WO2002079469A1 - Mold polynucleotide arrays - Google Patents

Mold polynucleotide arrays Download PDF

Info

Publication number
WO2002079469A1
WO2002079469A1 PCT/JP2002/003267 JP0203267W WO02079469A1 WO 2002079469 A1 WO2002079469 A1 WO 2002079469A1 JP 0203267 W JP0203267 W JP 0203267W WO 02079469 A1 WO02079469 A1 WO 02079469A1
Authority
WO
WIPO (PCT)
Prior art keywords
aspergillus
polynucleotide
gene
polynucleotide array
detection
Prior art date
Application number
PCT/JP2002/003267
Other languages
French (fr)
Japanese (ja)
Inventor
Keietu Abe
Katuya Gomi
Tasuku Nakajima
Yohei Yamagata
Humihiko Hasegawa
Yasutaka Iguchi
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Priority to JP2002578471A priority Critical patent/JP3619844B2/en
Publication of WO2002079469A1 publication Critical patent/WO2002079469A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a filamentous fungus polynucleotide array having a probe containing the entire or partial nucleotide sequence of a filamentous fungus-derived nucleic acid immobilized on a base, and a method for detecting gene expression using the polynucleotide array.
  • the polynucleotide array of the present invention is a device for quantitatively monitoring the gene expression of a filamentous fungus.
  • the polynucleotide array of the present invention is obtained by spotting one or more types of cDNA which is a gene expressed by a filamentous fungus (for example, koji mold), and labeling the gene extracted from the target mold to form an array. This device analyzes the frequency of gene expression by performing the above hybridization.
  • Fungi such as Aspergillus, Penicillium, Fusarium, Trichoderma and Mucor exist in the filamentous fungi, and are considered to be important molds because they are involved in the fermentation industry, human and cereal infections, etc. I have. Aspergillus sp. Includes other species used in the fermentation industry, as well as those that are primarily involved in diseases or diseases such as human or animal infections. Therefore, in order to quickly achieve high efficiency and optimization of fermentation production, comprehensive expression analysis of useful genes involved in growth status, substance production, etc., is necessary. Comprehensive expression analysis of genes involved in human infection is necessary to identify human infectious disease molds and to develop antifungal agents. From the viewpoint of epidemic control, comprehensive analysis of the expression of genes involved in cereal infections, and comprehensive analysis of genes involved in toxin production, from the viewpoint of epidemic control, to identify infected molds and develop antifungal agents Expression analysis is needed.
  • An object of the present invention is to provide a polynucleotide array having a filamentous fungal gene immobilized on a support, and a method for detecting a gene using the polynucleotide array.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, by immobilizing a polynucleotide isolated from a filamentous fungus on a base, produced a polynucleotide array useful for detection of filamentous fungi,
  • the present invention has been completed. That is, the present invention is as follows.
  • a polynucleotide array in which probes containing all or part of the nucleotide sequence of a nucleic acid derived from a filamentous fungus are immobilized on a support.
  • the nucleic acid may be at least one selected from the group consisting of a C source-added culture condition, a C source deficient culture condition, a maltose culture condition, an alkaline culture condition, a solid culture condition, a high temperature culture condition, a solid low temperature culture condition, and a spore germination culture condition.
  • a C source-added culture condition a C source deficient culture condition
  • a maltose culture condition an alkaline culture condition
  • a solid culture condition a high temperature culture condition, a solid low temperature culture condition, and a spore germination culture condition.
  • One example is a polynucleotide containing a cDNA region prepared from a cDNA library derived from a filamentous fungus cultured under one condition.
  • the nucleic acid may be genomic DNA, cDNA, RNA or oligonucleotide DNA.
  • the filamentous fungi include Aspergillus, Penicillium, Fusarium, Examples include microorganisms belonging to the genus Trichoderma or the genus Mucor.
  • the microorganisms belonging to the genus Aspergillus include Aspergillus oryzae, A. sp.
  • At least one selected from the group consisting of Nomius, Aspergillus fumigatus and Aspergillus nidulans, preferably Aspergillus oryzae, Aspergillus zoya, Aspergillus parasites, Aspergillus flavus and Aspergillus At least one member selected from the group consisting of, more preferably Aspergillus oryzae.
  • the support used in the polynucleotide array of the present invention includes, for example, cell-opening polymer, nylon polymer, glass, non-porous material or porous material.
  • the target polynucleotide for detection After labeling the target polynucleotide for detection, it is hybridized with the probe immobilized on the polynucleotide array of (1) above, and a signal is detected from the obtained hybridization product.
  • a method for detecting a target polynucleotide After labeling the target polynucleotide for detection, it is hybridized with the probe immobilized on the polynucleotide array of (1) above, and a signal is detected from the obtained hybridization product.
  • the target polynucleotide for detection is derived from a filamentous fungus, and the polynucleotide is labeled with a fluorescent label, a radioactive label, an electronic label, or a multistage modified label.
  • the target polynucleotide for detection is, for example, genomic DNA, cDNA, RNA or oligonucleotide DNA.
  • the filamentous fungus is at least one of microorganisms belonging to the genera Aspergillus, Penicillium, Fusarium, Trichoderma or Mucor. Microorganisms belonging to the genus Aspergillus are the same as those exemplified in (1).
  • nucleic acid is isolated and labeled from the filamentous fungus, and the labeled nucleic acid is hybridized with the probe immobilized on the polynucleotide array of the above (1).
  • the useful or harmful substance includes a drug.
  • the present invention seeks to solve the above-mentioned problems by utilizing the base sequences of a large number of genes of filamentous fungi, especially koji molds. That is, a large number of hybridization probes having the base sequence according to the present invention are prepared, and more specifically, nucleic acids are aligned and immobilized as probes on a solid phase substrate as a support, and the amount of DNA derived from filamentous fungi is determined. By measuring the expression level of the gene and the gene, the growth state of the filamentous fungus and the expression of the fermentation function of the fungus can be directly and accurately measured.
  • Aspergillus fumiga Gene expression during human infection gene expression during cereal infections such as Aspergillus flavus (n yZav;) and Aspergillus parasticus (n pasC), which are cereal-infected molds, or production of metabolites including toxins It is also possible to accurately measure the gene expression related to the disease. It can also be used to monitor gene expression in fermentation-producing strains such as Aspergillus nigaichi (n ').
  • the polynucleotide immobilized on the polynucleotide array of the present invention covers almost all of the nucleotide sequence of a gene expressed under various typical fermentation production and growth conditions. It is considered to be effective for detecting bacterial genes. As a result, automation that was extremely difficult In addition to labor saving, fermentation production reliability is improved and standardization is achieved. This will allow a significant reduction in production costs.
  • polynucleotide array refers to an array in which nucleic acids, which are polynucleotides, are immobilized as probes on a base, which is a support.
  • a polynucleotide array can be prepared by dissolving a polynucleotide in a solvent to prepare a polynucleotide solution, and fixing the prepared polynucleotide solution to the surface of a substrate.
  • the polynucleotide solution is placed by abutting the tip surface of the polynucleotide solution dispensing needle on the surface of the substrate, and then fixed.
  • it can be produced by directly synthesizing it on the substrate surface.
  • the polynucleotide to be used may be one derived from a filamentous fungus.
  • filamentous fungi include microorganisms belonging to the genera Aspergillus, Penicillium, Fusarium, Trichoderma, and Mucor.
  • the type of the microorganism is not particularly limited, but includes the following.
  • Grain infectious species Aspergillus flavus, Aspergillus parasiticus) ⁇ Aspergillus nomius
  • Penicillium Industrial species Penicillium chrysogenum, a penicillin-producing bacterium, Penicillium notatum, Penicillium griseofulvum, a glyceofulvin-producing bacterium for the treatment of athlete's foot, griseofulvin Penicillium roqueforti Henryum J ⁇ nove J Lena (Penicillium camembefti) Grain and fruit contaminants: Penicillium citricum Penicillium 'Pisnicillium' expansum)
  • Trichoderma reese a cellulase-producing bacterium
  • Trichoderma reese a cellulase-producing bacterium
  • Trichoderma reese a cellulase-producing bacterium
  • Trichoderma reese a cellulase-producing bacterium
  • Trichoderma reese a cellulase-producing bacterium
  • Trichoderma reese Trichoderma reese
  • Hilia Trichoderma viri.de j
  • Rhizopus delemar (Dhicopus delemar), Rhizopus nigricans (Rhizopus nigricans) ⁇ Rhizopus oryzae (Rhizopus oryzae), Rhizopus (Thizopus oligosporus)
  • Monascus Industrial species Monascus' anca Monascus ⁇ or ⁇ ), Monascus puriier (Momwc rii & er), Monascus no J resoleso (Monascus purpureus)
  • fungi are used to produce red wine and tofu, produce red pigments, or produce drugs to treat cholesterol.
  • polynucleotide examples include DNA (deoxyliponucleic acid) and RNA (liponucleic acid), and any of DNA fragments derived from chromosomal DNA, RNA (such as mRNA), cDNA, and oligonucleotides may be used.
  • the oligonucleotide refers to a product obtained by subjecting all or a part of the above-described chromosomal DNA fragment, mRNA, or cDNA to a chemical treatment, or a product obtained by chemically synthesizing based on the above-described nucleic acid sequence. For example, PCR amplification products, restriction enzyme digested DNA and the like can be mentioned.
  • nucleic acid may also be a DNA fragment containing a part of a specific gene, an mRNA having an abnormal transcription level, or a cDNA derived from the mRNA.
  • the nucleic acid is dissolved in a solvent to prepare a nucleic acid-containing solution (called a polynucleotide solution).
  • nucleic acids can be prepared from the filamentous fungi after culturing the filamentous fungi under various culture conditions.
  • Cultivation conditions include C source-added culture conditions, C source-deficient culture conditions, maltose culture conditions, alkaline culture conditions, solid culture conditions, high-temperature culture conditions, solid low-temperature culture conditions, and spore germination culture conditions. One or a combination of them can be used for culturing.
  • C source-added culturing conditions refer to culturing conditions when culturing in a medium containing a carbon source, such as 0% in YPD medium (1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose). Shaking culture (180 rpm) for 22 hours at ° C.
  • a carbon source such as 0% in YPD medium (1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose).
  • C source-deficient culture conditions refer to culture conditions when cultured in a medium that does not contain a carbon source. For example, after culturing in YPD medium (1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose) at 30 for 22 hours, collect the cells by filtration and wash them with distilled water. Then, transfer the cells to a CD medium (Czapek-Dox) that does not contain a carbon source such as glucose (Nakajima K et al. Curr Genet. 2000 May; 37 (5): 322-7) and further culture for 8 hours To do something.
  • YPD medium 1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose
  • Maltose culture conditions refer to the culture conditions when cultured in a medium containing maltose. means.
  • the cells are cultured in an ACM medium (2% Malt extract, 0.1% Bacto-pepton, 2% Glucose) with shaking for 24 hours (180 rpm), and the cells are collected by filtration and collected in a natural medium (1% Bacto-pepton, 0.5%).
  • the alkaline culture condition means a culture condition when the culture is performed in a pH range of 7 to 11. For example, put sterilized cellophane on a CD (Czapek-Dox) agar medium adjusted to pHIO, inoculate a conidium of the oryz eRIB40 strain, and culture at 30 ° C for 3 days.
  • CD Codepek-Dox
  • the solid culture conditions are as follows: 5 x 10 6 conidia are suspended in 4 ml of water and added to 5 g of wheat bran (10 6 / g-bran), and the mixture is allowed to stand at 30 ° C for 27 hours. Refers to what is cultured.
  • High-temperature culture conditions refer to culture conditions when culture is performed at a temperature in the range of 30 to 42 ° C. For example, it refers to a medium cultured with shaking at 37 ° C. for 24 hours in the above YPD medium.
  • the solid low-temperature culturing conditions refer to culturing conditions when culturing at a temperature in the range of 30 to 15 ° C. in a medium having a composition containing cereals for wheat, rice or soy sauce koji.
  • the spore germination culture conditions refer to the culture conditions when spores are cultivated in a medium containing the germinated cells.
  • conidia are obtained by culturing them on PD (potato dextrose agar) plates at 28 ° C for 8 days.
  • Germination bacterial cells, conidia SP liquid medium (3.5% soluble starch, 2% polypeptone, 0 ⁇ 5% ⁇ 2 ⁇ 4, 0.5%, MgS0 4 - 7H 2 0) in cultured 30 ° C, 12 hours obtain.
  • the type or number of polynucleotides used may be any number as long as it is 20 or more (species), but is in the range of 20 to 100,000 (species), preferably 100 to 100,000 (species). It is.
  • the length of the polynucleotide itself can be arbitrarily set as long as it can function as a probe. For example, 10 to 50,000 bases, preferably 10 20002000 bases, more preferably 10-1000 bases.
  • a number of polynucleotide solutions are placed on the surface of the polynucleotide array support.
  • a membrane such as a cellulose membrane (cellulose polymer) or a nylon membrane (nylon polymer), a glass support, a nonporous support or a porous support can be used.
  • Non-porous or porous support materials include plastics (eg, polyethylene, polypropylene, polystyrene, etc.).
  • a glass support is preferable because it is low in cost, easy to achieve high density, and excellent in planar characteristics.
  • a slide glass (a slide glass for DNA Microarray Kit) manufactured by Nippon Laser Electronics Co., Ltd. is used. be able to.
  • the surface of the support is positively charged.
  • the surface of the support is subjected to amination treatment with poly-relysin, aminopropyltriethoxysilane, or the like so as to be positively charged.
  • a polynucleotide solution is placed on the surface of the support.
  • the immobilization of the polynucleotide on the surface of the support is not limited to this.
  • a specific example is Surrmodics' 3D-Link.
  • a commercially available arrangement device such as a GTM AS Stamp (manufactured by Nippon Laser Electronics Co., Ltd.) can be used.
  • This device controls the movement of the dispensing head in the XYZ axis direction with respect to the surface of the support so that the tip surface of each dispensing needle in the dispensing head comes into contact for about 0.5 to 1 second, and various types of The polynucleotide solution can be arranged in a matrix.
  • the dispensing head is controlled to move in the X-Y axis direction so that the distance between the spots is about 100 to 200 m.
  • the arrangement method is not limited to this.
  • the support is not limited to a flat one, but may be a bead-like support. In that case, different polynucleotide species are retained for each bead.
  • the polynucleotide After drying a large number of polynucleotide solutions arranged on the surface of the support, the polynucleotide is immobilized by irradiation with ultraviolet light of about 50 to 120 mJ. Thereafter, the non-arranged region of the polynucleotide on the surface of the support is subjected to a blocking treatment.
  • blocking The treatment is performed by immersing the entire support on which the polynucleotide is immobilized in a blocking solution containing a predetermined amount of a succinic anhydride, N-methylpyrosinone and sodium borate solution.
  • a blocking solution mixed solution of Microarray Kit A2, A3, A4 manufactured by Nippon Laser Electronics Co., Ltd. can be used.
  • the support removed from the blocking solution is immersed in hot water at 95 to 99 ° C and left to stand. After immersion in ethanol, the surface of the support is air-dried.
  • Total RNA and mRNA to be detected can be prepared from hyphae and spores of filamentous fungi.
  • the types of filamentous fungi are Aspergillus oryzae, Aspergillus sojae, Aspergillus niger Aspergillus awamor Aspergillus kawacni Aspergillus fumigatus Aspergillus flavus Aspergillus parasiticus Aspergillus nomius Aspergillus nidu.
  • the gene is prepared from at least one of the above filamentous fungi.
  • any known method eg, freezing cells in liquid nitrogen, pulverizing, and then extracting total RNA in the presence of an RNase inhibitor
  • any known method eg, freezing cells in liquid nitrogen, pulverizing, and then extracting total RNA in the presence of an RNase inhibitor
  • a commercially available total RNA extraction kit such as ISOGEN manufactured by JEIN.
  • Purification of mRNA from total RNA can be performed using oligo (dT) -immobilized resin or beads such as MESSAGE MAKER manufactured by Promega.
  • a polynucleotide to be detected is labeled so that a detection result can be easily obtained.
  • the label include a fluorescent label, a radioactive label, an electronic label and a multi-stage modified label.
  • Fluorescent labeling is a labeling method that enzymatically or chemically introduces a fluorescent substance into the polynucleotide to be analyzed (one get), and includes ROX, TET, FAM, IRD, cyanine (Cy3, Cy5, Cy3.5), ALEX, and the like.
  • Cy3 is colored green and Cy5 is colored red, which is convenient when you want to distinguish between two types of detection targets.
  • a labeling kit such as Takara Shuzo's Label IT non-RI Labeling.
  • Radiolabeling is a labeling method that introduces a radioactive nucleic acid or a radioactive functional group into a nucleic acid to be analyzed.
  • labeling substances dNTPs and nucleic acids containing 32 P, 33 P, 35 S, C, 3 ⁇ 4, and 125 I are used.
  • a substance containing a reactive functional group that can be introduced is given. It is also possible to use a commercially available labeling kit, for example, Amersham's random primer-labeling kit ⁇ terminal labeling kit manufactured by Pharmacia.
  • Electronic labeling is a method in which a reactive substance is added to a double-stranded polynucleotide that has been hybridized between a probe and a target, and the double-stranded site is detected by an electrochemical detection method. is there.
  • a reactive substance is added to a double-stranded polynucleotide that has been hybridized between a probe and a target, and the double-stranded site is detected by an electrochemical detection method. is there.
  • One such material is the charged Yin-ichi-karator.
  • multi-stage modified label means a label in which a fluorescent label or a radiolabel is not a one-step reaction but a two- or more-step reaction.
  • the labeled compound may be difficult to be incorporated into the evening polynucleotide. Therefore, a substance that is reactive with the labeled compound in the first step and that is easily incorporated into the target is introduced, and the second and subsequent steps incorporate the labeled compound in advance.
  • the labeling efficiency is increased by reacting the compound with a reactive substance. It is also possible to use commercially available labeling kits, such as Clontech's Atlas Glass Fluorescent Labeling Kit and NEN's Micromax TSA Labeling Kit.
  • a probe (polynucleotide immobilized on a support) is reacted with a target (a solution containing the target gene) to perform hybridization.
  • the hybridization conditions are set so that specific hybrids are formed and non-specific hybrids are not formed.
  • conditions are set under which DNA having high homology (homology is 60% or more, preferably 80% or more) is hybridized.
  • the sodium concentration is 100-900 mM (2-20 X SSC, preferably 4-10 X SSC), preferably 150-900 mM
  • the temperature is 37-68 ° C, preferably 42-68 ⁇ . is there. (4) Detection
  • the signal of the labeling substance is measured (detected) using a predetermined detector.
  • a predetermined detector For fluorescent labels, use fluorescence image analyzers, for radiolabels, radiographic or radiological image analyzers, for electronic labels, electrochemical detectors, and for multi-stage modified labels, use them according to the type of label.
  • the signal can be measured using the instrument.
  • a species related to a filamentous fungus or a mutant thereof can be identified and / or distinguished based on the above detection results.
  • Closely related species are those having a DNA homology of 40% or more, preferably 50% or more, and more preferably 70% or more.
  • Mutants are homologous bacteria (DNA homology is almost 100%) and have a limited number (one to several) of bases with deletions, additions, or substitutions of bases. Alternatively, deletion of a limited number of genes (one to several) may be used. Alternatively, some genes have a new constant number (one to several) of genes added to the genome.
  • useful substances can be screened based on the above detection results.
  • Useful substances include drugs, enzymes, proteins and the like.
  • Hazardous substances include mutagens, carcinogens, environmental hormones, and heavy metals.
  • a useful or harmful substance as a screening candidate is given to Aspergillus mold, which provides a probe for a polynucleotide array.
  • MRNA is prepared from the co-cultured cells and the cells cultured without providing useful or harmful substances, and fluorescent labeling is performed, and gene expression response analysis is performed using a polynucleotide array.
  • it is possible to estimate the mechanism of action of the drug or to use it as a criterion for selecting a lead compound for the synthesis of a useful drug. is there.
  • polynucleotide array analysis is also effective in suppressing the production of toxic substances such as toxins.
  • toxin production-related genes including genes for transcription control factors
  • toxin production-related genes are immobilized on a polynucleotide array, it is possible to search for culture conditions that suppress their expression and to screen for expression-suppressing substances. It is possible. The various uses of the detection results are described below.
  • the gene intensity of the gene that responds under certain conditions is quantified using analysis software (eg, ArrayPro or ScanAlyze) to determine the gene expression level.
  • analysis software eg, ArrayPro or ScanAlyze
  • Statistical analysis was performed using specialized analysis software (such as GeneSpring and GeneMaths) to analyze the expression information data of many genes, which was used to elucidate gene expression control networks and map metabolic pathway maps. The expression pattern of the gene can be clarified.
  • the genes whose gene expression level has changed under the conditions given the drug are mapped to a metabolic pathway diagram using analysis software. As a result, if many genes with altered expression levels are mapped to the metabolic pathways of the same line, it can be estimated that the drug acts specifically on that metabolic pathway.
  • This analysis method can be used for screening not only useful drugs but also toxic substances such as poisons.
  • toxic substances such as poisons.
  • polynucleotide arrays in which homologous genes in AsergiZZ fungi of cell essential genes, which are conserved in mammals, are immobilized screening for substances that inhibit their expression requires screening of drugs. It is also possible, and they provide a toxicological screening system for mammals and the like. For example, when a gene group whose expression response fluctuates greatly when given a certain substance is a DNA repair-related gene such as uvs or md, it can be determined that the substance is a harmful substance having mutagenicity.
  • the gene that is expressed or suppressed only under culture conditions that produce kojic acid used in whitening cosmetics is a gene that encodes a DNA-binding protein
  • the DNA-binding protein gene is It is determined to be an important gene that controls acid production, and is screened as a gene that regulates the production of industrially useful secondary metabolites.
  • Filamentous fungi are cultured under any of the aforementioned culture conditions (C source-added culture conditions, C source-deficient culture conditions, maltose culture conditions, alkaline culture conditions, solid culture conditions, high-temperature culture conditions, solid low-temperature culture conditions, or spore germination cultures).
  • the target gene can be expressed by examining under which culture conditions the expression of a particular gene was promoted and under what culture conditions the expression of that gene was suppressed. It is possible to select cultivation conditions that are optimal for the purpose.
  • optimization means setting culture conditions that achieve the maximum or minimum yield by artificially controlling the expression of one or more genes involved in the production of a certain substance. For example, in soy sauce koji production, when hybridization is performed between several conditions of soy sauce solid culture, and conditions that result in the highest expression signal of the protea-peptidase gene are found. Is optimized for maximizing the expression of the enzyme enzyme, which is important for soy sauce production. In the case of unnecessary genes, it can be said that minimization is to find conditions that minimize the expression signal of the target gene in the polynucleotide array by comparing the culture conditions.
  • FIG. 1 is a schematic diagram of the polynucleotide array of the present invention.
  • FIG. 2 is a schematic diagram of the polynucleotide array of the present invention.
  • FIG. 3 is a schematic diagram of the polynucleotide array of the present invention.
  • FIG. 4 is a photograph of an image showing the result of detecting the expression intensity of the or ore gene (cDNA clone fed with a C source) in the polynucleotide array of the present invention.
  • FIG. 5 is a photograph of the polynucleotide array of the present invention.
  • FIG. 6 is a photograph of an image showing the results of detecting the expression intensity of the oryzae gene (c source-deficient vegetative cDNA clone).
  • FIG. 6 shows the m′ger gene (C source deficient) in the polynucleotide array of the present invention.
  • FIG. 7 is a photograph of an image showing the results of detection of the expression intensity of oligotrophic cultured cDNA clones.
  • FIG. 7 is a diagram showing an outline of a polynucleotide array.
  • FIG. 8A is a view showing a clone mounted on the polynucleotide array (Nos. 1 to 4 of the block sequence shown in FIG. 7).
  • FIG. 8B is a diagram showing the clones mounted (Nos. 5 to 8 in the block sequence shown in FIG. 7).
  • FIG. 8C is a diagram showing polynucleotide clones: clones carried therein (Nos. 9 to 12 in the block sequence shown in FIG. 7).
  • FIG. 8D is a diagram showing a polynucleotide array: clones on board (Nos. 13 to 16 in the block sequence shown in FIG. 7).
  • FIG. 8E is a diagram showing clones mounted on the polynucleotide array (Nos. 17 to 20 in the block sequence shown in FIG. 7).
  • FIG. 8F is a diagram showing a clone mounted on the polynucleotide array (the block sequence Nos. 21 to 24 shown in FIG. 7).
  • FIG. 8G is a diagram showing clones mounted on the polynucleotide array (blocks 25 to 28 in the block sequence shown in FIG. 7).
  • FIG. 8H is a diagram showing clones mounted on the polynucleotide array (the block sequence Nos. 29 to 32 shown in FIG. 7).
  • FIG. 9 is a photograph showing the result of gene expression of Aspergillus oryzae.
  • the green color indicates the gene (Cy3-labeled) obtained by culturing with the C source, and the red color indicates the gene (Cy5-labeled) obtained by culturing with the C source deficient.
  • Fig. 10 shows a comparison between the results of detection of gene expression by DNA polynucleotide and the results of Northern analysis of the glycolytic enzyme gene of Aspergillus oryzae. It is.
  • Figure 11 shows 3 is a photograph showing growth and gene expression results of mr.
  • Example 1 Preparation of Aspergillus mold DNA for preparation of polynucleotide array
  • aspergillus mold Aspergillus oryzae was used as an example to prepare DNA for a polynucleotide array.
  • a cDNA library was prepared from the Aspergillus oryzae RIB40 strain donated by the National Tax Agency's Brewing Institute by the method described below, and cDNAs from multiple different libraries were isolated and used as DNA for immobilizing polynucleotide arrays. .
  • E. coli plasmid vector such as pBluescript SKII + to transform
  • a library was prepared from the conditions (solid-state low-temperature culture conditions) in which the temperature of the koji cells was grown at 30 ° C, and then the temperature was lowered to 20 to 25 ° C, preferably 25 ° C.
  • a library was prepared for cells (spore germination culture conditions) immediately before spore germination but before mycelium formation.
  • the amplification reaction was performed using the attached PCR buffer, 0.25; M PCR primer, 250 ⁇ M dNTP, about 10 ng of type I plasmid, and about 1.25 U of Taq DNA polymerase. 30 cycles of shuttle PCR of denaturation at 94 ° C for 1 minute, annealing and extension at 68 ° C for 2 minutes were performed.
  • the polynucleotide solution prepared in Example 1 was used as an example of mold of the genus Aspergills, and a method of preparing a polynucleotide array is described below using cDNA as a probe.
  • the polynucleotide was dissolved in a solvent to prepare a polynucleotide solution.
  • Poly The nucleotide was dissolved using a spot buffer (DNA Microarray KitAl solution) manufactured by Nippon Laser Electronics.
  • the Aspegill oryzfle koji mold cDNA prepared in Example 1 was prepared in a spot buffer so as to have a concentration of 0.1 to 1 g / 1, preferably 0.5 ig / 111, and The support was spotted in the manner described.
  • the isolated clone of the cDNA library prepared in Example 1 was used as a spot, and the nucleotide function of the clone was determined as necessary to estimate the gene function.
  • a number of polynucleotide solutions were spotted by abutting the tip of the dispensing needle against the surface of the support.
  • a slide glass (a slide glass dedicated to DNA Microarray Kit) manufactured by Nippon Laser Electronics Co., Ltd. was used.
  • the surface of the support was subjected to a surface treatment with poly-L-lysine or aminopropyltriethoxysilane or the like to make it positively charged.
  • GTMAS Stamp manufactured by Nippon Laser Electronics Co., Ltd. was used as the spotting device.
  • the surface of the support having the polynucleotide immobilized thereon was irradiated with ultraviolet light of about 50 to 120 mJ using a UV crosslinker (UVC500 manufactured by Hoefer) to immobilize the polynucleotide. Thereafter, the pH was adjusted to 5 to 6 with a solution containing 1 to 1.5 wt / vol% succinic anhydride, 90 vol / vol% N-methylpyrosinone and 10 vol / vol% 0.2 M sodium borate (pH: 8.0). The entire support on which the polynucleotide was immobilized was immersed in the blocking solution for about 15 minutes.
  • UV crosslinker UV crosslinker
  • a blocking solution (mixed solution of Microarray Kit A2, A3, A4) manufactured by Nippon Laser Electronics Co., Ltd. was used.
  • the support removed from the block solution was immersed in 95-99 hot water and left for about 60 seconds. Thereafter, the support was immersed in ethanol, and the support surface was air-dried to prepare a polynucleotide array.
  • Example 3 Detection of gene expression using Aspergillus mold polynucleotide array (1)
  • a spore suspension (1 ⁇ 10 7 / ml) was prepared from a mold colony stored on a Maltz agar medium (malt extract 2%, peptone 0.1%, glucose 2%, agar 1.5%).
  • YPD medium in an Erlenmeyer flask of 1L 2% yeast extract, Pact peptone 4%, glucose 4%) and 200ml is prepared, the spore suspension lml (l X 10 7 cells) were seeded, 30, between 10pm Shaking culture was performed at 100 rpm on a rotary shaker. Thereafter, 100 ml of the cells were collected, washed, dehydrated, and stored at -80 until RNA extraction as donor cells provided with the C source.
  • the remaining 100 ml of cells are aseptically collected, washed, and dehydrated, and then the minimum volume is adjusted to minimum medium (NaNO 3 0.3%, KC1 0.2%, KH 2 P0 4 0.1% prepared in tap water and supplied with Mg and Fe)
  • minimum medium NaNO 3 0.3%, KC1 0.2%, KH 2 P0 4 0.1% prepared in tap water and supplied with Mg and Fe
  • the resulting mixture was transferred to a 500 ml Erlenmeyer flask containing 100 ml and further cultured at 30 ° C. for 8 hours on a rotary shaker (100 rpm).
  • C source-deficient cultured cells were collected, washed and dehydrated and stored at -80 ° C until RNA extraction. '
  • RNA was dissolved in TE or RNase-free water (DEPC-treated water) 100-500 / xl to make a total RNA solution. Dilute 1 ⁇ -tal RNA solution 10- to 500-fold with TE or RNase free water and absorb at 260 nm and 280 nm. The degree was measured.
  • RNA with OD260 / OD280 values in the range of 1.8-2.0 was used in the following experiments.
  • the total RNA solution was stored at -80 ° C until use. In this procedure, all the instruments and reagents used were RNAase-free. For details, refer to the manual attached to ISOGEN.
  • RNA from total RNA was performed using MESSAGE MAKER manufactured by Promega, and the method followed the attached manual.
  • the total RNA prepared in 2 was subjected to the following procedure to purify the mRNA. .
  • a cDNA fluorescently labeled using the mRNA prepared in 3 above was prepared as a target probe for a polynucleotide array.
  • Cy3-dUTP and Cy5-dUTP were manufactured by Amersham-Pharmacia, and one of mRNA derived from a C-cell-supplied culture cell and one derived from a C-source-deficient culture cell was Cy3-dUTP, and the other was Cy5-dUTP.
  • the reaction was performed. After the reaction, the Cy3 reaction solution and the Cy5 reaction solution were mixed, transferred to a Microcon-30 (manufactured by Millipore), and concentrated by centrifugation until the volume of the solution reached approximately ⁇ l (Eppendorf centrifuge 12,000 rpm, about 10 minutes ).
  • TE400 1 was added to the upper part of the Microcon-30 forcep, and the mixture was centrifuged again until the liquid volume reached about 10 1 (12,000 rpm, about 15 minutes).
  • the Microcon-30 cup was removed, inserted upside down into a new tube, and centrifuged at 3,000 rpm for 3 minutes. The following reagents were added to make the total amount about 301.
  • yeast tRNA llil (10 g, ⁇ to adjust the concentration to 25 mg / 2.5 ml) polydA 4 ⁇ (4lig, TE to adjust the concentration to 5 U / 200 1)
  • 86 clones were arbitrarily selected from the oryzae cDNA library prepared under the culture conditions with the C source in Examples 1 and 1, and a polynucleotide array was prepared by the method described in Example 2 ( Figures 1 and 2). reference). In addition, 86 clones were selected from the C source-deficient culture conditions described in Examples 1 and 2, and a polynucleotide array was prepared in the same manner. Oryzae C source-provided cDNA from cells was fluorescently labeled with Cy5 (red), and cDNA from cells lacking C source was fluorescently labeled with Cy3 (green). Using these labeled cDNAs as targets, analysis was performed using a polynucleotide array. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a overnight base search using Blast or the like.
  • fluorescence intensity 5506 (Cy5) and 1117 (Cy3)) are Aspergillus oryzae pyruvate decarpoxylase gene (SEQ ID NO: 2), 3 rows and 3 columns (fluorescence intensity 6910 (Cy5) and 1351 (Cy5) Cy3)) was a glyceraldehyde-3-phosphate dehydrogenase monogene (SEQ ID NO: 3). It was a transcriptional regulator (prf: 2305380B) of Han niger (prf: 2305380B), which had strong fluorescence intensity at 7 rows and 3 columns (fluorescence intensity 3653 (Cy5) and 8736 (Cy3)). Six rows and three columns (fluorescence intensity 7451 (Cy5) and 5834 (Cy3)), in which both fluorescence of Cy3 and Cy5 showed the same intensity, were the histone H3 gene (SEQ ID NO: 5).
  • cDNA clones derived from C source-deficient culture conditions In 50% of the spots, the fluorescence intensity of Cy3 was higher than that of Cy5, and the other spots showed weaker expression intensity or the fluorescence intensity of the two dyes was observed to be comparable ( Array arrangement shown in Fig. 2, array image shown in Fig. 5).
  • the clones with 5 rows and 1 column (fluorescence intensity 1862 (Cy5) and 4321 (Cy3)) with high Cy3 expression intensity were enolase gene (SEQ ID NO: 6), 6 rows and 7 columns (fluorescence intensity 1117 (Cy5) and 3267 (Cy3)) was the aldase gene (SEQ ID NO: 7).
  • a polynucleotide array was prepared in which 82 clones selected from the oyzae C source-deficient culture conditions were prepared (array arrangement shown in FIG. 3, array image shown in FIG. 6).
  • cDNA derived from cells with C source was fluorescently labeled with Cy3 and cDNA from cells lacking C source was labeled with Cy5.
  • analysis using a polynucleotide array was performed. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a database search using Blast or the like.
  • the temperature of hybridization depends on the type of clones arranged on the array. It is necessary to set to. In this example, the test was performed at 53 ° C.
  • the fluorescence intensities 917 (Cy3) and 2981 (Cy5)) are the homologues of Aspergillus nidulans alcohol dehydrogenase gene (SEQ ID NO: 12), a yeast translation factor SU1 gene homolog (SEQ ID NO: 13), and 4 erg Z ⁇ oryze phosphoglycerate kinase gene (SEQ ID NO: 14).
  • FIG. 7 shows a schematic diagram of the polynucleotide array used in this example, and FIGS. 8A to 8H show the list of clones mounted (indicated by library Accession No.).
  • FIGS. 8A to 8H show clones of genes contained in the 1st to 32nd segments of the block sequence of FIG. 7A, and 1 to 32 shown in FIGS. 8A to 8H show the block sequence of FIG. Corresponding to the number.
  • Figure 7 Panel B is an expanded view of each section in Figure 7A, with 12 or 10 spots in columns and 12 (3, 5, 6) spots in rows. Row of
  • “(3,5,6)” indicates that the spots in the 11th and 12th columns are 3 spots (10-12 rows, for example, No. 5 in FIG. 8B), 5 spots (8-12 rows, for example, FIG. 8D No. 15) or 6 spots (lines 7 to 12, for example, No. 7 in FIG. 8B).
  • Each clone shown in Fig. 8 is spotted in two rows. For example, in the first section of FIG. 8A, the positions where the clone “JZ1823” is spotted are at row 1 column 1 and row 1 column 2 in FIG. 7B.
  • the gene expression analysis of Aspergillus oryzae ⁇ Aspergillus niger was performed for kX ⁇ Y, 2000 chronoarray.
  • FIG. 9 shows the flow arrangement of the block arrangement of FIG. is there. Therefore, the first section of the block arrangement is in the upper left of FIG. 9, and the fourth section is in the upper right of FIG.
  • the gene specifically expressed in the C source deficiency state was the aldolase gene, and most of the other glycolytic genes were expressed in the C source state.
  • Figure 10 shows a comparison between Northern analysis and polynucleotide array analysis projected onto a metabolic map.
  • the substances in the boxes are the names of the enzymes that act in the glycolysis system, and the MIX numbers described on the right side of the boxes represent the independent EST clones grouped by the class ring.
  • the results of the polynucleotide array of the genes encoding each enzyme and the results of the Northern analysis were in good agreement.
  • analysis using a 2000 clone array was performed. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a database search using Blast or the like.
  • the hybridization temperature depends on the type of clones arranged on the array. It is necessary to set to. In this embodiment, the temperature was set at 53 ° C.
  • Fig. 11 shows an example of hybridization. In the 16-hour culture, Zn transport protein and xylosidase (Zn protein, alpha-xylosidase) were specifically expressed, and in the 26-hour culture, ⁇ -amylase and glutamate-ammonium ligase were specifically expressed.
  • a polynucleotide array having a polynucleotide derived from a filamentous fungus immobilized thereon and a method for detecting a gene.
  • the polynucleotide array of the present invention realizes simultaneous, simultaneous hybridization analysis of many polynucleotide species of filamentous fungi, which has been extremely difficult in the past. As a result, it is possible to achieve automation and labor saving of gene expression analysis, precise identification or identification of related species, mutants and the like. In addition, this system can be used for advanced optimization of fermentable production, and it also provides a screening system for useful (harmful) substances.

Abstract

A method of detecting gene expression characterized by comprising immobilizing a probe containing the full base sequence or a part thereof of a mold-origin nucleic acid, hybridizing a labeled polynucleotide sample to be detected with the immobilized probe as described above, and then detecting a signal from the hybridization product thus obtained.

Description

明細書 糸状菌ポリヌクレオチドアレイ 技術分野  Description Filamentous fungal polynucleotide array
本発明は、糸状菌由来の核酸の全部又は一部の塩基配列を含むプローブが基盤に 固定された糸状菌ポリヌクレオチドアレイ、 及び該ポリヌクレオチドアレイを用 いた遺伝子発現の検出方法に関する。 本発明のポリヌクレオチドアレイは、 糸状 菌の遺伝子発現を定量的にモニターするデバイスである。 具体的には、 本発明の ポリヌクレオチドアレイは糸状菌 (例えば麹カビ) の発現遺伝子である cDNAを 1 種類又は多種類スポットしたものであり、 対象とするカビより抽出した遺伝子 をラベル化してアレイ上でのハイブリダィゼーシヨンを行うことにより、 遺伝子 発現頻度を解析するデバイスである。 背景技術  The present invention relates to a filamentous fungus polynucleotide array having a probe containing the entire or partial nucleotide sequence of a filamentous fungus-derived nucleic acid immobilized on a base, and a method for detecting gene expression using the polynucleotide array. The polynucleotide array of the present invention is a device for quantitatively monitoring the gene expression of a filamentous fungus. Specifically, the polynucleotide array of the present invention is obtained by spotting one or more types of cDNA which is a gene expressed by a filamentous fungus (for example, koji mold), and labeling the gene extracted from the target mold to form an array. This device analyzes the frequency of gene expression by performing the above hybridization. Background art
糸状菌にはァスペルギルス属、 ぺニシリウム属、 フザリウム属、 卜リコデルマ 属、 ムコール属等のカビが存在し、 発酵産業や、 ヒトおよび穀物感染などに関わ つていることから、 重要なカビと考えられている。 ァスペルギルス spergillus) に属するカビには、 発酵産業において利用されている種の他に、 ヒト感染症又は 榖物感染症などの疾患又は病害に主体的に関わっている種も存在する。 従って、 発酵生産の高効率化 ·最適化を迅速に達成するためには、 生育状態、 物質生産等 に関与する有用遺伝子の網羅的発現解析が必要である。 ヒト感染症カビの同定や 抗カビ剤の開発を行うためにも、 ヒト感染に関わる遺伝子の網羅的発現解析が必 要である。 穀物感染カビにおいては、 その防疫の観点から、 感染カビの同定およ び、 抗カビ剤の開発のために、 穀物感染に関わる遺伝子の網羅的発現解析、 ある いは毒素生産に関わる遺伝子の網羅的発現解析が必要とされている。  Fungi such as Aspergillus, Penicillium, Fusarium, Trichoderma and Mucor exist in the filamentous fungi, and are considered to be important molds because they are involved in the fermentation industry, human and cereal infections, etc. I have. Aspergillus sp. Includes other species used in the fermentation industry, as well as those that are primarily involved in diseases or diseases such as human or animal infections. Therefore, in order to quickly achieve high efficiency and optimization of fermentation production, comprehensive expression analysis of useful genes involved in growth status, substance production, etc., is necessary. Comprehensive expression analysis of genes involved in human infection is necessary to identify human infectious disease molds and to develop antifungal agents. From the viewpoint of epidemic control, comprehensive analysis of the expression of genes involved in cereal infections, and comprehensive analysis of genes involved in toxin production, from the viewpoint of epidemic control, to identify infected molds and develop antifungal agents Expression analysis is needed.
従来より、 特に発酵工業、 医療、 農業において重要な ^^perg ZZ^属カビの多種 類の遺伝子発現を、 同時にしかも直接的にモニターする方法は存在していなかつ た。 従って、 遺伝子発現の機能自体又は発現物質 (麹菌から生産される有用な酵 素等のタンパク質や抗生物質などの有用二次代産物) は、 目視ゃ芳香などを用い た専門技術者 (職人 ·品質管理技術者 ·医師など) による観測、 生産物中の有機 酸やエステルなどの成分の分析などに基づいた観測、 感染部位からの分離菌の培 養による識別、 毒素などの代謝産物の分離測定などによりモニターされており、 これまでの経験に基づいて生育の状態や発酵機能の発現、 病態との関連、 穀物汚 染との関連を推定してきた。 しかし、 これらの従来の観測法により得られたデー 夕は客観的であるとはいえず、 また直接的に観測できないため数値化が難しい場 合が殆どであり、 自動化や省力化が困難な場合が多々存在した。 さらに、 代謝産 物を同定する場合において、 クロマト法による分離定量法によれば客観性を確保 し、 しかも数値化が可能である。 しかしながら、 分析手法が煩雑であるのみなら ず、 少数の物質を同定できるにとどまるなど、 困難さがある。 発明の開示 Until now, there has been no method for simultaneously and directly monitoring the gene expression of many kinds of ^^ perg ZZ ^ fungi, which are particularly important in the fermentation industry, medical care, and agriculture. Therefore, the gene expression function itself or the expressed substance (useful yeast produced from koji mold) Useful secondary products, such as proteins and antibiotics, are monitored by professional technicians (artisans, quality control technicians, doctors, etc.) using visual aroma, etc., and organic acids and esters in products are It is monitored by observation based on analysis of components, identification by cultivation of isolated bacteria from infected sites, separation and measurement of metabolites such as toxins, etc.Based on experience, growth conditions and fermentation functions are monitored. We have estimated its association with expression, disease state, and cereal contamination. However, the data obtained by these conventional methods are not objective and cannot be directly observed, making it difficult to quantify them in most cases.If automation and labor saving are difficult, There were many. Furthermore, in the case of identifying metabolites, the chromatographic separation and quantification method ensures objectivity and can be quantified. However, not only is the analysis technique complicated, but it is difficult to identify only a small number of substances. Disclosure of the invention
本発明は、 糸状菌の遺伝子が支持体に固定されたポリヌクレオチドアレイ、 及 び該ポリヌクレオチドアレイを用いた遺伝子の検出方法を提供することを目的と する。  An object of the present invention is to provide a polynucleotide array having a filamentous fungal gene immobilized on a support, and a method for detecting a gene using the polynucleotide array.
本発明者は、 上記課題を解決するため鋭意研究を行った結果、 糸状菌から単離 されたポリヌクレオチドを基盤に固定化することにより、糸状菌の検出に有用な ポリヌクレオチドアレイを作製し、 本発明を完成するに至った。 すなわち、 本発 明は以下の通りである。  The present inventors have conducted intensive studies to solve the above problems, and as a result, by immobilizing a polynucleotide isolated from a filamentous fungus on a base, produced a polynucleotide array useful for detection of filamentous fungi, The present invention has been completed. That is, the present invention is as follows.
(1) 糸状菌由来の核酸の全部又は一部の塩基配列を含むプローブが支持体に固定 されたポリヌクレオチドアレイ。  (1) A polynucleotide array in which probes containing all or part of the nucleotide sequence of a nucleic acid derived from a filamentous fungus are immobilized on a support.
上記核酸としては、 C源付与培養条件、 C源欠乏培養条件、 マルトース培養条 件、 アルカリ性培養条件、 固体培養条件、 高温培養条件、 固体低温培養条件及び 胞子発芽培養条件からなる群から選ばれる少なくとも 1つの条件で培養された糸 状菌由来の cDNAライブラリ一から作製された cDNA領域を含むポリヌクレオチ ドを挙げることができる。 また、 上記核酸はゲノム DNA、 cDNA、 RNA又はオリ ゴヌクレオチド DNAでもよい。  The nucleic acid may be at least one selected from the group consisting of a C source-added culture condition, a C source deficient culture condition, a maltose culture condition, an alkaline culture condition, a solid culture condition, a high temperature culture condition, a solid low temperature culture condition, and a spore germination culture condition. One example is a polynucleotide containing a cDNA region prepared from a cDNA library derived from a filamentous fungus cultured under one condition. The nucleic acid may be genomic DNA, cDNA, RNA or oligonucleotide DNA.
また、 糸状菌としては、 ァスペルギルス属、 ぺニシリウム属、 フザリウム属、 トリコデルマ属又はムコール属に属する微生物が挙げられる。 本発明の態様にお いて、 ァスペルギルス属に属する微生物としては、 ァスペルギルス ·ォリゼ、 ァ スペルギルス ·ゾーヤ、 ァスペルギルス ·二ガー、 ァスペルギルス ·ァヮモリ、 ァスペルギルス ·力ヮチ、 ァスペルギルス ·パラシティクス、 ァスペルギルス · フラバス、 ァスペルギルス ·ノミウス、 ァスペルギルス ·フミガ夕ス及びァスぺ ルギルス ·ニジュランスからなる群から選択される少なくとも 1種であり、 好ま しくはァスペルギルス ·ォリゼ、 ァスペルギルス ·ゾーヤ、 ァスペルギルス ·パ ラシテイクス、 ァスペルギルス ·フラバス及びァスペルギルス · ノミウスからな る群から選択される少なくとも 1種であり、 さらに好ましくはァスペルギルス · ォリゼである。 The filamentous fungi include Aspergillus, Penicillium, Fusarium, Examples include microorganisms belonging to the genus Trichoderma or the genus Mucor. In the embodiment of the present invention, the microorganisms belonging to the genus Aspergillus include Aspergillus oryzae, A. sp. At least one selected from the group consisting of Nomius, Aspergillus fumigatus and Aspergillus nidulans, preferably Aspergillus oryzae, Aspergillus zoya, Aspergillus parasites, Aspergillus flavus and Aspergillus At least one member selected from the group consisting of, more preferably Aspergillus oryzae.
本発明のポリヌクレオチドアレイに使用される支持体としては、 例えばセル口 —スポリマー、 ナイロンポリマー、 ガラス、 非多孔質材料又は多孔質材料が挙げ られる。  The support used in the polynucleotide array of the present invention includes, for example, cell-opening polymer, nylon polymer, glass, non-porous material or porous material.
(2) 検出の目的ポリヌクレオチドを標識した後、 上記 (1)のポリヌクレオチドァレ ィに固定化されたプローブとハイブリダィズさせ、 得られるハイプリダイゼーシ ョン産物からシグナルを検出することを特徴とする目的ポリヌクレオチドの検出 方法。  (2) After labeling the target polynucleotide for detection, it is hybridized with the probe immobilized on the polynucleotide array of (1) above, and a signal is detected from the obtained hybridization product. A method for detecting a target polynucleotide.
上記検出方法において、 検出の目的ポリヌクレオチドは、 糸状菌由来のもので あり、 ポリヌクレオチドの標識は、 蛍光標識、 放射線標識、 電子標識又は多段修 飾標識により行われる。 検出の目的ポリヌクレオチドは、 例えばゲノム DNA、 cDNA、 RNA又はオリゴヌクレオチド DNAである。 糸状菌としては、 ァスペル ギルス属、 ぺニシリウム属、 フザリウム属、 トリコデルマ属又はムコール属に属 する微生物のうち少なくとも 1種である。 ァスペルギルス属に属する微生物は、 (1)に例示したものと同様である。  In the above detection method, the target polynucleotide for detection is derived from a filamentous fungus, and the polynucleotide is labeled with a fluorescent label, a radioactive label, an electronic label, or a multistage modified label. The target polynucleotide for detection is, for example, genomic DNA, cDNA, RNA or oligonucleotide DNA. The filamentous fungus is at least one of microorganisms belonging to the genera Aspergillus, Penicillium, Fusarium, Trichoderma or Mucor. Microorganisms belonging to the genus Aspergillus are the same as those exemplified in (1).
本発明の検出方法において、 ポリヌクレオチドアレイに固定化するプローブの 種類は、 20〜10万種類である。  In the detection method of the present invention, 20 to 100,000 types of probes are immobilized on the polynucleotide array.
(3) 上記 (2)に示す検出方法により得られた検出結果を指標として、 糸状菌近縁種 又はその変異体を同定及び/又は識別する方法。  (3) A method for identifying and / or distinguishing a filamentous fungus-related species or a mutant thereof using the detection result obtained by the detection method shown in (2) as an index.
(4)スクリーニングの対象となる有用物質又は有害物質候補サンプルを糸状菌の うち少なくとも 1種と共存させたのち、 当該糸状菌から核酸を単離及び標識し、 標識された核酸を、 前記 (1)のポリヌクレオチドアレイに固定化されたプローブと ハイブリダィズさせ、 得られるハイブリダィゼ一シヨン産物からシグナルを検出 し、得られる検出結果を指標として有用及び/又は有害物質をスクリーニングする 方法。 (4) Useful substance or harmful substance candidate samples to be screened After coexisting with at least one of them, the nucleic acid is isolated and labeled from the filamentous fungus, and the labeled nucleic acid is hybridized with the probe immobilized on the polynucleotide array of the above (1). A method for detecting a signal from a product of a shion and screening for useful and / or harmful substances using the obtained detection result as an index.
上記有用物質又は有害物質としては薬物が挙げられる。  The useful or harmful substance includes a drug.
(5) 異なる培養条件で培養した糸状菌から核酸をそれぞれ単離及び標識し、 標識 された核酸を、 前記 (1)のポリヌクレオチドアレイに固定されたプローブとハイブ リダィズさせ、 得られるハイプリダイゼ一ション産物からシグナルを検出し、 得 られる検出結果を指標として前記糸状菌の目的遺伝子の発現を最適化する方法。 以下、 本発明を詳細に説明する。  (5) Isolating and labeling nucleic acids from filamentous fungi cultured under different culture conditions, hybridizing the labeled nucleic acids with the probes immobilized on the polynucleotide array of (1) above, and obtaining the resulting hybridization. A method for detecting a signal from a product and optimizing the expression of the target gene of the filamentous fungus using the obtained detection result as an index. Hereinafter, the present invention will be described in detail.
1 . 1.
本発明は、 糸状菌、 特に麹菌の多数の遺伝子の塩基配列を利用して、 上記の問 題を解決しょうとするものである。 即ち、 本発明による塩基配列を有する多数の ハイプリダイゼーシヨンプローブを用意し、 より具体的には支持体である固相基 盤上にプローブとして核酸を整列固定化させ、 糸状菌由来の DNA量及び遺伝子 の発現量を測定することにより、 糸状菌の生育状態及び菌の発酵機能の発現を直 接的かつ正確に測定することが可能となる。 さらに、 近縁菌種を対象とする解析 においては、 例えばァスペルギルス ·フミガ夕ス
Figure imgf000006_0001
のヒト感 染時の遺伝子発現、 穀物感染カビであるァスペルギルス ·フラバス (ん yZav ;)、 ァスペルギルス ·パラスティカス (ん pa s C ) などの穀物感染時の遺伝子発 現、 あるいは毒素を含む代謝産物の生産に関わる遺伝子発現を正確に測定するこ とも可能となる。 ァスペルギルス ·ニガ一 (ん ' などの発酵生産株などの遺 伝子発現モニターにも使用することが可能である。
The present invention seeks to solve the above-mentioned problems by utilizing the base sequences of a large number of genes of filamentous fungi, especially koji molds. That is, a large number of hybridization probes having the base sequence according to the present invention are prepared, and more specifically, nucleic acids are aligned and immobilized as probes on a solid phase substrate as a support, and the amount of DNA derived from filamentous fungi is determined. By measuring the expression level of the gene and the gene, the growth state of the filamentous fungus and the expression of the fermentation function of the fungus can be directly and accurately measured. Furthermore, in the analysis of closely related bacterial species, for example, Aspergillus fumiga
Figure imgf000006_0001
Gene expression during human infection, gene expression during cereal infections such as Aspergillus flavus (n yZav;) and Aspergillus parasticus (n pasC), which are cereal-infected molds, or production of metabolites including toxins It is also possible to accurately measure the gene expression related to the disease. It can also be used to monitor gene expression in fermentation-producing strains such as Aspergillus nigaichi (n ').
本発明のポリヌクレオチドアレイに固定化されたポリヌクレオチドは、種々の 代表的な発酵生産や生育条件において発現する遺伝子の塩基配列のほとんど全て が網羅されたものであり、 このポリヌクレオチドァレイは糸状菌遺伝子を検出す るのに有効であると考えられる。 これにより、 従来は極めて困難であった自動化 及び省力化が達成されるばかりでなく、 発酵生産め信頼性の向上及び標準化が達 成される。 これにより、 大幅な生産コストの削減が可能となる。 The polynucleotide immobilized on the polynucleotide array of the present invention covers almost all of the nucleotide sequence of a gene expressed under various typical fermentation production and growth conditions. It is considered to be effective for detecting bacterial genes. As a result, automation that was extremely difficult In addition to labor saving, fermentation production reliability is improved and standardization is achieved. This will allow a significant reduction in production costs.
2 . ポリヌクレオチドアレイ 2. Polynucleotide array
(1) 固定用ポリヌクレオチドの調製  (1) Preparation of polynucleotide for immobilization
本発明において、 ポリヌクレオチドアレイとは、 支持体である基盤上にポリヌ クレオチドである核酸がプローブとして固定化されたものをいう。  In the present invention, the term “polynucleotide array” refers to an array in which nucleic acids, which are polynucleotides, are immobilized as probes on a base, which is a support.
ポリヌクレオチドアレイは、 ポリヌクレオチドを溶媒に溶解してポリヌクレオ チド溶液を調製し、 調製されたポリヌクレオチド溶液を基盤の表面に固定するこ とにより作製することができる。 例えば、 基盤表面にポリヌクレオチド液分注針 の先端面を当接してポリヌクレオチド溶液を配置した後、 固定する。 あるいは基 盤表面上に直接合成して作製することもできる。  A polynucleotide array can be prepared by dissolving a polynucleotide in a solvent to prepare a polynucleotide solution, and fixing the prepared polynucleotide solution to the surface of a substrate. For example, the polynucleotide solution is placed by abutting the tip surface of the polynucleotide solution dispensing needle on the surface of the substrate, and then fixed. Alternatively, it can be produced by directly synthesizing it on the substrate surface.
使用するポリヌクレオチドは、 糸状菌由来のものを使用できる。 糸状菌として は、 例えばァスペルギルス属、 ぺニシリウム属、 フザリウム属、 トリコデルマ属、 ムコール属に属する微生物 (力ビ) が例示される。 当該微生物の種類は特に限定 されるものではないが、 以下のものが挙げられる。  The polynucleotide to be used may be one derived from a filamentous fungus. Examples of the filamentous fungi include microorganisms belonging to the genera Aspergillus, Penicillium, Fusarium, Trichoderma, and Mucor. The type of the microorganism is not particularly limited, but includes the following.
(i) ァスペルギルス属  (i) Aspergillus
産業用種:ァスペルギルス ·ォリゼ Aspergillus oryzae)、 ァスペルギルス ·ソ —ャ spergillus sojae)、 黒麹であるァスペルギルス ·ニガ一 Aspergillus niger)、 ァスペルギルス · ァヮモリ {Aspergillus awamori)、 ァスペルギルス ·カヮチ (Aspergillus kawachii)  Industrial species: Aspergillus oryzae, Aspergillus sojae), Aspergillus niger, a black koji, Aspergillus awamori, Aspergillus awaschi
これらの産業用種は、 医薬品、 化成品、 酵素又は食品の生産に利用されている。 ヒト感染種:ァスペルギルス ·フミガタス spergUlus fumigatus")  These industrial species are used in the production of pharmaceuticals, chemicals, enzymes or foods. Human infectious species: Aspergillus fumigatus spergUlus fumigatus ")
穀物感染種:ァスペルギルス ·フラバス (Aspergillus flavus)、 ァスペルギルス · ノ フンアイクス Aspergillus parasiticus)ヽ ァスペリレ千レス 'ノミウス (Aspergillus nomius)  Grain infectious species: Aspergillus flavus, Aspergillus parasiticus) ヽ Aspergillus nomius
実験モデル生物種:ァスペルギルス ·ニジュランス (Aspergillus  Experimental model species: Aspergillus
(ii) ぺニシリウム属 産業用種:ベニシリン生産菌であるべニシリゥム ·クリソゲナム (Penicillium chrysogenum)、 ぺニシリウム * ノタータム (Penicillium notatum)、 水虫治療薬グ リセオフルビン生産菌のぺニシリウム · ダルセオフルブム ( Penicillium griseofulvum ) , チーズ生産に利用されているぺニシリウム · ロクフオルチ (Penicillium roqueforti) へ―ンリゥム · Jヾノべ Jレナ (Penicillium camembefti) 穀物および果実汚染種:ぺニシリウム ·シトリナム Penicillium citrinum) ぺ ニシリウム 'イスランデカム PeniciUium islandicum)、 ぺニシリウム ·ェクスパ ノサム {Penicillium expansum) (ii) Penicillium Industrial species: Penicillium chrysogenum, a penicillin-producing bacterium, Penicillium notatum, Penicillium griseofulvum, a glyceofulvin-producing bacterium for the treatment of athlete's foot, griseofulvin Penicillium roqueforti Henryum J ヾ nove J Lena (Penicillium camembefti) Grain and fruit contaminants: Penicillium citricum Penicillium 'Pisnicillium' expansum)
(iii) (iii)
産業用種:微生物タンパク質 (マイコプ口ティン) 用のフザリウム 'ベネナ夕 ム (Fusarium vencnatumj  Industrial species: Fusarium vencnatum j for microbial proteins (mycop mouth tin)
植物感染種:フザリゥム ·ソラニ F um solani フザリゥム ·ォキシスポ フム {Fusarium  Infected plant species: Fusarium fum solani {Fusarium
(iv)トリコデルマ属 (iv) Trichoderma
産業用種:セルラーゼ生産菌である卜リコデルマ ·リーセィ Trichoderma reese トリコアレヾ · ヒリア (Trichoderma viri.de j  Industrial species: Trichoderma reese, a cellulase-producing bacterium, Trichoderma reese, Hilia (Trichoderma viri.de j
(iv)ムコール属 (iv) Mucor genus
産業用種:凝乳酵素生産菌のムコール ·プシルス Mucor pusillus) ムコール - \Mucor mie iei)  Industrial species: Mucor pusillus, a clotting enzyme-producing bacterium-\ Mucor mie iei)
(V)リゾープス属 (V) Rhizopus
産業用種:ダルコアミラーゼ生産菌のリゾ一プス ·デレマー ( ihizopus delemar) , リゾープス ·ニグリカンス Rhizopus nigricans ヽ リゾープス 'ォリゼ Rhizopus oryzae) , テンペ生産菌のリゾープス 'オリゴスポラス ( thizopus oligosporus)  Industrial species: Rhizopus delemar (Dhicopus delemar), Rhizopus nigricans (Rhizopus nigricans) 菌 Rhizopus oryzae (Rhizopus oryzae), Rhizopus (Thizopus oligosporus)
(vi)モナスカス属 産業用種:モナスカス'アンカ Monascus α た β)、モナスカスづレーバー(Momwc rii&er)、 モナスカス · ノ Jレゾレソ (Monascus purpureus) (vi) Monascus Industrial species: Monascus' anca Monascus α or β), Monascus puriier (Momwc rii & er), Monascus no J resoleso (Monascus purpureus)
これらの菌は、 紅酒や豆腐の製造、 赤色色素の生産、 あるいはコレステロール 血症治療薬の生産に用いられている。 ポリヌクレオチド (核酸) の種類は DNA (デォキシリポ核酸)、 RNA (リポ核 酸) 等が挙げられ、 染色体 DNA由来の DNA断片、 RNA (mRNAなど)、 cDNA、 オリゴヌクレオチドのいずれでもよい。 なお、 オリゴヌクレオチドとは、 上記染 色体 DNA断片、 mRNA、 cDNAの全部又は一部を化学的な処理を施したもの、 あ るいは上記核酸配列に基づいて化学合成したものをいう。 例えば、 PCR増幅産物、 制限酵素切断処理 DNA等が挙げられる。  These fungi are used to produce red wine and tofu, produce red pigments, or produce drugs to treat cholesterol. Examples of the type of the polynucleotide (nucleic acid) include DNA (deoxyliponucleic acid) and RNA (liponucleic acid), and any of DNA fragments derived from chromosomal DNA, RNA (such as mRNA), cDNA, and oligonucleotides may be used. The oligonucleotide refers to a product obtained by subjecting all or a part of the above-described chromosomal DNA fragment, mRNA, or cDNA to a chemical treatment, or a product obtained by chemically synthesizing based on the above-described nucleic acid sequence. For example, PCR amplification products, restriction enzyme digested DNA and the like can be mentioned.
また、 特定の遺伝子の一部を含む DNA 断片、 転写レベルの異常が見られる mRNA, 又は該 mRNAに由来する cDNAでもよい。 核酸は溶媒に溶解し、 核酸含 有溶液 (ポリヌクレオチド溶液という) を調製する。  It may also be a DNA fragment containing a part of a specific gene, an mRNA having an abnormal transcription level, or a cDNA derived from the mRNA. The nucleic acid is dissolved in a solvent to prepare a nucleic acid-containing solution (called a polynucleotide solution).
さらに、 核酸は、 各種培養条件で糸状菌を培養し、 培養後の糸状菌から調製す ることが可能である。 培養条件としては、 C源付与培養条件、 C源欠乏培養条件、 マルトース培養条件、 アルカリ性培養条件、 固体培養条件、 高温培養条件、 固体 低温培養条件及び胞子発芽培養条件があり、 これらの条件の 1つを用いて又は組 み合わせて培養することができる。  Furthermore, nucleic acids can be prepared from the filamentous fungi after culturing the filamentous fungi under various culture conditions. Cultivation conditions include C source-added culture conditions, C source-deficient culture conditions, maltose culture conditions, alkaline culture conditions, solid culture conditions, high-temperature culture conditions, solid low-temperature culture conditions, and spore germination culture conditions. One or a combination of them can be used for culturing.
C源付与培養条件とは、炭素源を含む培地で培養したときの培養条件を意味し、 例えば YPD培地 ( 1 % yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose) における 0°C、 22時間の震盪培養 (180rpm) を指す。  C source-added culturing conditions refer to culturing conditions when culturing in a medium containing a carbon source, such as 0% in YPD medium (1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose). Shaking culture (180 rpm) for 22 hours at ° C.
C源欠乏培養条件とは、 炭素源を含まない培地で培養したときの培養条件を意 味する。例えば、 YPD培地(1 % yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose) で 30で、 22時間培養し、 菌体をろ過によって集菌し蒸留水で洗浄し •た後、この菌体を、 glucoseなどの炭素源を含まない (Czapek- Dox) CD培地 (Nakajima K et al. Curr Genet. 2000 May;37(5):322-7など)に移してさらに 8時間培養するもの を指す。  C source-deficient culture conditions refer to culture conditions when cultured in a medium that does not contain a carbon source. For example, after culturing in YPD medium (1% yeast extract, 2% Bacto-pepton, 0.04% adenine sulfate, 2% glucose) at 30 for 22 hours, collect the cells by filtration and wash them with distilled water. Then, transfer the cells to a CD medium (Czapek-Dox) that does not contain a carbon source such as glucose (Nakajima K et al. Curr Genet. 2000 May; 37 (5): 322-7) and further culture for 8 hours To do something.
マルトース培養条件とは、 マルトースを含む培地で培養したときの培養条件を 意味する。 例えば、 ACM培地 (2% Malt extract, 0.1 % Bacto-pepton, 2% Glucose) で 、 24 時間振とう培養し (180rpm)、 菌体を濾過集菌して天然培地 (1 % Bacto-pepton, 0.5 % KH2P04, 0.1 % NAN03 , 0.05% MgS04 · 7Η2θ) で洗浄した後、 この菌体を 2% Maltose を含む天然培地で 37°C、 4時間更に振とう培養するもの を指す。 Maltose culture conditions refer to the culture conditions when cultured in a medium containing maltose. means. For example, the cells are cultured in an ACM medium (2% Malt extract, 0.1% Bacto-pepton, 2% Glucose) with shaking for 24 hours (180 rpm), and the cells are collected by filtration and collected in a natural medium (1% Bacto-pepton, 0.5%). % KH 2 P0 4, 0.1% NAN0 3, washed 0.05% MgS0 4 · 7Η in 2 theta), those that 37 ° C, 4 hours further cultured with shaking at natural medium containing the cells 2% Maltose Point.
アルカリ性培養条件とは、 pHが 7〜11の範囲で培養したときの培養条件を意味 する。 例えば、 pHIOに調製した CD(Czapek-Dox)寒天培地上に滅菌したセロファ ンを置き、 ん oryz eRIB40株の分生子を植菌し、 30°Cで 3日間培養する。  The alkaline culture condition means a culture condition when the culture is performed in a pH range of 7 to 11. For example, put sterilized cellophane on a CD (Czapek-Dox) agar medium adjusted to pHIO, inoculate a conidium of the oryz eRIB40 strain, and culture at 30 ° C for 3 days.
固体培養条件とは、 小麦ふすま 5 gに、 分生子 5 X 106個を水 4 mlに懸濁して添 加し (106個/ g-ふすま)、 これを 30°Cで 27時間静置培養するものを指す。 高温培養条件とは、温度が 30〜42°Cの範囲で培養したときの培養条件を意味す る。 例えば、 上記 YPD培地にて、 37°C , 24時間振とう培養するものを指す。 固体低温培養条件とは、 麸、 米または醤油麹用の穀類を含む組成の培地で、 30 〜15°Cの範囲で培養したときの培養条件を意味する。 例えば、 脱脂加工大豆 10g に 15mlの水を加えて吸水させ、焙炒割碎小麦 10gを加えて攪拌する。これを 500ml 容三角フラスコに入れてバイオシリコ栓をして 30分間オートクレーブ処理し、冷 却後 Aspergillus oryzae RIB40 を 1 X 10 5個胞子/ gになるように接種する。 接種後 30°C (気相式) で 34時間、 その後 25°Cで 3時間製麹する。 The solid culture conditions are as follows: 5 x 10 6 conidia are suspended in 4 ml of water and added to 5 g of wheat bran (10 6 / g-bran), and the mixture is allowed to stand at 30 ° C for 27 hours. Refers to what is cultured. High-temperature culture conditions refer to culture conditions when culture is performed at a temperature in the range of 30 to 42 ° C. For example, it refers to a medium cultured with shaking at 37 ° C. for 24 hours in the above YPD medium. The solid low-temperature culturing conditions refer to culturing conditions when culturing at a temperature in the range of 30 to 15 ° C. in a medium having a composition containing cereals for wheat, rice or soy sauce koji. For example, 15 g of water is added to 10 g of defatted soybeans to absorb water, and 10 g of roasted cracked wheat is added and stirred. This is placed in a 500 ml Erlenmeyer flask, covered with a biosilico stopper, and autoclaved for 30 minutes. After cooling, 1 × 10 5 Aspergillus oryzae RIB40 is inoculated at a concentration of 1 × 10 5 spores / g. After inoculation, koji is made at 30 ° C (gas phase) for 34 hours and then at 25 ° C for 3 hours.
胞子発芽培養条件とは、 胞子を発芽させた菌体を含む培地で培養したときの培 養条件を意味する。 例えば、 分生子を、 PD (ポテトデキストロース寒天) 平板で 28°C 8日間培養し、 取得する。 発芽菌体は、 分生子を SP液体培地 (3.5 % 可溶性 デンプン、 2% ポリペプトン、 0·5 % ΚΗ2ΡΟ4、 0.5 % 、 MgS04 - 7H20) で 30°C、 12 時間培養して得る。 用いるポリヌクレオチドの種類又は個数は、 20個 (種) 以上であればいくらで も構わないが、 20〜10万個 (種)、 望ましくは 100個 (種) 以上 10万個 (種) の 範囲である。 ポリヌクレオチド自体の長さは、 プローブとして機能し得る長さで あれば任意に設定することができる。 例えば、 10〜50,000塩基、 好ましくは 10 〜2000塩基、 さらに好ましくは 10〜1000塩基である。 The spore germination culture conditions refer to the culture conditions when spores are cultivated in a medium containing the germinated cells. For example, conidia are obtained by culturing them on PD (potato dextrose agar) plates at 28 ° C for 8 days. Germination bacterial cells, conidia SP liquid medium (3.5% soluble starch, 2% polypeptone, 0 · 5% ΚΗ 2 ΡΟ 4, 0.5%, MgS0 4 - 7H 2 0) in cultured 30 ° C, 12 hours obtain. The type or number of polynucleotides used may be any number as long as it is 20 or more (species), but is in the range of 20 to 100,000 (species), preferably 100 to 100,000 (species). It is. The length of the polynucleotide itself can be arbitrarily set as long as it can function as a probe. For example, 10 to 50,000 bases, preferably 10 20002000 bases, more preferably 10-1000 bases.
(2) ポリヌクレオチド溶液の支持体への配置 (2) Arrangement of polynucleotide solution on support
ポリヌクレオチドアレイ用支持体表面に対して多数のポリヌクレオチド溶液を 配置する。 支持体はセルロース膜 (セルロースポリマー)、 ナイロン膜 (ナイロン ポリマ一) などの膜、 ガラス支持体、 さらに非多孔質支持体又は多孔質支持体等 を使用することができる。 非多孔質支持体材料又は多孔質支持体材料にはプラス チック (ポリエチレン、 ポリプロピレン、 ポリスチレン等) が含まれる。 本発明 においては、 低コストで高密度化が容易かつ平面特性に優れる点でガラス支持体 が好ましく、 具体的には日本レーザ電子株式会社製のスライ ドガラス (DNA Microarray Kit専用スライドグラス) を使用することができる。支持体の表面は、 陽電荷処理される。陽電荷処理としては支持体の表面をポリ-レリシン又はアミノ プロピルトリエトキシシラン等でアミノ化処理して陽電荷化させる。 次に、 支持 体表面にポリヌクレオチド溶液を配置する。 ポリヌクレオチドの支持体表面への 固定化はこれに限られるものではなく、 例えばァミノ化されたポリヌクレオチド と共有結合可能な表面特性を有する支持体との組み合わせもある。 具体的には Surrmodics社の 3D- Linkがあげられる。 配置装置は市販のもの、 例えば GTM AS Stamp (日本レーザ電子社製) を用いることができる。 この装置は、 支持体表面 に対し、 分注へッドを X-Y-Z軸方向へ移動制御して分注へッドにおける各分注針 の先端面を約 0.5〜1秒間当接させ、 多種類のポリヌクレオチド溶液をマトリク ス状に配置することができる。 この配置作業において、 分注ヘッドは X-Y軸方向 に対し、各スポッ卜の相互間隔が約 100〜200 mになるように移動制御される。 但し、 配置の方法はこれに限られるものではない。  A number of polynucleotide solutions are placed on the surface of the polynucleotide array support. As the support, a membrane such as a cellulose membrane (cellulose polymer) or a nylon membrane (nylon polymer), a glass support, a nonporous support or a porous support can be used. Non-porous or porous support materials include plastics (eg, polyethylene, polypropylene, polystyrene, etc.). In the present invention, a glass support is preferable because it is low in cost, easy to achieve high density, and excellent in planar characteristics. Specifically, a slide glass (a slide glass for DNA Microarray Kit) manufactured by Nippon Laser Electronics Co., Ltd. is used. be able to. The surface of the support is positively charged. As the positive charge treatment, the surface of the support is subjected to amination treatment with poly-relysin, aminopropyltriethoxysilane, or the like so as to be positively charged. Next, a polynucleotide solution is placed on the surface of the support. The immobilization of the polynucleotide on the surface of the support is not limited to this. For example, there is a combination of an aminated polynucleotide with a support having surface characteristics capable of covalently binding. A specific example is Surrmodics' 3D-Link. A commercially available arrangement device such as a GTM AS Stamp (manufactured by Nippon Laser Electronics Co., Ltd.) can be used. This device controls the movement of the dispensing head in the XYZ axis direction with respect to the surface of the support so that the tip surface of each dispensing needle in the dispensing head comes into contact for about 0.5 to 1 second, and various types of The polynucleotide solution can be arranged in a matrix. In this arrangement, the dispensing head is controlled to move in the X-Y axis direction so that the distance between the spots is about 100 to 200 m. However, the arrangement method is not limited to this.
支持体は平面のものに限られるものではなく、ビーズ状の支持体でも構わない。 その場合、 ビーズ毎に異なるポリヌクレオチド種が保持される。  The support is not limited to a flat one, but may be a bead-like support. In that case, different polynucleotide species are retained for each bead.
(3) ポリヌクレオチドの固定  (3) Immobilization of polynucleotide
支持体表面に配置された多数のポリヌクレオチド溶液を乾燥した後、 約 50〜 120mJの紫外光を照射してポリヌクレオチドを固定化する。 その後、 支持体表面 におけるポリヌクレオチドの非配置領域をブロッキング処理する。 ブロッキング 処理は、 所定量の無水こはく酸、 N-メチルピロシノン及びほう酸ナトリウム溶液 を含むブロッキング液中に、 ポリヌクレオチドが固定された支持体全体を浸漬し て行なう。具体的には日本レーザ電子社製のブロッキング溶液(Microarray Kit A2、 A3,A4の混合溶液) を用いることができる。 ブロッキング溶液から取り出した支 持体を 95〜99°Cの熱水に浸漬して放置し、 エタノールに浸漬した後に、 支持体表 面を風乾させる。 After drying a large number of polynucleotide solutions arranged on the surface of the support, the polynucleotide is immobilized by irradiation with ultraviolet light of about 50 to 120 mJ. Thereafter, the non-arranged region of the polynucleotide on the surface of the support is subjected to a blocking treatment. blocking The treatment is performed by immersing the entire support on which the polynucleotide is immobilized in a blocking solution containing a predetermined amount of a succinic anhydride, N-methylpyrosinone and sodium borate solution. Specifically, a blocking solution (mixed solution of Microarray Kit A2, A3, A4) manufactured by Nippon Laser Electronics Co., Ltd. can be used. The support removed from the blocking solution is immersed in hot water at 95 to 99 ° C and left to stand. After immersion in ethanol, the surface of the support is air-dried.
3 . 遺伝子の検出 3. Gene detection
(1)解析対象糸状菌  (1) Filamentous fungi to be analyzed
検出の対象となる total RNAおよび mRNA は糸状菌の菌糸ならびに胞子から調 製することができる。 糸状菌の種類は前記と同様、 麹菌 Aspergillus oryzae , Aspergillus sojae 黒龜 Aspergillus niger Aspergillus awamor Aspergillus kawacni Aspergillus fumigatus Aspergillus flavus Aspergillus parasiticus Aspergillus nomius Aspergillus nidulansが挙げられる。 遺伝子は、 上記糸状菌のうち少なくとも 1種 から調製される。 目的遺伝子の調製は公知の任意の方法 (例えば液体窒素で細胞 を凍結し粉碎後、 RNase阻害剤存在下でトータル RNAを抽出する)を採用するこ とができるが (Nakajima K et al. Curr Genet. 2000 May;37(5):322-7など)、 日本ジー ン社製の ISOGENなど市販のトータル RNA抽出キッ卜を使用してもよい。 トー タル RNAよりの mRNAの精製はプロメガ社製の MESSAGE MAKERなどに代表 される oligo (dT)が固定化された樹脂やビーズなどを利用して行うことができる。  Total RNA and mRNA to be detected can be prepared from hyphae and spores of filamentous fungi. As described above, the types of filamentous fungi are Aspergillus oryzae, Aspergillus sojae, Aspergillus niger Aspergillus awamor Aspergillus kawacni Aspergillus fumigatus Aspergillus flavus Aspergillus parasiticus Aspergillus nomius Aspergillus nidu. The gene is prepared from at least one of the above filamentous fungi. For preparation of the target gene, any known method (eg, freezing cells in liquid nitrogen, pulverizing, and then extracting total RNA in the presence of an RNase inhibitor) can be employed (Nakajima K et al. Curr Genet). 2000 May; 37 (5): 322-7), and a commercially available total RNA extraction kit such as ISOGEN manufactured by JEIN. Purification of mRNA from total RNA can be performed using oligo (dT) -immobilized resin or beads such as MESSAGE MAKER manufactured by Promega.
(2)遺伝子の標識 (2) Gene labeling
本発明の方法においては、 容易に検出結果が得られるように、 検出の対象とな るポリヌクレオチドを標識する。 標識は、 蛍光標識、 放射線標識、 電子標識又は は多段修飾標識が挙げられる。  In the method of the present invention, a polynucleotide to be detected is labeled so that a detection result can be easily obtained. Examples of the label include a fluorescent label, a radioactive label, an electronic label and a multi-stage modified label.
蛍光標識とは、 解析対象とするポリヌクレオチド(夕一ゲット)に酵素的又は化 学的に蛍光物質を導入する標識法であり、標識物質としては ROX, TET, FAM, IRD, cyanine (Cy3, Cy5, Cy3.5), ALEX,等が挙げられる。例えば Cy3は緑色に、 Cy5は赤 色に発色するため、 2種類の検出対象を区別したいときに便利である。 なお市販 の標識キット、 宝酒造社製 Label IT non-RI Labeling等を使用することも可能であ る。 Fluorescent labeling is a labeling method that enzymatically or chemically introduces a fluorescent substance into the polynucleotide to be analyzed (one get), and includes ROX, TET, FAM, IRD, cyanine (Cy3, Cy5, Cy3.5), ALEX, and the like. For example, Cy3 is colored green and Cy5 is colored red, which is convenient when you want to distinguish between two types of detection targets. Commercially available It is also possible to use a labeling kit, such as Takara Shuzo's Label IT non-RI Labeling.
放射線標識とは、 解析対象とする核酸に放射性核酸や放射性官能基を導入する 標識法であり、 標識物質としては 32P, 33P, 35S, C, ¾, 125Iを含む dNTPや核酸に導 入可能な反応性官能基を含む物質が挙げられる。 市販の標識キット、 例えばアマ シャム 'フアルマシア社製のランダムプライマ一ラベリングキットゃ末端ラベル 化キット等を使用することも可能である。 Radiolabeling is a labeling method that introduces a radioactive nucleic acid or a radioactive functional group into a nucleic acid to be analyzed.For labeling substances, dNTPs and nucleic acids containing 32 P, 33 P, 35 S, C, ¾, and 125 I are used. A substance containing a reactive functional group that can be introduced is given. It is also possible to use a commercially available labeling kit, for example, Amersham's random primer-labeling kit ゃ terminal labeling kit manufactured by Pharmacia.
電子標識とは、 プローブと夕ーゲットがハイブリダィズした二本鎖ポリヌクレ ォチドに反応性のある電荷のある物質を加えることで、 二本鎖が形成された部位 を電気化学的検出法により検出する方法である。 そのような物質としては電荷の あるィン夕一カレーターがあげられる。  Electronic labeling is a method in which a reactive substance is added to a double-stranded polynucleotide that has been hybridized between a probe and a target, and the double-stranded site is detected by an electrochemical detection method. is there. One such material is the charged Yin-ichi-karator.
多段修飾標識とは、蛍光標識又は放射線標識が一段階の反応ではなく、二段階 以上の反応による標識を意味する。 一般に一段階修飾では標識化合物が夕ーゲッ 卜のポリヌクレオチドに取り込まれ難い場合がある。 そこで、 一段階目の反応と して標識化合物と反応性があり、かつ、夕ーゲット に取り込まれやすい物質を導 入しておき、 第 2段階目以降で標識化合物を先行して取り込ませた標識化合物と 反応性のある物質とを反応させることで標識効率を上げる。 市販の標識キッ卜 Clontech社製 Atlas Glass Fluorescent Labeling Kit、 NEN社製 Micromax TSA Labeling Kit等を使用することも可能である。  The term “multi-stage modified label” means a label in which a fluorescent label or a radiolabel is not a one-step reaction but a two- or more-step reaction. In general, in one-step modification, the labeled compound may be difficult to be incorporated into the evening polynucleotide. Therefore, a substance that is reactive with the labeled compound in the first step and that is easily incorporated into the target is introduced, and the second and subsequent steps incorporate the labeled compound in advance. The labeling efficiency is increased by reacting the compound with a reactive substance. It is also possible to use commercially available labeling kits, such as Clontech's Atlas Glass Fluorescent Labeling Kit and NEN's Micromax TSA Labeling Kit.
(3) プローブと検出目的遺伝子とのハイブリダィゼーション (3) Hybridization between probe and target gene
プローブ (支持体上に固定化されたポリヌクレオチド)とターゲット (目的遺伝 子含有液) とを反応させて、 ハイブリダィゼ一シヨンを行う。 また、 ハイブリダ ィゼーシヨンの条件は、 特異的なハイブリッドが形成され、 非特異的なハイプリ ッドが形成されない条件に設定する。 例えば、 高い相同性 (相同性が 60%以上、 好ましくは 80%以上) を有する DNAがハイブリダィズする条件を設定する。 具 体的には、ナトリゥム濃度が 100〜900mM (2〜20 X SSC、好ましくは 4〜10X SSC)、 好ましくは 150〜900mMであり、 温度が 37〜68°C、 好ましくは 42〜68^である。 (4)検出 A probe (polynucleotide immobilized on a support) is reacted with a target (a solution containing the target gene) to perform hybridization. The hybridization conditions are set so that specific hybrids are formed and non-specific hybrids are not formed. For example, conditions are set under which DNA having high homology (homology is 60% or more, preferably 80% or more) is hybridized. Specifically, the sodium concentration is 100-900 mM (2-20 X SSC, preferably 4-10 X SSC), preferably 150-900 mM, and the temperature is 37-68 ° C, preferably 42-68 ^. is there. (4) Detection
ハイブリダィゼーシヨン後、 所定の検出器を用いて標識物質のシグナルを測定 (検出) する。 蛍光標識の場合は蛍光イメージ解析装置、 放射線標識の場合はォ 一トラジオグラフィーあるいは放射線イメージアナライザー、 電子標識の場合は 電気化学検出装置、 多段修飾標識の場合は標識物の種類に応じて対応した装置を 用いてシグナルを測定することができる。  After the hybridization, the signal of the labeling substance is measured (detected) using a predetermined detector. For fluorescent labels, use fluorescence image analyzers, for radiolabels, radiographic or radiological image analyzers, for electronic labels, electrochemical detectors, and for multi-stage modified labels, use them according to the type of label. The signal can be measured using the instrument.
4 . 糸状菌近縁種又はその変異体の同定及び/又は識別 4. Identification and / or identification of closely related filamentous fungi or variants thereof
本発明においては、 上記検出結果に基づいて糸状菌近縁種又はその変異体を同 定及び/又は識別することができる。  In the present invention, a species related to a filamentous fungus or a mutant thereof can be identified and / or distinguished based on the above detection results.
近縁種とは、 DNAの相同性が 40%以上、 望ましくは 50%以上、 さらに望まし くは 70%.以上のものを指す。  Closely related species are those having a DNA homology of 40% or more, preferably 50% or more, and more preferably 70% or more.
変異体とは、 同種菌 (DNAの相同性がほぼ 100% ) であって、 限定数 (1個〜 数個) の塩基に塩基の欠失、 付加、 置換があるものを指す。 または限定数 (1個 〜数個) の遺伝子の欠失でも構わない。 あるいはゲノム上に新たに現定数 (1個 〜数個) の遺伝子を付加したものもある。  Mutants are homologous bacteria (DNA homology is almost 100%) and have a limited number (one to several) of bases with deletions, additions, or substitutions of bases. Alternatively, deletion of a limited number of genes (one to several) may be used. Alternatively, some genes have a new constant number (one to several) of genes added to the genome.
2種の菌株においてラベル化したゲノム DNAのポリヌクレオチドアレイへの 競合ハイブリダィゼーシヨンが認められるものを近縁種とし、 オリゴ DNAなど を利用して、 一塩基の変化をもハイブリダィゼーシヨンの変化として検出できる ように設計したポオリヌクレオチドアレイにおいては、 ハイプリダイゼーション の有無により変異を同定することができる。 Competitive hybridization of the labeled genomic DNA to the polynucleotide array in the two strains is regarded as a closely related species, and the use of oligo DNA etc. to hybridize single nucleotide changes In a polionucleotide array designed to be detected as a change in the condition, a mutation can be identified by the presence or absence of hybridization.
5 . 有用物質または有害物質のスクリーニング、 有用 (有害)物質産生条件の解析 本発明においては、 上記検出結果に基づいて有用物質をスクリーニングするこ とができる。 有用物質としては、 薬物、 酵素、 蛋白質等が挙げられる。 有害物質 としては変異源性物質、 発がん物質、 環境ホルモン、 重金属等が挙げられる。 薬物をスクリーニングするには、 ポリヌクレオチドアレイのプローブを提供す る Aspergillus属カビに、 スクリーニング候補となる有用物質又は有害物質を与え て共存培養した菌体、 及び有用物質又は有害物質を与えずに培養した菌体から 各々 mRNAを調製し、 蛍光標識を行って、 ポリヌクレオチドアレイで遺伝子発現 応答解析を行う。 その際、 発現応答のあった遺伝子を選択して解析することによ り、 薬物の有する作用機作を推定したり、 有用薬物合成のためのリード化合物選 択の判断基準とすることが可能である。 5. Screening of useful or harmful substances, analysis of useful (harmful) substance production conditions In the present invention, useful substances can be screened based on the above detection results. Useful substances include drugs, enzymes, proteins and the like. Hazardous substances include mutagens, carcinogens, environmental hormones, and heavy metals. To screen a drug, a useful or harmful substance as a screening candidate is given to Aspergillus mold, which provides a probe for a polynucleotide array. MRNA is prepared from the co-cultured cells and the cells cultured without providing useful or harmful substances, and fluorescent labeling is performed, and gene expression response analysis is performed using a polynucleotide array. At this time, by selecting and analyzing the genes that responded to the expression, it is possible to estimate the mechanism of action of the drug or to use it as a criterion for selecting a lead compound for the synthesis of a useful drug. is there.
また、 本発明においては、 酵素遺伝子のみならず転写制御因子も含めた発現応 答解析から、 有用物質生産条件の最適化が可能となる。 一方、 毒素などの有害物 質の産生抑制にもポリヌクレオチドアレイ解析は有効である。 すなわち毒素生産 関連遺伝子 (転写制御因子の遺伝子も含む)をポリヌクレオチドアレイ上に固定化 しておいた場合は、 それらの発現を抑制する培養条件の探索や、 発現抑制物質の スクリーニングを行うことも可能である。 以下、 検出結果の各種利用についてそ れぞれ説明する。  Further, in the present invention, it is possible to optimize the conditions for producing a useful substance by analyzing an expression response including not only an enzyme gene but also a transcription control factor. On the other hand, polynucleotide array analysis is also effective in suppressing the production of toxic substances such as toxins. In other words, when toxin production-related genes (including genes for transcription control factors) are immobilized on a polynucleotide array, it is possible to search for culture conditions that suppress their expression and to screen for expression-suppressing substances. It is possible. The various uses of the detection results are described below.
(1) 発現応答のあった遺伝子の解析手法の概要:  (1) Outline of analysis method for genes that responded to expression:
検出装置で測定した結果、 ある条件で発現応答があった遺伝子について、 その シグナル強度を解析用ソフト (例えば ArrayProや ScanAlyzeなど) を用いて定量 化して、 遺伝子発現量を求める。 この際には対照となるコントロール遺伝子の発 現量を基準にして標準化して定量値とする。 多数の遺伝子の発現情報データの解 析には専用の解析ソフト (例えば GeneSpringや GeneMathsなど) を用いて統計解 析を行うことにより、 遺伝子の発現制御ネットワークの解明や代謝経路図にマツ ピングされた遺伝子の発現パターンなどが明らかにできる。  As a result of measurement using a detection device, the gene intensity of the gene that responds under certain conditions is quantified using analysis software (eg, ArrayPro or ScanAlyze) to determine the gene expression level. In this case, standardize based on the expression level of the control gene as a control to obtain a quantitative value. Statistical analysis was performed using specialized analysis software (such as GeneSpring and GeneMaths) to analyze the expression information data of many genes, which was used to elucidate gene expression control networks and map metabolic pathway maps. The expression pattern of the gene can be clarified.
(2) 薬物の有する作用機序を推定するための基準: (2) Criteria for estimating the mechanism of action of drugs:
薬物を与えた条件で遺伝子発現量に変化の生じた遺伝子群を解析ソフトを用い て代謝経路図にマッピングする。 その結果、 発現量に変化を示した遺伝子がある 同系列の代謝経路に多くマッピングされれば、 薬物はその代謝経路に特異的に作 用することが推定できる。  The genes whose gene expression level has changed under the conditions given the drug are mapped to a metabolic pathway diagram using analysis software. As a result, if many genes with altered expression levels are mapped to the metabolic pathways of the same line, it can be estimated that the drug acts specifically on that metabolic pathway.
Aspergillus属カビに特異的な遺伝子が発現応答した場合、 その応答遺伝子が必 須遺伝子であって、 スクリーニング候補物質によって負に (場合によっては正に) 制御された場合には、 抗真菌剤のスクリーニング情報を提供する。 (3) リード化合物選択の判断基準: If a gene specific to Aspergillus genus responds to the expression, the responding gene is an essential gene, and if it is negatively (possibly positive) regulated by the screening candidate substance, screening for an antifungal agent Provide information. (3) Criteria for selecting lead compounds:
リード化合物の候補を用いた培養条件で発現応答に変化が生じた遺伝子群の代 謝経路図にマッピングすることにより、 これまで知られていなかった経路に作用 することが推定される化合物をリ一ド化合物としてスクリ一二ングすることが可 能である。  By mapping to metabolic pathway diagrams of genes whose expression responses have changed under culture conditions using lead compound candidates, compounds that are presumed to act on previously unknown pathways can be identified. It is possible to screen as a compound.
(4) 薬効強度の判断 (4) Determination of efficacy
発現応答の強度や時系列解析から薬効強度の判断にも用いることが可能である。 例えば、 ある薬物を用いて発現応答を調べたときに、 作用する遺伝子の発現レべ ルが大きく変動する場合は、 使用した薬効はきわめて強いと判断することができ る。  It can also be used to determine the efficacy of a drug based on the intensity of the expression response and time series analysis. For example, when the expression response is examined using a certain drug, if the expression level of the acting gene fluctuates greatly, it can be determined that the drug effect used is extremely strong.
(5) 有害物質であると判断するための基準: (5) Criteria for judging that the substance is harmful:
本解析手法は有用薬物ばかりでなく、 毒物などの有害物質のスクリーニングに も用いることが可能である。 すなわち、 哺乳類などにも保存されている細胞必須 の遺伝子の As ergiZZ 属カビ中の相同遺伝子を固定化したポリヌクレオチドアレ ィでは、 その発現を阻害するような物質のスクリーニングも薬物のスクリーニン グと同様に可能であり、 それらは哺乳類などの毒物スクリーニング系となる。 例えば、 ある物質を与えた場合に大きく発現応答が変動する遺伝子群が DNA の修復関連遺伝子 uvsや mdなどである場合は、 その物質は変異原性を有する有 害物質であると判断できる。  This analysis method can be used for screening not only useful drugs but also toxic substances such as poisons. In other words, for polynucleotide arrays in which homologous genes in AsergiZZ fungi of cell essential genes, which are conserved in mammals, are immobilized, screening for substances that inhibit their expression requires screening of drugs. It is also possible, and they provide a toxicological screening system for mammals and the like. For example, when a gene group whose expression response fluctuates greatly when given a certain substance is a DNA repair-related gene such as uvs or md, it can be determined that the substance is a harmful substance having mutagenicity.
(6)二次代謝産物のスクリーニング (6) Screening for secondary metabolites
Aspergillus属カビ自身が生産する未知の有用酵素や有用 (有害)二次代謝産物をス クリーニングするには、 まず、 酵素の誘導や有用 (有害)二次代謝物質生産が認め られる培養条件と認められない培養条件での遺伝子発現差を解析する。 応答のあ つた遺伝子を、マッピングした代謝経路図を指標としてしぼり込む。その過程で、 有用酵素そのものの遺伝子、 あるいは有用酵素又は有用 (有害)二次代謝産物の生 産を制御する遺伝子を特定することが可能である。 In order to screen unknown useful enzymes and useful (harmful) secondary metabolites produced by Aspergillus mold itself, first, it is recognized that the culture conditions are such that enzyme induction and useful (harmful) secondary metabolite production are observed. Analyze gene expression differences under no culture conditions. The responding gene is narrowed down using the mapped metabolic pathway map as an index. In the process, the gene of the useful enzyme itself, or the production of a useful enzyme or a useful (harmful) secondary metabolite Genes that control production can be identified.
例えば、 美白用化粧品に利用されるコウジ酸が生産される培養条件でのみ発現 が認められる、 または抑えられる遺伝子が DNA結合タンパク質をコードする遺 伝子の場合は、 この DNA結合タンパク質遺伝子は、 コウジ酸の生産を制御する 重要な遺伝子であると判断され、 産業上有用な二次代謝産物の生産制御遺伝子と してスクリーニングされる。  For example, if the gene that is expressed or suppressed only under culture conditions that produce kojic acid used in whitening cosmetics is a gene that encodes a DNA-binding protein, the DNA-binding protein gene is It is determined to be an important gene that controls acid production, and is screened as a gene that regulates the production of industrially useful secondary metabolites.
(7) 目的遺伝子の発現の最適化 (7) Optimization of target gene expression
また ^ ¾ e iZZ 属カビ (糸状菌) による有用物質の発酵生産に関しては、 種々 の培養条件と対照となる培養条件でのポリヌクレオチドアレイを用いた遺伝子発 現解析により、 糸状菌の目的遺伝子の発現を最適化することができる。  In addition, regarding the fermentative production of useful substances by fungi of the genus ^ ¾ e iZZ, gene expression analysis using a polynucleotide array under various culture conditions and control culture conditions revealed that the target gene of the filamentous fungus was Expression can be optimized.
糸状菌を、 前述のいずれかの培養条件 (C源付与培養条件、 C源欠乏培養条件、 マルト一ス培養条件、 アルカリ性培養条件、 固体培養条件、 高温培養条件、 固体 低温培養条件又は胞子発芽培養条件) で培養し、 どの培養条件で培養したときに 特定の遺伝子の発現が促進し、 どの培養条件で培養したときにその遺伝子の発現 が抑制されたのかを調べておくと、 目的遺伝子を発現させるために最適となるよ うな培養条件を選択することが可能である。  Filamentous fungi are cultured under any of the aforementioned culture conditions (C source-added culture conditions, C source-deficient culture conditions, maltose culture conditions, alkaline culture conditions, solid culture conditions, high-temperature culture conditions, solid low-temperature culture conditions, or spore germination cultures). Condition), the target gene can be expressed by examining under which culture conditions the expression of a particular gene was promoted and under what culture conditions the expression of that gene was suppressed. It is possible to select cultivation conditions that are optimal for the purpose.
ここで、 「最適化」 とは、 ある物質の生産に関与する 1つ又は複数の遺伝子の発 現を人為的に制御して最大又は最小収量を達成させる培養条件を設定することを 意味する。 例えば、 醤油麹製造において、 醤油固体培養のいくつかの条件の間で ハイプリダイゼーシヨンを行って、 その結果生じるプロテア一ゼゃぺプチダーゼ 遺伝子の発現シグナルがもっとも高くなるような条件を見出した場合は、 醤油製 造に重要な酵素璋伝子の発現は最大化として最適化されている。 また不要な遺伝 子の場合には、 培養条件の比較からポリヌクレオチドァレイにおける目的遺伝子 の発現シグナルが最小になる条件を見出すことが最小化と言える。 図面の簡単な説明  Here, “optimization” means setting culture conditions that achieve the maximum or minimum yield by artificially controlling the expression of one or more genes involved in the production of a certain substance. For example, in soy sauce koji production, when hybridization is performed between several conditions of soy sauce solid culture, and conditions that result in the highest expression signal of the protea-peptidase gene are found. Is optimized for maximizing the expression of the enzyme enzyme, which is important for soy sauce production. In the case of unnecessary genes, it can be said that minimization is to find conditions that minimize the expression signal of the target gene in the polynucleotide array by comparing the culture conditions. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のポリヌクレオチドアレイの模式図である。  FIG. 1 is a schematic diagram of the polynucleotide array of the present invention.
図 2は、 本発明のポリヌクレオチドアレイの模式図である。 図 3は、 本発明のポリヌクレオチドアレイの模式図である。 FIG. 2 is a schematic diagram of the polynucleotide array of the present invention. FIG. 3 is a schematic diagram of the polynucleotide array of the present invention.
図 4は、 本発明のポリヌクレオチドアレイにおいてん or zaeの遺伝子 (C源付 与栄養培養 cDNAクローン) の発現強度を検出した結果を示す画像の写真である 図 5は、 本発明のポリヌクレオチドアレイにおいてん oryzaeの遺伝子 (C源欠 乏栄養培養 cDNAクローン) の発現強度を検出した結果を示す画像の写真である 図 6は、 本発明のポリヌクレオチドアレイにおいてん m'gerの遺伝子 (C源欠 乏栄養培養 cDNAクローン) の発現強度を検出した結果を示す画像の写真である 図 7は、 ポリヌクレオチドアレイの概要を示す図である。  FIG. 4 is a photograph of an image showing the result of detecting the expression intensity of the or ore gene (cDNA clone fed with a C source) in the polynucleotide array of the present invention. FIG. 5 is a photograph of the polynucleotide array of the present invention. FIG. 6 is a photograph of an image showing the results of detecting the expression intensity of the oryzae gene (c source-deficient vegetative cDNA clone). FIG. 6 shows the m′ger gene (C source deficient) in the polynucleotide array of the present invention. FIG. 7 is a photograph of an image showing the results of detection of the expression intensity of oligotrophic cultured cDNA clones. FIG. 7 is a diagram showing an outline of a polynucleotide array.
図 8 Aは、 ポリヌクレオチドアレイに搭載したクローンを示す図である (図 7 に示すブロック配列の 1 ~ 4番)。  FIG. 8A is a view showing a clone mounted on the polynucleotide array (Nos. 1 to 4 of the block sequence shown in FIG. 7).
図 8 Bは、 :搭載したクローンを示す図である (図 7 に示すブロック配列の 5〜 8番)。  FIG. 8B is a diagram showing the clones mounted (Nos. 5 to 8 in the block sequence shown in FIG. 7).
図 8 Cは、 ポリヌクレオチドァレ :搭載したクローンを示す図である (図 7 に示すブロック配列の 9〜12番)。  FIG. 8C is a diagram showing polynucleotide clones: clones carried therein (Nos. 9 to 12 in the block sequence shown in FIG. 7).
図 8 Dは、 ポリヌクレオチドァレ :搭載したクロ一ンを示す図である (図 7 に示すブロック配列の 13〜16番)。  FIG. 8D is a diagram showing a polynucleotide array: clones on board (Nos. 13 to 16 in the block sequence shown in FIG. 7).
図 8 Eは、 ポリヌクレオチドアレイに搭載したクローンを示す図である (図 7 に示すブロック配列の 17〜20番)。  FIG. 8E is a diagram showing clones mounted on the polynucleotide array (Nos. 17 to 20 in the block sequence shown in FIG. 7).
図 8 F は、 ポリヌクレオチドアレイに搭載したクローンを示す図である (図 7 に示すブロック配列の 21〜24番)。  FIG. 8F is a diagram showing a clone mounted on the polynucleotide array (the block sequence Nos. 21 to 24 shown in FIG. 7).
図 8 Gは、 ポリヌクレオチドアレイに搭載したクローンを示す図である (図 7 に示すブロック配列の 25〜28番)。  FIG. 8G is a diagram showing clones mounted on the polynucleotide array (blocks 25 to 28 in the block sequence shown in FIG. 7).
図 8 Hは、 ポリヌクレオチドアレイに搭載したクローンを示す図である (図 7 に示すブロック配列の 29〜32番)。  FIG. 8H is a diagram showing clones mounted on the polynucleotide array (the block sequence Nos. 29 to 32 shown in FIG. 7).
図 9は、 Aspergillus oryzaeの遺伝子発現結果を示す写真である。 緑色は C源付 与培養したときに得られた遺伝子 (Cy3標識)、 赤色は C源欠乏培養したときに 得られた遺伝子 (Cy5標識) を示す。  FIG. 9 is a photograph showing the result of gene expression of Aspergillus oryzae. The green color indicates the gene (Cy3-labeled) obtained by culturing with the C source, and the red color indicates the gene (Cy5-labeled) obtained by culturing with the C source deficient.
図 10は、 Aspergillus oryzaeの解糖系酵素遺伝子について、 DNAポリヌクレオ よる遺伝子発現の検出結果とノーザン解析結果との比較を示す写真 である。 Fig. 10 shows a comparison between the results of detection of gene expression by DNA polynucleotide and the results of Northern analysis of the glycolytic enzyme gene of Aspergillus oryzae. It is.
図 11は、
Figure imgf000019_0001
m rの生育と遺伝子発現結果を示す写真である。 発明を実施するための最良の形態
Figure 11 shows
Figure imgf000019_0001
3 is a photograph showing growth and gene expression results of mr. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明はこれら 実施例にその技術的範囲が限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these Examples.
〔実施例 1〕 ポリヌクレオチドァレイ作製用 Aspergillus属カビ DNAの調製 本実施例においては、 Aspergills属カビとして、 麹菌 Aspergillus oryzaeを例とし てポリヌクレオチドアレイ用に DNA を調製した。 国税庁醸造研究所より分与さ れた Aspergillus oryzae RIB40株 より以下に記載の方法で cDNAライブラリーを 作製し、 複数の異なるライブラリー由来の cDNAを単離して、 ポリヌクレオチド アレイ固定化用 DNAとした。 [Example 1] Preparation of Aspergillus mold DNA for preparation of polynucleotide array In this example, aspergillus mold, Aspergillus oryzae was used as an example to prepare DNA for a polynucleotide array. A cDNA library was prepared from the Aspergillus oryzae RIB40 strain donated by the National Tax Agency's Brewing Institute by the method described below, and cDNAs from multiple different libraries were isolated and used as DNA for immobilizing polynucleotide arrays. .
1. グルコースを含むポリペプトン液体培地 (C 源付与培養条件) を用いて培養 した約 50 gの麹菌菌体より全 RNAを抽出し、オリゴ dTを固定化した樹脂又はビ —ズを用いて mRNAを抽出した。 この mRNAを铸型とし、 オリゴ dTをプライマ 一として cDNAを合成した。 続いて、 RNaseHによるへテロ二重鎖の RNA鎖の部 分消化および DNA ポリメラーゼでの DNA 鎖伸長反応を利用して、 二重鎖の cDNAを合成した。 この cDNAに EcoRIアダプターを連結し、 pBluescript SKII+ などの大腸菌プラスミドベクターに連結して大腸菌に形質転換した。 適宜希釈し た後、 寒天培地に一様に塗布することによって、 寒天培地上に多数の,独立した数 百から数千個以上の多数のコロニーを形成させることによりライブラリ一とした 1. Total RNA was extracted from about 50 g of Aspergillus oryzae cultured in a polypeptone liquid medium containing glucose (culture conditions with a C source), and mRNA was extracted using a resin or beads on which oligo dT was immobilized. Extracted. CDNA was synthesized using this mRNA as type III and oligo dT as a primer. Subsequently, double-stranded cDNA was synthesized using partial digestion of the RNA strand of the heteroduplex with RNaseH and DNA strand elongation reaction with DNA polymerase. An EcoRI adapter was ligated to this cDNA and ligated to an E. coli plasmid vector such as pBluescript SKII + to transform E. coli. After appropriately diluting the mixture, apply it evenly to the agar medium to form a large number of independent, hundreds to thousands or more colonies on the agar medium.
2. 上記と同様にして、 グルコースを含むポリペプトン液体培地以外に、 マルト ースを含むポリペプトン液体培地 (マルト一ス培養条件 )、 炭素源を全く含まな い液体培地 (C源欠乏培養条件)、 アルカリ性液体培地 (アルカリ性培養条件)、 ふすまなどの固体培地 (固体培養条件) の各培養条件により麹菌を培養し、 培養 菌からライブラリーを作製した。 また、 グルコースを含むポリペプトン液体培地 については、 通常の 30°Cでの培養の他に 35〜45°C、 好ましくは 37°Cでの培養条 件 (高温培養条件) によるライブラリーを作製し、 大豆と小麦の混合物固体培地 については、 30°Cで麹菌体増殖後、温度を 20〜25°C好ましくは 25°Cまで下げて培 養した条件 (固体低温培養条件) からのライブラリーを作製した。 さらに、 胞子 発芽直後における菌糸体形成以前の菌体 (胞子発芽培養条件) についてもライブ ラリーを作製した。 2. In the same manner as above, besides the polypeptone liquid medium containing glucose, the liquid medium containing maltose, the liquid medium containing maltose (maltose culture condition), the liquid medium containing no carbon source (culture condition lacking C source), Aspergillus was cultured under alkaline culture medium (alkaline culture conditions) and solid culture medium (solid culture conditions) such as bran, and a library was prepared from the cultures. Also, a polypeptone liquid medium containing glucose In addition to the usual culture at 30 ° C, a library was prepared under culture conditions at 35-45 ° C, preferably at 37 ° C (high-temperature culture conditions). For this purpose, a library was prepared from the conditions (solid-state low-temperature culture conditions) in which the temperature of the koji cells was grown at 30 ° C, and then the temperature was lowered to 20 to 25 ° C, preferably 25 ° C. In addition, a library was prepared for cells (spore germination culture conditions) immediately before spore germination but before mycelium formation.
3. 上記各ライブラリー由来の多数のコロニーについて、 それぞれ独立した液体 培地で一昼夜培養し、 大腸菌菌体よりプラスミド DNA を抽出 ·精製した。 この プラスミドを鎢型とし、 M13ユニバーサルおよびリバ一スプライマーなどの、 ベ クタ一クローニング部位の近傍に位置するプライマーを用いて、 プラスミドに揷 入された麹菌由来 DNA断片を増幅した。 なお、 該 DNA断片は、 菌体を熱処理し た後、 直接銬型として用いて増幅した。 3. A large number of colonies from each of the above libraries were cultured overnight in an independent liquid medium, and plasmid DNA was extracted and purified from E. coli cells. Using this plasmid as type III, a DNA fragment derived from Aspergillus oryzae inserted into the plasmid was amplified using primers located near the vector cloning site, such as M13 universal and reverse primers. The DNA fragment was amplified by directly treating the cells after heat-treating the cells.
増幅反応は、 添付 PCRバッファー、 0.25 ; M PCRプライマー、 250 ^ M dNTP、 銬型プラスミド 約 10 ng、TaqDNAポリメラーゼ 1.25Uを含む反応組成液を用い、 94°C 1分の変性 1サイクルに続き、 94°Cで 1分の変性、 68°Cで 2分のァニーリン グ及び伸長反応のシャトル PCRを 30 サイクル行った。  The amplification reaction was performed using the attached PCR buffer, 0.25; M PCR primer, 250 ^ M dNTP, about 10 ng of type I plasmid, and about 1.25 U of Taq DNA polymerase. 30 cycles of shuttle PCR of denaturation at 94 ° C for 1 minute, annealing and extension at 68 ° C for 2 minutes were performed.
4. 上記各ライブラリーより調製した cDNA断片を用い、 それぞれ独立に固体支 持体に固定化した。 C源付与培養菌体 cDNAクローンより 86クローンを選択して アレイを作製した (図 1、 4)。 また C源欠乏培養 cDNAクローンより 86クローン を選択し、 アレイを作製した (図 2、 5)。 さらに C源欠乏培養菌体由来の cDNAク ローン 82個を選択して、 ん ' r用のアレイを作製した(図 3、 6)。 4. Using cDNA fragments prepared from each of the above libraries, each was independently immobilized on a solid support. An array was prepared by selecting 86 clones from the cultured source cDNA clones with the C source (Figures 1 and 4). In addition, 86 clones were selected from C-source-deficient cultured cDNA clones, and arrays were prepared (Figures 2 and 5). Furthermore, 82 cDNA clones derived from cultured cells deficient in the C source were selected to prepare an array for use (Figs. 3 and 6).
〔実施例 2〕 Aspergillus属カビポリヌクレオチドアレイの作製 [Example 2] Preparation of mold polynucleotide array of genus Aspergillus
本実施例においては、 Aspergills属カビの例として実施例 1で調製したポリヌク レオチド液を用い、 cDNA をプローブの例としてポリヌクレオチドアレイの作製 法を以下に記す。  In this example, the polynucleotide solution prepared in Example 1 was used as an example of mold of the genus Aspergills, and a method of preparing a polynucleotide array is described below using cDNA as a probe.
1. ポリヌクレオチドを溶媒に溶解し、 ポリヌクレオチド溶液を調製した。 ポリ ヌクレオチドは、 日本レーザ電子社製のスポットバッファー (DNA Microarray KitAl溶液)を用いて溶解した。本実施例においては実施例 1で作製した Aspegill oryzfle麹カビ cDNAを、 0.1〜1 g/ 1の濃度になるように、 望ましくは 0.5 i g / 11 1 になるようにスポットバッファーを調製し、 以下に記載の方法で支持体にス ポットを行った。 本実施例においては、 実施例 1で作製した cDNAライブラリー の単離クローンをスポットに用い、 必要に応じて、 クローンの塩基配列を決定し て遺伝子機能の推定を行った。 1. The polynucleotide was dissolved in a solvent to prepare a polynucleotide solution. Poly The nucleotide was dissolved using a spot buffer (DNA Microarray KitAl solution) manufactured by Nippon Laser Electronics. In this example, the Aspegill oryzfle koji mold cDNA prepared in Example 1 was prepared in a spot buffer so as to have a concentration of 0.1 to 1 g / 1, preferably 0.5 ig / 111, and The support was spotted in the manner described. In this example, the isolated clone of the cDNA library prepared in Example 1 was used as a spot, and the nucleotide function of the clone was determined as necessary to estimate the gene function.
2. 支持体表面に対して分注針の先端を当接して多数のポリヌクレオチド溶液を スポッティングした。 具体的には、 日本レーザ電子株式会社製のスライドガラス (DNA Microarray Kit 専用スライドグラス) を使用した。 支持体の表面は、 ポ リ -L-リシンまたはァミノプロピルトリエトキシシラン等で表面処理して陽電荷 化させた。 2. A number of polynucleotide solutions were spotted by abutting the tip of the dispensing needle against the surface of the support. Specifically, a slide glass (a slide glass dedicated to DNA Microarray Kit) manufactured by Nippon Laser Electronics Co., Ltd. was used. The surface of the support was subjected to a surface treatment with poly-L-lysine or aminopropyltriethoxysilane or the like to make it positively charged.
3. 支持体表面にポリヌクレオチド溶液をスポッティングした。 スポッティング 装置には GTMAS Stamp (日本レーザ電子社製) を用いた。 3. A polynucleotide solution was spotted on the surface of the support. GTMAS Stamp (manufactured by Nippon Laser Electronics Co., Ltd.) was used as the spotting device.
4. ポリヌクレオチドが固定された支持体表面に対し、 UVクロスリンカー (Hoefer 社製 UVC500)を使用して約 50〜120mJ の紫外光を照射してポリヌクレオチドを 固定化した。 その後、 l〜1.5wt/vol %無水コハク酸、 90vol/vol% N-メチルピロシ ノン及び 10 vol/vol% 0.2Mホウ酸ナトリウムを含む溶液 (pH:8.0)で pH 5〜6に調 整されたブロッキング液中に、ポリヌクレオチドが固定された支持体全体を約 15 分間浸漬した。具体的には、 日本レーザ電子社製のブロッキング溶液(Microarray Kit A2、 A3,A4 の混合溶液) を用いた。 ブロック溶液から取り出した支持体を 95〜99 の熱水に浸漬して約 60秒間、 放置した。 その後、支持体をエタノールに 浸漬した後に、 支持体表面を風乾させ、 ポリヌクレオチドアレイを作製した。 〔実施例 3〕 Aspergillus属カビポリヌクレオチドアレイによる遺伝子発現の 検出 (1) 4. The surface of the support having the polynucleotide immobilized thereon was irradiated with ultraviolet light of about 50 to 120 mJ using a UV crosslinker (UVC500 manufactured by Hoefer) to immobilize the polynucleotide. Thereafter, the pH was adjusted to 5 to 6 with a solution containing 1 to 1.5 wt / vol% succinic anhydride, 90 vol / vol% N-methylpyrosinone and 10 vol / vol% 0.2 M sodium borate (pH: 8.0). The entire support on which the polynucleotide was immobilized was immersed in the blocking solution for about 15 minutes. Specifically, a blocking solution (mixed solution of Microarray Kit A2, A3, A4) manufactured by Nippon Laser Electronics Co., Ltd. was used. The support removed from the block solution was immersed in 95-99 hot water and left for about 60 seconds. Thereafter, the support was immersed in ethanol, and the support surface was air-dried to prepare a polynucleotide array. [Example 3] Detection of gene expression using Aspergillus mold polynucleotide array (1)
Aspergillus oryzfleおよび ypergi〃i« 'gerの遺 十発現のポリヌクレオチドアレ ィによる検出を例に示す。  The detection of the remaining expression of Aspergillus oryzfle and ypergi〃i «'ger by a polynucleotide array is shown as an example.
1. Aspergillus属糸状菌の培養  1. Culture of Aspergillus filamentous fungi
マルツ寒天培地 (麦芽エキス 2%、 ペプトン 0.1 %、 グルコース 2%、 寒天 1.5 %) に保存してあるカビのコロニーから胞子懸濁液 (1 X 107個 / ml)を調製した。 1L の三角フラスコに YPD培地 (酵母エキス 2%、 パクトペプトン 4%、 グルコース 4%)200mlを調製し、 上記胞子懸濁液を lml(l X 107個 )接種して、 30 、 22時 間ロータリーシェーカーにて lOOrpmで振盪培養を行った。 その後 100mlの菌 体は C源付与供与菌体として、 集菌 ·洗浄 ·脱水して RNAの抽出まで- 80 で 保存した。 残りの 100mlの菌体は無菌的に集菌 ·洗浄 ·脱水後、 全量を最小培 地 (NaNO3 0.3 %、 KC1 0.2% , KH2P04 0.1 %を水道水で調製し Mg,Feを供給したも の) 100mlの入った 500ml三角フラスコに移し、 さらに 30°C、 8時間、 ロータリ シェーカー (lOOrpm)にて培養を行った。 C 源欠乏培養菌体を集菌 ·洗浄 ·脱水 して RNA抽出まで- 80°Cにて保存した。 ' A spore suspension (1 × 10 7 / ml) was prepared from a mold colony stored on a Maltz agar medium (malt extract 2%, peptone 0.1%, glucose 2%, agar 1.5%). YPD medium in an Erlenmeyer flask of 1L (2% yeast extract, Pact peptone 4%, glucose 4%) and 200ml is prepared, the spore suspension lml (l X 10 7 cells) were seeded, 30, between 10pm Shaking culture was performed at 100 rpm on a rotary shaker. Thereafter, 100 ml of the cells were collected, washed, dehydrated, and stored at -80 until RNA extraction as donor cells provided with the C source. The remaining 100 ml of cells are aseptically collected, washed, and dehydrated, and then the minimum volume is adjusted to minimum medium (NaNO 3 0.3%, KC1 0.2%, KH 2 P0 4 0.1% prepared in tap water and supplied with Mg and Fe) The resulting mixture was transferred to a 500 ml Erlenmeyer flask containing 100 ml and further cultured at 30 ° C. for 8 hours on a rotary shaker (100 rpm). C source-deficient cultured cells were collected, washed and dehydrated and stored at -80 ° C until RNA extraction. '
2.トータル RNAの抽出 2. Total RNA extraction
1 において調製した凍結力ビ菌体約 1.5g (湿重)を液体窒素の入った乳鉢中で十 分に破碎し、 破砕菌体を 5mlの ISOGEN (日本ジーン社製)の分注された 15mlのフ アルコンチューブ (ファルコン社製)に入れて、 よく混合した。 室温 5分放置後、 lmlのクロ口ホルムを加えてよく混合し、 室温で 3分放置後、 7,500xgで 4°C、 15 分遠心分離を行った。 上層 (水相)を回収し、 2.5ml のイソプロパノールの入った 15mlのフアルコンチューブに移して、混合した後、室温で 10分放置した。 7,500xg、 4°Cで 10分遠心し RNAを沈殿として回収した。 上清のイソプロパノールを除い た後、 沈殿に 5mlの 70%エタノールを入れて軽く懸濁した後、 再度 7,500xg、 4°C、 5分遠心し、 RNAを沈殿として回収し風乾した。 RNAは TE又は RNaseフリー水 (DEPC処理水) 100〜500 /x lに溶解し、 トータル RNA溶液とした。 1 ^一タル RNA 溶液を TE又は RNaseフリ一水で 10〜500倍に希釈し、 260nm及び 280nmの吸光 度を測定した。 OD260/OD280の値が 1.8〜2.0範囲の高純度 RNAを以下の実験に 使用した。 トータル RNA溶液は使用するまで- 80°Cで保存した。 なお、 上記操作 において器具 ·試薬は全て RNAaseフリーのものを使用した。 詳細は ISOGENに 添付のマニュアルを参考にした。 Approximately 1.5 g (wet weight) of the freezing bacterium prepared in 1 was sufficiently crushed in a mortar containing liquid nitrogen, and the crushed cells were dispensed into 5 ml of ISOGEN (manufactured by Nippon Gene) in 15 ml. Into a Falcon tube (Falcon) and mixed well. After leaving at room temperature for 5 minutes, lml of cloper form was added and mixed well. After leaving at room temperature for 3 minutes, centrifugation was performed at 7,500 xg at 4 ° C for 15 minutes. The upper layer (aqueous phase) was collected, transferred to a 15 ml Falcon tube containing 2.5 ml of isopropanol, mixed, and allowed to stand at room temperature for 10 minutes. The mixture was centrifuged at 7,500 xg and 4 ° C for 10 minutes, and the RNA was recovered as a precipitate. After removing isopropanol in the supernatant, 5 ml of 70% ethanol was added to the precipitate, lightly suspended, and then centrifuged again at 7,500 × g at 4 ° C. for 5 minutes to collect RNA as a precipitate and air-dried. RNA was dissolved in TE or RNase-free water (DEPC-treated water) 100-500 / xl to make a total RNA solution. Dilute 1 ^ -tal RNA solution 10- to 500-fold with TE or RNase free water and absorb at 260 nm and 280 nm. The degree was measured. High purity RNA with OD260 / OD280 values in the range of 1.8-2.0 was used in the following experiments. The total RNA solution was stored at -80 ° C until use. In this procedure, all the instruments and reagents used were RNAase-free. For details, refer to the manual attached to ISOGEN.
3. mRNAの精製 3. Purification of mRNA
トータル RNAから mRNAの調製はプロメガ社製 MESSAGE MAKERを使用 し、 方法は添付のマニュアルに従った。 2において調製したトータル RNAを以 下の操作を行って mRNAを精製した。.  Preparation of mRNA from total RNA was performed using MESSAGE MAKER manufactured by Promega, and the method followed the attached manual. The total RNA prepared in 2 was subjected to the following procedure to purify the mRNA. .
(1)サンプル準備  (1) Sample preparation
1) 2mgのトータル RNAを 15mlのファルコンチューブにとり、 RNaseフリー水 で 3.6mlにメスアツプする (終濃度 0.55mg/mlとする)  1) Transfer 2 mg of total RNA to a 15 ml Falcon tube, and add RNase-free water to 3.6 ml (to a final concentration of 0.55 mg / ml)
2) 65°C、 5分間インキュベート後、 氷上で急冷する  2) Incubate at 65 ° C for 5 minutes and quench on ice
3) 5M NaClを 360 21添加する (終濃度 0.5M NaClとする)  3) Add 360M of 5M NaCl (to a final concentration of 0.5M NaCl)
4) Oligo (dT) Cellulose Suspensio びんをよく混合し、 3)で得た溶液に 2ml添加す る  4) Mix Oligo (dT) Cellulose Suspensio bottle well and add 2 ml to the solution obtained in 3).
5) このサンプル液をよく混合し、 37°C、 10分間加温する  5) Mix this sample solution well and heat it at 37 ° C for 10 minutes
6) 溶出用 RNaseフリー水はあらかじめ、 65°Cに加温しておく  6) Preheat RNase-free water for elution to 65 ° C
(2)精製処理  (2) Purification treatment
1) サンプル液を直接シリンジに入れ、 プランジャーで押し切る  1) Put the sample solution directly into the syringe and push it off with the plunger
2) ディスポのコップに Wash Buffer 1を 5ml入れ、 シリンジで吸う  2) Put 5 ml of Wash Buffer 1 into the disposable cup and suck with a syringe
3) シリンジ中の液をよく懸濁し後、 液を出し切る  3) Suspend the liquid in the syringe well and drain the liquid.
4) ディスポのコップに Wash Buffer 2を 5ml入れ、 シリンジで吸う  4) Put 5 ml of Wash Buffer 2 into the cup of the disposer and suck with a syringe
5) 再びシリンジ中の液をよく懸濁し後、 液を出し切る  5) Re-suspend the liquid in the syringe again and drain the liquid.
(3) mRNAの溶出処理  (3) mRNA elution
1) 65°Cに加温してある溶出用 RNaseフリ一水をディスポのコップに 2ml入れる 1) Add 2ml of RNase free water for elution heated to 65 ° C to the cup of disposable
2) シリンジで吸い上げ、 よく懸濁し後、 15ml のファルコンチューブに液を出 する。 2) Take up with a syringe, suspend well, and pour the solution into a 15ml Falcon tube.
3) このシリンジは 2回目の精製に利用するためとっておく (4)精製処理 (2回目) 3) Save this syringe for the second purification. (4) Purification treatment (second time)
1) 溶出したサンプル液を 65°C、 5分間インキュベート後、 氷上で急冷する 1) Incubate the eluted sample solution at 65 ° C for 5 minutes, and rapidly cool on ice.
2) 5M NaClを 200 /1 1添加してサンプル液とする (終濃度 0.5M NaClとする)2) Add 5M NaCl 200/1 to make sample solution (final concentration 0.5M NaCl)
3) 1回目の精製に使用したシリンジは添付の Wash Buffer 1を吸い出してよく 洗う 3) Suction the syringe used for the first purification and wash well with the attached Wash Buffer 1.
4) ディスポのコップにサンプル液を入れ、 シリンジで吸いよく懸濁する 4) Put the sample solution in the disposable cup and suspend with a syringe.
5) そのシリンジを室温で 10分間放置後、 液を出し切る 5) Leave the syringe at room temperature for 10 minutes, then drain the liquid
6) 上記 (3)の 2)〜5)と同様に処理する  6) Process in the same way as (2) to (5) in (3) above
(5)溶出処理とエタノール沈殿  (5) Elution treatment and ethanol precipitation
1) 上記 (3)の 1)〜2)と同様に処理する  1) Process in the same way as (1) and 2) in (3) above
2) 2,600G、 4 °Cで 3分遠心し、 混入した Oligo (dT) Celluloseを除く  2) Centrifuge at 2,600G, 4 ° C for 3 minutes to remove contaminated Oligo (dT) Cellulose
3) 終濃度が 50 グリコーゲン/ ml、 0.75M酢酸アンモニゥムとなるように添 加する  3) Add so that the final concentration is 50 glycogen / ml, 0.75M ammonium acetate
4) 2倍量のエタノール (- 20°C ) を加え、 1晚置く  4) Add 2 volumes of ethanol (-20 ° C) and put 1 晚
5) 2,600G、 4 °Cで 30分遠心し、 75 %エタノールでリンスする  5) Centrifuge at 2,600G, 4 ° C for 30 minutes and rinse with 75% ethanol
6) 2,600G、 4 °Cで 10分遠心後、 乾燥し、 10〜30 lの ΤΕ又は RNaseフリ一水 に溶解する  6) After centrifugation at 2,600G, 4 ° C for 10 minutes, dry and dissolve in 10-30 l of ΤΕ or RNase free water.
4.夕一ゲットラベリング 4. Evening get labeling
上記 3で調製した mRNAを用いて蛍光ラベル化した cDNAをポリヌクレオチ ドアレイ用ターゲットプローブとして調製した。  A cDNA fluorescently labeled using the mRNA prepared in 3 above was prepared as a target probe for a polynucleotide array.
poly(A)RNA(mRNA) 2〜4 gに 25mer oligo(dT) primer 9 1 (4.5 g、 濃度を 0.5 U g/ β Ιに調整しておく)を加え、さらに TEを加えて全容量を 15.4 1にした。 70で で 10分変性後、 氷上で急冷し、 以下の試薬を加え 42°Cで 1時間逆転写反応によ る蛍光ラベル化を行った。 逆転写酵素は Gibco 社製 Superscript、 DTT は Superscriptllに添付のものを使用した。  Add 25mer oligo (dT) primer 91 (4.5 g, adjust the concentration to 0.5 Ug / β)) to 2 to 4 g of poly (A) RNA (mRNA), and add TE to reduce the total volume. 15.4 1. After denaturation at 70 for 10 minutes, the mixture was quenched on ice, and the following reagents were added to perform fluorescent labeling by reverse transcription at 42 ° C for 1 hour. The reverse transcriptase used was Superscript manufactured by Gibco, and the DTT used was Superscript II.
5 X Superscript buffer 6 l  5 X Superscript buffer 6 l
DTT 3 H 1  DTT 3 H 1
dNTP(25mMdA,G,C, lOmMdT) 0.6 H 1 Cy3- dUTP (又は Cy5- dUTP) 3 β 1 dNTP (25mMdA, G, C, 10mMdT) 0.6 H 1 Cy3- dUTP (or Cy5- dUTP) 3 β 1
Superscriptll 2 1  Superscriptll 2 1
さらに Superscriptll 2 i Iを加え 42°Cで 1時間反応させた後、 TE270 Z1を加えた。 Cy3- dUTP及び Cy5- dUTPはアマシャム ·フアルマシア社製を使用し、 C源付与培 養菌体由来 mRNA及び C源欠乏培養菌体由来 mRNAの一方を Cy3-dUTPにて、 他方を Cy5- dUTPにて反応を行った。 反応後、 Cy3反応液と Cy5反応液を混ぜ合 わせて、 Microcon- 30(ミリポア社製)に移し液量が約 ΙΟ lになるまで遠心濃縮し た(エツペンドルフ型遠心機 12,000rpm、約 10分)。 Microcon- 30力ップ上部に TE400 1を加え、 さらに液量が約 10 1になるまで再度遠心を行った (12,000rpm、 約 15分)。 Microcon- 30のカップを取り出し、 新しいチューブに逆さにして挿入し、 3,000rpmで 3分間遠心した。 以下の試薬を加え、 全量を約 30 1とした。  Further, Superscriptll 2 iI was added and reacted at 42 ° C. for 1 hour, and then TE270 Z1 was added. Cy3-dUTP and Cy5-dUTP were manufactured by Amersham-Pharmacia, and one of mRNA derived from a C-cell-supplied culture cell and one derived from a C-source-deficient culture cell was Cy3-dUTP, and the other was Cy5-dUTP. The reaction was performed. After the reaction, the Cy3 reaction solution and the Cy5 reaction solution were mixed, transferred to a Microcon-30 (manufactured by Millipore), and concentrated by centrifugation until the volume of the solution reached approximately ΙΟl (Eppendorf centrifuge 12,000 rpm, about 10 minutes ). TE400 1 was added to the upper part of the Microcon-30 forcep, and the mixture was centrifuged again until the liquid volume reached about 10 1 (12,000 rpm, about 15 minutes). The Microcon-30 cup was removed, inserted upside down into a new tube, and centrifuged at 3,000 rpm for 3 minutes. The following reagents were added to make the total amount about 301.
yeast tRNA llil (10 g、 ΤΕで濃度を 25mg/2.5mlに調製) polydA 4 Ι (4lig、 TEで濃度を 5U/200 1に調製) yeast tRNA llil (10 g, ΤΕ to adjust the concentration to 25 mg / 2.5 ml) polydA 4 Ι (4lig, TE to adjust the concentration to 5 U / 200 1)
20XSSC 0.85/11 20XSSC 0.85 / 11
1% SDS 1.5 1  1% SDS 1.5 1
TE 約 13 .  TE about 13.
約 30 1となった Cy3又は Cy5で蛍光ラベル化された cDNAを含むポリヌクレ ォチドアレイ用夕一ゲットは、 使用するまで遮光して- 20°Cで保存した。  The approximately 301 overnight get for a polynucleotide array containing cDNA labeled with Cy3 or Cy5 was stored at -20 ° C in the dark until use.
5.検出 5.Detection
4において蛍光色素によりラベル化された夕一ゲット溶液を 100°Cで 1分間 変性後、 室温で 30分放置し 1本鎖のラベル化 cDNAとした。 22mm x 22mmの カバ一ガラスに 7.5 1 のターゲット溶液をのせて、 実施例 2で作製した麹菌 Aspergillus oryzaeのポリヌクレオチドァレイに気泡が入らないようにかぶせた。 湿箱中にスライドグラスを並べ、 乾かさないように、 65°Cで一晩放置してハイ プリダイゼーシヨンを行った。 2XSSC/0.1%SDS溶液中に少し浸し、 力バーグ ラスを緩やかに振ってはがし、 さらに 2〜3 回溶液中で緩やかに振った。 次い で、 1XSSC溶液中で 2分間振盪した。さらに 0.2XSSC溶液中に 2分間静置した。 乾燥窒素ガスを緩やかにスライド表面にあててスライドを乾燥させた後、 日本 レーザ電子社製 GTMAS Scanll にて解析を行った。 6.解析結果 The overnight get solution labeled with the fluorescent dye in 4 was denatured at 100 ° C for 1 minute, and left at room temperature for 30 minutes to obtain single-stranded labeled cDNA. A target solution of 7.5 1 was placed on a 22 mm × 22 mm cover glass, and covered with the polynucleotide array of the Aspergillus oryzae produced in Example 2 so that air bubbles did not enter. Slide glasses were placed in a wet box, and left overnight at 65 ° C to perform drying without drying. Dip slightly in 2XSSC / 0.1% SDS solution, gently shake off the force berglas, and gently shake in the solution 2-3 times. Then, it was shaken for 2 minutes in the 1 × SSC solution. Furthermore, it was left still in a 0.2XSSC solution for 2 minutes. After gently applying dry nitrogen gas to the slide surface and drying the slide, The analysis was performed using GTMAS Scanll manufactured by Laser Electronics. 6.Analysis results
1)ん oryzae C源付与培地と C源欠乏培地での遺伝子発現解析  1) Gene expression analysis in oryzae C source-supplemented medium and C source-deficient medium
実施例 1、 1.の C源付与培養条件で作製したん oryzaeの cDNAライブラリー より任意に 86クローンを選択し、 実施例 2記載の方法でポリヌクレオチドァレ ィを作製した (図 1、 2参照)。 また実施例 1、 2.に記載の C源欠乏培養条件より 86 クローン選択し、 同様にポリヌクレオチドアレイを作製した。 ん oryzae C源付与 菌体由来の cDNAを Cy5(赤)により蛍光標識し、 C源欠乏菌体由来の cDNAを Cy3 (緑) で蛍光標識した。 これらの標識 cDNA をターゲットとして用いて、 ポリヌ クレオチドアレイを用いた解析を行った。 蛍光強度に特徴を示したクローンにつ いては、 そのクローンの塩基配列を決定し、 Blastなどを用いたデ一夕ベースサー チから遺伝子を推定した。  86 clones were arbitrarily selected from the oryzae cDNA library prepared under the culture conditions with the C source in Examples 1 and 1, and a polynucleotide array was prepared by the method described in Example 2 (Figures 1 and 2). reference). In addition, 86 clones were selected from the C source-deficient culture conditions described in Examples 1 and 2, and a polynucleotide array was prepared in the same manner. Oryzae C source-provided cDNA from cells was fluorescently labeled with Cy5 (red), and cDNA from cells lacking C source was fluorescently labeled with Cy3 (green). Using these labeled cDNAs as targets, analysis was performed using a polynucleotide array. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a overnight base search using Blast or the like.
C源付与培養条件由来 cDNAクローンポリヌクレオチドアレイでは約 70%のス ポッ卜については Cy5(赤)由来の蛍光強度が Cy3 (緑) 由来の蛍光強度よりも高く、 発現強度の弱いもの、両色素が同程度で観察されるスポットも認められた(図 1に 示すアレイ配置、 図 4に示すアレイ画像)。  In the cDNA clone polynucleotide array derived from the culture conditions provided with the C source, about 70% of the spots, the fluorescence intensity derived from Cy5 (red) is higher than the fluorescence intensity derived from Cy3 (green), and the expression intensity is low. Some spots were observed at the same level (array arrangement shown in Fig. 1, array image shown in Fig. 4).
Cy5蛍光強度の強かったクローンについて、 塩基配列の解析を行ったところ、 例えば、 1行 7列のクローン(蛍光強度 7894(Cy5)および 1452(Cy3))は ^ccaromyc cerevisiae HEM13遺伝子ホモログ (配列番号 1)、 2行 1列 (蛍光強度 5506(Cy5)及 び 1117(Cy3)) は Aspergillus oryzae ピルピン酸デカルポキシラ一ゼ遺伝子 (配列番 号 2)、 3行 3列 (蛍光強度 6910(Cy5)及び 1351 (Cy3)) ではグ'リセルアルデヒド - 3- リン酸デヒドロゲナゼ一遺伝子 (配列番号 3)であった。 Cy3で蛍光強度の強かった 7行 3 列 (蛍光強度 3653 (Cy5)および 8736(Cy3)) はん niger の転写制御因子 (prf:2305380B) (配列番号 4)であった。 Cy3及び Cy5の両蛍光が同程度の強度を示 した 6行 3列 (蛍光強度 7451 (Cy5) 及び 5834 (Cy3) ) はヒストン H3遺伝子 (配 列番号 5)であった。 Analysis of the nucleotide sequence of the clone with high Cy5 fluorescence intensity revealed that, for example, clones with 1 row and 7 columns (fluorescence intensity of 7894 (Cy5) and 1452 (Cy3)) were homologs of the ^ ccaromyc cerevisiae HEM13 gene (SEQ ID NO: 1). ), 2 rows and 1 column (fluorescence intensity 5506 (Cy5) and 1117 (Cy3)) are Aspergillus oryzae pyruvate decarpoxylase gene (SEQ ID NO: 2), 3 rows and 3 columns (fluorescence intensity 6910 (Cy5) and 1351 (Cy5) Cy3)) was a glyceraldehyde-3-phosphate dehydrogenase monogene (SEQ ID NO: 3). It was a transcriptional regulator (prf: 2305380B) of Han niger (prf: 2305380B), which had strong fluorescence intensity at 7 rows and 3 columns (fluorescence intensity 3653 (Cy5) and 8736 (Cy3)). Six rows and three columns (fluorescence intensity 7451 (Cy5) and 5834 (Cy3)), in which both fluorescence of Cy3 and Cy5 showed the same intensity, were the histone H3 gene (SEQ ID NO: 5).
また、 C源欠乏培養条件由来 cDNAクロ一ンポリヌクレオチドアレイにおい ては、 50%のスポットについては Cy3の蛍光強度が Cy5の強度を上回って測定さ れ、 その他のスポットは発現強度が弱いか、 2種の色素の蛍光強度が同程度に観 察された (図 2に示すアレイ配置、 図 5に示すアレイ画像)。 Cy3発現強度の強か つた、 5行 1列のクローン (蛍光強度 1862(Cy5)及び 4321(Cy3)) はエノラーゼ遺 伝子 (配列番号 6)、 6行 7列 (蛍光強度 1117(Cy5)および 3267(Cy3)) はアルドラー ゼ遺伝子 (配列番号 7)であった。 Cy5蛍光の強かった 3行 6列(蛍光強度 4953(Cy5) 及び 1951(Cy3)) は熱ショックタンパク質遺伝子 (配列番号 8)と推定された。 Cy3 及び Cy5の両蛍光が同程度な 4行 6列目 (蛍光強度 4381 (Cy5)及び 3953 (Cy3) ) は細胞質性セリンプロテア一ゼ遺伝子 (配列番号 9)であると推定された。 In addition, cDNA clones derived from C source-deficient culture conditions In 50% of the spots, the fluorescence intensity of Cy3 was higher than that of Cy5, and the other spots showed weaker expression intensity or the fluorescence intensity of the two dyes was observed to be comparable ( Array arrangement shown in Fig. 2, array image shown in Fig. 5). The clones with 5 rows and 1 column (fluorescence intensity 1862 (Cy5) and 4321 (Cy3)) with high Cy3 expression intensity were enolase gene (SEQ ID NO: 6), 6 rows and 7 columns (fluorescence intensity 1117 (Cy5) and 3267 (Cy3)) was the aldase gene (SEQ ID NO: 7). 3 rows and 6 columns (fluorescence intensity 4953 (Cy5) and 1951 (Cy3)), which had strong Cy5 fluorescence, were presumed to be a heat shock protein gene (SEQ ID NO: 8). The fourth row and the sixth column (fluorescence intensity 4381 (Cy5) and 3953 (Cy3)) in which both fluorescence of Cy3 and Cy5 are almost the same was estimated to be a cytoplasmic serine protease protein (SEQ ID NO: 9).
2)ん ger C源付与培地と C源欠乏培地での遺伝子発現解析 2) Gene expression analysis in ger C source supplemented medium and C source deficient medium
1)と同様に、ん oyzaeの C源欠乏培養条件から選択したクローンを 82個スポッ 卜したポリヌクレオチドアレイを作製した (図 3に示すアレイ配置、 図 6に示す ァレイ画像)。 米国 Fungal Genetic Stock Centerより分与を受けた Aspergillus niger FGSC A798株を用いて、 C源付与菌体由来の cDNAを Cy3により、 C源欠乏菌体 由来の cDNAを Cy5で蛍光標識したものを夕一ゲットとして用いて、ポリヌクレ ォチドアレイを用いた解析を行つた。 蛍光強度に特徴を示したクローンについて は、 そのクローンの塩基配列を決定し、 Blastなどを用いたデータベースサーチか ら遺伝子を推定した。 ただし、 ん niger由来蛍光標識 cDNAをターゲットとする ハイブリダィゼーシヨンでは、 ハイブリダィゼ一シヨンの温度は、 アレイ上に配 置されるクローン種に依存するため、 37〜68°Cの間のいずれかに設定することが 必要である。 本例では 53°Cで行った。  Similarly to 1), a polynucleotide array was prepared in which 82 clones selected from the oyzae C source-deficient culture conditions were prepared (array arrangement shown in FIG. 3, array image shown in FIG. 6). Using Aspergillus niger FGSC A798 strain donated by Fungal Genetic Stock Center, U.S.A., cDNA derived from cells with C source was fluorescently labeled with Cy3 and cDNA from cells lacking C source was labeled with Cy5. As a get, analysis using a polynucleotide array was performed. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a database search using Blast or the like. However, in the case of hybridization targeting fluorescently labeled cDNA derived from niger, the temperature of hybridization depends on the type of clones arranged on the array. It is necessary to set to. In this example, the test was performed at 53 ° C.
その結果、 Cy3で蛍光強度が強かった 1行 2列目(蛍光強度 3017(Cy3)及び 1153(Cy5))、及び 1行 10列目(蛍光強度 3203(Cy3)及び 1050(Cy5))のクローンは、 その塩基配列解析の結果、各々 Aspergillus nidulansの β -1,3-グルカナーゼ遺伝子ホ モログ (配列番号 10)、 sconB遺伝子ホモログ (配列番号 11)であった。 また Cy5で 蛍光強度の強かった 4行 4列 (蛍光強度 1543(Cy3)及び 4751 (Cy5))、 4行 5列 (蛍 光強度 1123(Cy3)及び 4213(Cy5))、 6行 6列 (蛍光強度 917(Cy3)及び 2981 (Cy5)) は、 Aspergillus nidulans のアルコールデヒドロゲナーゼ遺伝子ホモログ (配列番号 12)、 酵母翻訳因子 SU1遺伝子ホモログ (配列番号 13)、 4 erg Z^ oryz e ホスホ グリセリン酸キナーゼ遺伝子 (配列番号 14)であった。 As a result, clones in the first row and second column (fluorescence intensity 3017 (Cy3) and 1153 (Cy5)) and the first row and column 10 (fluorescence intensity 3203 (Cy3) and 1050 (Cy5)), which had strong fluorescence in Cy3 As a result of its nucleotide sequence analysis, was a β-1,3-glucanase gene homolog (SEQ ID NO: 10) and a sconB gene homolog (SEQ ID NO: 11) of Aspergillus nidulans, respectively. 4 rows and 4 columns (Fluorescence intensity 1543 (Cy3) and 4751 (Cy5)), 4 rows and 5 columns (Fluorescence intensity 1123 (Cy3) and 4213 (Cy5)), 6 rows and 6 columns ( The fluorescence intensities 917 (Cy3) and 2981 (Cy5)) are the homologues of Aspergillus nidulans alcohol dehydrogenase gene (SEQ ID NO: 12), a yeast translation factor SU1 gene homolog (SEQ ID NO: 13), and 4 erg Z ^ oryze phosphoglycerate kinase gene (SEQ ID NO: 14).
以上の検出結果より、 ん or zae cDNA ポリヌクレオチドアレイを用いて、 異種 糸状菌ん nigerの遺伝子発現の応答を捉えることが可能であることが示された。  From the above detection results, it was shown that it is possible to capture the gene expression response of the heterologous filamentous fungus niger using the cDNA array of cDNA or zae.
〔実施例 4〕 Aspergillus属カビポリヌクレオチドアレイによる遺伝子発現の 検出 (2) [Example 4] Detection of gene expression using Aspergillus mold polynucleotide array (2)
実施例 1の各種培地由来の cDNAライブラリーより、各種独立クローンを 2170 量を選択し、 各クローンを重複してスポットした同ポリヌクレオチドアレイを作 製した (2000クローンアレイ)。 図 7 (パネル A) に本実施例で使用したポリヌク レオチドアレイの模式図を、図 8 A〜Hには搭載クローンリスト(library Accession No.で表示) を示した。 図 8A〜Hは、 図 7 Aのブロック配列の 1番から 32番の区 画に収められた遺伝子のクローンを示しており、 図 8A〜Hに示す 1〜32番は、 図 7Aのブロック配列の番号と対応する。 図 7パネル Bは、 図 7 Aの各区画の拡 大図であり、 列が 12又は 10スポット、 行が 12 (3, 5, 6) スポットである。 行の From the cDNA libraries derived from various media of Example 1, 2170 amounts of various independent clones were selected, and the same polynucleotide array in which each clone was spotted in duplicate was prepared (2000 clone array). FIG. 7 (panel A) shows a schematic diagram of the polynucleotide array used in this example, and FIGS. 8A to 8H show the list of clones mounted (indicated by library Accession No.). FIGS. 8A to 8H show clones of genes contained in the 1st to 32nd segments of the block sequence of FIG. 7A, and 1 to 32 shown in FIGS. 8A to 8H show the block sequence of FIG. Corresponding to the number. Figure 7 Panel B is an expanded view of each section in Figure 7A, with 12 or 10 spots in columns and 12 (3, 5, 6) spots in rows. Row of
「(3,5,6)」 は、 第 11列及び第 12列のスポットが、 3スポット (10〜12行、 例え ば図 8Bの 5番)、 5スポット (8〜12行、 例えば図 8Dの 15番)、 又は 6スポッ ト (7〜12行、 例えば図 8Bの 7番)) であることを意味する。 また、 図 8に示す 各クローンは、 それぞれ 2列ずつスポットされている。 例えば、 図 8Aの 1番の 区画において、 「JZ1823」 のクローンがスポットされている位置は、 図 7Bの 1行 1列及び 1行 2列である。 kX~Y、 2000クローノアレイ ¾用レ、て、 Aspergillus oryzae^ Aspergillus nigerの返 伝子発現解析を行った。 “(3,5,6)” indicates that the spots in the 11th and 12th columns are 3 spots (10-12 rows, for example, No. 5 in FIG. 8B), 5 spots (8-12 rows, for example, FIG. 8D No. 15) or 6 spots (lines 7 to 12, for example, No. 7 in FIG. 8B). Each clone shown in Fig. 8 is spotted in two rows. For example, in the first section of FIG. 8A, the positions where the clone “JZ1823” is spotted are at row 1 column 1 and row 1 column 2 in FIG. 7B. The gene expression analysis of Aspergillus oryzae ^ Aspergillus niger was performed for kX ~ Y, 2000 chronoarray.
1 ) ん oryzaeの C源付与培地と C源欠乏培地での遺伝子  1) Gene of oryzae in C source-supplemented medium and C source-deficient medium
ん oryz eの C源付与菌体由来の cDNAを Cy3により蛍光標識し、 C源欠乏菌体 由来の cDNAを Cy5で蛍光標識した。これらの標識 cDNAをターゲットとして用 いて、 2000クローンアレイを用いた解析を行った。 その結果を図 9に示した。 図 9は、図 7Aのプロック配列のフローステツド面が紙面の下になるように表示して ある。 従って、 ブロック配列の 1番の区画は図 9の左上に、 4番の区画は図 9の 右上となる位置関係である。 解析結果の特徴的な例を挙げると、 C源欠乏状態で特異的に発現した遺伝子は アルドラーゼ遺伝子であり、 他の解糖系遺伝子のほとんどが C源付与状態で発現 していた。図 10にはノーザン解析とポリヌクレオチドアレイ解析の比較を代謝マ ップに投影して示した。図 10において、枠内の物質は解糖系において作用する酵 素名であり、枠の右側に記載の MIX番号は、 クラス夕リングによってグループ化 された独立 ESTクローンを表す。それぞれの酵素をコードする遺伝子のポリヌク レオチドアレイの結果とノーザン解析の結果とは良く一致していた。 CDNA derived from the C source-supplied cells of oryzae was fluorescently labeled with Cy3, and cDNA derived from the C source-deficient cells was fluorescently labeled with Cy5. Using these labeled cDNAs as targets, analysis was performed using a 2000 clone array. The results are shown in FIG. FIG. 9 shows the flow arrangement of the block arrangement of FIG. is there. Therefore, the first section of the block arrangement is in the upper left of FIG. 9, and the fourth section is in the upper right of FIG. As a characteristic example of the analysis results, the gene specifically expressed in the C source deficiency state was the aldolase gene, and most of the other glycolytic genes were expressed in the C source state. Figure 10 shows a comparison between Northern analysis and polynucleotide array analysis projected onto a metabolic map. In FIG. 10, the substances in the boxes are the names of the enzymes that act in the glycolysis system, and the MIX numbers described on the right side of the boxes represent the independent EST clones grouped by the class ring. The results of the polynucleotide array of the genes encoding each enzyme and the results of the Northern analysis were in good agreement.
2 ) ん ' r C源付与培地における生育時間と遺伝子発現  2) Growth time and gene expression in medium with rC source
米国 Fungal Genetic Stock Centerより分与を受けた Aspergillus niger FGSCA798 株を、 C源付与培地で 16時間又は 26時間培養した。 16培養した菌体由来の mRNA より調整した cDNAを Cy3により標識し、 26時間培養した菌体由来の cDNAを Cy5で蛍光標識した。 これらの標識 cDNAをターゲットとして用いて、 2000クロ ーンアレイを用いた解析を行つた。蛍光強度に特徴を示したクローンについては、 そのクローンの塩基配列を決定し、 Blastなどを用いたデータベースサーチから遺 伝子を推定した。 ただし、 ん niger由来蛍光標識 cDNAをターゲットとするハイ ブリダィゼ一シヨンでは、 ハイブリダィゼーシヨンの温度は、 アレイ上に配置さ れるクローン種に依存するため、 37〜68°Cの間のいずれかに設定することが必要 である。 本実施例では、 53°Cで行った。ハイブリダィゼーシヨンの例を図 11に示 す。 16時間培養では Zn輸送タンパク質、 キシロシダ一ゼ (Zn protein, alpha - xylosidase) が特異的に発現し、 26時間では、 α -アミラーゼ、 グル夕メート-アン モニァリガーゼが特異的に発現していた。  The Aspergillus niger FGSCA798 strain donated by Fungal Genetic Stock Center in the United States was cultured for 16 hours or 26 hours in a C source-supplied medium. CDNA prepared from mRNA derived from 16 cultured cells was labeled with Cy3, and cDNA derived from 26 hours cultured cells was fluorescently labeled with Cy5. Using these labeled cDNAs as targets, analysis using a 2000 clone array was performed. For clones showing characteristics in fluorescence intensity, the nucleotide sequence of the clone was determined, and the gene was estimated from a database search using Blast or the like. However, in the case of hybridization targeting fluorescence-labeled cDNA derived from niger, the hybridization temperature depends on the type of clones arranged on the array. It is necessary to set to. In this embodiment, the temperature was set at 53 ° C. Fig. 11 shows an example of hybridization. In the 16-hour culture, Zn transport protein and xylosidase (Zn protein, alpha-xylosidase) were specifically expressed, and in the 26-hour culture, α-amylase and glutamate-ammonium ligase were specifically expressed.
以上の検出結果より、 本ポリヌクレオチドアレイは搭載遺伝子数を増した場合 においても、 ん oryzaeのみならずん ' rなどの異種糸状菌の遺伝子発現検定に 有効に利用できることが示された。 . 本明細書は、 本願の優先権の基礎である PCT出願 PCT/JP01/02823号の明細書 及び/又は図面に記載される内容を包含する。本明細書で引用した全ての刊行物、 特許及び特許出願は、 そのまま参考として本明細書に取り入れるものとする。 産業上の利用可能性 From the above detection results, it was shown that the present polynucleotide array can be effectively used for gene expression tests of heterologous filamentous fungi such as not only oryzae, but also heterozygous fungi, even when the number of loaded genes is increased. This is the description of PCT Application No. PCT / JP01 / 02823, which is the priority document of the present application. And / or the contents described in the drawings. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial applicability
本発明により、 糸状菌由来のポリヌクレオチド が固定された ポリヌクレオチ ドァレイ及び遺伝子の検出方法が提供される。 本発明のポリヌクレオチドアレイ により、 従来は極めて困難であった糸状菌の多数のポリヌクレオチド種の同時網 羅的ハイブリダィゼーシヨン解析が実現される。 これにより遺伝子発現解析、 近 縁種、 変異体などの精密な同定あるいは識別の自動化及び省力化が達成される。 またこの系は、.発酵性産の高度最適化に活用可能で、 さらには有用 (有害)物質の スクリーニング系をも提供するなど、 従来にない産業需要の高い非常にすぐれた デバイスである。  According to the present invention, there is provided a polynucleotide array having a polynucleotide derived from a filamentous fungus immobilized thereon and a method for detecting a gene. The polynucleotide array of the present invention realizes simultaneous, simultaneous hybridization analysis of many polynucleotide species of filamentous fungi, which has been extremely difficult in the past. As a result, it is possible to achieve automation and labor saving of gene expression analysis, precise identification or identification of related species, mutants and the like. In addition, this system can be used for advanced optimization of fermentable production, and it also provides a screening system for useful (harmful) substances.

Claims

請 求 の 範 囲 The scope of the claims
1. 糸状菌由来の核酸の全部又は一部の塩基配列を含むプローブが支持体に固 定されたポリヌクレオチドアレイ。 1. A polynucleotide array in which probes containing all or part of the nucleotide sequence of a nucleic acid derived from a filamentous fungus are immobilized on a support.
2. 核酸が、 C源付与培養条件、 C源欠乏培養条件、 マルト一ス培養条件、 アル カリ性培養条件、 固体培養条件、 高温培養条件、 固体低温培養条件及び胞子 発芽培養条件からなる群から選ばれる少なくとも 1つの条件で培養された 糸状菌由来の cDN Aライブラリーから作製された cDN A領域を含むポリヌク レオチドである請求項 1記載のポリヌクレオチドアレイ。  2. The nucleic acid is selected from the group consisting of a C source-added culture condition, a C source-deficient culture condition, a maltose culture condition, an alkaline culture condition, a solid culture condition, a high temperature culture condition, a solid low temperature culture condition, and a spore germination culture condition. 2. The polynucleotide array according to claim 1, which is a polynucleotide containing a cDNA region produced from a cDNA library derived from a filamentous fungus cultured under at least one selected condition.
3. 核酸が、 ゲノム DNA、 cDNA、 RNA又はォリゴヌクレオチド DNAである請 求項 1 又は 2記載のポリヌクレオチドアレイ。  3. The polynucleotide array according to claim 1, wherein the nucleic acid is genomic DNA, cDNA, RNA, or oligonucleotide DNA.
4. 糸状菌がァスペルギルス属、 ぺニシリウム属、 フザリウム属、 トリコデルマ 属又はムコ一ル属に属する微生物である請求項 1〜3のいずれかに記載のポ リヌクレオチドアレイ。  4. The polynucleotide array according to claim 1, wherein the filamentous fungus is a microorganism belonging to the genus Aspergillus, Penicillium, Fusarium, Trichoderma or Mucor.
5. ァスペルギルス属に属する微生物が、 ァスペルギルス ·ォリゼ、 ァスペルギ ルス ·ゾーヤ、 ァスペルギルス ·二ガー、 ァスペルギルス ·ァヮモリ、 ァス ペルギルス ·力ヮチ、 ァスペルギルス ·パラシティクス、 ァスペルギルス · フラバス、 ァスペルギルス · ノミウス、 ァスペルギルス · フミガタス及び ァスペルギルス ·ニジュランスからなる群から選択される少なくとも 1種で ある請求項 4記載のポリヌクレオチドアレイ。  5. Microorganisms belonging to the genus Aspergillus are Aspergillus oryzae, Aspergillus zoja, Aspergillus niger, Aspergillus amori, Aspergillus ryuti, Aspergillus parasites, Aspergillus flavus, Aspergillus, Aspergillus, Aspergillus The polynucleotide array according to claim 4, wherein the polynucleotide array is at least one selected from the group consisting of Aspergillus nidulans.
6. ァスペルギルス属に属する微生物が、 ァスペルギルス ·ォリゼ、 ァスペルギ ルス ·ソ一ャ、 ァスペルギルス ·パラシティクス、 ァスペルギルス ·フラバ ス及びァスペルギルス ·ノミウスからなる群から選択される少なくとも 1種 である請求項 4記載のポリヌクレオチドアレイ。  6. The poly according to claim 4, wherein the microorganism belonging to the genus Aspergillus is at least one selected from the group consisting of Aspergillus oryzae, Aspergillus socia, Aspergillus parastics, Aspergillus flavus, and Aspergillus nomius. Nucleotide array.
7. ァスペルギルス属に属する微生物がァスペルギルス ·ォリゼである請求項 4 記載のポリヌクレオチドアレイ。  7. The polynucleotide array according to claim 4, wherein the microorganism belonging to the genus Aspergillus is Aspergillus oryzae.
8. 支持体が、 セルロースポリマー、 ナイロンポリマ一、 ガラス、 非多孔質材料 又は多孔質材料である請求項 1〜7のいずれかに記載のポリヌクレオチドア レイ。 8. The polynucleotide array according to any one of claims 1 to 7, wherein the support is a cellulose polymer, a nylon polymer, glass, a non-porous material, or a porous material.
9. 検出の目的ポリヌクレオチドを標識した後、 請求項 1〜8のいずれかに記載 のポリヌクレオチドアレイに固定化されたプローブとハイブリダィズさせ、 得られるハイプリダイゼーション産物からシグナルを検出することを特徴 とする目的ポリヌクレオチドの検出方法。 9. After labeling the target polynucleotide for detection, it is hybridized with the probe immobilized on the polynucleotide array according to any one of claims 1 to 8, and a signal is detected from the obtained hybridization product. A method for detecting a target polynucleotide.
10. 標識が、 蛍光標識、 放射線標識、 電子標識又は多段修飾標識である請求項 9 記載の検出方法。  10. The detection method according to claim 9, wherein the label is a fluorescent label, a radioactive label, an electronic label, or a multi-stage modified label.
11. 検出の 目的ポリヌクレオチドが、 ゲノム DNA、 cDNA、 RNA又はオリゴヌ クレオチド DNAである請求項 9 又は 10記載の検出方法。  11. The detection method according to claim 9 or 10, wherein the target polynucleotide for detection is genomic DNA, cDNA, RNA, or oligonucleotide DNA.
12. プローブの種類が 20〜10万種類である請求項 9〜11のいずれかに記載の検 出方法。  12. The detection method according to any one of claims 9 to 11, wherein the type of the probe is 20 to 100,000.
13. 検出の目的ポリヌクレオチドが、糸状菌由来のものである請求項 9〜12のい ずれかに記載の検出方法。  13. The detection method according to any one of claims 9 to 12, wherein the target polynucleotide for detection is derived from a filamentous fungus.
14. 糸状菌が、 ァスペルギルス属、 ぺニシリウム属、 フザリウム属、 トリコデル マ属又はムコール属に属する微生物のうち少なくとも 1種である請求項 13 記載の検出方法。  14. The detection method according to claim 13, wherein the filamentous fungus is at least one of microorganisms belonging to the genera Aspergillus, Penicillium, Fusarium, Trichoderma or Mucor.
15. ァスペルギルス属に属する微生物が、 ァスペルギルス 'ォリゼ、 ァスペルギ ルス ·ソーャ、 ァスペルギルス ·二ガー、 ァスペルギルス ·ァヮモリ、 ァス ペルギルス ·力ヮチ、 ァスペルギルス 'パラシティクス、 ァスペルギルス · フラバス、 ァスペルギルス · ノミウス、 ァスペルギルス · フミガタス及び ァスペルギルス ·ニジュランスからなる群から選択される少なくとも 1種で ある請求項 14記載の検出方法。  15. Microorganisms belonging to the genus Aspergillus are Aspergillus' orize, Aspergillus soja, Aspergillus niger, Aspergillus amori, Aspergillus sp. 15. The detection method according to claim 14, wherein the method is at least one selected from the group consisting of Aspergillus nidulans.
16. ァスペルギルス厲に属する微生物が、 ァスペルギルス ·ォリゼ、 ァスペルギ ルス ·ゾーヤ、 ァスペルギルス 'パラシティクス、 ァスペルギルス ·フラバ ス、 ァスペルギルス ·ノミウスからなる群から選択される少なくとも 1種で ある請求項 14記載の検出方法。  16. The detection method according to claim 14, wherein the microorganism belonging to Aspergillus で is at least one selected from the group consisting of Aspergillus oryzae, Aspergillus zoya, Aspergillus'parasitics, Aspergillus flavus, and Aspergillus nomius.
17. ァスペルギルス属に属する微生物がァスペルギルス'ォリゼである請求項 14 記載の検出方法。  17. The detection method according to claim 14, wherein the microorganism belonging to the genus Aspergillus is Aspergillus oryzae.
18. 請求項 9〜17 のいずれかに記載の検出方法により得られた検出結果を指標 として、 糸状菌近縁種又はその変異体を同定及び/又は識別する方法。 18. A method for identifying and / or discriminating a closely related filamentous fungus or a mutant thereof using the detection result obtained by the detection method according to any one of claims 9 to 17 as an index.
19. スクリーニングの対象となる有用物質又は有害物質候補サンプルを糸状菌 のうち少なくとも 1種と共存させたのち、 当該糸状菌から核酸を単離及び標 識し、 標識された核酸を、 請求項 1〜8のいずれかに記載のポリヌクレオチ ドアレイに固定化されたプローブとハイプリダイズさせ、得られる八イブリ ダイゼーシヨン産物からシグナルを検出し、得られる検出結果を指標として 有用及び/又は有害物質をスクリーニングする方法。 19. After a candidate sample of a useful substance or a harmful substance to be screened is allowed to coexist with at least one of the filamentous fungi, the nucleic acid is isolated and labeled from the filamentous fungus, and the labeled nucleic acid is claimed. And hybridizing with the probe immobilized on the polynucleotide array according to any one of (1) to (8), detecting a signal from the obtained eight hybridization products, and screening for useful and / or harmful substances using the obtained detection result as an index. Method.
20. 有用物質又は有害物質が薬物である請求項 19記載の方法。  20. The method according to claim 19, wherein the useful or harmful substance is a drug.
21. 異なる培養条件で培養した糸状菌から核酸をそれぞれ単離及び標識し、標識 された核酸を、 請求項 1〜8のいずれかに記載のポリヌクレオチドアレイに 固定されたプローブとハイブリダイズさせ、得られるハイブリダイゼーショ ン産物からシグナルを検出し、得られる検出結果を指標として前記糸状菌の 目的遺伝子の発現を最適化する方法。  21.Isolating and labeling each nucleic acid from filamentous fungi cultured under different culture conditions, hybridizing the labeled nucleic acid with the probe immobilized on the polynucleotide array according to any one of claims 1 to 8, A method for detecting a signal from the obtained hybridization product and optimizing the expression of the target gene of the filamentous fungus using the obtained detection result as an index.
PCT/JP2002/003267 2001-03-30 2002-04-01 Mold polynucleotide arrays WO2002079469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002578471A JP3619844B2 (en) 2001-03-30 2002-04-01 Filamentous fungal polynucleotide array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/002823 WO2002081701A1 (en) 2001-03-30 2001-03-30 Fungal polynucleotide array
JPPCT/JP01/02823 2001-03-30

Publications (1)

Publication Number Publication Date
WO2002079469A1 true WO2002079469A1 (en) 2002-10-10

Family

ID=11737210

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2001/002823 WO2002081701A1 (en) 2001-03-30 2001-03-30 Fungal polynucleotide array
PCT/JP2002/003267 WO2002079469A1 (en) 2001-03-30 2002-04-01 Mold polynucleotide arrays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002823 WO2002081701A1 (en) 2001-03-30 2001-03-30 Fungal polynucleotide array

Country Status (2)

Country Link
JP (1) JP3619844B2 (en)
WO (2) WO2002081701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169099A1 (en) * 2011-06-09 2012-12-13 東洋製罐株式会社 Method for detecting fungi, reaction solution for pcr, and carrier for detecting fungi

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607885B1 (en) * 1999-10-15 2003-08-19 E. I. Du Pont De Nemours And Company Method for high-density microarray medicated gene expression profiling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACHIDA MASAYUKI: "Kinshijo genome kaiseki to wagakuni ni okeru kojikin EST kaiseki", BIOSCIENCE TO INDUSTRY, vol. 58, no. 9, 2000, pages 639 - 642, XP002953559 *
MACHIDA MASAYUKI: "Kojikin no EST kaiseki", KAGAKU TO SEIBUTSU, vol. 39, no. 6, June 2001 (2001-06-01), pages 384 - 388, XP002953560 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169099A1 (en) * 2011-06-09 2012-12-13 東洋製罐株式会社 Method for detecting fungi, reaction solution for pcr, and carrier for detecting fungi
JPWO2012169099A1 (en) * 2011-06-09 2015-02-23 東洋製罐グループホールディングス株式会社 Mold detection method, PCR reaction solution, and mold detection carrier
US10370729B2 (en) 2011-06-09 2019-08-06 Toyo Seikan Group Holdings, Ltd. Method for detecting fungi, reaction solution for PCR, and carrier for detecting fungi

Also Published As

Publication number Publication date
JPWO2002079469A1 (en) 2004-07-22
WO2002081701A1 (en) 2002-10-17
JP3619844B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
Turner et al. Refinement of PCR‐detection of Fusarium avenaceum and evidence from DNA marker studies for phenetic relatedness to Fusarium tricinctum
Rodrigues et al. Identification and characterization of Aspergillus flavus and aflatoxins
AU2006294692B2 (en) Compositions and methods for the detection of candida species
CN101492743A (en) Pathogenic epiphyte detection gene chip
EP1438429B1 (en) Nucleic acids for the identification of fungi and methods for using the same
US8548746B2 (en) Methods for monitoring multiple gene expression
Niessen et al. Advances in the molecular diagnosis of ochratoxin A–producing fungi
US20080108056A1 (en) Method of Detecting the Expression of Aspergillus Gene
US7560234B2 (en) Detection of ochratoxin A producing fungi
CN101636507A (en) Be used to detect the nucleic acid probe of yeast and fungal species
JP2007505638A (en) Specific rapid detection method for beverage spoilage microorganisms
Munaut et al. Molecular identification of mycotoxigenic fungi in food and feed
WO2002079469A1 (en) Mold polynucleotide arrays
Zara et al. Detection, quantification, and identification of yeast in winemaking
CN106676193B (en) Molecular marker, primer and probe for identifying penicillium
KR101855965B1 (en) Composition for diagnosing Fusarium Head Blight
US5527671A (en) Assay for verticillium dahliae
CN113637792B (en) Primer group, reagent or kit for detecting mating type of ustilaginoidea virens, application and method thereof
RU2676099C1 (en) Method for identification of yeast genus pichia based on real time pcr using a taqman probe
JP2003506066A (en) PCR-based detection and quantification of Tapesiaallundae and Tapesiaacuformis
Rostam Culture methods and conventional PCR for detection the aflatoxigenicity of Aspergillus flavus in local isolates samples
Gherbawy et al. Conventional detection and quantification real‐time PCR of the pks‐1 gene of Chaetomium globosum
Varga Molecular detection of fungi in foods and feeds
WO2002040663A1 (en) Nucleic acids for detecting fungi and method of detecting fungi by using the same
TWI464177B (en) Nucleic acid molecule, diagnostic kit, biochip and method for the detection of dekkera strains

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF JP

122 Ep: pct application non-entry in european phase