WO2002084183A1 - Device for controlling solar collectors - Google Patents
Device for controlling solar collectors Download PDFInfo
- Publication number
- WO2002084183A1 WO2002084183A1 PCT/AT2002/000111 AT0200111W WO02084183A1 WO 2002084183 A1 WO2002084183 A1 WO 2002084183A1 AT 0200111 W AT0200111 W AT 0200111W WO 02084183 A1 WO02084183 A1 WO 02084183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elements
- light guide
- guide elements
- light
- designed
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 239000006096 absorbing agent Substances 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract description 2
- 238000013021 overheating Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
- F24S30/42—Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
- F24S30/425—Horizontal axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/74—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S40/00—Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
- F24S40/50—Preventing overheating or overpressure
- F24S40/52—Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S2025/01—Special support components; Methods of use
- F24S2025/011—Arrangements for mounting elements inside solar collectors; Spacers inside solar collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S2030/10—Special components
- F24S2030/13—Transmissions
- F24S2030/133—Transmissions in the form of flexible elements, e.g. belts, chains, ropes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the invention relates to a device for controlling solar collectors with pivotable light guide elements and with an actuating device for driving the light guide elements.
- Solar collectors are usually fixed in a stationary position, so that the angle of incidence of the sunlight changes during the day and as the seasons change. Simple solar collectors without moving components therefore have the disadvantage that optimal operation is only guaranteed when the sun is in the right position, i.e. at certain times.
- solar collectors have been developed which have movable elements, such as lamellae or mirrors, in order to be able to adapt the lighting of collector surfaces or collector tubes to the respective position of the sun.
- movable elements such as lamellae or mirrors
- the electric motors are controlled via a control device which takes into account the direction of the light incidence via corresponding sensors, such as photovoltaic elements.
- the actuating device and the control device of such known collectors is complex and prone to errors. This is a considerable disadvantage since such collectors are usually attached to roofs and are therefore naturally difficult to access.
- the object of the present invention is to develop a device of the type mentioned above in such a way that the structure is simplified as much as possible and that in particular an electronic control can be dispensed with.
- the actuating device has at least two expansion elements which are exposed to the sun radiation depending on the position of the actuating device and which cause a movement of the light-guiding elements by changing the length.
- the basic idea of the present invention is to get by without external energy and to use the force to adjust the light-guiding elements from the temperature-related change in length of expansion elements.
- the present invention can in principle be used both for photovoltaic solar collectors and for thermal solar collectors which are used for the production of hot water.
- the device according to the invention can also be used in combination nated collectors are used, as shown in the exemplary embodiments.
- the expansion elements are designed as parallel bands.
- the accuracy and the response behavior can be increased in particular in that the actuating device has a cylindrical parabolic mirror that directs sunlight onto the expansion elements.
- the parabolic mirror is arranged pivotably and has a plane of symmetry which contains the pivot axis and in the area of which the expansion elements are arranged. In this way it is achieved that the device always adjusts itself automatically so that the incidence of light takes place parallel to the plane of symmetry, whereby a particularly simple adjustment of the system is possible.
- a mechanically reliable and structurally simple design is characterized in that the expansion elements are connected to a fixed deflection by means of ropes.
- a first particularly preferred embodiment variant of the invention provides that the light-guiding elements are designed as pivotable slats, which are designed to reflect sunlight on absorber surfaces. In this way it can be achieved that the absorber surface is approximately vertically irradiated in a very wide range of the angle of incidence of sunlight.
- the light-guiding elements are designed as parabolic mirrors, which are designed to reflect sunlight on collector tubes. In this way, high irradiation intensities can be achieved, so that the photovoltaic cells can be optimally used and high water temperatures can be achieved even in weak sunlight.
- Overheating of the collector can be effectively achieved by providing a temperature limiting device, which preferably has a bimetal lever.
- the device which can also be referred to as a light tracker, consists mainly of two bands arranged in parallel, which at one end of the rotatable support tube are fixed by a spring and at the other end over the ropes and rollers.
- the tapes are made of plastic or metal, with the irradiated surfaces matt and blackened and the inward surfaces smooth (mirrored) to suppress the radiant heat exchange between them.
- the ropes are guided in the rolls in the direction of the axis of rotation and wound over the carrier pin. The location and inclination of the axis is not relevant as long as it does not run perpendicular to the double longitudinal axis.
- a solar collector with the above-mentioned light tracker directs the incident light at any time in a direction almost perpendicular to the absorber by means of light-guiding slats.
- the solar collector with an absorber made of narrow strips / tubes the light is focused on the heat absorber or photovoltaic strips by means of movable, elongated parabolic mirrors.
- a bimetal lever turns the reflectors so that the light is directed away from the absorber.
- the control of the light control is carried out by maintenance-free light trackers and bimetallic levers located in the collector housing.
- the optimization of the controlled parabolic mirrors can be done by the additional use of the steering slats. Because the optimal angular range of the steerable parabolic mirrors is smaller than that of the steering slats, the seasonally dependent light incidence angle (height) is corrected by the controlled horizontal parabolic mirrors and the time of day dependent angle (azimuth) by the controlled vertical slats.
- the slats with the bimetal lever also take on the role of overheating protection. Since all movable elements are located within the collector housing and the control does not require external energy or external components, long maintenance-free operating periods can be expected.
- Figure 1 shows a device according to the invention schematically in an axonometric representation.
- Fig. 2 is a side view of the device of Fig. 1;
- Fig. 3 is a section along line III-III in Fig. 2;
- Fig. 4 is a section along line IV-IV in Fig. 2;
- FIG. 7 is schematic representations which explain a further embodiment variant as shown in FIG. 10;
- FIG. 11 is schematic representations which explain a further embodiment variant, as shown in FIG. 14.
- the device according to the invention or the light tracker is shown in overview in FIG. 1 and is designated as a whole by 1 in FIGS. 5, 10 and 14.
- the device 1 has two belts 2 arranged parallel to one another, which are fastened to one end of a rotatable support tube 22 by a spring 23 and at the other end via cables 24 and rollers 25.
- the bands 2 are made of plastic or metal, the irradiated surfaces being matt and blackened and the inward surfaces being smooth or mirrored in order to suppress the radiant heat exchange between them.
- the ropes 24 are guided over the rollers 25 to a fixed deflection on the support pin 27 on which the support tube 22 is rotatably mounted.
- the location and inclination of the axis of rotation 26 is of subordinate importance, it may only not run perpendicular to the longitudinal direction of the bands 2.
- the light tracker 1 thus rotates in the direction of the light source until the strips 2 are irradiated or heated to approximately the same extent. Because the difference in length of the strips is very small in a position close to the symmetry, an elongated parabolic mirror 4 is attached to the support tube 22, the focal line 28 of which lies outside the surface of the strips 2.
- the parabolic mirror 4 reflects the radiation onto only one band 2 and thus reinforces the effect of the light tracker 1.
- a control disk 12 is fixedly connected to the carrier tube 22, via which a control cable 10 is guided in order to control the light-guiding elements.
- Control springs 11 serve to compensate for any changes in length and to keep the tension of the control cable 10 in a desired range.
- the mode of operation of the parabolic mirror 4 is explained in more detail in FIG. 3. If, as shown in the left half of FIG. 2, the light rays 34 are incident parallel to the axis of symmetry 3, then they are reflected towards a focal point 28 of the parabolic mirror 4 and do not strike the bands 2. If, on the other hand, the light rays 34 are in one direction that are inclined, even if only slightly, with respect to the plane of symmetry 3, hit their reflected rays on the band 2 in question and heat it up. It is immediately apparent from this figure that even the smallest changes in the angle of incidence can cause considerable temperature differences between the bands 2, so that the device according to the invention has an extremely fine response behavior.
- the radius 31 of the control disk 12 essentially determines the transmission ratio with which the device actuates the light guide elements.
- pivotable slats 8 are provided as light-guiding elements and are actuated by the device described above.
- the light beams 34 are deflected by a suitable choice of the angle of attack 9 such that they strike an absorber surface 7 approximately perpendicularly.
- the absorber 7 can be an absorber through which a suitable medium flows in order to heat it, or an arrangement of photovoltaic elements or a combination of these two.
- FIG. 6 shows the connection of the device 1 according to the invention via the control cables 10 to the slats 8, which are fastened to a collector housing via slat fastening anchors 21.
- a bimetallic lever 19 is provided, which acts on the slats 8 via a further cable 20.
- the function of the bimetal lever 19 is to prevent excessive heating of the collector. Above a certain temperature limit, the bimetallic lever 19 deforms such that the additional rope 20 is tensioned and the slats 8 are rotated from their optimal position. As a result, the heat absorption is significantly reduced and overheating can be reliably avoided.
- a series of parabolic mirrors 14 is arranged to be displaceable in the longitudinal direction.
- the parabolic mirrors 14 are shifted by the device 1.
- the transmission ratio is selected such that the light beams are directed onto the collector tubes 13 or the photovoltaic strips 16 attached to them.
- 7, 8 and 9 the mode of action of the displacement of the parabolic mirror element 32, which is composed of the individual parabolic mirrors 14, is explained.
- 15 is the focal point of the individual parabolic mirrors 14.
- the embodiment variant of FIG. 14 differs from that of FIG. 10 in that the parabolic mirrors 14 are arranged pivotably.
- Control ropes 30 extending the control ropes 10 have the effect that the angle of attack of the parabolic mirror 14 is identical.
- the pivot axis 29 of the parabolic mirror 14 is provided on collector tubes 13, it being apparent from FIGS. 11 to 13 that the light beams 34 are always directed onto the next collector tube 13 or the photovoltaic strips 16 attached thereon by means of a suitable pivoting movement.
- collector tubes 13 are fastened to collectors 17 which have connections 18 in order to discharge the heated medium.
- the housing of the collector is denoted by 5 and the transparent cover by 6.
- the bimetallic lever 19 serves, as described above, to bring about an adjustment of the parabolic mirror 14 from the optimal position in the event of overheating, so that the collector can cool down.
- the present invention makes it possible to achieve optimum efficiencies with the simplest construction and, in particular, to do without external energy supply and the need for electronic control devices.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Optical Elements Other Than Lenses (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Abstract
Description
Vorrichtung zur Steuerung von SonnenkollektorenDevice for controlling solar panels
Die Erfindung betrifft eine Vorrichtung zur Steuerung von Sonnenkollektoren mit schwenkbaren Lichtleitelementen und mit einer Betätigungseinrichtung zum Antrieb der Lichtleitelemente.The invention relates to a device for controlling solar collectors with pivotable light guide elements and with an actuating device for driving the light guide elements.
Sonnenkollektoren werden üblicherweise stationär befestigt, so dass sich der Einfallswinkel des Sonnenlichts im Tagesablauf und im Wechsel der Jahreszeiten ändert. Einfache Sonnekollektoren ohne bewegliche Bauteile besitzen daher den Nachteil, dass eine optimale Arbeitsweise nur bei entsprechendem Sonnenstand, das heißt zu bestimmten Zeiten, gewährleistet ist. Um diese Nachteile zu vermeiden, sind Sonnenkollektoren entwickelt worden, die bewegliche Elemente, wie etwa Lamellen oder Spiegel aufweisen, um die Beleuchtung von Kollektorflächen oder Kollektorröhren an den jeweiligen Sonnenstand anpassen zu können. Ein Beispiel für eine solche Lösung ist in der DE 32 36 888 AI offenbart. Die beweglichen Elemente werden üblicherweise über Elektromotoren angetrieben, die eine Betätigungseinrichtung für den Antrieb der Lichtleitelemente darstellen. Die Elektromotoren werden über eine Steuerungseinrichtung angesteuert, die über entsprechende Sensoren, wie etwa Photovoltaikelemente die Richtung des Lichteinfalls berücksichtigt. Die Betätigungseinrichtung und die Steuerungseinrichtung solcher bekannter Kollektoren ist aufwendig und fehleranfällig. Dies stellt einen erheblichen Nachteil dar, da solche Kollektoren üblicherweise auf Dächern befestigt sind und daher naturgemäß schwer zugänglich sind.Solar collectors are usually fixed in a stationary position, so that the angle of incidence of the sunlight changes during the day and as the seasons change. Simple solar collectors without moving components therefore have the disadvantage that optimal operation is only guaranteed when the sun is in the right position, i.e. at certain times. To avoid these disadvantages, solar collectors have been developed which have movable elements, such as lamellae or mirrors, in order to be able to adapt the lighting of collector surfaces or collector tubes to the respective position of the sun. An example of such a solution is disclosed in DE 32 36 888 AI. The movable elements are usually driven by electric motors, which represent an actuating device for driving the light guide elements. The electric motors are controlled via a control device which takes into account the direction of the light incidence via corresponding sensors, such as photovoltaic elements. The actuating device and the control device of such known collectors is complex and prone to errors. This is a considerable disadvantage since such collectors are usually attached to roofs and are therefore naturally difficult to access.
Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung der oben genannten Art so weiterzubilden, dass der Aufbau so weit als möglich vereinfacht ist und dass insbesondere auf eine elektronische Steuerung verzichtet werden kann.The object of the present invention is to develop a device of the type mentioned above in such a way that the structure is simplified as much as possible and that in particular an electronic control can be dispensed with.
Die erfϊndungsgemäßen Aufgaben werden dadurch gelöst, dass die Betätigungseinrichtung mindestens zwei Dehnelemente aufweist, die in Abhängigkeit von der Stellung der Betätigungseinrichtung der Sonnenbestrahlung ausgesetzt sind und die durch eine Längenänderung eine Bewegung der Lichtleitelemente bewirken.The objects according to the invention are achieved in that the actuating device has at least two expansion elements which are exposed to the sun radiation depending on the position of the actuating device and which cause a movement of the light-guiding elements by changing the length.
Grundgedanke der vorliegenden Erfindung ist es, ohne Fremdenergie auszukommen und die Kraft zur Verstellung der Lichtleitelemente aus der temperaturbedingten Längenänderung von Dehnelementen zu benutzen. Die vorliegende Erfindung ist grundsätzlich sowohl für Photovoltaik-Sonnenkollektoren als auch für thermische Sonnenkollektoren einsetzbar, die zur Warmwassergewinnung dienen. Selbstverständlich kann die erfindungsgemäße Vorrichtung auch in kombi- nierten Kollektoren verwendet werden, wie dies in den Ausführungsbeispielen gezeigt ist.The basic idea of the present invention is to get by without external energy and to use the force to adjust the light-guiding elements from the temperature-related change in length of expansion elements. The present invention can in principle be used both for photovoltaic solar collectors and for thermal solar collectors which are used for the production of hot water. Of course, the device according to the invention can also be used in combination nated collectors are used, as shown in the exemplary embodiments.
Eine konstruktiv besonders einfache und günstige Lösung ergibt sich, wenn die Dehnelemente als zueiπender parallele Bänder ausgebildet sind. Dabei kann die Genauigkeit und das Ansprechverhalten insbesondere dadurch erhöht werden, dass die Betätigungseinrichtung einen zylindrischen Parabolspiegel aufweist, der Sonnenlicht auf die Dehnelemente richtet.A structurally particularly simple and inexpensive solution is obtained if the expansion elements are designed as parallel bands. The accuracy and the response behavior can be increased in particular in that the actuating device has a cylindrical parabolic mirror that directs sunlight onto the expansion elements.
In einer besonders bevorzugten Ausführungsvariante ist vorgesehen, dass der Parabolspiegel schwenkbar angeordnet ist und eine Symmetrieebene aufweist, die die Schwenkachse enthält und in deren Bereich die Dehnelemente angeordnet sind. Auf diese Weise wird erreicht, dass sich die Vorrichtung stets selbsttätig so einstellt, dass der Lichteinfall parallel zur Symmetrieebene erfolgt, wodurch eine besonders einfache Einstellung der Anlage möglich ist.In a particularly preferred embodiment variant it is provided that the parabolic mirror is arranged pivotably and has a plane of symmetry which contains the pivot axis and in the area of which the expansion elements are arranged. In this way it is achieved that the device always adjusts itself automatically so that the incidence of light takes place parallel to the plane of symmetry, whereby a particularly simple adjustment of the system is possible.
Eine mechanisch zuverlässige und konstruktiv einfache Ausführung ist dadurch gekennzeichnet, dass die Dehnelemente über Seile mit einer feststehenden Um- lenkung verbunden sind.A mechanically reliable and structurally simple design is characterized in that the expansion elements are connected to a fixed deflection by means of ropes.
Eine erste besonders bevorzugte Ausführungsvariante der Erfindung sieht vor, dass die Lichtleitelemente als schwenkbare Lamellen ausgebildet sind, die dazu ausgebildet sind, Sonnenlicht auf Absorberflächen zu reflektieren. Auf diese Weise kann erreicht werden, dass in einem sehr weiten Bereich des Einfallswinkels des Sonnenlichts die Absorberfläche näherungsweise senkrecht bestrahlt wird.A first particularly preferred embodiment variant of the invention provides that the light-guiding elements are designed as pivotable slats, which are designed to reflect sunlight on absorber surfaces. In this way it can be achieved that the absorber surface is approximately vertically irradiated in a very wide range of the angle of incidence of sunlight.
In einer alternativen Ausführungsvariante ist vorgesehen, dass die Lichtleitelemente als Parabolspiegel ausgebildet sind, die dazu ausgebildet sind, Sonnenlicht auf Kollektorröhren zu reflektieren. Auf diese Weise können hohe Bestrahlungs- intensitäten erzielt werden, so dass die Photovoltaikzellen optimal ausgenützt werden und hohe Wassertemperaturen auch bei schwacher Sonneneinstrahlung erreicht werden können.In an alternative embodiment variant, it is provided that the light-guiding elements are designed as parabolic mirrors, which are designed to reflect sunlight on collector tubes. In this way, high irradiation intensities can be achieved, so that the photovoltaic cells can be optimally used and high water temperatures can be achieved even in weak sunlight.
Eine Überhitzung des Kollektors kann wirksamer Weise dadurch erreicht werden, dass eine Einrichtung zur Temperaturbegrenzung vorgesehen ist, die vorzugsweise einen Bimetallhebel aufweist.Overheating of the collector can be effectively achieved by providing a temperature limiting device, which preferably has a bimetal lever.
In der Folge wird die Erfindung in ihrer Wirkungsweise anhand eines Ausführungsbeispiels erläutert.The mode of operation of the invention is explained below using an exemplary embodiment.
Die Vorrichtung, die auch als Lichtverfolger bezeichnet werden kann, besteht hauptsächlich aus zwei parallel angeordneten Bändern, die an einem Ende des drehbaren Trägerrohrs durch eine Feder und am anderen Ende über die Seile und Rollen befestigt sind. Die Bänder bestehen aus Kunststoff oder Metall, wobei die bestrahlten Oberflächen matt und geschwärzt und die nach innen gerichteten Oberflächen glatt (verspiegelt) sind, um den Strahlungswärmeaustausch zwischen ihnen zu unterdrücken. Die Seile werden in den Rollen in Richtung Drehachse geführt und über den Trägerzapfen gewickelt. Die Situierung und die Neigung der Achse ist dabei nicht relevant, so lange sie nicht lotrecht zur Doppellängsachse läuft. Bei unsymmetrischer Belichtung bzw. Erwärmung kommt es zu unterschiedlicher Längenänderung der Bänder, die von den Seilen durch Drehung des Trägerrohrs bzw. des ganzen Lichtverfolgers ausgeglichen wird. Der Lichtverfolger dreht sich so lang in Richtung Lichtquelle, bis die Bänder annähernd gleich stark bestrahlt bzw. erwärmt werden. Weil in symmetrienaher Lage der Längenunterschied gering ist, ist unter den Bändern ein länglicher Parabolspiegel am Trägerrohr befestigt, dessen symmetrischer Brennpunkt (Brennlinie) außerhalb der Bänderfläche liegt. Bei kleinen Abweichungen der Lichteinfallrichtung von der Symmetrieachse/fläche des Lichtverfolgers reflektiert der Spiegel die Strahlung auf nur ein Band und verstärkt die Wirkung des Lichtverfolgers.The device, which can also be referred to as a light tracker, consists mainly of two bands arranged in parallel, which at one end of the rotatable support tube are fixed by a spring and at the other end over the ropes and rollers. The tapes are made of plastic or metal, with the irradiated surfaces matt and blackened and the inward surfaces smooth (mirrored) to suppress the radiant heat exchange between them. The ropes are guided in the rolls in the direction of the axis of rotation and wound over the carrier pin. The location and inclination of the axis is not relevant as long as it does not run perpendicular to the double longitudinal axis. In the case of asymmetrical exposure or heating, there is a different change in the length of the bands, which is compensated for by the ropes by rotating the support tube or the entire light tracker. The light tracker rotates in the direction of the light source until the strips are irradiated or heated to approximately the same extent. Because the difference in length is small in a position close to the symmetry, an elongated parabolic mirror is attached to the support tube, the symmetrical focal point (focal line) of which lies outside the surface of the strip. In the event of small deviations in the direction of light incidence from the axis of symmetry / surface of the light tracker, the mirror reflects the radiation onto only one band and enhances the effect of the light tracker.
Ein Solarkollektor mit oben genannten Lichtverfolger lenkt mittels lichtlenkenden Lamellen das einfallende Licht zu jedem Zeitpunkt in eine zum Absorber annähernd lotrechte Richtung. Im Solarkollektor mit einem Absorber aus schmalen Streifen/Röhrchen wird das Licht mittels beweglicher, länglicher Parabolspiegel auf die Wärmeabsorber- bzw. Photovoltaikstreifen gebündelt. Im Überhitzungsfall dreht ein Bimetallhebel die Reflektoren so, dass das Licht vom Absorber weg gelenkt wird.A solar collector with the above-mentioned light tracker directs the incident light at any time in a direction almost perpendicular to the absorber by means of light-guiding slats. In the solar collector with an absorber made of narrow strips / tubes, the light is focused on the heat absorber or photovoltaic strips by means of movable, elongated parabolic mirrors. In the event of overheating, a bimetal lever turns the reflectors so that the light is directed away from the absorber.
Die Steuerung der Lichtlenkung wird von wartungsfreien, im Kollektorgehäuse befindlichen Lichtverfolgern und Bimetallhebeln ausgeführt. Die Optimierung der gesteuerten Parabolspiegel kann durch die zusätzliche Verwendung der Lenklamellen geschehen. Weil der optimale Winkelbereich der lenkbaren Parabolspiegel kleiner ist als jener der Lenklamellen, wird der jahreszeitabhängige Lichteinfallwinkel (Höhe) von den gesteuerten horizontalen Parabolspiegeln und der tageszeitabhängigen Winkel (Azimut) von den gesteuerten vertikalen Lamellen korrigiert. Die Lamellen mit dem Bimetallhebel übernehmen auch die Rolle des Überhitzungsschutzes. Da sich alle beweglichen Elemente innerhalb des Kollektorgehäuses befinden und die Steuerung ohne Fremdenergie bzw. äußere Bauteile auskommt, können lange wartungsfreie Betriebszweiten erwartet werden.The control of the light control is carried out by maintenance-free light trackers and bimetallic levers located in the collector housing. The optimization of the controlled parabolic mirrors can be done by the additional use of the steering slats. Because the optimal angular range of the steerable parabolic mirrors is smaller than that of the steering slats, the seasonally dependent light incidence angle (height) is corrected by the controlled horizontal parabolic mirrors and the time of day dependent angle (azimuth) by the controlled vertical slats. The slats with the bimetal lever also take on the role of overheating protection. Since all movable elements are located within the collector housing and the control does not require external energy or external components, long maintenance-free operating periods can be expected.
In der Folge wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen : Fig. 1 eine erfindungsgemäße Vorrichtung schematisch in einer axonometrischen Darstellung;The invention is explained in more detail below on the basis of the exemplary embodiments illustrated in the figures. Show it : Figure 1 shows a device according to the invention schematically in an axonometric representation.
Fig. 2 eine seitliche Ansicht der Vorrichtung von Fig. 1;Fig. 2 is a side view of the device of Fig. 1;
Fig. 3 einen Schnitt nach Linie III-III in Fig. 2;Fig. 3 is a section along line III-III in Fig. 2;
Fig. 4 einen Schnitt nach Linie IV-IV in Fig. 2;Fig. 4 is a section along line IV-IV in Fig. 2;
Fig. 5 schematisch eine weitere Ausführungsvariante der Erfindung;5 schematically shows a further embodiment variant of the invention;
Fig. 6 eine alternative Ausführungsvariante der Erfindung;6 shows an alternative embodiment variant of the invention;
Fig. 7, Fig. 8 und Fig. 9 schematische Darstellungen, die eine weitere Ausführungsvariante erklären, wie sie in Fig. 10 dargestellt ist;7, 8 and 9 are schematic representations which explain a further embodiment variant as shown in FIG. 10;
Fig. 11, Fig. 12 und Fig. 13 schematische Darstellungen, die eine weitere Ausführungsvariante erklären, wie sie in Fig. 14 dargestellt ist.11, 12 and 13 are schematic representations which explain a further embodiment variant, as shown in FIG. 14.
Die erfindungsgemäße Vorrichtung bzw. der Lichtverfolger ist in Fig. 1 überblicksmäßig dargestellt und wird in den Fig. 5, 10 und 14 insgesamt mit 1 bezeichnet. Die Vorrichtung 1 besitzt zwei parallel zueinander angeordnete Bänder 2, die an einem Ende eines drehbaren Trägerrohres 22 durch eine Feder 23 und am anderen Ende über Seile 24 und Rollen 25 befestigt sind. Die Bänder 2 bestehen aus Kunststoff oder Metall, wobei die bestrahlten Oberflächen matt und geschwärzt sind und die nach innen gerichteten Oberflächen glatt bzw. verspiegelt sind, um den Strahlungswärmeaustausch zwischen ihnen zu unterdrücken. Die Seile 24 werden über die Rollen 25 zu einer feststehenden Umlenkung am Trägerzapfen 27 geführt, auf dem das Trägerrohr 22 drehbar gelagert ist. Die Situierung und Neigung der Drehachse 26 ist von untergeordneter Bedeutung, sie darf lediglich nicht senkrecht zur Längsrichtung der Bänder 2 verlaufen. Bei unsymmetrischer Belichtung bzw. Erwärmung der Bänder 2 kommt es zu einer unterschiedlichen Längenänderung, die von den Seilen 24 durch Drehung des Trägerrohrs 22 und damit des gesamten Lichtverfolgers 1 ausgeglichen wird. Somit dreht sich der Lichtverfolger 1 so lange in Richtung der Lichtquelle bis die Bänder 2 annähernd gleich stark bestrahlt bzw. erwärmt werden. Weil in symmetrienaher Lage der Längenunterschied der Bänder sehr gering ist, ist unter ihnen ein länglicher Parabolspiegel 4 am Trägerrohr 22 befestigt, dessen Brennlinie 28 außerhalb der Fläche der Bänder 2 liegt. Bei kleinen Abweichungen der Lichteinfallsrichtung von der Symmetriefläche 3 des Lichtverfolgers 1 reflektiert der Parabolspiegel 4 die Strahlung auf nur ein Band 2 und verstärkt somit die Wirkung des Lichtverfolgers 1. Mit dem Trägerrohr 22 ist eine Steuerungsscheibe 12 fest verbunden, über die ein Steuerungsseil 10 geführt ist, um die Lichtleitelemente zu steuern. Steuerungsfedern 11 dienen dazu, etwaige Längenänderungen auszugleichen und die Spannung des Steuerungsseils 10 in einem gewünschten Bereich zu halten.The device according to the invention or the light tracker is shown in overview in FIG. 1 and is designated as a whole by 1 in FIGS. 5, 10 and 14. The device 1 has two belts 2 arranged parallel to one another, which are fastened to one end of a rotatable support tube 22 by a spring 23 and at the other end via cables 24 and rollers 25. The bands 2 are made of plastic or metal, the irradiated surfaces being matt and blackened and the inward surfaces being smooth or mirrored in order to suppress the radiant heat exchange between them. The ropes 24 are guided over the rollers 25 to a fixed deflection on the support pin 27 on which the support tube 22 is rotatably mounted. The location and inclination of the axis of rotation 26 is of subordinate importance, it may only not run perpendicular to the longitudinal direction of the bands 2. With asymmetrical exposure or heating of the strips 2, there is a different change in length, which is compensated for by the ropes 24 by rotating the support tube 22 and thus the entire light tracker 1. The light tracker 1 thus rotates in the direction of the light source until the strips 2 are irradiated or heated to approximately the same extent. Because the difference in length of the strips is very small in a position close to the symmetry, an elongated parabolic mirror 4 is attached to the support tube 22, the focal line 28 of which lies outside the surface of the strips 2. In the event of small deviations in the direction of light incidence from the symmetry surface 3 of the light tracker 1, the parabolic mirror 4 reflects the radiation onto only one band 2 and thus reinforces the effect of the light tracker 1. A control disk 12 is fixedly connected to the carrier tube 22, via which a control cable 10 is guided in order to control the light-guiding elements. Control springs 11 serve to compensate for any changes in length and to keep the tension of the control cable 10 in a desired range.
In Fig. 3 ist die Wirkungsweise des Parabolspiegels 4 näher erläutert. Wenn die Lichtstrahlen 34, wie in der linken Hälfte von Fig. 2 gezeigt, parallel zur Symmetrieachse 3 einfallen, dann werden diese zu einem Brennpunkt 28 des Parabolspiegels 4 hin reflektiert und treffen nicht auf die Bänder 2. Wenn hingegen die Lichtstrahlen 34 in einer Richtung einfallen, die, wenn auch nur geringfügig, gegenüber der Symmetrieebene 3 geneigt ist, treffen ihre reflektierten Strahlen auf das betreffende Band 2 auf und erwärmen dieses. Es ist aus dieser Figur unmittelbar ersichtlich, dass schon geringste Änderungen des Einfallswinkels erhebliche Temperaturunterscheide zwischen den Bändern 2 bewirken können, so dass die erfindungsgemäße Vorrichtung ein äußerst feines Ansprechverhalten aufweist.The mode of operation of the parabolic mirror 4 is explained in more detail in FIG. 3. If, as shown in the left half of FIG. 2, the light rays 34 are incident parallel to the axis of symmetry 3, then they are reflected towards a focal point 28 of the parabolic mirror 4 and do not strike the bands 2. If, on the other hand, the light rays 34 are in one direction that are inclined, even if only slightly, with respect to the plane of symmetry 3, hit their reflected rays on the band 2 in question and heat it up. It is immediately apparent from this figure that even the smallest changes in the angle of incidence can cause considerable temperature differences between the bands 2, so that the device according to the invention has an extremely fine response behavior.
Aus Fig. 4 ist nochmals der Verstellmechanismus mit Seilen 24, Rollen 25 und Trägerzapfen 27 ersichtlich. Der Radius 31 der Steuerungsscheibe 12 bestimmt im Wesentlichen das Übersetzungsverhältnis, mit dem die Vorrichtung die Lichtleitelemente betätigt.4 again shows the adjustment mechanism with ropes 24, rollers 25 and support pins 27. The radius 31 of the control disk 12 essentially determines the transmission ratio with which the device actuates the light guide elements.
Bei der Ausführungsvariante von Fig. 5 sind als Lichtleitelemente schwenkbare Lamellen 8 vorgesehen, die durch die oben beschriebene Vorrichtung betätigt werden. Die Lichtstrahlen 34 werden durch geeignete Wahl des Anstellwinkels 9 so umgelenkt, dass sie näherungsweise senkrecht auf eine Absorberfläche 7 auftreffen. Bei dem Absorber 7 kann es sich grundsätzlich um einen Absorber handeln, der von einem geeigneten Medium durchströmt wird, um dieses zu erwärmen oder eine Anordnung von Photovoltaikelementen oder um eine Kombination dieser beiden.In the embodiment variant of FIG. 5, pivotable slats 8 are provided as light-guiding elements and are actuated by the device described above. The light beams 34 are deflected by a suitable choice of the angle of attack 9 such that they strike an absorber surface 7 approximately perpendicularly. In principle, the absorber 7 can be an absorber through which a suitable medium flows in order to heat it, or an arrangement of photovoltaic elements or a combination of these two.
Die Fig. 6 zeigt die Verbindung der erfindungsgemäßen Vorrichtung 1 über die Steuerungsseile 10 mit den Lamellen 8, die über Lamellenbefestigungsanker 21 an einem Kollektorgehäuse befestigt sind. Zusätzlich ist ein Bimetallhebel 19 vorgesehen, der über ein weiteres Seil 20 auf die Lamellen 8 einwirkt. Die Aufgabe des Bimetallhebels 19 ist es, eine übermäßige Erwärmung des Kollektors zu verhindern. Ab einem bestimmten Temperaturgrenzwert verformt sich der Bimetallhebel 19 so, dass das weitere Seil 20 gespannt wird und die Lamellen 8 aus ihrer optimalen Position gedreht werden. Dadurch wird die Wärmeaufnahme wesentlich verringert, und eine Überhitzung kann zuverlässig vermieden werden. Bei der Ausführungsvariante von Fig. 10 ist eine Reihe von Parabolspiegeln 14 in Längsrichtung verschiebbar angeordnet. Die Verschiebung der Parabolspiegel 14 erfolgt durch die Vorrichtung 1. Dabei wird das Übersetzungsverhältnis so gewählt, dass die Lichtstrahlen auf die Kollektorröhren 13 bzw. die daran angebrachten Photovoltaikstreifen 16 gerichtet werden. In den Fig. 7, 8 und 9 wird die Wirkungsweise der Verschiebung des Parabolspiegelelementes 32, das sich aus den einzelnen Parabolspiegeln 14 zusammensetzt, erklärt. Mit 15 ist dabei der Brennpunkt der einzelnen Parabolspiegel 14 bezeichnet. Die Ausführungsvariante von Fig. 14 unterscheidet sich von der von Fig. 10 dadurch, dass die Parabolspiegel 14 schwenkbar angeordnet sind. Durch Steuerungsseile 30 in Verlängerung der Steuerungsseile 10 wird bewirkt, dass der Anstellwinkel der Parabolspiegel 14 identisch ist. Die Schwenkachse 29 der Parabolspiegel 14 ist an Kollektorrohren 13 vorgesehen, wobei in den Fig. 11 bis 13 ersichtlich ist, dass die Lichtstrahlen 34 durch geeignete Schwenkbewegung stets auf die nächstfolgende Kollektorröhre 13 bzw. den darauf angebrachten Photovoltaikstreifen 16 gelenkt werden.6 shows the connection of the device 1 according to the invention via the control cables 10 to the slats 8, which are fastened to a collector housing via slat fastening anchors 21. In addition, a bimetallic lever 19 is provided, which acts on the slats 8 via a further cable 20. The function of the bimetal lever 19 is to prevent excessive heating of the collector. Above a certain temperature limit, the bimetallic lever 19 deforms such that the additional rope 20 is tensioned and the slats 8 are rotated from their optimal position. As a result, the heat absorption is significantly reduced and overheating can be reliably avoided. 10, a series of parabolic mirrors 14 is arranged to be displaceable in the longitudinal direction. The parabolic mirrors 14 are shifted by the device 1. The transmission ratio is selected such that the light beams are directed onto the collector tubes 13 or the photovoltaic strips 16 attached to them. 7, 8 and 9, the mode of action of the displacement of the parabolic mirror element 32, which is composed of the individual parabolic mirrors 14, is explained. 15 is the focal point of the individual parabolic mirrors 14. The embodiment variant of FIG. 14 differs from that of FIG. 10 in that the parabolic mirrors 14 are arranged pivotably. Control ropes 30 extending the control ropes 10 have the effect that the angle of attack of the parabolic mirror 14 is identical. The pivot axis 29 of the parabolic mirror 14 is provided on collector tubes 13, it being apparent from FIGS. 11 to 13 that the light beams 34 are always directed onto the next collector tube 13 or the photovoltaic strips 16 attached thereon by means of a suitable pivoting movement.
In den Ausführungsvarianten von Fig. 10 und 14 gemeinsam ist, dass die Kollektorröhren 13 an Sammlern 17 befestigt sind, die Anschlüsse 18 aufweisen, um das erwärmte Medium abzuführen. Das Gehäuse des Kollektors ist mit 5 bezeichnet und die transparente Abdeckung mit 6. Der Bimetallhebel 19 dient, wie oben beschrieben, dazu, bei Überhitzung eine Verstellung der Parabolspiegel 14 aus der optimalen Stellung zu bewirken, so dass eine Abkühlung des Kollektor möglich ist.What is common in the embodiment variants of FIGS. 10 and 14 is that the collector tubes 13 are fastened to collectors 17 which have connections 18 in order to discharge the heated medium. The housing of the collector is denoted by 5 and the transparent cover by 6. The bimetallic lever 19 serves, as described above, to bring about an adjustment of the parabolic mirror 14 from the optimal position in the event of overheating, so that the collector can cool down.
Die vorliegende Erfindung ermöglicht es, optimale Wirkungsgrade bei einfachstem Aufbau zu erzielen und insbesondere ohne Fremdenergiezufuhr und die Notwendigkeit elektronischer Steuerungseinrichtungen auszukommen. The present invention makes it possible to achieve optimum efficiencies with the simplest construction and, in particular, to do without external energy supply and the need for electronic control devices.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATGM281/2001 | 2001-04-11 | ||
AT0028101U AT5310U1 (en) | 2001-04-11 | 2001-04-11 | LIGHT STEERING DEVICE |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002084183A1 true WO2002084183A1 (en) | 2002-10-24 |
Family
ID=3486353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2002/000111 WO2002084183A1 (en) | 2001-04-11 | 2002-04-11 | Device for controlling solar collectors |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT5310U1 (en) |
WO (1) | WO2002084183A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1447561A1 (en) * | 2003-01-31 | 2004-08-18 | Mono Pumps Limited | Solar-powered pumping device |
EP2017552A2 (en) * | 2007-07-19 | 2009-01-21 | Robert Bosch GmbH | Solar collector and device for limiting the temperature in a solar collector |
FR2950955A1 (en) * | 2009-10-06 | 2011-04-08 | Solar Performance Et Dev | DEVICE FOR CONCENTRATING SOLAR RADIATIONS |
WO2013101696A3 (en) * | 2011-12-29 | 2013-08-29 | Sulas Industries | Solar tracker for solar energy devices |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2455313A1 (en) * | 1979-04-27 | 1980-11-21 | Perrier Jean | Automatic tracking of radiative energy source - focusses received radiation to activate electric, fluidic, or pneumatic control of focussing devices |
US4304221A (en) * | 1975-07-11 | 1981-12-08 | Vulcan Australia Limited | Solar tracking device |
US4309984A (en) * | 1979-12-10 | 1982-01-12 | Canadian Sun Systems Ltd. | Solar energy collection system |
FR2531520A1 (en) * | 1982-08-04 | 1984-02-10 | Sacre Louis | Orientable solar collector. |
WO1992011496A1 (en) * | 1990-12-18 | 1992-07-09 | Hans Ackeret | Solar collector sun tracking device |
-
2001
- 2001-04-11 AT AT0028101U patent/AT5310U1/en not_active IP Right Cessation
-
2002
- 2002-04-11 WO PCT/AT2002/000111 patent/WO2002084183A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4304221A (en) * | 1975-07-11 | 1981-12-08 | Vulcan Australia Limited | Solar tracking device |
FR2455313A1 (en) * | 1979-04-27 | 1980-11-21 | Perrier Jean | Automatic tracking of radiative energy source - focusses received radiation to activate electric, fluidic, or pneumatic control of focussing devices |
US4309984A (en) * | 1979-12-10 | 1982-01-12 | Canadian Sun Systems Ltd. | Solar energy collection system |
FR2531520A1 (en) * | 1982-08-04 | 1984-02-10 | Sacre Louis | Orientable solar collector. |
WO1992011496A1 (en) * | 1990-12-18 | 1992-07-09 | Hans Ackeret | Solar collector sun tracking device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1447561A1 (en) * | 2003-01-31 | 2004-08-18 | Mono Pumps Limited | Solar-powered pumping device |
EP2017552A2 (en) * | 2007-07-19 | 2009-01-21 | Robert Bosch GmbH | Solar collector and device for limiting the temperature in a solar collector |
EP2017552A3 (en) * | 2007-07-19 | 2012-07-25 | Robert Bosch GmbH | Solar collector and device for limiting the temperature in a solar collector |
FR2950955A1 (en) * | 2009-10-06 | 2011-04-08 | Solar Performance Et Dev | DEVICE FOR CONCENTRATING SOLAR RADIATIONS |
WO2011042656A1 (en) * | 2009-10-06 | 2011-04-14 | Solar Performance Et Developpement | Device for concentrating solar radiation |
US9383121B2 (en) | 2009-10-06 | 2016-07-05 | Solar Performance Et Developpement | Device for concentrating solar radiation |
WO2013101696A3 (en) * | 2011-12-29 | 2013-08-29 | Sulas Industries | Solar tracker for solar energy devices |
US8763601B2 (en) | 2011-12-29 | 2014-07-01 | Sulas Industries, Inc. | Solar tracker for solar energy devices |
Also Published As
Publication number | Publication date |
---|---|
AT5310U1 (en) | 2002-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19924783C2 (en) | Optical device | |
DE19801078C2 (en) | Concentrator for focusing solar radiation | |
EP0400367B1 (en) | Exterior wall element for buildings | |
US8324496B1 (en) | Low-profile single-axis tracker with wind mitigation | |
EP0111503B1 (en) | Installation for automatically directing a solar energy concentration reflector | |
DE69429449T2 (en) | PLANT FOR COLLECTING RADIATION ENERGY | |
EP1075629B1 (en) | Thermohydraulic sun-tracking device | |
EP2171767A2 (en) | Solar power plant | |
WO2009074281A2 (en) | Roofing made of sun protection elements | |
EP1872066A2 (en) | Collector and collector arrangement for generating heat from incident radiation | |
DE19700111A1 (en) | Sun protection device in the manner of a blind | |
WO2002084182A1 (en) | Solar collector | |
DE4221896C2 (en) | Solar system | |
WO2006005303A1 (en) | Device for concentrating light, particularly sunlight | |
EP0800035B1 (en) | Shading system for glazing to block direct sunlight from predefined orientations | |
WO2002084183A1 (en) | Device for controlling solar collectors | |
DE102008008403A1 (en) | Plant i.e. solar power station, for converting sunlight into another energy form i.e. heat energy, has sensor device reacting on reflected light, and allowing space resolved estimation of incident radiation | |
WO2008119564A1 (en) | Method and device for the utilization of solar energy | |
DE4208255A1 (en) | Moving solar collector - has reflector for each absorber tube to increase radiation intensity on angular deviations from nominal setting to follow sun movement | |
DE20220874U1 (en) | Solar collector for collecting solar energy has a casing and a thermal/heat absorber held by distancing ribs in the casing with flow channels for a medium | |
DE10125273B4 (en) | Optical element in the manner of a linear Fresnel lens and use of the optical element as glare protection from direct sunlight | |
DE2651738A1 (en) | Solar energy collector in rectangular housing - with pressed glass cover lens-shaped outside and faceted on the underside | |
DE3927947A1 (en) | Device for controlling light transmission from sun - comprises focussing element together with reflectors and highly transparent elements | |
AT412821B (en) | Solar collector for collecting solar energy has a casing and a thermal/heat absorber held by distancing ribs in the casing with flow channels for a medium | |
DE19845424A1 (en) | Sun guard for incident sunlight comprizes constant-spaced reflecting slats pivoting round axis to track and direct sun rays into or clear of building. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 090762002 Country of ref document: AT |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |