. Also, the number of vertical signal lines may be the same as the number of pixels per row, and there is no need to pass two vertical signal lines between pixels, so that an unnecessary increase in the number of vertical signal lines can be suppressed.
特に、 垂直信号転送切替部によって、 垂直信号転送部と出力部との接続の切り 替えを行毎に行う場合には、 垂直方向の解像度を確実に高く維持することができ る。 また、 第 1ないし第 3の出力部によって、 垂直信号転送切替部を介して供給 される信号を同一のタイミングで水平転送して出力する場合には、 画像信号を確 実に高速に出力することができる。  In particular, when the connection between the vertical signal transfer unit and the output unit is switched for each row by the vertical signal transfer switching unit, the resolution in the vertical direction can be reliably maintained high. Also, when the signals supplied via the vertical signal transfer switching unit are horizontally transferred and output at the same timing by the first to third output units, the image signal can be output reliably and at high speed. it can.
さらに、 本発明の固体撮像装置を増幅型画素を備えた増幅型固体撮像装置とす る場合には、 垂直信号転送部を低インピーダンスで電圧駆動できるので、 垂直信 号転送部を切り替えて出力部に接続する際に発生するノィズによる垂直信号転送 部の電圧変動を抑制することができる。 また、 垂直信号転送切替部と第 1ないし 第 3の出力部との間に、 相関 2重サンプリングを行うサンプリング回路を備える 場合には、 相関 2重サンプリングにより増幅部をリセッ 卜した際のノイズや、 固 体パターンノイズなどによる影響を低減することができる。 さらに、 垂直信号転 送切替部と第 1ないし第 3の出力部との間にバッファ回路を備える場合には、 垂 直信号転送部を切り替えて出力部に接続する際に発生するノイズの影響を低減す ることができる。 したがって、 精度の高い画像信号を得ることができる。  Furthermore, when the solid-state imaging device of the present invention is an amplification-type solid-state imaging device having amplification pixels, the vertical signal transfer unit can be driven with a low impedance voltage, so that the vertical signal transfer unit is switched to the output unit. Voltage fluctuations in the vertical signal transfer unit due to noise generated when connecting to the terminal can be suppressed. When a sampling circuit for performing correlated double sampling is provided between the vertical signal transfer switching unit and the first to third output units, noise or noise generated when the amplification unit is reset by correlated double sampling is provided. Therefore, the effects of solid pattern noise and the like can be reduced. Further, when a buffer circuit is provided between the vertical signal transfer switching section and the first to third output sections, the influence of noise generated when the vertical signal transfer section is switched and connected to the output section is reduced. It can be reduced. Therefore, a highly accurate image signal can be obtained.
また、 第 1ないし第 3の出力部から個別に出力される信号を前記複数の画素の 配列に対応付けて取り込み、 各々の画素に欠落する 2色の信号を当該画素の周辺 に位置する画素に対応付けられた信号を用いて補間する補間処理部を備える場合 には、 各々の画素に欠落する 2色の信号を周辺に位置する画素に対応付けられた 信号を用いて補間し、 全ての画素に 3色の信号を対応付けることができる。 さら に、 複数の画素の配列に準拠した画像に相当する信号を、 行毎の水平方向に対す る 1 / 2画素ピッチずつのオフセッ 卜がなされない正方画素配列に準拠した画像 に相当する信号に変換する配列変換部を備える場合には、 正方画素配列の単板式 の固体撮像装置によって得られた画素信号と同様に取り扱うことができる画像信 号を得ることができる。 Further, the signals individually output from the first to third output units are output to the plurality of pixels. In the case where an interpolation processing unit is provided that interpolates the two color signals missing in each pixel by using the signals associated with the pixels located around the pixel, the interpolation processing unit interpolates the signals of the two colors missing in each pixel. The missing two-color signals are interpolated using the signals associated with the pixels located in the vicinity, and the three-color signals can be associated with all the pixels. Furthermore, a signal corresponding to an image conforming to an array of a plurality of pixels is converted into a signal corresponding to an image conforming to a square pixel array in which offsets are not performed at a half pixel pitch in the horizontal direction for each row. When an array conversion unit for conversion is provided, it is possible to obtain an image signal that can be handled in the same manner as a pixel signal obtained by a single-chip solid-state imaging device having a square pixel array.

Claims

請求の範囲 The scope of the claims
1 . 行毎に水平方向に 1 / 2画素ピッチずつオフセッ 卜されることによって垂 直方向に対してジグザグに配列され、 入射光に応じた信号を生成する複数の画素 と、 1. A plurality of pixels that are arranged in a zigzag manner in the vertical direction by being offset by 1/2 pixel pitch in the horizontal direction for each row, and generate a signal corresponding to incident light;
第 1色、 第 2色、 第 3色の 3色のカラ一フィル夕が、 行毎に水平方向に 3ノ2 画素ピッチずつオフセッ トされ、 かつ、 各行に対しては第 1色、 第 2色、 第 3色 の順で配列されたカラ一フィル夕アレイと、  The first color, the second color, and the third color of the three colors are offset horizontally by three pixels by two pixel pitches for each row, and the first color and the second color for each row. A color-filled array arranged in the order of color, third color,
前記複数の画素のうち垂直方向の同一直線に対してジグザグに配列された画素 毎に設けられ、 当該画素によって生成される信号を垂直転送する複数の垂直信号 転送部と、  A plurality of vertical signal transfer units provided for each pixel arranged in a zigzag manner with respect to the same straight line in the vertical direction among the plurality of pixels, and for vertically transferring a signal generated by the pixel;
前記垂直信号転送部によって垂直転送される信号を水平転送し、 画像信号とし て出力する第 1ないし第 3の出力部と、  First to third output units for horizontally transferring a signal vertically transferred by the vertical signal transfer unit and outputting the image signal as an image signal;
前記複数の垂直信号転送部のうち隣接する 2つの垂直信号転送部毎に、 各々の 画素に対応付けられている同色のカラ一フィル夕が如何なる色であるかに基づい て決められる特定の 1つの出力部に、 当該 2つの垂直信号転送部を切り替えて接 続することによって、 第 1色のカラ一フィル夕が対応付けられた画素によって生 成された信号を第 1の出力部へ供給し、 第 2色のカラーフィル夕が対応付けられ た画素によつて生成された信号を第 2の出力部へ供給し、 第 3色のカラーフィル 夕が対応付けられた画素によって生成された信号を第 3の出力部へ供給する垂直 信号転送切替部と  For each of two adjacent vertical signal transfer units among the plurality of vertical signal transfer units, a specific one determined based on what color the color fill of the same color associated with each pixel is. By switching and connecting the two vertical signal transfer units to the output unit, a signal generated by the pixel associated with the color fill of the first color is supplied to the first output unit, A signal generated by the pixel associated with the color filter of the second color is supplied to the second output unit, and a signal generated by the pixel associated with the color filter of the third color is supplied to the second output unit. Vertical signal transfer switching unit to supply to the output unit
を備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising:
2 . 行毎に水平方向に 1ノ2画素ピッチずつオフセッ 卜されることによって垂 直方向に対してジグザグに配列され、 入射光に応じた信号を生成する複数の画素 と、  2. A plurality of pixels that are arranged in a zigzag manner in the vertical direction by offsetting by one pixel pitch in the horizontal direction for each row and generate a signal corresponding to the incident light;
第 1色、 第 2色、 第 3色の 3色のカラ一フィル夕が、 行毎に水平方向に 3 2 画素ピヅチずつオフセッ トされ、 かつ、 各行に対しては第 1色、 第 2色、 第 3色 の順で配列されたカラーフィル夕アレイと、  Color fills of the first, second, and third colors are offset horizontally by 32 pixel pitches for each row, and the first and second colors are set for each row. A color filter array arranged in the order of the third color,
前記複数の画素のうち垂直方向の同一直線に対してジグザグに配列された画素 毎に設けられ、 異なる 2色のカラ一フィル夕が交互に対応付けられた画素によつ て生成される信号を垂直転送する複数の垂直信号転送部と、 Pixels arranged in zigzag with respect to the same vertical line among the plurality of pixels A plurality of vertical signal transfer units that are provided for each pixel and vertically transfer signals generated by pixels in which two different color filters are alternately associated;
前記垂直信号転送部によつて垂直転送された信号を水平転送し、 画像信号とし て出力する第 1ないし第 3の出力部と、  First to third output units for horizontally transferring a signal vertically transferred by the vertical signal transfer unit and outputting the image signal as an image signal;
各垂直信号転送部毎に、 各々の画素に対応付けられたカラ一フィル夕の色に基 づいて決められる特定の 2つの出力部に、 当該垂直信号転送部を切り替えて接続 することによって、 第 1色のカラ一フィル夕が対応付けられた画素によって生成 された信号を第 1の出力部へ供給し、 第 2色のカラ一フィル夕が対応付けられた 画素によって生成された信号を第 2の出力部へ供給し、 第 3色のカラ一フィル夕 が対応付けられた画素によって生成された信号を第 3の出力部へ供給する垂直信 号転 切替部と  By switching and connecting the vertical signal transfer unit to two specific output units determined based on the color of the color corresponding to each pixel for each vertical signal transfer unit, A signal generated by a pixel associated with a color of one color is supplied to a first output unit, and a signal generated by a pixel associated with a color of a second color is supplied to a second output unit. A vertical signal conversion switching unit for supplying a signal generated by a pixel associated with the color of the third color to the third output unit.
を備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising:
3 . 請求の範囲 1または請求の範囲 2に記載の固体撮像装置において、 前記垂直信号転送切替部は、  3. The solid-state imaging device according to claim 1 or 2, wherein the vertical signal transfer switching unit includes:
垂直信号転送部と出力部との接続の切り替えを行毎に行う  Switch connection between vertical signal transfer unit and output unit for each row
ことを特徴とする固体撮像装置。  A solid-state imaging device characterized by the above-mentioned.
4 . 請求の範囲 1ないし請求の範囲 3の何れか 1つに記載の固体撮像装置にお いて、  4. In the solid-state imaging device according to any one of claims 1 to 3,
前記第 1ないし第 3の出力部は、  The first to third output units are:
前記垂直信号転送切替部を介して供給される信号を同一のタイミングで水平転 送して出力する  The signals supplied via the vertical signal transfer switching section are horizontally transferred and output at the same timing.
ことを特徴とする固体撮像装置。  A solid-state imaging device characterized by the above-mentioned.
5 . 請求の範囲 1ないし請求の範囲 4の何れか 1つに記載の固体撮像装置にお いて、  5. In the solid-state imaging device according to any one of claims 1 to 4,
前記画素は、  The pixel is
入射光に応じた電荷を生成して蓄積する光電変換部と、 該光電変換部によって 生成されて蓄積された電荷を増幅する増幅部とを有する増幅型画素である ことを特徴とする固体撮像装置。  A solid-state imaging device, comprising: an amplifying pixel having a photoelectric conversion unit that generates and accumulates electric charge corresponding to incident light, and an amplification unit that amplifies the electric charge generated and accumulated by the photoelectric conversion unit. .
6 . 請求の範囲 5に記載の固体撮像装置において、 前記増幅部は、 6. The solid-state imaging device according to claim 5, The amplification unit,
接合型電解効果トランジスタである  It is a junction type field effect transistor
ことを特徴とする固体撮像装置。  A solid-state imaging device characterized by the above-mentioned.
7 . 請求の範囲 5または請求の範囲 6に記載の固体撮像装置において、 前記垂直信号転送切替部と前記第 1ないし第 3の出力部との間に、 相関 2重サ ンプリングを行うサンプリング回路  7. The solid-state imaging device according to claim 5, wherein the sampling circuit performs correlated double sampling between the vertical signal transfer switching unit and the first to third output units.
を備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising:
8 . 請求の範囲 1ないし請求の範囲 7の何れか 1つに記載の固体撮像装置にお いて、  8. In the solid-state imaging device according to any one of claims 1 to 7,
前記垂直信号転送切替部と前記第 1ないし第 3の出力部との間にバッファ回路 を備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising a buffer circuit between the vertical signal transfer switching unit and the first to third output units.
9 . 請求の範囲 1ないし請求の範囲 8の何れか 1つに記載の固体撮像装置にお いて、  9. In the solid-state imaging device according to any one of claims 1 to 8,
前記第 1ないし第 3の出力部から個別に出力される信号を前記複数の画素の配 列に対応付けて取り込み、 各々の画素に欠落する 2色の信号を当該画素の周辺に 位置する画素に対応付けられた信号を用いて補間する補間処理部を  The signals individually output from the first to third output units are fetched in association with the array of the plurality of pixels, and the two-color signals missing in each pixel are input to the pixels located around the pixel. An interpolation processing unit that performs interpolation using the associated signal
備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising:
1 0 . 請求の範囲 1ないし請求の範囲 9の何れか 1つに記載の固体撮像装置に おいて、  10. The solid-state imaging device according to any one of claims 1 to 9, wherein:
前記複数の画素の配列に準拠した画像に相当する信号を、 行毎の水平方向に対 する 1 / 2画素ピッチずつのオフセヅ卜がなされない正方画素配列に準拠した画 像に相当する信号に変換する配列変換部を  A signal corresponding to an image conforming to the arrangement of the plurality of pixels is converted into a signal corresponding to an image conforming to a square pixel arrangement in which offset is not performed at a 1/2 pixel pitch in the horizontal direction for each row. Array conversion unit
備えたことを特徴とする固体撮像装置。  A solid-state imaging device comprising:
PCT/JP2002/003301 2001-04-11 2002-04-02 Solid-state imaging device WO2002085035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002582631A JPWO2002085035A1 (en) 2001-04-11 2002-04-02 Solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001112953 2001-04-11
JP2001-112953 2001-04-11

Publications (1)

Publication Number Publication Date
WO2002085035A1 true WO2002085035A1 (en) 2002-10-24

Family

ID=18964264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003301 WO2002085035A1 (en) 2001-04-11 2002-04-02 Solid-state imaging device

Country Status (2)

Country Link
JP (1) JPWO2002085035A1 (en)
WO (1) WO2002085035A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236301A (en) * 2003-01-10 2004-08-19 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2007306490A (en) * 2006-05-15 2007-11-22 Fujifilm Corp Two-dimensional color solid-state imaging element
CN104503014A (en) * 2014-12-18 2015-04-08 深圳市华星光电技术有限公司 Color filter and liquid crystal display comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268083A (en) * 1989-04-10 1990-11-01 Canon Inc Solid-state image pickup device
JPH10262260A (en) * 1996-08-14 1998-09-29 Sharp Corp Color solid-state image pickup device
JP2000012819A (en) * 1998-06-17 2000-01-14 Nikon Corp Solid-state image pickup element
JP2000224599A (en) * 1999-01-28 2000-08-11 Fuji Photo Film Co Ltd Solid-state image pickup device and signal reading method
JP2001016597A (en) * 1999-07-01 2001-01-19 Fuji Photo Film Co Ltd Solid-state image pickup device and signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268083A (en) * 1989-04-10 1990-11-01 Canon Inc Solid-state image pickup device
JPH10262260A (en) * 1996-08-14 1998-09-29 Sharp Corp Color solid-state image pickup device
JP2000012819A (en) * 1998-06-17 2000-01-14 Nikon Corp Solid-state image pickup element
JP2000224599A (en) * 1999-01-28 2000-08-11 Fuji Photo Film Co Ltd Solid-state image pickup device and signal reading method
JP2001016597A (en) * 1999-07-01 2001-01-19 Fuji Photo Film Co Ltd Solid-state image pickup device and signal processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236301A (en) * 2003-01-10 2004-08-19 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2007306490A (en) * 2006-05-15 2007-11-22 Fujifilm Corp Two-dimensional color solid-state imaging element
JP4662883B2 (en) * 2006-05-15 2011-03-30 富士フイルム株式会社 Two-dimensional color solid-state image sensor
CN104503014A (en) * 2014-12-18 2015-04-08 深圳市华星光电技术有限公司 Color filter and liquid crystal display comprising same
US9778502B2 (en) 2014-12-18 2017-10-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color filter and liquid crystal display comprising the same

Also Published As

Publication number Publication date
JPWO2002085035A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US7570290B2 (en) Drive method for solid-state imaging device, solid-state imaging device, and imaging apparatus
CN101753863B (en) Solid-state imaging device, method for processing signal of solid-state imaging device, and imaging apparatus
JP4611296B2 (en) Charge binning image sensor
US6992714B1 (en) Image pickup apparatus having plural pixels arranged two-dimensionally, and selective addition of different pixel color signals to control spatial color arrangement
US6847397B1 (en) Solid-state image sensor having pixels shifted and complementary-color filter and signal processing method therefor
EP1569278A2 (en) Amplifying solid-state image pickup device
JP5049155B2 (en) Progressive interlace conversion method, image processing apparatus, and image capturing apparatus
KR100468169B1 (en) Single-plated color camera in which a generation of pseudo color signal can be suppressed
US20100245628A1 (en) Imaging apparatus and imaging system
JP2001292453A (en) Color image pickup device and image pickup system using it
US6031569A (en) Image sensing method and apparatus utilizing the same
US8139132B2 (en) Solid-state imaging apparatus and driving method for solid-state imaging apparatus
KR100448302B1 (en) Solid state image pickup device of an interline system
KR100447916B1 (en) Single-panel color camera that can suppress the occurrence of coloration of high resolution
JP3609606B2 (en) Single plate color camera
US5150204A (en) Solid state image pickup having plural pixels arranged on plural lines
WO2002085035A1 (en) Solid-state imaging device
US5387931A (en) Carrier level balancing circuit for color camera
JP2004350319A (en) Image signal processing method, image signal processing apparatus using the method, and recording medium with program code representing procedures of the method recorded thereon
JP2007312047A (en) Solid-state imaging device
JP5511205B2 (en) Imaging apparatus and imaging method
JP2940820B2 (en) Single-chip color camera and color signal separation method
JP2000261817A (en) Image pickup device
JPH10276441A (en) Separated head multi-ccd camera apparatus
JP2012060412A (en) Imaging element, driving device for imaging element, driving method for imaging element, image processing device, image processing method, program, and imaging device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002582631

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase