WO2002081597A1 - Method and device for separating sulfuric compound contained in oil - Google Patents

Method and device for separating sulfuric compound contained in oil Download PDF

Info

Publication number
WO2002081597A1
WO2002081597A1 PCT/JP2002/002871 JP0202871W WO02081597A1 WO 2002081597 A1 WO2002081597 A1 WO 2002081597A1 JP 0202871 W JP0202871 W JP 0202871W WO 02081597 A1 WO02081597 A1 WO 02081597A1
Authority
WO
WIPO (PCT)
Prior art keywords
petroleum
sulfur compounds
ozone
treatment
ozone atmosphere
Prior art date
Application number
PCT/JP2002/002871
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihide Takino
Saburo Nozawa
Issei Yamanishi
Original Assignee
Ohtix Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtix Inc. filed Critical Ohtix Inc.
Publication of WO2002081597A1 publication Critical patent/WO2002081597A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/14Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with ozone-containing gases

Definitions

  • the present invention relates to a method and a method for separating sulfur compounds contained in petroleum such as kerosene and light oil.
  • a hydrogen reduction desulfurization method As a method for removing sulfur compounds in petroleum, a hydrogen reduction desulfurization method is conventionally known. This method uses an expensive catalyst to react organic sulfur compounds in petroleum with hydrogen under the conditions of high temperature and high pressure to produce hydrogen sulfide (poisonous).
  • Japanese Patent Application Laid-Open No. 417,287 / 87 discloses that fuel oil is contained by subjecting petroleum oil to an oxidizing agent such as hydrogen peroxide or ozone by bubbling or adding the oxidizing agent or the like as a liquid. There is disclosed a method of utilizing the change in the boiling point, solubility, and melting point of the organic sulfur compound to separate the organic sulfur compound from the fuel oil.
  • Japanese Patent Application Laid-Open No. 7-197036 describes a method for extracting and separating an organic sulfur compound of a fuel oil using an extraction solvent.
  • the above-mentioned hydrogen reduction desulfurization method has a problem that it requires at least a high temperature and a high pressure. Further, the method described in the above-mentioned Japanese Patent Application Laid-Open No. 417,877 has a major problem in the reaction between petroleum and the oxidizing agent, and cannot be oxidized sufficiently effectively. The efficiency was so poor that separation could not be performed effectively. In addition, there is a problem that an oxidizing agent such as hydrogen peroxide is required for a long time and in a large amount.
  • the present invention solves the above-mentioned drawbacks of the conventional method for separating sulfur compounds, does not use high temperature and high pressure, and does not require expensive catalysts, etc. It is an object of the present invention to provide a new method and apparatus capable of separating a sulfur compound contained in water. Disclosure of the invention
  • a method for separating sulfur compounds contained in petroleum is a method for separating sulfur compounds contained in petroleum from petroleum.
  • the first characteristic is that the catalytic reaction is performed to oxidize sulfur compounds in petroleum.
  • the method for separating a sulfur compound contained in petroleum according to the present invention in addition to the first feature described above, further comprises solid-liquid separation of a solid product generated in petroleum by a catalytic reaction treatment in an ozone atmosphere. This is the second feature.
  • the method for separating sulfur compounds contained in petroleum according to the present invention in addition to the first or second feature, further comprises an extraction solvent or water as an extraction solvent for petroleum subjected to a catalytic reaction treatment in an ozone atmosphere.
  • the third feature is that residual sulfur compounds are extracted by using water or water itself.
  • the method for separating sulfur compounds contained in petroleum of the present invention in addition to the first or second feature, further comprises using an adsorbent to remove residual oil from petroleum that has been subjected to a catalytic reaction treatment in an ozone atmosphere.
  • the fourth feature is to adsorb the sulfur compounds that are present.
  • the method for separating sulfur compounds contained in petroleum according to the present invention in addition to the above first or second feature, further comprises an extraction solvent and an adsorbent for petroleum that has been subjected to a contact reaction treatment in an ozone atmosphere.
  • the fifth feature is that the remaining sulfur compounds are separated by combining with the adsorption treatment by the method.
  • the apparatus for separating sulfur compounds contained in petroleum according to the present invention comprises: a contact reaction tank that forms an ozone atmosphere in an internal space; a means for supplying ozone to the contact reaction tank;
  • the sixth feature is that it has at least means for spraying and supplying treated oil.
  • the ozone is not injected into the petroleum but supplied to the formed ozone atmosphere in the form of a mist and the ozone is separated from the ozone.
  • the contact reaction treatment is performed. By performing such treatment, it becomes possible to bring oil and gaseous ozone into contact with a sufficient contact area, and to oxidize sulfur compounds in petroleum with sufficient reaction efficiency and reaction rate. It becomes possible.
  • the oxidation of organic sulfur compounds which are the main sulfur compounds in petroleum, proceeds at a sufficient reaction efficiency and reaction rate, and the oxidized organic sulfur compounds As its solubility in petroleum decreases, its polarity increases.
  • the oxidized organic sulfur compounds are precipitated in petroleum and can be separated. Even if the organic sulfur compound is not directly precipitated, the polarity of the oxidized organic sulfur compound is sufficiently increased, so that the oxidized organic sulfur compound can be easily separated from petroleum by a subsequent treatment. Therefore, according to the first feature, by oxidizing sulfur compounds by a very effective catalytic reaction by spraying petroleum into an ozone atmosphere, it is possible to use very high temperatures, high pressures, and without using expensive catalysts. It is possible to separate sulfur compounds from petroleum at low cost and with sufficient efficiency.
  • the oxidation of organic sulfur compounds and the like in petroleum proceeds by the catalytic reaction treatment in an ozone atmosphere, the oxidation lowers the solubility of the organic sulfur compounds and the like in petroleum. Precipitates as a solid product. Other compounds with heteroatoms also precipitate as oxidized solid products if they cause a decrease in solubility due to oxidation.
  • ozonide which is a reaction intermediate produced in the contact reaction, also precipitates as a solid product. Therefore, sulfur compounds and other hetero compounds contained in petroleum can be easily separated by solid-liquid separation of these solid products generated in petroleum.
  • petroleum that has been subjected to a catalytic reaction treatment in an ozone atmosphere can be used.
  • Effective extraction and separation of sulfur oxides remaining in petroleum by extracting the remaining sulfur compounds using the extraction solvent, or an extraction solvent with water, or water itself. can do. That is, the sulfur compound oxidized by the contact reaction treatment in the ozone atmosphere may be precipitated as a solid product or may remain in petroleum, depending on the solubility.
  • the ratio can be adjusted by adjusting the temperature or other conditions.
  • the precipitate as the solid product can be separated by solid-liquid separation as described in the second feature.
  • the organic sulfur compounds remaining in petroleum can be extracted very easily by using an extraction solvent, as a result of the oxidation, the polarity is sufficiently increased without precipitation. It becomes.
  • a polar solvent can be used as the extraction solvent.
  • water obtained by adding water to the extraction solvent or water itself can be used.
  • it is an extraction solvent that can easily extract the oxidized organic sulfur compound remaining in the petroleum oil its type and combination are not particularly limited. If water is used, costs can be reduced and handling is easy.
  • the sulfur compound remaining in the petroleum can be removed by using an extraction solvent, water added thereto, or water itself. It can be effectively extracted and separated.
  • an adsorbent is applied to petroleum that has been subjected to a contact reaction treatment in an ozone atmosphere. By adsorbing the remaining sulfur compounds using, the sulfur oxides remaining in the petroleum can be effectively adsorbed and separated.
  • the organic sulfur compounds remaining therein are sufficiently oxidized by sufficient contact with the ozone, and the polarity thereof is sufficiently increased. ing. Therefore, the use of the adsorbent makes it very easy to adsorb and separate.
  • a solid adsorbent such as silica such as silica gel, charcoal, and metal can be mainly used.
  • sulfur compounds remaining in petroleum can be effectively adsorbed and separated using an adsorbent.
  • the extraction solvent is applied to the petroleum that has been subjected to the contact reaction treatment in an ozone atmosphere. Separation of sulfur compounds remaining in petroleum more effectively and more effectively than combining the extraction and adsorption treatments alone by combining the extraction treatment with water and the adsorption treatment with an adsorbent Can be.
  • the order of the extraction process and the adsorption process does not matter.
  • the apparatus for separating sulfur compounds contained in petroleum when ozone is supplied to the contact reaction tank by means of supplying ozone, an ozone atmosphere is formed inside.
  • the petroleum to be treated that is, the petroleum to be treated
  • the spray supply means into the contact reaction tank in which the ozone atmosphere is formed
  • the contact reaction between the petroleum and the ozone is started.
  • the contact reaction is performed with a sufficiently large contact surface area and contact time secured on the surface of the fine particles, sulfur compounds in petroleum may be oxidized with significantly improved reaction efficiency and reaction speed. And the polarity can be increased sufficiently.
  • Petroleum treated in the catalytic reactor is discharged from the catalytic reactor and used for the subsequent sulfur compound separation process.
  • the contact reaction treatment in the contact reaction tank can be performed by batch or continuous treatment.
  • the petroleum can be contact-reacted in a spray state in an ozone atmosphere in the contact reaction tank, and the oxidation of the sulfur compounds contained in the petroleum can be sufficiently performed.
  • the reaction can be performed with high reaction efficiency and reaction speed.
  • the polarity of the contained sulfur compound can be sufficiently increased.
  • it does not require costly equipment such as high temperature and high pressure and complicated mechanisms, etc.It is possible to efficiently separate sulfur compounds from petroleum at low cost with relatively simple and compact equipment. Becomes BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic configuration diagram showing an example of the separation device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • an ozone generator 1 is provided as a means for supplying ozone, and the ozone generated by the ozone generator is supplied to a contact reaction tank 4. This forms an ozone atmosphere in the contact reaction tank 4.
  • an oil tank 2 and a spraying means 3 are provided as means for spraying and supplying the oil to be treated to the contact reaction tank 4, and the oil to be treated from the oil tank 2 is supplied to the spraying means 3.
  • the mist is supplied into the contact reaction tank 4 in the form of a mist, whereby the contact reaction between the gaseous ozone and the particulate oil to be treated is performed.
  • the petroleum to be supplied from the oil tank 2 may be pre-fractionated petroleum such as light oil or kerosene, or may be a mixed petroleum, in other words, any liquid petroleum that can be sprayed and supplied.
  • the contact reaction in the contact reaction tank 4 may be of a batch type or a continuous reaction type.
  • the ambient temperature and pressure are not particularly limited, but the reaction can be performed at normal temperature and normal pressure, for example, by reacting at a temperature of 60 ° C. or lower and normal pressure.
  • the temperature and pressure should be adjusted appropriately by increasing or decreasing.
  • the ozone atmosphere can be a mixture with air, and its concentration can be as low as 1.5%, for example. However, the ozone concentration should be set to an appropriate concentration in relation to other conditions. It will be decided by experiment.
  • the contact reaction treatment by spraying the petroleum into the ozone atmosphere, the petroleum is brought into contact with the ozone with a sufficient contact area and contact time, and as a result, the reaction efficiency and the reaction rate are greatly improved.
  • Organic sulfur compounds contained in petroleum are sufficiently oxidized and their polarity is sufficiently increased. Other heteroatom compounds in petroleum are also oxidized.
  • ozone is generated.
  • the petroleum that has undergone the contact reaction treatment with ozone is sent to the solid-liquid separation tank 5 batchwise or continuously.
  • a solid product generated by the contact reaction treatment with ozone is separated.
  • the separated solid products include oxidized organic sulfur compounds, ozonides, and other hetero compounds.
  • Organic sulfur compounds in petroleum are oxidized and precipitate as sulphoxides or sulphone compounds due to the increased polarity of the molecules.
  • Orefin compounds in petroleum are oxidized and precipitate as ozonides.
  • oxidized organic sulfur compounds and ozonides are dissolved in hydrocarbon components, and not all of them are precipitated.
  • the solubility of these oxidized compounds can be reduced, and precipitation can be promoted.
  • the solid product separated in the solid-liquid separation tank 5 is further oxidized so that ozonide becomes a liquid compound (ketone and carboxylic acid), and is separated from the oxidized organic sulfur compound which is a solid compound by sedimentation or the like. Can be separated through
  • oxidized solid products are water-soluble, but the present invention uses gaseous ozone and does not oxidize with an aqueous solution, so that the generated oxides are easily precipitated and separated as solids. can do.
  • the oil from which the solid product has been separated in the solid-liquid separation tank 5 is sent to an extraction tank 6.
  • the solid product may not be precipitated depending on the conditions. Therefore, in this case, the petroleum after the contact reaction treatment may be supplied to the extraction tank 6 as it is without performing solid-liquid separation in the solid-liquid separator 5.
  • the extraction tank 6 is supplied with an extraction solvent from a solvent tank 7.
  • the extraction solvent alcohols such as methanol, ketones such as acetone, and other polar solvents can be used alone or in combination of two or more in one or more extraction tanks 6. Alternatively, water obtained by adding water to the extraction solvent or water itself may be used.
  • the organic sulfur compound remaining in the petroleum is sufficiently oxidized by the contact reaction treatment in the ozone atmosphere, and has a sufficient polarity compared to other hydrocarbon components. Therefore, it is possible to easily and efficiently extract to the extraction solvent side.
  • Ozonide remaining in petroleum is also extracted. Of course, other highly polar hetero compounds are also extracted.
  • the petroleum and the extraction solvent that have been subjected to the extraction treatment in the extraction tank 6 are sent to the separator 8 where they are separated into the extraction solvent and petroleum, and the extraction solvent containing organic sulfur compounds and extracts such as ozonide is sent to the distillation column 9.
  • Can be The separated oil is sent to the adsorption tank 10.
  • the separation of the petroleum and the extraction solvent in the separator 8 can use a known separation technique.
  • the two are separated by distillation such as vacuum distillation by utilizing the difference between the boiling point of the extraction solvent and the boiling point of the extracted oxidizing compound (organic sulfur compound, ozonide, etc.).
  • the oxidized compound (organic sulfur compound, ozonide, etc.) oxidized by the contact reaction treatment in an ozone atmosphere has a higher boiling point because the molecular weight and polarity are increased compared to before the reaction. .
  • polar solvents such as methanol used as the extraction solvent have a much lower boiling point. For this reason, by distilling both under reduced pressure, it is possible to separate them without heating. Since low-temperature distillation is possible, unstable ozonide can also be prevented from running away and decomposing.
  • the extraction solvent can be returned to the solvent tank 7.
  • the oxidized compounds (organosulfur compounds, ozonides, etc.) from which the extraction solvent has been separated are further oxidized to convert ozonides into liquid compounds (ketones and carboxylic acids) and separated from the remaining solid compounds, such as oxidized organic sulfur compounds. can do.
  • the extraction solvent separated from petroleum by the separator 8 was distilled. Before the distillation in the column 9, the hydrocarbon compound mixed in the extraction solvent may be separated in advance by adding water. Hydrocarbon compounds are less soluble in water than the aforementioned oxidized compounds (organic sulfur compounds, ozonides, etc.) and can be separated.
  • the adsorption tank 10 can be provided with a solid adsorbent such as silica gel, charcoal, and metal. Oxidizing compounds (organic sulfur compounds, ozonides, etc.) remaining in petroleum are adsorbed by the adsorbent and separated by the oil being sufficiently contacted with the adsorbent while passing through the adsorption tank 10. You.
  • the polarity of the oxidized compounds (organic sulfur compounds, ozonides, etc.) oxidized by the contact reaction treatment by spraying petroleum under an ozone atmosphere is sufficiently increased compared to before the reaction. Therefore, the adsorption of the oxidized compound in petroleum can be performed very efficiently and smoothly.
  • the petroleum that has undergone the adsorption separation treatment in the adsorption tank 10 is sent to the refined petroleum tank 11.
  • the oxidized organic sulfur compounds and the like adsorbed in the adsorption tank 10 are collected and further separated for each compound and used as a useful resource in the fields of manufacturing pharmaceuticals, agricultural chemicals, heat-resistant resins and the like. Similarly, the oxidized organic sulfur compounds and the like obtained through the solid-liquid separation tank 5 and the distillation column 9 are further separated and recovered, thereby providing useful resources. Used as a source.
  • the contact reaction treatment is carried out by spraying oil into the ozone atmosphere in the contact reaction tank 4, and then the oil subjected to the treatment is extracted in the extraction tank 6.
  • the sulfur content was separated by a combination of the treatment and the adsorption treatment in the adsorption tank 10
  • a combination of the contact reaction treatment and the extraction treatment may be used.
  • a combination of the contact reaction treatment and the adsorption treatment can be used.
  • the petroleum that has been subjected to the catalytic reaction treatment by spraying and supplying the petroleum into the ozone atmosphere, together with the extraction treatment and the adsorption treatment, or separately, the organic sulfur compounds and other heteroatoms contained in the petroleum Operations for separating compounds, such as adjusting solubility by adding water or other liquids, heating, cooling, pressurizing, solid-liquid separation, centrifugation, and distillation. Target or chemical operation may be combined.
  • Such treatment combined with the contact reaction treatment in the ozone atmosphere also falls within the technical scope of the present invention.
  • the ozone generated by the ozone generator 1 using air as a raw material is supplied as a mixture with air to the contact reaction tank 4 having a volume of 200 m1, thereby forming an ozone atmosphere in the contact reaction tank 4. did. Then, commercially available kerosene (sulfur content: 33.4 ppm) 5 Om1 was sprayed and supplied to the contact reaction tank 4 by the spraying means 3, and the contact reaction treatment was performed with the spray kerosene in the ozone atmosphere.
  • the temperature in the contact reaction tank 4 was set to 20 ° C or less.
  • Kerosene after treatment 4 From the above, it was clarified that the spraying of kerosene in an ozone atmosphere and the contact reaction treatment allowed the subsequent separation of sulfur compounds from kerosene to be performed very smoothly and with a sufficient desulfurization rate.
  • Example 2
  • the ozone generated by the ozone generator 1 using air as a raw material is supplied as a mixture with air to the contact reaction tank 4 having a volume of 200 m1, thereby forming an ozone atmosphere in the contact reaction tank 4. did. Then, 50 ml of commercially available light oil (sulfur content: 250 ppm) was sprayed and supplied to the contact reaction tank 4 by the spray means 3, and the contact reaction treatment with the spray light oil was performed in the ozone atmosphere.
  • the temperature in the contact reaction tank 4 was set to 40 ° C or less.
  • the present invention provides a method for separating sulfur compounds contained in petroleum from petroleum, comprising the steps of: By supplying petroleum to the atmosphere in a mist state, a contact reaction treatment with ozone is performed, thereby oxidizing sulfur compounds in petroleum.
  • Oxidation of sulfur compounds in petroleum is achieved by supplying mist of petroleum into the ozone atmosphere. 6 that can be carried out in an environment that is novel and has a very high catalytic reaction effect. Therefore, it does not require high-temperature, high-pressure, expensive catalysts, etc. Can be separated. Further, according to the method for separating sulfur compounds contained in petroleum according to claim 2, in addition to the effect of the configuration according to claim 1, petroleum can be obtained by a catalytic reaction treatment in an ozone atmosphere. The solid product generated inside is separated into solid and liquid,
  • the water-soluble sulfur compounds generated by the contact reaction treatment in an ozone atmosphere are precipitated as solid products in petroleum without dissolving them, and are directly separated from petroleum without any other separation treatment can do.
  • the catalytic reaction treatment in an ozone atmosphere is performed.
  • the remaining petroleum compounds were extracted from the applied petroleum using the extraction solvent, or the extraction solvent plus water, or water itself.
  • Sulfur compounds that are oxidized by the catalytic reaction treatment in an ozone atmosphere and remain in petroleum with their polarities increased can be effectively extracted and separated.
  • Sulfur compounds that are oxidized by the catalytic reaction treatment in an ozone atmosphere and remain in petroleum with their polarities increased can be effectively adsorbed and separated.
  • a catalytic reaction treatment in an ozone atmosphere is provided. The remaining sulfur compounds were separated from the petroleum that was subjected to the extraction process using an extraction solvent and the adsorption process using an adsorbent.
  • Sulfur compounds that are oxidized by the contact reaction treatment in an ozone atmosphere and remain in the petroleum in a state of increased polarity are more easily effected than when the extraction treatment and the adsorption treatment are performed alone. Can be separated.
  • a contact reaction tank that forms an ozone atmosphere in an internal space; a unit that supplies ozone to the contact reaction tank; At least means for spraying and supplying the oil to be treated into the reaction tank.
  • Petroleum can be contact-reacted in a spray state in an ozone atmosphere in a contact reaction tank, and oxidation of sulfur compounds contained in petroleum can be performed with sufficient reaction efficiency and reaction speed.
  • the polarity of the contained sulfur compound can be sufficiently increased.
  • it does not require costly equipment such as high temperature and high pressure or complicated mechanisms, and it is relatively easy and compact equipment to efficiently and efficiently separate sulfur compounds from petroleum at low cost. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

A method and a device for separating sulfuric compound contained in oil; the method, comprising the step of feeding fog oil into an ozone atmosphere to perform a treatment for catalytic reaction to ozone so as to oxidize the sulfuric compound contained in the oil; the device, characterized by comprising at least a catalytic reaction tank (4) forming the ozone atmosphere in an internal space, a means (1) for feeding ozone into the catalytic reaction tank (4), and means (2, 3) for feeding the treated oil into the catalytic reaction tank (4) by spraying.

Description

石油に含まれる硫黄化合物の分離方法と分離装置 Method and apparatus for separating sulfur compounds from petroleum
技術分野 Technical field
本発明は灯油、 軽油等の石油に含まれる硫黄化合物の分離方法と分離 明  The present invention relates to a method and a method for separating sulfur compounds contained in petroleum such as kerosene and light oil.
装置に関する。 Related to the device.
田 背景技術  Field background technology
最近、 世界的に求められている灯油、 軽油等の石油製品の改質要求は、 環境保全の立場から、 S O x、 N O x等の酸性ガスの排出を規制するため に原因物質と考えられる、 それら石油製品中のへテロ原子を含んだ成分 を減少させることにある。 Recently, the demand for reforming petroleum products such as kerosene and gas oil, which is required worldwide, is considered to be a causative substance to regulate the emission of acid gases such as SO x and NO x from the viewpoint of environmental protection. The purpose is to reduce the components containing heteroatoms in these petroleum products.
石油中の硫黄化合物を除去する方法として、 従来、 水素還元脱硫法が 知られている。 この方法は高温、 高圧という条件下において、 高価な触 媒を用いて石油中の有機硫黄化合物を水素と反応させ、 硫化水素 (有毒 As a method for removing sulfur compounds in petroleum, a hydrogen reduction desulfurization method is conventionally known. This method uses an expensive catalyst to react organic sulfur compounds in petroleum with hydrogen under the conditions of high temperature and high pressure to produce hydrogen sulfide (poisonous).
) として石油から分離させる方法である。 ) Is to separate it from petroleum.
また特開平 4一 7 2 3 8 7号公報には、 燃料油を過酸化水素やオゾン 等の酸化剤を用いて、 石油中に酸化剤等をバブリング或いは液体として 加える処理をすることで、 含有する有機硫黄化合物の沸点、 溶解度、 融 点の変化を利用して、 これによつて燃料油から有機硫黄化合物を分離す る方法が開示されている。  Japanese Patent Application Laid-Open No. 417,287 / 87 discloses that fuel oil is contained by subjecting petroleum oil to an oxidizing agent such as hydrogen peroxide or ozone by bubbling or adding the oxidizing agent or the like as a liquid. There is disclosed a method of utilizing the change in the boiling point, solubility, and melting point of the organic sulfur compound to separate the organic sulfur compound from the fuel oil.
また特開平 7— 1 9 7 0 3 6号公報には、 抽出溶媒を用いて、 燃料油 の有機硫黄化合物を抽出して分離する方法が記載されている。  In addition, Japanese Patent Application Laid-Open No. 7-197036 describes a method for extracting and separating an organic sulfur compound of a fuel oil using an extraction solvent.
ところが上記水素還元脱硫法においては、 少なくとも高温、 高圧を必 要とする問題がある。 また上記特開平 4一 7 2 3 8 7号公報に記載の方法では、 石油と酸化 剤との反応のさせ方等に大きな問題があり、 十分効果的に酸化させるこ とができず、 或いはその効率が非常に悪く、 分離が効果的に行えなかつ た。 また過酸化水素等の酸化剤を長時間、 多量に必要とする問題があり、 実用上、 経済性からも大きな問題がある。 However, the above-mentioned hydrogen reduction desulfurization method has a problem that it requires at least a high temperature and a high pressure. Further, the method described in the above-mentioned Japanese Patent Application Laid-Open No. 417,877 has a major problem in the reaction between petroleum and the oxidizing agent, and cannot be oxidized sufficiently effectively. The efficiency was so poor that separation could not be performed effectively. In addition, there is a problem that an oxidizing agent such as hydrogen peroxide is required for a long time and in a large amount.
更に上記特開平 7 - 1 9 7 0 3 6号公報に記載の抽出方法では、 抽出 効率が非常に不十分であるという問題があった。  Further, the extraction method described in Japanese Patent Application Laid-Open No. 7-197036 has a problem that the extraction efficiency is very insufficient.
そこで本発明は上記従来におけるの硫黄化合物の分離方法の欠点を解 消し、 高温や高圧を用いることなく、 また高価な触媒等を必要とするこ となく、 非常に効率よく且つ低コストで、 石油に含まれる硫黄化合物の 分離を行うことができる新たな方法と装置の提供を課題とする。 発明の開示  Therefore, the present invention solves the above-mentioned drawbacks of the conventional method for separating sulfur compounds, does not use high temperature and high pressure, and does not require expensive catalysts, etc. It is an object of the present invention to provide a new method and apparatus capable of separating a sulfur compound contained in water. Disclosure of the invention
上記課題を解決するため、 本発明の石油に含まれる硫黄化合物の分離 方法は、 含有する硫黄化合物を石油から分離する方法であって、 オゾン 雰囲気中に石油を霧状に供給することでオゾンとの接触反応処理を行い、 これによつて石油中の硫黄化合物を酸化させることを第 1の特徴として いる。  In order to solve the above problems, a method for separating sulfur compounds contained in petroleum according to the present invention is a method for separating sulfur compounds contained in petroleum from petroleum. The first characteristic is that the catalytic reaction is performed to oxidize sulfur compounds in petroleum.
また本発明の石油に含まれる硫黄化合物の分離方法は、 上記第 1の特 徴に加えて、 オゾン雰囲気中での接触反応処理によって、 石油中に生じ た固体生成物を固液分離することを第 2の特徴としている。  Further, the method for separating a sulfur compound contained in petroleum according to the present invention, in addition to the first feature described above, further comprises solid-liquid separation of a solid product generated in petroleum by a catalytic reaction treatment in an ozone atmosphere. This is the second feature.
また本発明の石油に含まれる硫黄化合物の分離方法は、 上記第 1又は 第 2の特徴に加えて、 オゾン雰囲気中での接触反応処理を施した石油に 対し、 抽出溶媒、 又は抽出溶媒に水を加えたもの、 又は水そのものを用 いて、 残留している硫黄化合物の抽出を行うことを第 3の特徴としてい る。 また本発明の石油に含まれる硫黄化合物の分離方法は、 上記第 1又は 第 2の特徴に加えて、 オゾン雰囲気中での接触反応処理を行った石油に 対し、 吸着剤を用いて、 残留している硫黄化合物の吸着を行うことを第 4の特徴としている。 Further, the method for separating sulfur compounds contained in petroleum according to the present invention, in addition to the first or second feature, further comprises an extraction solvent or water as an extraction solvent for petroleum subjected to a catalytic reaction treatment in an ozone atmosphere. The third feature is that residual sulfur compounds are extracted by using water or water itself. Further, the method for separating sulfur compounds contained in petroleum of the present invention, in addition to the first or second feature, further comprises using an adsorbent to remove residual oil from petroleum that has been subjected to a catalytic reaction treatment in an ozone atmosphere. The fourth feature is to adsorb the sulfur compounds that are present.
また本発明の石油に含まれる硫黄化合物の分離方法は、 上記第 1又は 第 2の特徴に加えて、 オゾン雰囲気中での接触反応処理を行った石油に 対し、 抽出溶媒による抽出処理と吸着剤による吸着処理とを組み合わせ て、 残留している硫黄化合物の分離を行うことを第 5の特徴としている。 また本発明の石油に含まれる硫黄化合物の分離装置は、 内空間にォゾ ン雰囲気を構成する接触反応槽と、 該接触反応槽にオゾンを供給する手 段と、 前記接触反応槽内に被処理石油を噴霧して供給する手段とを少な くとも備えたことを第 6の特徴としている。  Further, the method for separating sulfur compounds contained in petroleum according to the present invention, in addition to the above first or second feature, further comprises an extraction solvent and an adsorbent for petroleum that has been subjected to a contact reaction treatment in an ozone atmosphere. The fifth feature is that the remaining sulfur compounds are separated by combining with the adsorption treatment by the method. Further, the apparatus for separating sulfur compounds contained in petroleum according to the present invention comprises: a contact reaction tank that forms an ozone atmosphere in an internal space; a means for supplying ozone to the contact reaction tank; The sixth feature is that it has at least means for spraying and supplying treated oil.
上記第 1の特徴による石油に含まれる硫黄化合物の分離方法によれば、 石油中にオゾンを吹き込むのではなく、 形成されたオゾン雰囲気中に対 して石油を霧状に供給することでオゾンとの接触反応処理を行うように している。 このような処理を行うことで、 石油と気体であるオゾンとを 十分な接触面積で接触させることが可能となり、 石油中の硫黄化合物の 酸化を十分な反応効率、 反応速度でもって行わせることが可能となる。 上記のように石油をオゾン雰囲気中に噴霧状に供給することで、 石油 中の主たる硫黄化合物である有機硫黄化合物の酸化が十分な反応効率、 反応速度で進み、 これにより酸化された有機硫黄化合物は、 その石油中 での溶解度が低下されると共に、 その極性が増大される。 よって酸化さ れた有機硫黄化合物が石油中に析出されて分離可能となる。 また直接的 に析出しなくても、 前記酸化された有機硫黄化合物はその極性が十分に 増大されることで、 その後の処理による石油からの分離が非常に容易な 状態に変化される。 よって第 1の特徴によれば、 オゾン雰囲気中への石油噴霧による非常 に効果的な接触反応による硫黄化合物の酸化を行わせることで、 高温、 高圧、 高価な触媒等を用いることなく、 非常に低コストで且つ十分に効 率よく、 石油から硫黄化合物の分離を行うことが可能となる。 According to the method for separating sulfur compounds contained in petroleum according to the first feature, the ozone is not injected into the petroleum but supplied to the formed ozone atmosphere in the form of a mist and the ozone is separated from the ozone. The contact reaction treatment is performed. By performing such treatment, it becomes possible to bring oil and gaseous ozone into contact with a sufficient contact area, and to oxidize sulfur compounds in petroleum with sufficient reaction efficiency and reaction rate. It becomes possible. By supplying petroleum into the ozone atmosphere in the form of a spray as described above, the oxidation of organic sulfur compounds, which are the main sulfur compounds in petroleum, proceeds at a sufficient reaction efficiency and reaction rate, and the oxidized organic sulfur compounds As its solubility in petroleum decreases, its polarity increases. Therefore, the oxidized organic sulfur compounds are precipitated in petroleum and can be separated. Even if the organic sulfur compound is not directly precipitated, the polarity of the oxidized organic sulfur compound is sufficiently increased, so that the oxidized organic sulfur compound can be easily separated from petroleum by a subsequent treatment. Therefore, according to the first feature, by oxidizing sulfur compounds by a very effective catalytic reaction by spraying petroleum into an ozone atmosphere, it is possible to use very high temperatures, high pressures, and without using expensive catalysts. It is possible to separate sulfur compounds from petroleum at low cost and with sufficient efficiency.
なおオゾンを用いる場合でも、 オゾンを石油に対して吹き込む方式で は、 オゾンと石油中の硫黄化合物との反応効率、 反応速度を十分に上げ ることができないので、 それによつて石油中の硫黄化合物の分離を容易 にする効果を上げることは実質上困難である。  Even when ozone is used, the method of injecting ozone into petroleum does not sufficiently increase the reaction efficiency and reaction rate between ozone and sulfur compounds in petroleum, so that sulfur compounds in petroleum It is practically difficult to achieve the effect of facilitating the separation.
また石油中に酸化性の水溶液等を反応させる方法においては、 酸化生 成物の大部分が水溶性であることから、 酸化された有機硫黄化合物等の 酸化生成物が水溶液中に移行して分離が困難になる。  In the method in which an oxidizing aqueous solution is reacted with petroleum, most of the oxidized products are water-soluble, so that oxidized organic sulfur compounds and other oxidized products migrate into the aqueous solution and are separated. Becomes difficult.
また上記第 2の特徴において、 オゾン雰囲気中での接触反応処理によ り石油中の有機硫黄化合物等の酸化が進むと、 その酸化によって有機硫 黄化合物等の石油中での溶解度が低下されて、 固体生成物として析出す る。 その他のヘテロ原子を伴う化合物も、 酸化による溶解度の低下をも たらすものにおいては、 酸化固体生成物として析出する。 また前記接触 反応で生じた反応中間体であるォゾニドも固体生成物として析出する。 従って、 これら石油中に生じた固体生成物を固液分離することで、 石油 に含まれる硫黄化合物やその他のへテロ化合物を容易に分離することが できる。  In the second feature, when the oxidation of organic sulfur compounds and the like in petroleum proceeds by the catalytic reaction treatment in an ozone atmosphere, the oxidation lowers the solubility of the organic sulfur compounds and the like in petroleum. Precipitates as a solid product. Other compounds with heteroatoms also precipitate as oxidized solid products if they cause a decrease in solubility due to oxidation. In addition, ozonide, which is a reaction intermediate produced in the contact reaction, also precipitates as a solid product. Therefore, sulfur compounds and other hetero compounds contained in petroleum can be easily separated by solid-liquid separation of these solid products generated in petroleum.
なお前記オゾンとの接触により酸化されて生じた固体生成物は、 その 大半が水溶性であるので、 水溶液を用いた酸化反応においては、 生じた 酸化物を固体として析出 ·分離することができない。  Most of the solid products generated by oxidation with the contact with ozone are water-soluble, and thus, in an oxidation reaction using an aqueous solution, the generated oxide cannot be precipitated and separated as a solid.
よって第 2の特徴による石油に含まれる硫黄化合物の分離方法によれ ば、 上記第 1の特徴による作用に加えて、 オゾン雰囲気中での接触反応 処理を行うことで、 石油中の硫黄化合物を固体生成物として他の処理を 経ることなく直接的に分離することができる。 Therefore, according to the method for separating sulfur compounds contained in petroleum according to the second feature, in addition to the action according to the first feature, by performing the catalytic reaction treatment in an ozone atmosphere, the sulfur compound in the petroleum is solidified. Other processing as a product It can be separated directly without going through.
また上記第 3の特徴による石油に含まれる硫黄化合物の分離方法によ れば、 上記第 1又は第 2の特徴による作用に加えて、 オゾン雰囲気中で の接触反応処理を行った石油に対し、 抽出溶媒、 又は抽出溶媒に水を加 えたもの、 又は水そのものを用いて残留している硫黄化合物の抽出を行 うことで、 石油中に残留している硫黄酸化物を効果的に抽出 ·分離する ことができる。 即ち、 オゾン雰囲気中での接触反応処理により酸化され た硫黄化合物は、 溶解度との関係もあって、 固体生成物として析出する ものもあれば、 石油中に残存するものもある。 その割合は温度調整やそ の他の条件によって調整することができる。 前記固体生成物として析出 したものは、 上記第 2の特徴に示すように固液分離により分離すること ができる。 一方、 石油中に残存する有機硫黄化合物は、 前記酸化によつ て、 析出はしなくても十分にその極性を増大させられている結果、 抽出 溶媒を用いることによって非常に容易に抽出が可能となるのである。 前 記抽出溶媒としては、 極性溶媒を用いることができる。 また抽出溶媒に 水を加えたもの、 或いは水そのものを用いることができる。 が、 前記石 油中に残存する酸化された有機硫黄化合物を抽出し易い抽出溶媒であれ ば、 特にその種類や組み合わせを限定されるものではない。 水を利用す る場合はコストを低くすることができ、 取り扱いも容易である。  Further, according to the method for separating sulfur compounds contained in petroleum according to the third aspect, in addition to the action according to the first or second aspect, petroleum that has been subjected to a catalytic reaction treatment in an ozone atmosphere can be used. Effective extraction and separation of sulfur oxides remaining in petroleum by extracting the remaining sulfur compounds using the extraction solvent, or an extraction solvent with water, or water itself. can do. That is, the sulfur compound oxidized by the contact reaction treatment in the ozone atmosphere may be precipitated as a solid product or may remain in petroleum, depending on the solubility. The ratio can be adjusted by adjusting the temperature or other conditions. The precipitate as the solid product can be separated by solid-liquid separation as described in the second feature. On the other hand, the organic sulfur compounds remaining in petroleum can be extracted very easily by using an extraction solvent, as a result of the oxidation, the polarity is sufficiently increased without precipitation. It becomes. As the extraction solvent, a polar solvent can be used. In addition, water obtained by adding water to the extraction solvent or water itself can be used. However, as long as it is an extraction solvent that can easily extract the oxidized organic sulfur compound remaining in the petroleum oil, its type and combination are not particularly limited. If water is used, costs can be reduced and handling is easy.
なおオゾン雰囲気中での噴霧による接触反応を経ていない石油の場合 には、 抽出溶媒を用いても有機硫黄化合物の極性化が十分進んでいない ため、 十分な抽出効果は得られない。  In addition, in the case of petroleum that has not undergone contact reaction by spraying in an ozone atmosphere, a sufficient extraction effect cannot be obtained even if an extraction solvent is used, since the organic sulfur compound is not sufficiently polarized.
よって第 3の特徴によれば、 上記第 1又は第 2の特徴による作用に加 えて、 石油中に残留している硫黄化合物を、 抽出溶媒やそれに水を加え たもの、 或いは水そのものを用いて効果的に抽出 '分離することができ る。 上記第 4の特徴による石油に含まれる硫黄化合物の分離方法によれば、 上記第 1又は第 2の特徴による作用に加えて、 オゾン雰囲気中での接触 反応処理を行った石油に対し、 吸着剤を用いて残留している硫黄化合物 の吸着を行うことで、 石油中に残留している硫黄酸化物を効果的に吸着 ·分離することができる。 Therefore, according to the third feature, in addition to the action of the first or second feature, the sulfur compound remaining in the petroleum can be removed by using an extraction solvent, water added thereto, or water itself. It can be effectively extracted and separated. According to the method for separating sulfur compounds contained in petroleum according to the fourth aspect, in addition to the action according to the first or second aspect, an adsorbent is applied to petroleum that has been subjected to a contact reaction treatment in an ozone atmosphere. By adsorbing the remaining sulfur compounds using, the sulfur oxides remaining in the petroleum can be effectively adsorbed and separated.
即ち、 オゾン雰囲気中での接触反応処理された石油においては、 その 中に残存する有機硫黄化合物は前記オゾンとの十分な接触によって酸化 が十分に行われており、 その極性が十分に増大させられている。 このた め、 吸着剤を用いることによって非常に容易に吸着されて、 分離が可能 となるのである。 前記吸着剤としては、 シリカゲル等のシリカ、 木炭、 金属等の固体吸着剤を主として使用することができる。  That is, in petroleum that has been subjected to a catalytic reaction in an ozone atmosphere, the organic sulfur compounds remaining therein are sufficiently oxidized by sufficient contact with the ozone, and the polarity thereof is sufficiently increased. ing. Therefore, the use of the adsorbent makes it very easy to adsorb and separate. As the adsorbent, a solid adsorbent such as silica such as silica gel, charcoal, and metal can be mainly used.
よって第 4の特徵によれば、 上記第 1又は第 2の特徴による作用に加 えて、 石油中に残留している硫黄化合物を、 吸着剤を用いて効果的に吸 着 ·分離することができる。  Therefore, according to the fourth feature, in addition to the action of the first or second feature, sulfur compounds remaining in petroleum can be effectively adsorbed and separated using an adsorbent. .
上記第 5の特徴による石油に含まれる硫黄化合物の分離方法によれば、 上記第 1又は第 2の特徴による作用に加えて、 オゾン雰囲気中での接触 反応処理を行った石油に対し、 抽出溶媒による抽出処理と吸着剤による 吸着処理とを組み合わせることで、 抽出処理と吸着処理をそれぞれ単独 で行う場合よりも一層容易に、 効果的に石油中に残留している硫黄化合 物の分離を行うことができる。 抽出処理と吸着処理の処理順序は問わな い。  According to the method for separating sulfur compounds contained in petroleum according to the fifth aspect, in addition to the action according to the first or second aspect, the extraction solvent is applied to the petroleum that has been subjected to the contact reaction treatment in an ozone atmosphere. Separation of sulfur compounds remaining in petroleum more effectively and more effectively than combining the extraction and adsorption treatments alone by combining the extraction treatment with water and the adsorption treatment with an adsorbent Can be. The order of the extraction process and the adsorption process does not matter.
上記第 6の特徴による石油に含まれる硫黄化合物の分離装置によれば、 オゾンを供給する手段によって接触反応槽にオゾンが供給されると、 内 部にオゾン雰囲気が構成される。 そしてこのオゾン雰囲気が構成された 接触反応槽内に、 処理される石油、 即ち被処理石油が噴霧供給手段によ り噴霧供給されると、 石油とオゾンとによる接触反応が開始される。 接 触反応は微粒子の表面において十分大きな接触表面積と接触時間とが確 保された状態で行われるため、 石油中の硫黄化合物は反応効率、 反応速 度が著しく改善された状態で酸化されることができ、 極性も十分に増大 される。 According to the apparatus for separating sulfur compounds contained in petroleum according to the sixth aspect, when ozone is supplied to the contact reaction tank by means of supplying ozone, an ozone atmosphere is formed inside. When the petroleum to be treated, that is, the petroleum to be treated, is sprayed and supplied by the spray supply means into the contact reaction tank in which the ozone atmosphere is formed, the contact reaction between the petroleum and the ozone is started. Contact Since the contact reaction is performed with a sufficiently large contact surface area and contact time secured on the surface of the fine particles, sulfur compounds in petroleum may be oxidized with significantly improved reaction efficiency and reaction speed. And the polarity can be increased sufficiently.
接触反応槽で処理された石油は接触反応槽から排出され、 続く硫黄化 合物の分離工程に供される。 接触反応槽での接触反応処理は、 バッチ或 いは連続処理で行うことができる。  Petroleum treated in the catalytic reactor is discharged from the catalytic reactor and used for the subsequent sulfur compound separation process. The contact reaction treatment in the contact reaction tank can be performed by batch or continuous treatment.
よって第 6の特徴による石油に含まれる硫黄化合物の分離装置によれ ば、 接触反応槽内のオゾン雰囲気中で石油を噴霧状態で接触反応させる ことができ、 石油に含まれる硫黄化合物の酸化を十分な反応効率、 反応 速度でもって行わせることができる。 また含まれる硫黄化合物の極性を 十分に増大させることが可能となる。 しかも高温、 高圧等のコストのか かる設備や複雑な機構等を必要とすることなく、 比較的簡単で、 コンパ クトな設備で低コストにて効率よく石油から硫黄化合物の分離を行うこ とが可能となる。 図面の簡単な説明  Therefore, according to the apparatus for separating sulfur compounds contained in petroleum according to the sixth feature, the petroleum can be contact-reacted in a spray state in an ozone atmosphere in the contact reaction tank, and the oxidation of the sulfur compounds contained in the petroleum can be sufficiently performed. The reaction can be performed with high reaction efficiency and reaction speed. In addition, the polarity of the contained sulfur compound can be sufficiently increased. In addition, it does not require costly equipment such as high temperature and high pressure and complicated mechanisms, etc.It is possible to efficiently separate sulfur compounds from petroleum at low cost with relatively simple and compact equipment. Becomes BRIEF DESCRIPTION OF THE FIGURES
以下、 本発明の方法を図面も参照しながら更に説明する。  Hereinafter, the method of the present invention will be further described with reference to the drawings.
第 1図は本発明の分離装置の一例を示す概略構成図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram showing an example of the separation device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図を参照して、 オゾンを供給する手段としてオゾン発生機 1を設 け、 該オゾン発生機で発生させたオゾンを接触反応槽 4に供給する。 こ れによって接触反応槽 4内にオゾン雰囲気が構成される。 一方、 接触反 応槽 4に対して被処理石油を噴霧して供給する手段として石油タンク 2 と噴霧手段 3とを設け、 石油タンク 2からの被処理石油を噴霧手段 3に より霧状にして接触反応槽 4内に供給し、 これによつて気体オゾンと微 粒子状の被処理石油とによる接触反応を行わせる。 Referring to FIG. 1, an ozone generator 1 is provided as a means for supplying ozone, and the ozone generated by the ozone generator is supplied to a contact reaction tank 4. This forms an ozone atmosphere in the contact reaction tank 4. On the other hand, an oil tank 2 and a spraying means 3 are provided as means for spraying and supplying the oil to be treated to the contact reaction tank 4, and the oil to be treated from the oil tank 2 is supplied to the spraying means 3. The mist is supplied into the contact reaction tank 4 in the form of a mist, whereby the contact reaction between the gaseous ozone and the particulate oil to be treated is performed.
前記オゾン発生機 1でのオゾンの発生は、 例えば空気中に含まれる酸 素を利用して、 放電等により容易に、 低コストで行うことができる。 一方、 石油タンク 2にから供給される被処理石油は、 軽油、 灯油等の 予め分留された石油とする他、 混成状態の石油でもよく、 要するに噴霧 供給できる液状の石油であればよい。  Generation of ozone in the ozone generator 1 can be easily performed at a low cost by, for example, discharge using oxygen contained in the air. On the other hand, the petroleum to be supplied from the oil tank 2 may be pre-fractionated petroleum such as light oil or kerosene, or may be a mixed petroleum, in other words, any liquid petroleum that can be sprayed and supplied.
また前記接触反応槽 4内での接触反応はバッチ式でもよく、 また連続 反応式とすることもできる。  The contact reaction in the contact reaction tank 4 may be of a batch type or a continuous reaction type.
雰囲気温度、 圧力は特に限定されないが、 例えば 6 0 °C以下の温度、 常圧で反応させる等、 常温、 常圧下で行うことができる。 勿論、 反応速 度を調節するために、 温度、 圧力を適当に増減して調節することができ るようにする。  The ambient temperature and pressure are not particularly limited, but the reaction can be performed at normal temperature and normal pressure, for example, by reacting at a temperature of 60 ° C. or lower and normal pressure. Of course, in order to adjust the reaction speed, the temperature and pressure should be adjusted appropriately by increasing or decreasing.
またオゾン雰囲気は空気との混合気とすることができ、 その濃度も、 例えば 1 . 5 %といったかなり低い濃度とすることができるが、 オゾン 濃度は他の条件との関係で適当な濃度を予め実験で決めることになる。 前記オゾン雰囲気中への石油の噴霧供給による接触反応処理を行うこ とにより、 石油が十分な接触面積と接触時間をもってオゾンと接触され、 結果として反応効率、 反応速度が非常に向上することで、 石油中に含有 された有機硫黄化合物が十分に酸化され、 その極性を十分に増大させら れる。 また石油に含まれるその他のヘテロ原子化合物も酸化される。 更 にオゾン二ドが生成される。  The ozone atmosphere can be a mixture with air, and its concentration can be as low as 1.5%, for example. However, the ozone concentration should be set to an appropriate concentration in relation to other conditions. It will be decided by experiment. By performing the contact reaction treatment by spraying the petroleum into the ozone atmosphere, the petroleum is brought into contact with the ozone with a sufficient contact area and contact time, and as a result, the reaction efficiency and the reaction rate are greatly improved. Organic sulfur compounds contained in petroleum are sufficiently oxidized and their polarity is sufficiently increased. Other heteroatom compounds in petroleum are also oxidized. In addition, ozone is generated.
オゾンとの接触反応処理を経た石油は、 バッチ若しくは連続的に固液 分離槽 5に送られる。 固液分離槽 5では、 前記オゾンとの接触反応処理 により生じた固体生成物を分離する。 分離された固体生成物には、 酸化 された有機硫黄化合物、 ォゾニド、 その他のヘテロ化合物等が含まれる。 石油中の有機硫黄化合物は酸化され、 分子の極性が増大することでスル ホキシド或いはスルホン化合物として析出する。 また石油中のォレフィ ン化合物は、 酸化されることによってォゾニドとして析出する。 The petroleum that has undergone the contact reaction treatment with ozone is sent to the solid-liquid separation tank 5 batchwise or continuously. In the solid-liquid separation tank 5, a solid product generated by the contact reaction treatment with ozone is separated. The separated solid products include oxidized organic sulfur compounds, ozonides, and other hetero compounds. Organic sulfur compounds in petroleum are oxidized and precipitate as sulphoxides or sulphone compounds due to the increased polarity of the molecules. Orefin compounds in petroleum are oxidized and precipitate as ozonides.
前記酸化された有機硫黄化合物やォゾニドは、 その一部が炭化水素成 分に溶解しており、 全部が析出しているわけではない。 これらの酸化化 合物は前記接触反応処理後の石油を適当に冷却することで、 溶解度を低 下させ、 析出を促すことができる。  Some of the oxidized organic sulfur compounds and ozonides are dissolved in hydrocarbon components, and not all of them are precipitated. By appropriately cooling the petroleum after the above-mentioned contact reaction treatment, the solubility of these oxidized compounds can be reduced, and precipitation can be promoted.
前記固液分離槽 5で分離された固体生成物は、 更に酸化させることに より、 ォゾニドは液体化合物 (ケトン及びカルボン酸) となり、 固体化 合物である酸化有機硫黄化合物と沈降等の分離操作を経て分離すること ができる。  The solid product separated in the solid-liquid separation tank 5 is further oxidized so that ozonide becomes a liquid compound (ketone and carboxylic acid), and is separated from the oxidized organic sulfur compound which is a solid compound by sedimentation or the like. Can be separated through
なお前記酸化されて生じた固体生成物はその大半が水溶性であるが、 本発明では気体のオゾンを用い、 水溶液による酸化を行わないので、 生 じた酸化物を容易に固体として析出 ·分離することができる。  Most of the oxidized solid products are water-soluble, but the present invention uses gaseous ozone and does not oxidize with an aqueous solution, so that the generated oxides are easily precipitated and separated as solids. can do.
前記固液分離槽 5にて固体生成物が分離された石油は、 抽出槽 6に送 られる。 勿論、 上記接触反応槽 4におけるオゾン雰囲気での接触反応処 理においては、 条件によっては固体生成物が析出するに至らない場合も ある。 従ってこの場合には、 接触反応処理後の石油は固液分離機 5での 固液分離を行うことなく、 そのまま抽出槽 6に供給されることもある。 一方、 前記抽出槽 6には、 溶媒タンク 7から抽出溶媒が供給される。 抽出溶媒としては、 メタノール等のアルコール類、 アセトン等のケトン 類、 その他の極性溶媒を単独若しくは 2種以上を組み合わせて、 1乃至 複数の抽出槽 6で用いることができる。 また抽出溶媒に水を加えたもの、 或いは水そのものを用いてもよい。  The oil from which the solid product has been separated in the solid-liquid separation tank 5 is sent to an extraction tank 6. Of course, in the contact reaction treatment in the ozone atmosphere in the contact reaction tank 4, the solid product may not be precipitated depending on the conditions. Therefore, in this case, the petroleum after the contact reaction treatment may be supplied to the extraction tank 6 as it is without performing solid-liquid separation in the solid-liquid separator 5. On the other hand, the extraction tank 6 is supplied with an extraction solvent from a solvent tank 7. As the extraction solvent, alcohols such as methanol, ketones such as acetone, and other polar solvents can be used alone or in combination of two or more in one or more extraction tanks 6. Alternatively, water obtained by adding water to the extraction solvent or water itself may be used.
前記オゾン雰囲気での接触反応処理により、 石油中に残存する有機硫 黄化合物は十分に酸化され、 その極性が他の炭化水素成分に比べて十分 に増大されていることから、 容易に効率良く抽出溶媒側へ抽出すること ができる。 また石油中に残存するォゾニドも抽出される。 勿論、 その他 の極性の大きなヘテロ化合物も抽出される。 The organic sulfur compound remaining in the petroleum is sufficiently oxidized by the contact reaction treatment in the ozone atmosphere, and has a sufficient polarity compared to other hydrocarbon components. Therefore, it is possible to easily and efficiently extract to the extraction solvent side. Ozonide remaining in petroleum is also extracted. Of course, other highly polar hetero compounds are also extracted.
なおオゾン雰囲気での接触反応処理を行うことなく抽出処理を行う場 合には、 メタノール等の極性溶媒を用いても、 殆ど硫黄化合物の抽出が なされない。  In the case where the extraction treatment is performed without performing the contact reaction treatment in an ozone atmosphere, even if a polar solvent such as methanol is used, almost no sulfur compound is extracted.
抽出槽 6での抽出処理を終えた石油と抽出溶媒は分離機 8に送られ、 抽出溶媒と石油とに分離され、 有機硫黄化合物やォゾニド等の抽出物を 含む抽出溶媒は蒸留塔 9に送られる。 また分離された石油は吸着槽 1 0 に送られる。 分離機 8での石油と抽出溶媒との分離は、 公知の分離技術 を用いることができる。  The petroleum and the extraction solvent that have been subjected to the extraction treatment in the extraction tank 6 are sent to the separator 8 where they are separated into the extraction solvent and petroleum, and the extraction solvent containing organic sulfur compounds and extracts such as ozonide is sent to the distillation column 9. Can be The separated oil is sent to the adsorption tank 10. The separation of the petroleum and the extraction solvent in the separator 8 can use a known separation technique.
前記蒸留塔 9においては、 抽出溶媒の沸点と抽出された酸化化合物 ( 有機硫黄化合物、 ォゾニド等) の沸点との差を利用して、 減圧蒸留等の 蒸留によって両者を分離する。  In the distillation column 9, the two are separated by distillation such as vacuum distillation by utilizing the difference between the boiling point of the extraction solvent and the boiling point of the extracted oxidizing compound (organic sulfur compound, ozonide, etc.).
オゾン雰囲気下での接触反応処理により酸化された前記酸化化合物 ( 有機硫黄化合物、 ォゾニド等) は、 反応前に比べて分子量が増大し、 極 性も増大しているため、 沸点が高くなつている。 一方、 抽出溶媒として 使用するメタノール等の極性溶媒は遥かに低沸点である。 このため両者 を減圧下で蒸留することにより、 加熱を行うことなく分離することが可 能である。 低温での蒸留が可能となるので、 不安定なォゾニドが暴走し て分解することも予防できる。  The oxidized compound (organic sulfur compound, ozonide, etc.) oxidized by the contact reaction treatment in an ozone atmosphere has a higher boiling point because the molecular weight and polarity are increased compared to before the reaction. . On the other hand, polar solvents such as methanol used as the extraction solvent have a much lower boiling point. For this reason, by distilling both under reduced pressure, it is possible to separate them without heating. Since low-temperature distillation is possible, unstable ozonide can also be prevented from running away and decomposing.
抽出溶媒は溶媒タンク 7に戻すことができる。 抽出溶媒が分離された 酸化化合物 (有機硫黄化合物、 ォゾニド等) は、 更に酸化することで、 ォゾニドを液体化合物 (ケトン及びカルボン酸) とさせて、 残りの酸化 有機硫黄化合物等の固体化合物から分離することができる。  The extraction solvent can be returned to the solvent tank 7. The oxidized compounds (organosulfur compounds, ozonides, etc.) from which the extraction solvent has been separated are further oxidized to convert ozonides into liquid compounds (ketones and carboxylic acids) and separated from the remaining solid compounds, such as oxidized organic sulfur compounds. can do.
なお前記分離機 8により石油と分離された抽出溶媒については、 蒸留 塔 9での蒸留を行う前に、 水を加えることで、 抽出溶媒に混入している 炭化水素化合物を予め分離するようにしてもよい。 炭化水素化合物は前 記酸化化合物 (有機硫黄化合物、 ォゾニド等) に比べて水での溶解性が 劣るため、 分離することができる。 The extraction solvent separated from petroleum by the separator 8 was distilled. Before the distillation in the column 9, the hydrocarbon compound mixed in the extraction solvent may be separated in advance by adding water. Hydrocarbon compounds are less soluble in water than the aforementioned oxidized compounds (organic sulfur compounds, ozonides, etc.) and can be separated.
また前記分離機 8により抽出溶媒と分離された石油に対して、 吸着槽 1 0に送る前に水を加えることで、 石油中に一部残留しているメタノ一 ル等の抽出溶媒を水側に移行させて、 分離するようにしてもよい。 これ によって更に硫黄分を抽出溶媒と共に石油から分離することができる。 前記吸着槽 1 0には、 シリカゲル、 木炭、 金属等の固体吸着剤を配備 することができる。 石油が吸着槽 1 0を通る間に吸着剤と十分に接触さ れることで、 石油中に残留している酸化化合物 (有機硫黄化合物、 ォゾ ニド等) が、 吸着剤に吸着され、 分離される。  Further, water is added to the petroleum separated from the extraction solvent by the separator 8 before being sent to the adsorption tank 10 so that the extraction solvent such as methanol partially remaining in the petroleum can be removed from the water side. And may be separated. This allows the sulfur to be further separated from petroleum along with the extraction solvent. The adsorption tank 10 can be provided with a solid adsorbent such as silica gel, charcoal, and metal. Oxidizing compounds (organic sulfur compounds, ozonides, etc.) remaining in petroleum are adsorbed by the adsorbent and separated by the oil being sufficiently contacted with the adsorbent while passing through the adsorption tank 10. You.
オゾン雰囲気下での石油の噴霧供給による接触反応処理により、 酸化 された前記酸化化合物 (有機硫黄化合物、 ォゾニド等) は、 反応前に比 ベて十分にその極性が増大されている。 このため、 石油中の前記酸化化 合物の吸着は非常に効率良くスムーズに行えわれる。  The polarity of the oxidized compounds (organic sulfur compounds, ozonides, etc.) oxidized by the contact reaction treatment by spraying petroleum under an ozone atmosphere is sufficiently increased compared to before the reaction. Therefore, the adsorption of the oxidized compound in petroleum can be performed very efficiently and smoothly.
前記オゾン雰囲気下での接触反応処理を行うことなく吸着処理を行う 場合は、 石油中からの硫黄成分の吸着 ·分離の効率は非常に悪いが、 予 めオゾン雰囲気下での接触反応処理を施すことにより、 吸着 ·分離の効 率が飛躍的に向上される。  When the adsorption treatment is performed without performing the contact reaction treatment in the ozone atmosphere, the efficiency of adsorption and separation of sulfur components from petroleum is very low, but the contact reaction treatment in an ozone atmosphere is performed in advance. As a result, the efficiency of adsorption and separation is dramatically improved.
吸着槽 1 0での吸着分離処理を経た石油は精製石油タンク 1 1に送ら れる。  The petroleum that has undergone the adsorption separation treatment in the adsorption tank 10 is sent to the refined petroleum tank 11.
吸着槽 1 0で吸着された酸化有機硫黄化合物等は回収され、 更に化合 物毎等に分離されて、 医薬、 農薬、 耐熱性樹脂等の製造分野で有用な資 源として使用される。 前記固液分離槽 5や蒸留塔 9を経て得られた酸化 有機硫黄化合物等も同様に、 更に分離回収処理されることで、 有用な資 源として利用される。 The oxidized organic sulfur compounds and the like adsorbed in the adsorption tank 10 are collected and further separated for each compound and used as a useful resource in the fields of manufacturing pharmaceuticals, agricultural chemicals, heat-resistant resins and the like. Similarly, the oxidized organic sulfur compounds and the like obtained through the solid-liquid separation tank 5 and the distillation column 9 are further separated and recovered, thereby providing useful resources. Used as a source.
以上で述べた操作においては、 接触反応槽 4においてオゾン雰囲気中 に石油を噴霧供給することで接触反応処理を行うことを大前提として、 その後に前記処理を経た石油を、 抽出槽 6での抽出処理と吸着槽 1 0で の吸着処理との組み合わせにより硫黄分の分離を行ったが、 前記接触反 応処理と抽出処理との組み合わせとしてもよい。 また接触反応処理と吸 着処理との組み合わせとすることもできる。  In the operation described above, it is premised that the contact reaction treatment is carried out by spraying oil into the ozone atmosphere in the contact reaction tank 4, and then the oil subjected to the treatment is extracted in the extraction tank 6. Although the sulfur content was separated by a combination of the treatment and the adsorption treatment in the adsorption tank 10, a combination of the contact reaction treatment and the extraction treatment may be used. Also, a combination of the contact reaction treatment and the adsorption treatment can be used.
勿論、 前記オゾン雰囲気中に石油を噴霧供給することで行う接触反応 処理を経た石油に対して、 前記抽出処理や吸着処理と共に、 或いは別に、 石油中に含まれる有機硫黄化合物やその他のへテロ原子化合物を分離す るための操作、 例えば水やその他の液を加えること等による溶解度の調 整、 加熱操作、 冷却操作、 加圧操作、 固液分離操作、 遠心分離操作、 蒸 留操作等の物理的或いは化学的操作を組み合わせるようにしてもよい。 そのような処理が前記オゾン雰囲気中での接触反応処理に組み合わされ たものも、 本発明の技術的範囲に入るものとする。  Of course, the petroleum that has been subjected to the catalytic reaction treatment by spraying and supplying the petroleum into the ozone atmosphere, together with the extraction treatment and the adsorption treatment, or separately, the organic sulfur compounds and other heteroatoms contained in the petroleum Operations for separating compounds, such as adjusting solubility by adding water or other liquids, heating, cooling, pressurizing, solid-liquid separation, centrifugation, and distillation. Target or chemical operation may be combined. Such treatment combined with the contact reaction treatment in the ozone atmosphere also falls within the technical scope of the present invention.
実施例 1 Example 1
空気を原料としてオゾン発生機 1で発生させたオゾンを空気との混合 気として、 容積 2 0 0 m 1の接触反応槽 4に供給し、 これによつて接触 反応槽 4内にオゾン雰囲気を構成した。 そして市販の灯油 (硫黄含有量 3 3 . 4 p p m) 5 O m 1を噴霧手段 3により接触反応槽 4に噴霧供給 し、 前記オゾン雰囲気中にて噴霧灯油による接触反応処理を行った。 接 触反応槽 4内の温度は 2 0 °C以下とした。  The ozone generated by the ozone generator 1 using air as a raw material is supplied as a mixture with air to the contact reaction tank 4 having a volume of 200 m1, thereby forming an ozone atmosphere in the contact reaction tank 4. did. Then, commercially available kerosene (sulfur content: 33.4 ppm) 5 Om1 was sprayed and supplied to the contact reaction tank 4 by the spraying means 3, and the contact reaction treatment was performed with the spray kerosene in the ozone atmosphere. The temperature in the contact reaction tank 4 was set to 20 ° C or less.
( 1 ) . 接触反応処理後、 析出した有機硫黄化合物等の固体生成物を分 離した。  (1) After the contact reaction treatment, solid products such as precipitated organic sulfur compounds were separated.
( 2 ) . ( 1 ) で固体生成物を分離した後の灯油に、 メタノール 1 0 0 %からなる抽出溶媒を加えて抽出を行い、 有機硫黄化合物等を灯油から 分離した。 (2). The kerosene after separating the solid product in (1), methanol The extraction was performed by adding an extraction solvent consisting of%, and organic sulfur compounds and the like were separated from kerosene.
(3) . (1) で固体生成物を分離した後の灯油をシリカゲルで吸着処 理した。  (3) The kerosene after the solid product was separated in (1) was subjected to adsorption treatment with silica gel.
前記 (1) 〜 (3) において得られた灯油中の硫黄含有量を測定し、 脱硫率を得た。 結果を表 1に示す。  The sulfur content in the kerosene obtained in (1) to (3) was measured to obtain a desulfurization rate. Table 1 shows the results.
表 1で明らかなように、 元の灯油の硫黄含有量が 33. 4p pmであ つたのに対し、 (1) のオゾン雰囲気中での接触反応処理を施した後の 灯油では、 硫黄含有量が 8. O p pmとなり、 脱硫率が約 76. 0 %で あった。 また (2) の抽出処理を行った後の灯油では、 硫黄含有量が 1. 0 p pmとなり、 脱硫率が約 97. 0 %となった。 更に (3) の吸着処 理を行った後の灯油では、 硫黄含有量が 0. 2 p pmとなり、 脱硫率が 約 99. 4 %となった。 表 1  As is clear from Table 1, the original kerosene had a sulfur content of 33.4 ppm, whereas the kerosene after the contact reaction treatment in the ozone atmosphere of (1) had a lower sulfur content. 8. Opm was reached, and the desulfurization rate was about 76.0%. The kerosene after the extraction treatment of (2) had a sulfur content of 1.0 ppm and a desulfurization rate of about 97.0%. Furthermore, the kerosene after the adsorption treatment of (3) had a sulfur content of 0.2 ppm and a desulfurization rate of about 99.4%. table 1
献含有量 (PPHO Content (PPHO
(1). オゾンとの接角 ¾®S 8. 0 約 76. 0 (1). Contact angle with ozone ¾®S 8.0 About 76.0
難後の灯油  Kerosene after difficulty
(2). 誰による抽 MS 1. 0 約 97. 0 (2). Who extracts MS 1.0 about 97.0
後の灯油  After kerosene
(3). による 処 0. 2 約 99. 4 (3). Action 0.2 0.2 99.4
理後の灯油 4 以上より、 オゾン雰囲気中に灯油を噴霧して接触反応処理をすること で、 その後における灯油から硫黄化合物の分離が、 非常にスムーズに且 つ十分な脱硫率をもって行えることが明らかとなった。 実施例 2 Kerosene after treatment 4 From the above, it was clarified that the spraying of kerosene in an ozone atmosphere and the contact reaction treatment allowed the subsequent separation of sulfur compounds from kerosene to be performed very smoothly and with a sufficient desulfurization rate. Example 2
空気を原料としてオゾン発生機 1で発生させたオゾンを空気との混合 気として、 容積 2 0 0 m 1の接触反応槽 4に供給し、 これによつて接触 反応槽 4内にオゾン雰囲気を構成した。 そして市販の軽油 (硫黄含有量 250 p pm) 5 0m lを噴霧手段 3により接触反応槽 4に噴霧供給し、 前記オゾン雰囲気中にて噴霧軽油による接触反応処理を行った。 接触反 応槽 4内の温度は 40°C以下とした。  The ozone generated by the ozone generator 1 using air as a raw material is supplied as a mixture with air to the contact reaction tank 4 having a volume of 200 m1, thereby forming an ozone atmosphere in the contact reaction tank 4. did. Then, 50 ml of commercially available light oil (sulfur content: 250 ppm) was sprayed and supplied to the contact reaction tank 4 by the spray means 3, and the contact reaction treatment with the spray light oil was performed in the ozone atmosphere. The temperature in the contact reaction tank 4 was set to 40 ° C or less.
(1) . 接触反応処理後、 析出した有機硫黄化合物等の固体生成物を分 離した。  (1) After the contact reaction treatment, solid products such as precipitated organic sulfur compounds were separated.
(2) . ( 1) で固体生成物を分離した後の軽油に、 メタノール 1 0 0 %からなる抽出溶媒を加えて抽出を行い、 有機硫黄化合物等を軽油から 分離した。  (2) An extraction solvent consisting of 100% methanol was added to the light oil after separating the solid product in (1) to extract organic sulfur compounds and the like from the light oil.
(3) . ( 1) で固体生成物を分離した後の軽油をシリカゲルで吸着処 理した。  (3) The light oil after the solid product was separated in (1) was subjected to adsorption treatment with silica gel.
前記 ( 1) 〜 (3) において得られた軽油中の硫黄含有量を測定し、 脱硫率を得た。 結果を表 2に示す。  The sulfur content in the light oil obtained in the above (1) to (3) was measured to obtain the desulfurization rate. Table 2 shows the results.
表 2で明らかなように、 元の軽油の硫黄含有量が 2 5 0. O p pmで あつたのに対し、 ( 1 ) のオゾン雰囲気中での接触反応処理を施した後 の軽油では、 硫黄含有量が 2 34. O p pmとなり、 脱硫率が 6. 4 % であった。 また (2) の抽出処理を行った後の軽油では、 硫黄含有量が 20 5. O p pmとなり、 脱硫率が 1 8. 0 %となった。 更に (3) の 吸着処理を行った後の軽油では、 硫黄含有量が 1 7 6. O p pmとなり、 脱硫率が 2 9 . 6 %となった 表 2 As is clear from Table 2, while the sulfur content of the original diesel oil was 250.Oppm, the diesel oil after the contact reaction treatment in the ozone atmosphere of (1) The sulfur content was 234. Oppm, and the desulfurization rate was 6.4%. In addition, the light oil after the extraction treatment of (2) had a sulfur content of 205.Oppm and a desulfurization rate of 18.0%. Furthermore, in the light oil after the adsorption treatment of (3), the sulfur content is 176.Oppm, Table 2 shows that the desulfurization rate was 29.6%
Figure imgf000017_0001
Figure imgf000017_0001
以上より、 オゾン雰囲気中の灯油を噴霧して接触反応処理をすること で、 その後における軽油から硫黄化合物の分離が、 灯油の場合ほどでは ないが、 スムーズに且つまずまずの脱硫率をもって行えることが明らか となった。 産業上の利用可能性 From the above, it is clear that by performing a contact reaction treatment by spraying kerosene in an ozone atmosphere, the subsequent separation of sulfur compounds from light oil can be performed smoothly and with a reasonable desulfurization rate, although not as much as in the case of kerosene. It became. Industrial applicability
本発明は以上の構成、 作用よりなり、 請求の範囲第 1項に記載の石油 に含まれる硫黄化合物の分離方法によ.れば、 含有する硫黄化合物を石油 から分離する方法であって、 オゾン雰囲気中に石油を霧状に供給するこ とでオゾンとの接触反応処理を行い、 これによつて石油中の硫黄化合物 を酸化させるようにしているので、  According to the method for separating sulfur compounds contained in petroleum according to claim 1 comprising the above constitution and function, the present invention provides a method for separating sulfur compounds contained in petroleum from petroleum, comprising the steps of: By supplying petroleum to the atmosphere in a mist state, a contact reaction treatment with ozone is performed, thereby oxidizing sulfur compounds in petroleum.
石油中の硫黄化合物の酸化を、 オゾン雰囲気中への石油の霧状供給と 6 いう斬新で且つ非常に接触反応効果の高い環境化で行うことができ、 よ つて高温、 高圧、 高価な触媒等を用いることなく、 十分に効率よく且つ スムーズに、 低コストで石油から硫黄化合物の分離を行うことができる。 また請求の範囲第 2項に記載の石油に含まれる硫黄化合物の分離方法 によれば、 上記請求項 1に記載の構成による効果に加えて、 オゾン雰囲 気中での接触反応処理によって、 石油中に生じた固体生成物を固液分離 するようにしたので、 Oxidation of sulfur compounds in petroleum is achieved by supplying mist of petroleum into the ozone atmosphere. 6 that can be carried out in an environment that is novel and has a very high catalytic reaction effect. Therefore, it does not require high-temperature, high-pressure, expensive catalysts, etc. Can be separated. Further, according to the method for separating sulfur compounds contained in petroleum according to claim 2, in addition to the effect of the configuration according to claim 1, petroleum can be obtained by a catalytic reaction treatment in an ozone atmosphere. The solid product generated inside is separated into solid and liquid,
オゾン雰囲気中での接触反応処理によって生じる水溶性の硫黄化合物 を、 溶解させてしまうことなく、 石油中に固体生成物として析出させ、 これを石油から他の分離処理を経ることなく直接的に分離することがで きる。  The water-soluble sulfur compounds generated by the contact reaction treatment in an ozone atmosphere are precipitated as solid products in petroleum without dissolving them, and are directly separated from petroleum without any other separation treatment can do.
また請求の範囲第 3項に記載の石油に含まれる硫黄化合物の分離方法 によれば、 上記請求項 1又は 2に記載の構成による効果に加えて、 ォゾ ン雰囲気中での接触反応処理を施した石油に対し、 抽出溶媒、 又は抽出 溶媒に水を加えたもの、 又は水そのものを用いて、 残留している硫黄化 合物の抽出を行うようにしたので、  According to the method for separating sulfur compounds contained in petroleum described in claim 3, in addition to the effect of the structure described in claim 1 or 2, the catalytic reaction treatment in an ozone atmosphere is performed. The remaining petroleum compounds were extracted from the applied petroleum using the extraction solvent, or the extraction solvent plus water, or water itself.
オゾン雰囲気中での接触反応処理により酸化され、 極性を増大された 状態で石油中に残留している硫黄化合物を、 効果的に抽出 ·分離するこ とができる。  Sulfur compounds that are oxidized by the catalytic reaction treatment in an ozone atmosphere and remain in petroleum with their polarities increased can be effectively extracted and separated.
また請求の範囲第 4項に記載の石油に含まれる硫黄化合物の分離方法 によれば、 上記請求項 1又は 2に記載の構成による効果に加えて、 ォゾ ン雰囲気中での接触反応処理を行った石油に対し、 吸着剤を用いて、 残 留している硫黄化合物の吸着を行うようにしたので、  According to the method for separating sulfur compounds contained in petroleum described in claim 4, in addition to the effect of the structure described in claim 1 or 2, the catalytic reaction treatment in an ozone atmosphere is performed. Adsorbents were used to adsorb residual sulfur compounds to the conducted petroleum,
オゾン雰囲気中での接触反応処理により酸化され、 極性を増大された 状態で石油中に残留している硫黄化合物を、 効果的に吸着 ·分離するこ とができる。 7 また請求の範囲第 5項に記載の石油に含まれる硫黄化合物の分離方法 によれば、 上記請求項 1又は 2に記載の構成による効果に加えて、 ォゾ ン雰囲気中での接触反応処理を行った石油に対し、 抽出溶媒による抽出 処理と吸着剤による吸着処理とを組み合わせて、 残留している硫黄化合 物の分離を行うようにしたので、 Sulfur compounds that are oxidized by the catalytic reaction treatment in an ozone atmosphere and remain in petroleum with their polarities increased can be effectively adsorbed and separated. (7) According to the method for separating sulfur compounds contained in petroleum described in claim 5, in addition to the effect of the structure described in claim 1 or 2, a catalytic reaction treatment in an ozone atmosphere is provided. The remaining sulfur compounds were separated from the petroleum that was subjected to the extraction process using an extraction solvent and the adsorption process using an adsorbent.
オゾン雰囲気中での接触反応処理により酸化され、 極性を増大された 状態で石油中に残留している硫黄化合物を、 抽出処理と吸着処理をそれ ぞれ単独で行う場合よりも一層容易に、 効果的に分離することができる。 また請求の範囲第 6項に記載の石油に含まれる硫黄化合物の分離装置 によれば、 内空間にオゾン雰囲気を構成する接触反応槽と、 該接触反応 槽にオゾンを供給する手段と、 前記接触反応槽内に被処理石油を噴霧し て供給する手段とを少なくとも備えているので、  Sulfur compounds that are oxidized by the contact reaction treatment in an ozone atmosphere and remain in the petroleum in a state of increased polarity are more easily effected than when the extraction treatment and the adsorption treatment are performed alone. Can be separated. According to the apparatus for separating sulfur compounds contained in petroleum according to claim 6, a contact reaction tank that forms an ozone atmosphere in an internal space; a unit that supplies ozone to the contact reaction tank; At least means for spraying and supplying the oil to be treated into the reaction tank.
接触反応槽内でのオゾン雰囲気中で石油を噴霧状態で接触反応させる ことができ、 石油に含まれる硫黄化合物の酸化を十分な反応効率、 反応 ' 速度でもって行わせることができる。 また含まれる硫黄化合物の極性を 十分に増大させることが可能となる。 しかも高温、 高圧等のコストのか かる設備や複雑な機構等を必要とすることなく、 比較的簡単に且つコン パクトな設備で、 低コストにて効率よく石油から硫黄化合物の分離を行 うことが可能となる。  Petroleum can be contact-reacted in a spray state in an ozone atmosphere in a contact reaction tank, and oxidation of sulfur compounds contained in petroleum can be performed with sufficient reaction efficiency and reaction speed. In addition, the polarity of the contained sulfur compound can be sufficiently increased. Moreover, it does not require costly equipment such as high temperature and high pressure or complicated mechanisms, and it is relatively easy and compact equipment to efficiently and efficiently separate sulfur compounds from petroleum at low cost. It becomes possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 含有する硫黄化合物を石油から分離する方法であって、 オゾン雰囲 気中に石油を霧状に供給することでオゾンとの接触反応処理を行い、 こ れによって石油中の硫黄化合物を酸化させることを特徴とする石油に含 まれる硫黄化合物の分離方法。 1. A method for separating sulfur compounds contained in petroleum from petroleum. The petroleum is supplied into the ozone atmosphere in a mist state to perform a contact reaction treatment with ozone, thereby oxidizing the sulfur compounds in the petroleum. A method for separating sulfur compounds contained in petroleum.
2 . オゾン雰囲気中での接触反応処理によって、 石油中に生じた固体生 成物を固液分離することを特徴とする請求項 1に記載の石油に含まれる 硫黄化合物の分離方法。  2. The method for separating sulfur compounds contained in petroleum according to claim 1, wherein a solid product generated in petroleum is subjected to a solid-liquid separation by a catalytic reaction treatment in an ozone atmosphere.
3 . オゾン雰囲気中での接触反応処理を施した石油に対し、 抽出溶媒、 又は抽出溶媒に水を加えたもの、 又は水そのものを用いて、 残留してい る硫黄化合物の抽出を行うことを特徴とする請求項 1又は 2に記載の石 油に含まれる硫黄化合物の分離方法。 3. It is characterized by extracting residual sulfur compounds from petroleum that has been subjected to catalytic reaction treatment in an ozone atmosphere, using an extraction solvent, water added to the extraction solvent, or water itself. 3. The method for separating sulfur compounds contained in petroleum oil according to claim 1 or 2.
4 . オゾン雰囲気中での接触反応処理を行った石油に対し、 吸着剤を用 いて、 残留している硫黄化合物の吸着を行うことを特徴とする請求項 1 又は 2に記載に石油に含まれる硫黄化合物の分離方法。  4. The petroleum that has been subjected to the catalytic reaction treatment in an ozone atmosphere is subjected to adsorption of a residual sulfur compound using an adsorbent, and is contained in petroleum according to claim 1 or 2, wherein the sulfur compound is adsorbed. Method for separating sulfur compounds.
5 . オゾン雰囲気中での接触反応処理を行った石油に対し、 抽出溶媒に よる抽出処理と吸着剤による吸着処理とを組み合わせて、 残留している 硫黄化合物の分離を行うことを特徴とする請求項 1又は 2に記載の石油 に含まれる硫黄化合物の分離方法。  5. The residual sulfur compound is separated from petroleum that has been subjected to catalytic reaction in an ozone atmosphere by combining extraction with an extraction solvent and adsorption with an adsorbent. Item 4. The method for separating sulfur compounds contained in petroleum according to Item 1 or 2.
6 . 内空間にオゾン雰囲気を構成する接触反応槽 (4 ) と、 該接触反応 槽 (4 ) にオゾンを供給する手段 (1 ) と、 前記接触反応槽 (4 ) 内に 被処理石油を噴霧して供給する手段 (2、 3 ) とを少なくとも備えたこ とを特徴とする石油に含まれる硫黄化合物の分離装置。  6. A contact reaction tank (4) having an ozone atmosphere in the inner space, a means (1) for supplying ozone to the contact reaction tank (4), and spraying of petroleum to be treated into the contact reaction tank (4). A device for separating sulfur compounds contained in petroleum, characterized by comprising at least means (2, 3) for supplying sulfur.
PCT/JP2002/002871 2001-03-30 2002-03-25 Method and device for separating sulfuric compound contained in oil WO2002081597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-97994 2001-03-30
JP2001097994A JP2005023090A (en) 2001-03-30 2001-03-30 Method and apparatus for separation of sulfur compound contained in petroleum

Publications (1)

Publication Number Publication Date
WO2002081597A1 true WO2002081597A1 (en) 2002-10-17

Family

ID=18951695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002871 WO2002081597A1 (en) 2001-03-30 2002-03-25 Method and device for separating sulfuric compound contained in oil

Country Status (2)

Country Link
JP (1) JP2005023090A (en)
WO (1) WO2002081597A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910344B1 (en) * 2006-12-21 2009-03-20 Commissariat Energie Atomique METHOD AND DEVICE FOR CONTACT WITHOUT MIXING TWO NON-MISCIBLE LIQUIDS
JP6142785B2 (en) * 2013-11-27 2017-06-07 株式会社豊田中央研究所 Method and apparatus for desulfurization of sulfur compounds in fuel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357205A (en) * 1976-11-02 1978-05-24 Nakamichi Yamazaki Method of removing sulfurous acid from heavy oil
GB2262942A (en) * 1990-05-30 1993-07-07 Tetsuo Aida Method of desulfurizing fuel oil
EP0565324A1 (en) * 1992-04-06 1993-10-13 Funakoshi, Izumi Method of recovering organic sulfur compound from liquid oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357205A (en) * 1976-11-02 1978-05-24 Nakamichi Yamazaki Method of removing sulfurous acid from heavy oil
GB2262942A (en) * 1990-05-30 1993-07-07 Tetsuo Aida Method of desulfurizing fuel oil
EP0565324A1 (en) * 1992-04-06 1993-10-13 Funakoshi, Izumi Method of recovering organic sulfur compound from liquid oil

Also Published As

Publication number Publication date
JP2005023090A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CA1046004A (en) Method for removing sulfur and nitrogen in petroleum oils
JP4216586B2 (en) Method for removing small amounts of organic sulfur from hydrocarbon fuels
US7758745B2 (en) Diesel desulfurization method
US5236557A (en) Process for purification of aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
JPH05286869A (en) Method for recovering organosulfur compound from liquid oil
RU2005120630A (en) PREPARATION OF MIXING COMPONENTS FOR REFINED FUEL FOR TRANSPORT
US5723039A (en) Process for removal of organo-sulfur compounds from liquid hydrocarbons
US6306288B1 (en) Process for removing sulfur compounds from hydrocarbon streams
TWI383951B (en) Method for producing hydrogen peroxide containing a regeneration step of an action solution
US5310479A (en) Process for reducing the sulfur content of a crude
CN111135865A (en) Preparation method of phosphotungstic acid modified MOFs-derived porous carbon oxidative desulfurization catalyst
WO2002081597A1 (en) Method and device for separating sulfuric compound contained in oil
CN108251643B (en) Method for removing trace selenium and tellurium in zinc sulfate solution by oxidation method
CN116444531A (en) Method for catalyzing and desulfurizing amphiphilic cobalt phthalocyanine and application
CN106430245B (en) Improved method without thiamine process in acrylonitrile reactor device
CN111282574B (en) Recovery method of Fischer-Tropsch synthesis iron catalyst
US9156757B2 (en) Process for the oxidation of hydrocarbons
JP2003193066A (en) Method for oxidative desulfurization of liquid petroleum product and oxidative desulfurization plant
JP2005194336A (en) Desulfurization process of hydrocarbon oil
US5605670A (en) Method for purifying hydrogen peroxide
JP3723841B2 (en) Oil reforming method
CN108706807B (en) Treatment method of wastewater from thioglycolic acid production
JP2000507299A (en) Method for removing organic sulfur compounds from liquid hydrocarbons
EP1270704A1 (en) A process for removing sulfur compounds from hydrocarbon streams
JP2928467B2 (en) Method and apparatus for recovering organic sulfur compounds from light oil and / or heavy oil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP