WO2002079885A2 - Procede et dispositif de maintenance - Google Patents

Procede et dispositif de maintenance Download PDF

Info

Publication number
WO2002079885A2
WO2002079885A2 PCT/DE2002/001013 DE0201013W WO02079885A2 WO 2002079885 A2 WO2002079885 A2 WO 2002079885A2 DE 0201013 W DE0201013 W DE 0201013W WO 02079885 A2 WO02079885 A2 WO 02079885A2
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
real
real process
maintenance
simulation process
Prior art date
Application number
PCT/DE2002/001013
Other languages
German (de)
English (en)
Other versions
WO2002079885A3 (fr
Inventor
Lueder Heidemann
Hansjürgen SEYBOLD
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10147741A external-priority patent/DE10147741A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP02724114A priority Critical patent/EP1373998A2/fr
Publication of WO2002079885A2 publication Critical patent/WO2002079885A2/fr
Publication of WO2002079885A3 publication Critical patent/WO2002079885A3/fr
Priority to US10/670,929 priority patent/US20050187663A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32343Derive control behaviour, decisions from simulation, behaviour modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32356For diagnostics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32385What is simulated, manufacturing process and compare results with real process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to an apparatus and a method for maintaining a system process is processed in the 'a real.
  • Required maintenance measures are usually performed event-triggered or time-triggered. In the case of event-controlled maintenance measures, a process component is exchanged or repaired if it has failed. In contrast, maintenance measures are carried out at regular intervals in the case of time-triggered maintenance measures, which is to prevent the process system from failing.
  • Preventive maintenance is particularly important for very complex systems.
  • the failure of a production plant, for example, can result in very high costs.
  • complex systems are often monitored by sensors and the measured values are used to identify maintenance needs.
  • measured values of system components are typically recorded and recorded during the process. From the changes in the measured values, trends can be identified that may require maintenance measures.
  • the pressure in a system can increase over time, which indicates, for example, a blockage in a pipeline.
  • vibrations can draw conclusions about bearing wear or the measurement of the phase angle triangle in a drive can indicate an unfavorable slip.
  • the individual components of every system cannot be constantly monitored for wear and the like. For example, monitoring at very high process temperatures, very compact plant construction or excessive complexity of individual components can be uneconomical.
  • the object of the present invention is therefore to improve or expand the possibilities for recognizing the need for maintenance of plants and systems.
  • this object is achieved by a method for maintaining a system by executing a real process in the system, executing a simulation process in parallel with the real process, the simulation process simulating at least part of the real process, comparing the simulation process with the real process or the part of which with gaining a comparison result and deriving maintenance measures from the comparison result.
  • a device for the maintenance of a system on which a real process can be carried out with one or more real process steps with a simulation device for simulating at least part of the real process by means of a simulation process, the simulation process being parallel to the time Real process is executable, a comparison device for comparing the simulation process with the real process to obtain a comparison result and a control device for initiating a maintenance measure on the basis of the comparison result.
  • Production-driven maintenance can thus advantageously be made possible with the invention, with the simulation of the process running parallel to the real process.
  • the simulation process can be supplied with associated production parameters, for example.
  • FIG. 1 shows a data flow diagram of a real process and a parallel simulation process according to the invention
  • 3 shows a signal flow plan for carrying out maintenance measures.
  • FIG. 1 shows a schematic signal flow diagram of a control of a real process in the left half of the image and a parallel simulation process in the right half of the image.
  • the order control or a so-called scheduler serves as the starting point for controlling the real process.
  • a recipe control (batch flexible) is controlled with the order data.
  • the recipe control system obtains the desired recipe (s) from a database, the recipe management. This control is for both
  • sequence logic The actual system control or automation takes place in the block labeled “sequence logic” in FIG. 1.
  • a separate module between the recipe control and the sequence logic ensures the coordination of the commands with regard to the semantics.
  • the logic sequence is connected to several function blocks FB, which are responsible for the automation of the individual steps.
  • the sequence logic and the function blocks then exchange commands and measured values with the process components of the real process via an input / output periphery.
  • a simple production process that is carried out in a simplified system could serve as an example of a real process.
  • a container is connected to a reactor via a pipe. There are two units in the reactor, a stirrer and a heating unit.
  • the container is filled with a certain substance.
  • the reactor could be filled with the substance from the container and then the heated substance could be heated and stirred.
  • the corresponding process steps are filling, heating and stirring.
  • Each of these individual process steps or basic operations has its own internal sequence of command steps, which is implemented in the logic sequence.
  • the filling process step can include the commands: check the state of the rotary valve, open the slide, check the filling level, etc.
  • the individual process steps are precisely defined in a recipe for the production of a specific substance. Similar to a cooking recipe, the control recipe contains parameters such as process times,
  • a corresponding simulation process is shown in the right-hand side of the image in FIG.
  • the simulation system consists of a coordination module with the following sequence logic and equipment function modules.
  • the input / output periphery of the real process is simulated by a logical periphery.
  • the real process itself has to be simulated both in its components and in the process itself.
  • the Components are simulated in a so-called equipment simulation and the process simulation takes place by means of suitable interconnection of the equipment simulation modules.
  • the logical periphery and equipment simulation can be generated automatically by a semantic manager from a library with RB classes (reaction modules).
  • Equipment master data, substance master data, pipe master data etc. are included in the process simulation.
  • Equipment master data are, for example, the diameter of containers, performance characteristics of valves, pumps, etc.
  • Material master data are quantities, grain size, etc. of the substance used.
  • the pipe master data reflect dimensions and other relevant sizes of the pipes used. All master data can be stored in libraries.
  • the real process is now synchronized with the simulation process. This means that both processes run in parallel so that a direct comparison of the process results is made possible. It is not necessary to simulate the entire real process, for example, a particularly critical process step that, for example, requires constant monitoring can be simulated.
  • the process simulation is advantageously controlled by the order control of the real process. However, a separate control can also be provided for the simulation.
  • the process simulation preferably obtains the recipes from the recipe management of the real process. This direct connection to the real process is a prerequisite for an automatic engineering of the simulation. In any case, it is extremely helpful for this.
  • 3 3 d d d 3 CQ 3 3 3 CQ tr ⁇ d ⁇ ⁇ 3 d ⁇ rt ⁇ P- P ⁇ ⁇ J rt tr rt
  • Evaluation behavior Compare value from archive plant behavior or from plant behavior (with fixed values that are determined during IBS / trial operation) with real plant results. Otherwise as above.
  • Evaluation Simulation is advantageous for multi-purpose systems in which a meaningful archive of system behavior is not guaranteed due to the variety of products / recipes.
  • Evaluation of behavior is advantageous for "single-purpose" systems and continuous / semi-continuous systems.
  • SIMIT has models of GO's systems (stirring, heating, filling, etc.). Each individual model has parameters (substance, unit and product parameters).
  • the SI- mulation runs under BF control (BF gives the step start to SIMIT with the parameter set valid for the step and the end criterion (e.g. end temperature 92 ° C).
  • SIMIT starts simulation and, after reaching the end criterion, gives the GO defined result parameter set to Diag.
  • SIMIT does not (yet) master substance conversions, such operations (eg “reaction”, “synthesis”) have to be simulated using simple empirical equations if several GOs are to be run in a "simulation chain". Because this process is under the control of BF, no project-specific engineering work is required. SIMIT "only” needs process- / project-neutral models.
  • SIMIT receives equipment Technological monitoring of equipment behavior SIMIT has models of (technological) equipment behavior (e.g. resistance heating element) Time behavior, heat transfer, heat flow in the material, etc.).
  • equipment behavior e.g. resistance heating element
  • Objects are process steps e.g. B. filling, heating, etc. and equipment (S 88), not the objects of the system model z. B. pump, control valve etc.
  • Objects are the "machines" of the system model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Selon l'invention, pour identifier de manière préventive un besoin de maintenance, il est prévu de simuler un processus réel et de synchroniser la simulation avec le processus réel. La comparaison entre le processus réel et la simulation, entre termes d'ingénierie permet d'identifier suffisamment tôt un dérangement et de prendre les dispositions nécessaires en matière de maintenance. L'invention permet de réduire les temps d'immobilisation d'une installation et d'optimiser les étapes individuelles des processus.
PCT/DE2002/001013 2001-03-29 2002-03-20 Procede et dispositif de maintenance WO2002079885A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02724114A EP1373998A2 (fr) 2001-03-29 2002-03-20 Procede et dispositif de maintenance avec modele de simulation
US10/670,929 US20050187663A1 (en) 2001-03-29 2003-09-25 Maintenance method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10115694.4 2001-03-29
DE10115694 2001-03-29
DE10147741A DE10147741A1 (de) 2001-03-29 2001-09-27 Verfahren und Vorrichtung zur Instandhaltung
DE10147741.4 2001-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/670,929 Continuation US20050187663A1 (en) 2001-03-29 2003-09-25 Maintenance method and device

Publications (2)

Publication Number Publication Date
WO2002079885A2 true WO2002079885A2 (fr) 2002-10-10
WO2002079885A3 WO2002079885A3 (fr) 2003-08-07

Family

ID=26008957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001013 WO2002079885A2 (fr) 2001-03-29 2002-03-20 Procede et dispositif de maintenance

Country Status (2)

Country Link
EP (1) EP1373998A2 (fr)
WO (1) WO2002079885A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094359A1 (fr) * 2009-02-17 2010-08-26 Siemens Aktiengesellschaft Procédé et système de mise au point d'une automatisation d'au moins une partie d'une installation technique
WO2012031859A1 (fr) * 2010-09-06 2012-03-15 Siemens Aktiengesellschaft Dispositif de commande pour une installation industrielle et procédé de commande et de surveillance d'une telle installation industrielle
EP2479630A1 (fr) * 2011-01-25 2012-07-25 Siemens Aktiengesellschaft Procédé de transfert sans collision d'une installation à partir d'un mode d'arrêt d'éclairage dans un mode de fonctionnement
WO2013009610A1 (fr) * 2011-07-08 2013-01-17 Intelligrated Headquarters Llc Technologie de simulation intégrée
EP3144751B1 (fr) * 2015-09-18 2021-10-27 Siemens Aktiengesellschaft Système de commande et procédé de fonctionnement d'un système de commande doté d'une commande réelle et virtuelle destinée à la surveillance de processus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643344A1 (fr) * 1993-07-19 1995-03-15 Texas Instruments Incorporated Appareil et procédé pour la commande d'un procédé basé sur la modelisation
DE19639424A1 (de) * 1995-09-25 1997-03-27 Siemens Ag Entwurfsverfahren für die Anlagentechnik und rechnergestütztes Projektierungssystem zur Verwendung bei diesem Verfahren
US5752008A (en) * 1996-05-28 1998-05-12 Fisher-Rosemount Systems, Inc. Real-time process control simulation method and apparatus
US6088630A (en) * 1997-11-19 2000-07-11 Olin Corporation Automatic control system for unit operation
EP1061422A1 (fr) * 1999-06-11 2000-12-20 IvyTeam AG Système d'ordinateur pour la définition, l'optimisation et la régulation des processus
WO2001001207A1 (fr) * 1999-06-30 2001-01-04 Etec Systems, Inc. Procede et appareil permettant de commander hierarchiquement des systemes a fonctionnement continu

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643344A1 (fr) * 1993-07-19 1995-03-15 Texas Instruments Incorporated Appareil et procédé pour la commande d'un procédé basé sur la modelisation
DE19639424A1 (de) * 1995-09-25 1997-03-27 Siemens Ag Entwurfsverfahren für die Anlagentechnik und rechnergestütztes Projektierungssystem zur Verwendung bei diesem Verfahren
US5752008A (en) * 1996-05-28 1998-05-12 Fisher-Rosemount Systems, Inc. Real-time process control simulation method and apparatus
US6088630A (en) * 1997-11-19 2000-07-11 Olin Corporation Automatic control system for unit operation
EP1061422A1 (fr) * 1999-06-11 2000-12-20 IvyTeam AG Système d'ordinateur pour la définition, l'optimisation et la régulation des processus
WO2001001207A1 (fr) * 1999-06-30 2001-01-04 Etec Systems, Inc. Procede et appareil permettant de commander hierarchiquement des systemes a fonctionnement continu

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094359A1 (fr) * 2009-02-17 2010-08-26 Siemens Aktiengesellschaft Procédé et système de mise au point d'une automatisation d'au moins une partie d'une installation technique
WO2012031859A1 (fr) * 2010-09-06 2012-03-15 Siemens Aktiengesellschaft Dispositif de commande pour une installation industrielle et procédé de commande et de surveillance d'une telle installation industrielle
EP2479630A1 (fr) * 2011-01-25 2012-07-25 Siemens Aktiengesellschaft Procédé de transfert sans collision d'une installation à partir d'un mode d'arrêt d'éclairage dans un mode de fonctionnement
US9122271B2 (en) 2011-01-25 2015-09-01 Siemens Aktiengesellschaft Method for collision-free transfer of a plant from an substantially off mode to an operating mode
WO2013009610A1 (fr) * 2011-07-08 2013-01-17 Intelligrated Headquarters Llc Technologie de simulation intégrée
US8731722B2 (en) 2011-07-08 2014-05-20 Intelligrated Headquarters Llc Integrated simulation technology
US9280619B2 (en) 2011-07-08 2016-03-08 Intelligrated Headquarters, Llc Integrated simulation technology
EP3144751B1 (fr) * 2015-09-18 2021-10-27 Siemens Aktiengesellschaft Système de commande et procédé de fonctionnement d'un système de commande doté d'une commande réelle et virtuelle destinée à la surveillance de processus

Also Published As

Publication number Publication date
EP1373998A2 (fr) 2004-01-02
WO2002079885A3 (fr) 2003-08-07

Similar Documents

Publication Publication Date Title
EP3279756B1 (fr) Dispositif de diagnostic et procédé de surveillance du fonctionnement d'une installation technique
DE102015009395B4 (de) Verfahren zum Kontrollieren eines Verschraubungsprozesses
EP2183670A1 (fr) Procédé d'amélioration d'une fonction diagnostic d'un appareil de terrain
EP3232282B1 (fr) Dispositif de diagnostic et procede de surveillance du fonctionnement d'une installation technique
EP2545417B1 (fr) Procédé de remplacement d'un équipement de conduction existant dans un système d'automatisation par un nouvel équipement de conduction et système d'automatisation ainsi construit
DE102016201077A1 (de) Modul für eine technische Anlage und Verfahren zur Steuerung einer technischen Anlage
EP2927819A1 (fr) Procédé de traitement automatique de plusieurs fichiers journaux d'un système d'automatisation
WO2002079885A2 (fr) Procede et dispositif de maintenance
EP3051373B1 (fr) Changement d'un composant d'installation défectueux dans une installation d'automatisation
CN116339267B (zh) 基于物联网的自动化生产线控制系统
WO2002079974A2 (fr) Procede et dispositif d'elaboration automatique de programmes de simulation
EP4347234A1 (fr) Système comprenant une installation ayant un système de chauffage et un dispositif ou composant, et procédé de détermination de la consommation d'énergie de l'installation
EP3341807B1 (fr) Procédé et système de maintenance de dispositifs de terrain dans une installation d'automatisation
EP3830652B1 (fr) Procédé de synchronisation et de fonctionnement d'une installation industrielle, dispositif, produit programme informatique et support lisible par ordinateur
DE102013114720A1 (de) Verfahren zum Betreiben einer modular aufgebauten Produktionsanlage
DE10147741A1 (de) Verfahren und Vorrichtung zur Instandhaltung
EP2224299A2 (fr) Couplage de systèmes ERP dotés de systèmes de conduite de processus pour la transmission automatisée de structures et de données d'installations
DE102005013289A1 (de) Verfahren zum Kompensieren langsam veränderlicher Merkmale einer Werkzeugmaschine
WO2017021044A1 (fr) Initialisation uniforme d'applications pour des installations industrielles
EP3128381A1 (fr) Procédé destiné au fonctionnement d'un système d'ingénierie et système d'ingénierie
WO2023222159A1 (fr) Procédé et dispositif pour détecter des données de mesure d'une machine, et presse de chauffage de pneu comprenant un dispositif pour détecter des données de mesure
EP2913728B1 (fr) Procédé de fonctionnement d'un appareil d'automatisation et appareil d'automatisation
DE102020111934A1 (de) Turbomaschine und Verfahren zur Überwachung für eine solche Turbomaschine
DE102015210072A1 (de) Verfahren zur Erzeugung eines Prozessmodells für eine Kraftwerksanlage
DE102018002719A1 (de) Verfahren zur Vernetzung von Standard Universalproduktions-Zellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002724114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10670929

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002724114

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2002724114

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002724114

Country of ref document: EP