WO2002078871A1 - Method of purifying contaminated soil - Google Patents

Method of purifying contaminated soil Download PDF

Info

Publication number
WO2002078871A1
WO2002078871A1 PCT/JP2002/002948 JP0202948W WO02078871A1 WO 2002078871 A1 WO2002078871 A1 WO 2002078871A1 JP 0202948 W JP0202948 W JP 0202948W WO 02078871 A1 WO02078871 A1 WO 02078871A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
humus
mixture
complex
ferrihydrite
Prior art date
Application number
PCT/JP2002/002948
Other languages
French (fr)
Japanese (ja)
Inventor
Hisahide Saito
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2002577125A priority Critical patent/JP4238036B2/en
Publication of WO2002078871A1 publication Critical patent/WO2002078871A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically

Definitions

  • the present invention relates to a method for purifying soil, and more particularly to a method for purifying contaminated soil containing heavy metals.
  • Soil pollution is caused by factory accidents and illegal dumping of waste.However, if harmful chemicals and heavy metals exceed the soil purification capacity, it will impair soil functions and contaminate groundwater. It may cause. In addition, it takes a long time for environmental destruction due to soil pollution to take place in the form of pollution as a result of the act of polluting, making it difficult to take measures against soil pollution. In light of the worsening situation of soil contamination, environmental standards for soil have been established in Japan, and the foundation for measures against soil and groundwater contamination has been established.
  • the present invention has been made in view of the above problems and demands, and an object of the present invention is to provide a soil purification method that can be easily performed without using a large-scale apparatus. Disclosure of the invention
  • the soil purification method according to the present invention includes a humus-soil stacking step of forming a humus-soil stack by alternately placing the ferrihydrite humus complex and the contaminated soil on soil near the contaminated soil, A humus-soil stirring step of stirring the humus-soil laminate to obtain a humus-soil mixture.
  • the method for purifying soil according to the present invention is a method for purifying contaminated soil, wherein the step of arranging the bottom layer of the humus complex, wherein the ferrihydrite humus complex is placed on soil near the contaminated soil, A humus * soil stacking step of alternately placing the contaminated soil and the ferrihydrite humus complex on the lowermost layer of the complex to form a humus'soil stack; And a humus-soil stirring step of obtaining a mixture of humus and soil.
  • ferrihydrite humus complex makes it possible to efficiently purify the soil due to the unique properties of ferrihydrite contained in the soil restoration material.
  • Ferrihydrite purifies soils containing heavy metals because its mono-OH group, which has mutational charge properties on its surface, has the property of adsorbing, chelating, fixing, and inactivating heavy metals with positive ions. It becomes possible.
  • ferrihydrite has a specific surface area of 180 to 200 m2 Zg, which is a large area that can adsorb heavy metals.Therefore, by using a ferrihydrite humus complex containing ferrihydrite, efficient purification of heavy metal soil It is possible to do it.
  • ferrihydrite has the property of chelating and aggregating with the functional group of an organic compound having a negative charge, and the property of catalyzing the decomposition of an organic compound of iron hydrated oxide. Inactivation makes it possible to purify soil containing organic compounds. Furthermore, ferrihydrite adsorptive decomposition specific surface force "1 8 0 ⁇ 200m 2 Zg and size organic compounds, the area that can be inactivated fried wide, to the use of ferrihydrite humus complex comprising a ferrihydrite This makes it possible to efficiently purify organic soil.
  • a humus-soil stacking step is performed.
  • Humus which is a post-process, can be easily and evenly mixed with the humus complex and the contaminated soil in the soil stirring process.
  • the stirring step After the stirring step, the lowermost layer of the humus complex in which the ferrihydrite humus complex is placed on the soil, and the lowermost layer of the humus complex obtained in the rearrangement step, A humus-mixture laminate, wherein the humus-soil mixture formed in the stirring step and the ferrihydrite humus complex are alternately placed to form a humus-mixture laminate.
  • the humus 'soil mixture obtained in the stirring process is subjected to the humus' mixture stirring process, and the ferrihydrite humus complex is further mixed, so that the polluted soil can be more completely purified. It becomes possible.
  • a lowermost layer arrangement step of placing the humus'soil mixture formed in the stirring step on soil near the contaminated soil, and a humus'soil mixture obtained in the arrangement step is performed.
  • a mixture-soil stacking step in which the contaminated soil and the humus'soil mixture formed in the stirring process are alternately placed on the lowermost layer to form a mixture-soil stack; and the mixture-soil It is preferable that the mixture obtained in the laminating step-the soil layered body is stirred and the mixture “mixture to obtain a mixture of soil” and the soil stirring step are repeatedly performed a predetermined number of times.
  • FIG. 1 is an explanatory view showing an outline of an embodiment of a soil purification method of the present invention
  • FIG. 2 is a block diagram showing a flow of an embodiment of a soil purification method according to the present invention
  • FIG. It is a block diagram showing a flow of other embodiments of a soil purification method according to the present invention.
  • the present embodiment is a method for purifying (inactivating) heavy metal soil using a ferrihydrite humus complex.
  • ferrihydrite humus complex of the present embodiment refers to a complex of amorphous ferrihydrite (hereinafter referred to as ferrihydrite) and an organic substance.
  • ferrihydrite amorphous ferrihydrite
  • humus as used herein means soil organic matter, and is synonymous with compost.
  • Ferri The high dry Bok (ferrihydrite), a general formula 5Fe 2 0 3 'non AkiraTadashitetsu hydrated oxide represented by 9H 2 0. Generally, it is known as a low-crystalline iron mineral that is formed at an early stage in the Earth's surface.
  • Ferrihydrite has the property of coordinating with the OH and O ends of carboxyl groups and carbonyl groups of organic compounds and forms aggregates. Since the specific area of the organic compound is as large as about 200 (m 2 Z g), it can be used for the reaction with the OH and O ends of organic compounds, so it has high catalytic ability and high ability to form aggregates. I know it.
  • the ferrihydrite humus complex of the present embodiment is obtained by adding a 10 to 20% by weight sulfuric acid aqueous solution to a sedimentary rock soil such as basalt and andesite to extract an acid-soluble component, and a naturally-derived ionized mineral concentrate ( It is manufactured by the following manufacturing process using Clay Extract W. W (manufactured by Rion Co., Ltd .; hereinafter, referred to as a mineral liquid) and an organic compound mixture as raw materials.
  • a sedimentary rock soil such as basalt and andesite
  • a naturally-derived ionized mineral concentrate It is manufactured by the following manufacturing process using Clay Extract W. W (manufactured by Rion Co., Ltd .; hereinafter, referred to as a mineral liquid) and an organic compound mixture as raw materials.
  • the residue obtained by extracting sulfuric acid from the soil which is the base material of the mineral liquid of the present embodiment, contains pure iron (Fe (3+)) and amorphous goethite (Hi-FeOOH).
  • pure iron (Fe (3+)) refers to stable iron that is hard to change, and is not oxidized and does not elute. It means iron having the property of
  • organic waste such as animal dung, garbage, food waste, pruned branches and waste material chips, and septic tank sludge are used.
  • a pH adjusting step of the organic waste crushed by a known shredder is performed.
  • slaked lime calcium hydroxide: Ca (OH) 2
  • Ca (OH) 2 slaked lime
  • the pH of the mixture of the organic substance and the aqueous solution of the mineral liquid becomes 5 or more in each of the steps subsequent to the step of immersing in the mineral liquid, so that ferrihydrite can be formed.
  • the organic matter adjusted to pH 5 or more is immersed in a mineral liquid dilution water tank diluted 5000 times with water, and a mineral liquid diluting water immersion step of leaving it for 5 hours or more is performed.
  • the mineral liquid is diluted with water because the amount of the mineral liquid is about 0.1 to 0.2, so if an organic compound is added to the mineral liquid undiluted solution, the mineral liquid is diluted during the composting process. This is because the fermenting bacterium is killed and cannot be composted in the subsequent mineral addition-fermentation process.
  • the mineral water dilution water is preferably adjusted to pH 5 to 7 in order to prevent bacterial killing.
  • a mineral liquid dilution water is added, and a primary fermentation (mineral liquid addition) step of fermenting an organic substance with stirring is performed.
  • a known fermentation aid may be added.
  • the organic matter is taken out from the blender 11 and subjected to secondary fermentation and “ripening” (a mineral liquid addition step.
  • the organic matter taken out of the blender is deposited in a compost plant with a roof and fermented while the mineral liquid is fermented.
  • the temperature of the organic material reaches 65 ° C to 70 ° C, replenish the 7000-fold diluted mineral water while turning it over using a bulldozer, excavator, etc. .
  • Secondary fermentation-About 3 weeks after the start of the ripeness (addition of mineral liquid) process the organic matter becomes ripe compost.
  • ferrihydrite humus complex used in the present embodiment is completed.
  • the amount of ferrihydrite in this ferrihydrite humus complex is 5 ppm.
  • the CEC (cation exchange capacity) of this ferrihydrite humus complex is about 80 (meq) (measured by ammonium acetate method in fertilizer analysis).
  • ferrihydrite humus complex produced by the above method is used, but the present invention is not limited to this, and a ferrihydrite humus complex produced by another method or a natural ferrihydrite humus complex may be used. Is also good.
  • CEC cation exchange capacity
  • the ferrihydrite humus complex used in the present embodiment may have a cation exchange capacity of 30 (meq) or more, preferably 50 (meq) or more.
  • a ferrihydrite humus complex (hereinafter, referred to as a humus complex) 3 is previously loaded on a soil 1 in the vicinity of the contaminated soil 2 in question using a known truck vehicle. .
  • Step 21 for arranging the lowermost layer of the humus complex is performed. This step is performed by moving the humus complex with a known bulldozer.
  • the humus complex is first placed on the soil 4. If contaminated soil 2 is placed on soil 4 before the humus complex, Heavy metals and harmful organic compounds may migrate to the soil 4.
  • the contaminated soil 2 is placed on the lowermost layer 4 of the humus complex so as to be substantially disc-shaped or substantially plate-shaped to form the first contaminated soil layer 6.
  • Conduct the first layer of contaminated soil. This step is performed by moving the contaminated soil 2 with a known bulldozer.
  • the humus' soil stacking step 22 is performed.
  • the humus complex is placed on the contaminated soil first layer 6 so as to be substantially disc-shaped or substantially plate-shaped to form the humus complex second layer 7.
  • the humus complex third layer disposing step of forming the humus complex third layer 9 on the contaminated soil second layer 8 is performed.
  • a contaminated soil third layer arrangement step of forming the contaminated soil third layer 10 on the humus complex third layer 9 is performed.
  • the contaminated soil first layer disposing step to the contaminated soil third layer disposing step constitute the humus soil laminating step 22 of claim 2.
  • the humus complex bottom layer arrangement step 21 and the humus' soil layering step 22 are performed to alternately form the humus complex layers 5, 7, 9 and the contaminated soil layers 6, 8, 10 This makes it possible to easily and evenly mix the humus complex and the contaminated soil in the humus / soil stirring step 23 which is the subsequent step.
  • the total height of the humus-soil stack 11 be about 2 to 3 m in each humus complex arranging step.
  • the humus-soil laminate 11 of FIG. 1 (C) was stirred using a known bulldozer.
  • the humus-soil agitation step 23 is performed to obtain a humus-soil mixture 12 by mixing.
  • the humus' soil stirring step 23 is carried out in order to bring the OH groups on the ferrihydrite surface into good contact with the heavy metal cations, and to adsorb the heavy metal evenly on the ferrihydrite surface.
  • humus soil agitation step 23 heavy metals and organic substances are adsorbed to ferrihydrite contained in the humus complex.
  • the adsorption in this case proceeds by a mechanism similar to the mechanism by which heavy metals adhere to the paper filter.
  • Humus' Soil agitation step 23 agitate well.
  • the purpose is to supply sufficient oxygen to promote the activity of microorganisms in the soil or the complex.
  • ultraviolet rays are sufficiently taken into the humus-soil mixture 12 to activate the catalytic ability of the organic compound decomposition reaction of the hull-L rehydrate.
  • the humus' soil mixture 12 is moved to a location different from that of the soil 4 to carry out a transfer step 24 to prepare for the next contaminated soil purification treatment.
  • a humus complex lowermost layer 5 rearrangement step 25 for placing the humus complex on the soil in the premises is performed.
  • the humus-soil mixture 12 formed in the stirring step and the humus complex are alternately placed on the lowermost layer 5 of the humus complex obtained in the rearrangement step 25, and the humus-mixture laminate is placed. 11. Perform humus' mixture lamination step 26 to form 1.
  • the moving step 28 for moving is performed.
  • the lowermost layer of the humus complex, the humus' mixture laminating step, the humus-mixture stirring step, and the moving step are sequentially repeated a predetermined number of times, for example, about 2 to 4 times.
  • Step 29 is repeated. It should be noted that the predetermined number of times includes a plurality of times of two or more times and one time.
  • the amount of heavy metals in the purified soil after soil purification is determined by atomic absorption spectrometry.
  • the pH is measured by the glass electrode method.
  • the soil is purified by the method according to claim 3 shown in FIG. 2, but only the moving step 24 from the bottom layer arrangement step 21 of the humus complex in FIG. It may be a soil purification method.
  • the amount of the ferrihydrite humus complex used in the present embodiment varies depending on the quantity and quality of the contaminated soil to be treated. Should be set to 0.2 to 0.5 t, preferably about 0.4 t. The reason why the amount of the ferrihydrite humus complex with respect to the contaminated soil It was set to 0.5 t or less is that if the amount exceeds 0.5 t, the amount of the mixture that cannot be accommodated in the original place in the subsequent return step 30 increases. Because it is too much.
  • the total height of the laminate 11 is 2 to 3 m.
  • the composite layers 5, 7, and 9 have a thickness of about 20 to 30 cm, and the contaminated soil layers 6, 8, and 10 have a thickness of about 50 to 80 cm.
  • the ferrihydrite humus complex is preferably mixed with the contaminated soil It so that the ferrihydrite capacity is about 1 to 5 g.
  • a mixture bottom layer arrangement step 35, a mixture / soil layering step 36, and a mixture-soil stirring step 37 may be performed.
  • the humus-soil mixture 12 obtained in the humus-soil stirring step 23 is used in place of the humus complex 3, and the new humus complex The same procedure as the steps from the lower layer arrangement step 21 to the moving step 24 is performed.
  • a mixture bottom layer arrangement step 35 of placing the humus'soil mixture formed in the stirring step 23 on soil near the contaminated soil 2 in the premises is performed.
  • the mixture 'the mixture obtained in the soil layering step ⁇ the mixture obtained by agitating the soil layered body to obtain a mixture-soil mixture ⁇ the soil stirring step ⁇ 37 and the moving step 38for moving this mixture-soil mixture ⁇ Do.
  • a repetition step 39 is performed in which the mixture lowermost layer arrangement step 35, the mixture “soil stacking step 36, the mixture-soil stirring step 37, and the movement step 38 are sequentially repeated a predetermined number of times, for example, about 2 to 4 times.
  • the predetermined times include two or more times and one time.
  • the lowermost layer of the mixture is placed after the transfer step 24, but the lowermost layer of the mixture may be placed after the return step 30.
  • the above-mentioned mineral solution dilution water adjusted to pH 5 or more may be sprayed onto the contaminated soil 6, 8, 10 or the humus-soil mixture 12 to carry out.
  • Humus-soil agitation step 23 May be.
  • the mineral water dilution is applied while maintaining the pH of the contaminated soil 6, 8, 10 or humus' soil mixture 12 at 5 or higher. This makes it possible to form a new ferrihydrite using the mineral liquid dilution water and the organic matter contained in the contaminated soil 6, 8, 10 or the humus-soil mixture 12 as raw materials.
  • the pH of the soil etc. was set to 5 or more, and the mineral Liquid dilution water may be sprayed.
  • the above-mentioned mineral liquid dilution water adjusted to pH 5 or more in advance may be sprayed on the soil 2 on which the humus' soil laminate 11 is arranged. This makes it possible to place contaminated soil as the first layer below the bottom layer 5 of the humus complex.
  • the diluted mineral water may be sprayed on the contaminated soil 2 in advance, or the diluted mineral water may be sprayed while excavating the contaminated soil 2.
  • the soil purification method of the present embodiment since the ferrihydrite humus complex is used as the soil restoration material, the soil can be efficiently purified by the ferrihydrite-specific properties contained in the soil restoration material. It becomes possible.
  • Ferrihydrite has the property that its mono-OH group, which has mutated charge properties on its surface, adsorbs, chelate-bonds, fixes and inactivates heavy metals with positive ions, so it purifies soils containing heavy metals. It is possible to do. Furthermore, ferrihydrite has a specific surface area of 180 to 200 m2 Zg, which is a large area capable of adsorbing heavy metals.Thus, by using a ferrihydrite humus complex containing ferrihydrite, it is possible to efficiently purify heavy metal soil. It is possible to do it.
  • ferrihydrite has a property of chelating and aggregating with a functional group of a negatively charged organic compound and a property of catalyzing the decomposition of an organic compound of iron hydrated oxide, so that the adsorption and decomposition of the organic compound can be prevented.
  • Soil containing organic compounds by inactivation It is possible to purify the soil.
  • Contaminated soil It containing 280 ppm of heavy metal cadmium (Cd) and 350 ppm of copper (Cu) was used as the contaminated soil.
  • the humus complex was placed flat on a soil near the contaminated soil with a bulldozer to a height of 1 Ocm, and the contaminated soil was mounted on the soil to a height of 50 cm. After that, the humus complex and the contaminated soil are sequentially laminated on the contaminated soil so that the height of the composite layer is less than 10 cm and the height of the contaminated soil layer is 50 cm. Body 11 formed. As a whole, three layers of humus complex and three layers of contaminated soil were used, for a total of six layers. The total humic complex was 0.2 t and the total amount of contaminated soil was 1 t.
  • humus' soil laminate 11 was stirred in place using a bulldozer to obtain 1.2 t of a humus-soil mixture 12.
  • the humus' soil mixture 12 was moved several meters to prepare for the next soil purification treatment.
  • the humus complex was then laid flat again on a bulldozer to a height of 1 Ocm. A portion of the humus-soil mixture 12 was placed on it to a height of 60 cm.
  • the humus complex and the humus-soil mixture are then placed on top of this humus 'soil mixture, with a humus complex layer height of 10 cm and a humus' soil mixture layer height of 60 cm.
  • the humus 'mixture laminate 11' was formed so as to have a total of six layers.
  • the humus' soil mixture 12 used here was 1.2 t and the humus complex was 0.2 t.
  • the humus' soil laminate 11 was stirred in place using a bulldozer to obtain 1.4 tons of the humus' soil mixture 12 ', and the soil purification was completed.
  • ferrihydrite humus complex is used as the soil restoration material, it is possible to efficiently purify the soil due to the unique properties of ferrihydrite contained in the soil restoration material. It becomes possible.
  • Ferrihydrite has the property that its mono-OH group, which has mutated charge properties on its surface, adsorbs, chelates, fixes, and inactivates heavy metals with positive ions, thus purifying soil containing heavy metals. It is possible to do.
  • ferrihydrite has a large specific surface area of 180-200 m 2 Zg and a large area capable of adsorbing heavy metals. Therefore, the use of ferrihydrite-containing humus complex containing ferrihydrite enables efficient purification of heavy metal soil. It is possible to do.
  • ferrihydrite has the property of chelating and aggregating with the functional group of an organic compound having a negative charge, and the property of catalyzing the decomposition of an organic compound of iron hydrated oxide. Inactivation makes it possible to purify soil containing organic compounds. Furthermore, ferrihydrite adsorptive decomposition specific surface force "1 8 0 ⁇ 200m 2 Zg and size organic compounds, the area that can be inactivated fried wide, to the use of ferrihydrite humus complex comprising a ferrihydrite This makes it possible to efficiently purify organic soil.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method of purifying contaminated soil, comprising a humus composite lowest layer disposing process (21) for placing ferrihydrite humus composite on soil near the contaminated soil, a humus soil stacking layer process (22) for placing the contaminated soil and the ferrihydrite humus composites alternately on the humus composite lowest layer (5) to form a humus soil stacked layer (11), and a humus soil stirring process (23) for stirring the humus soil stacked layer (11) to provide a humus soil mixture (12).

Description

明 細 書  Specification
汚染土壌の浄化方法 How to clean contaminated soil
技術分野 Technical field
本発明は、土壌の浄化方法に係り、特に重金属を含む汚染土壌を浄化する 方法に関するものである。 背景技術  The present invention relates to a method for purifying soil, and more particularly to a method for purifying contaminated soil containing heavy metals. Background art
近年、地球の環境汚染が深刻なものとなり、環境問題に関心が高まってい る。環境汚染の一つである土壌汚染としては、トリクロロエチレンなど発ガン性 のある有害化学物質による土壌汚染、重金属類による土壌汚染、これらの両 方による複合汚染が問題となっている。  In recent years, the environmental pollution of the earth has become serious, and interest in environmental problems has increased. As soil pollution, which is one of the environmental pollutions, there is a problem of soil pollution due to carcinogenic harmful chemicals such as trichlorethylene, soil pollution due to heavy metals, and composite pollution due to both.
土壌汚染は、工場の事故や廃棄物の不法投棄等により引き起こされるが、 土壌の浄化能力を上回る量の有害化学物質や重金属が土壌に入ると、土壌 の諸機能が損なわれるとともに、地下水の汚染の原因ともなる。また、土壌汚 染による環境破壊は、汚染する行為が行われて公害という形になって現れる までに長い期間がかかるため、土壌汚染の対策は、難しいものとなっている。 そこで、わが国でも、深刻化した土壌汚染の状況に鑑みて、土壌に関する環 境基準が整備され、土壌 '地下水汚染の対策に関する基盤が整備されてきて いる。  Soil pollution is caused by factory accidents and illegal dumping of waste.However, if harmful chemicals and heavy metals exceed the soil purification capacity, it will impair soil functions and contaminate groundwater. It may cause. In addition, it takes a long time for environmental destruction due to soil pollution to take place in the form of pollution as a result of the act of polluting, making it difficult to take measures against soil pollution. In light of the worsening situation of soil contamination, environmental standards for soil have been established in Japan, and the foundation for measures against soil and groundwater contamination has been established.
土壌浄化は、汚染された土地の土壌を、汚染されていない土壌に入れ替え る「土壌の入れ替え」を行い、汚染土壌を'別の場所に搬送して浄化する方法 が一般的に行われている。  In soil remediation, it is common practice to replace soil in contaminated land with non-contaminated soil, and to carry out `` soil replacement '' and transport the contaminated soil to another location for purification. .
また、汚染が広範な範囲に亘る場合には、揚水井戸などを設けて汚染地下 水を揚水し土壌を浄化する方法も行われている。  When pollution is widespread, pumping wells and other facilities are used to pump up contaminated groundwater and purify the soil.
しかし、上記のような従来の土壌の浄化方法によれば、大掛かりな装置が必 要になるという問題点があった。 土壌の入れ替えを行う場合には、汚染土壌と清浄土壌とを入れ替える工事 のほか、汚染土壌の運搬、さらに土壌の浄化装置が必要であり、大掛かりな 工事と装置が必要であった。また、汚染地下水の揚水による浄化方法によれ ば、揚水井戸のほか、活性炭吸着装置等の浄化装置が必要となり、大掛かり な装置が必要であった。 However, according to the conventional soil purification method as described above, there is a problem that a large-scale apparatus is required. When replacing the soil, in addition to the work of replacing the contaminated soil with the clean soil, transportation of the contaminated soil and a soil purification device were required, requiring large-scale construction and equipment. According to the purification method by pumping contaminated groundwater, a purification device such as an activated carbon adsorption device was required in addition to a pumping well, which required a large-scale device.
また、狭い範囲の土壌の浄化が必要なケースも増えているが、上記従来の 方法によれば、工事が大掛かりとなってしまうため、狭い範囲の土壌の浄化を 手軽に行うことができる方法の開発が望まれていた。  In many cases, it is necessary to purify a narrow range of soil.However, according to the above-mentioned conventional method, the construction requires a large amount of time. Development was desired.
本発明は、上記問題点および要望に鑑みなされたものであり、本発明の目 的は、大掛かりな装置を用いずに、簡易に行うことができる土壌の浄化方法を 提供することにある。 発明の開示  The present invention has been made in view of the above problems and demands, and an object of the present invention is to provide a soil purification method that can be easily performed without using a large-scale apparatus. Disclosure of the invention
本発明における土壌の浄化方法は、汚染土壌近くの土壌の上に、フェリハイ ドライト腐植複合体と前記汚染土壌とを交互に載置して腐植-土壌積層体を 形成する腐植-土壌積層工程と、前記腐植-土壌積層体を攪拌して腐植-土 壌混合物を得る腐植'土壌攪拌工程と、を行うことを特徴とする。  The soil purification method according to the present invention includes a humus-soil stacking step of forming a humus-soil stack by alternately placing the ferrihydrite humus complex and the contaminated soil on soil near the contaminated soil, A humus-soil stirring step of stirring the humus-soil laminate to obtain a humus-soil mixture.
また、本発明における土壌の浄化方法は、汚染土壌の浄化方法であって、 汚染土壌近くの土壌の上に、フェリハイドライト腐植複合体を載置する腐植複 合体最下層配置工程と、前記腐植複合体最下層の上に、前記汚染土壌と、 前記フェリハイドライト腐植複合体とを交互に載置して腐植'土壌積層体を形 成する腐植*土壌積層工程と、前記腐植.土壌積層体を攪拌して腐植'土壌 混合物を得る腐植_土壌攪拌工程と、を行うことを特徴とする。  The method for purifying soil according to the present invention is a method for purifying contaminated soil, wherein the step of arranging the bottom layer of the humus complex, wherein the ferrihydrite humus complex is placed on soil near the contaminated soil, A humus * soil stacking step of alternately placing the contaminated soil and the ferrihydrite humus complex on the lowermost layer of the complex to form a humus'soil stack; And a humus-soil stirring step of obtaining a mixture of humus and soil.
このように、フェリハイドライト腐植複合体を用いているため、土壌回復資材 に含まれるフェリハイドライト特有の性質により、効率よく土壌の浄化を行うこ とが可能となる。 フェリハイドライトは、表面で変異荷電特性をもつ一 OH基が、プラスのイオン を持つ重金属を吸着、キレート結合し、固定、不活性化させる性質を有するた め、重金属を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライ トは比表面積が 1 80〜200m2Zgと大き 重金属を吸着できる面積が広い ため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、 効率よく重金属土壌の浄化を行うことが可能となるのである。 As described above, the use of the ferrihydrite humus complex makes it possible to efficiently purify the soil due to the unique properties of ferrihydrite contained in the soil restoration material. Ferrihydrite purifies soils containing heavy metals because its mono-OH group, which has mutational charge properties on its surface, has the property of adsorbing, chelating, fixing, and inactivating heavy metals with positive ions. It becomes possible. Furthermore, ferrihydrite has a specific surface area of 180 to 200 m2 Zg, which is a large area that can adsorb heavy metals.Therefore, by using a ferrihydrite humus complex containing ferrihydrite, efficient purification of heavy metal soil It is possible to do it.
また、フェリハイドライトは、負電荷を持つ有機化合物の官能基とキレート結 合して凝集する性質、鉄水和酸化物の有機化合物の分解を触媒する性質を 有するため、有機化合物の吸着分解、不活性化により、有機化合物を含む土 壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積力《1 8 0〜200m2Zgと大き 有機化合物を吸着分解、不活性化できる面積が広 いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることによ リ、効率よく有機物土壌の浄化を行うことが可能となるのである。 In addition, ferrihydrite has the property of chelating and aggregating with the functional group of an organic compound having a negative charge, and the property of catalyzing the decomposition of an organic compound of iron hydrated oxide. Inactivation makes it possible to purify soil containing organic compounds. Furthermore, ferrihydrite adsorptive decomposition specific surface force "1 8 0~200m 2 Zg and size organic compounds, the area that can be inactivated fried wide, to the use of ferrihydrite humus complex comprising a ferrihydrite This makes it possible to efficiently purify organic soil.
また、土壌の上に、まず腐植複合体を載置する腐植複合体最下層配置ェ 程を行っているため、汚染土壌に含まれる重金属や有害有機化合物が、土壌 に移行することを防止することが可能となる。  In addition, since the bottom layer of the humus complex is placed on the soil first, the heavy metal and harmful organic compounds contained in the contaminated soil are prevented from migrating to the soil. Becomes possible.
さらに、前記腐植複合体最下層の上に、前記汚染土壌と、前記フェリハイド ライト腐植複合体とを交互に載置して腐植-土壌積層体を形成する腐植-土壌 積層工程を行っているので、後工程である腐植 '土壌攪拌工程で、腐植複合 体と汚染土壌とを、容易にまんべんなく混合させることが可能となる。  Furthermore, since the contaminated soil and the ferrihydrite humus complex are alternately placed on the bottom of the humus complex to form a humus-soil laminate, a humus-soil stacking step is performed. Humus, which is a post-process, can be easily and evenly mixed with the humus complex and the contaminated soil in the soil stirring process.
このとき、前記攪拌工程の後で、土壌の上に、フェリハイドライト腐植複合体 を載置する腐植複合体最下層再配置工程と、該再配置工程で得た腐植複合 体最下層の上に、前記攪拌工程で形成された腐植-土壌混合物と、前記フエ リハイドライト腐植複合体とを交互に載置して腐植_混合物積層体を形成する 腐植,混合物積層工程と、該腐植 ·混合物積層工程で得た腐植,混合物積層 体を攪拌して腐植'混合物の混合物を得る腐植'混合物攪拌工程と、を所定 回順次繰り返して行うように構成すると好適である。 At this time, after the stirring step, the lowermost layer of the humus complex in which the ferrihydrite humus complex is placed on the soil, and the lowermost layer of the humus complex obtained in the rearrangement step, A humus-mixture laminate, wherein the humus-soil mixture formed in the stirring step and the ferrihydrite humus complex are alternately placed to form a humus-mixture laminate. The humus-mixture stirring step of obtaining the humus-mixture mixture by stirring the humus-mixture laminate obtained in the process It is preferable to perform the operation repeatedly one after another.
このように、攪拌工程で得た腐植 '土壌混合物について腐植 '混合物攪拌ェ 程を行って、さらにフェリハイドライト腐植複合体を混合しているため、汚染土 壌の浄化をさらに完全に行うことが可能となる。  As described above, the humus 'soil mixture obtained in the stirring process is subjected to the humus' mixture stirring process, and the ferrihydrite humus complex is further mixed, so that the polluted soil can be more completely purified. It becomes possible.
また、前記攪拌工程の後で、汚染土壌近くの土壌の上に、前記攪拌工程で 形成された腐植'土壌混合物を載置する混合物最下層配置工程と、該配置 工程で得た腐植 '土壤混合物最下層の上に、前記汚染土壌と、前記攪拌ェ 程で形成された腐植'土壌混合物とを交互に載置して混合物-土壌積層体を 形成する混合物-土壌積層工程と、該混合物-土壌積層工程で得た混合物- 土壌積層体を撹拌して混合物'土壌の混合物を得る混合物'土壌攪拌工程と、 を所定回繰り返して行うように構成すると好適である。  Further, after the stirring step, a lowermost layer arrangement step of placing the humus'soil mixture formed in the stirring step on soil near the contaminated soil, and a humus'soil mixture obtained in the arrangement step. A mixture-soil stacking step in which the contaminated soil and the humus'soil mixture formed in the stirring process are alternately placed on the lowermost layer to form a mixture-soil stack; and the mixture-soil It is preferable that the mixture obtained in the laminating step-the soil layered body is stirred and the mixture “mixture to obtain a mixture of soil” and the soil stirring step are repeatedly performed a predetermined number of times.
このように、攪拌工程で得た腐植-土壌混合物をフヱリハイドライト腐植複合 体の代わりに用いた混合物'土壌攪拌工程を行っているため、浄化処理後の 腐植-土壌混合物を有効利用することが可能となり、フェリハイドライト腐植複 合体の再利用が可能となる。 図面の簡単な説明  In this way, the humus-soil mixture obtained in the stirring process is used in place of the polyhydrite humus complex. And reuse of the ferrihydrite humus complex becomes possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の土壌の浄化方法の一実施形態の概略を示す説明図であり、 図 2は本発明に係る土壌の浄化方法の一実施形態の流れを示すブロック図 であり、図 3は本発明に係る土壌の浄化方法の他の実施形態の流れを示す ブロック図である。 発明を実施するための最良の形態 FIG. 1 is an explanatory view showing an outline of an embodiment of a soil purification method of the present invention, FIG. 2 is a block diagram showing a flow of an embodiment of a soil purification method according to the present invention, and FIG. It is a block diagram showing a flow of other embodiments of a soil purification method according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施例を図面に基づいて説明する。なお、以下に説明する 部材、配置等は本発明を限定するものでな 本発明の趣旨の範囲内で種々 改変することができるものである。 (実施の形態 1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. The members, arrangements, and the like described below do not limit the present invention, and can be variously modified within the scope of the present invention. (Embodiment 1)
本実施形態は、フヱリハイドライト腐植複合体を使って、重金属の土壌を浄 化(不活性化)する方法である。  The present embodiment is a method for purifying (inactivating) heavy metal soil using a ferrihydrite humus complex.
本実施形態のフェリハイドライト腐植複合体とは、非晶質フェリハイドライ卜 (以下フェリハイドライトという)と有機物との複合体をいう。また、「腐植」とは、 本明細書では、土壌有機物を意味し、堆肥と同義である。  The ferrihydrite humus complex of the present embodiment refers to a complex of amorphous ferrihydrite (hereinafter referred to as ferrihydrite) and an organic substance. The term "humus" as used herein means soil organic matter, and is synonymous with compost.
フェリハイドライ卜(Ferrihydrite)とは、一般式 5Fe203' 9H20で表される非 晶質鉄水和酸化物である。一般的には、地球表層において初期段階で形成 される低結晶度の鉄鉱物として知られている。 Ferri The high dry Bok (ferrihydrite), a general formula 5Fe 2 0 3 'non AkiraTadashitetsu hydrated oxide represented by 9H 2 0. Generally, it is known as a low-crystalline iron mineral that is formed at an early stage in the Earth's surface.
フェリハイドライトは、有機化合物のカルボキシル基やカルボニル基の OH端、 O端と配位結合する性質があり凝集体を形成する。比表面積が約 200(m2Z g)と大きぐ有機化合物の OH端、 O端との反応に供される場が広いため、触 媒能が高く、凝集体を形成する能力が高いことが分かっている。 Ferrihydrite has the property of coordinating with the OH and O ends of carboxyl groups and carbonyl groups of organic compounds and forms aggregates. Since the specific area of the organic compound is as large as about 200 (m 2 Z g), it can be used for the reaction with the OH and O ends of organic compounds, so it has high catalytic ability and high ability to form aggregates. I know it.
本実施形態のフェリハイドライト腐植複合体は、玄武岩、安山岩等の堆積岩 土壌に、濃度 10〜20重量%の硫酸水溶液を添加して酸可溶成分を抽出し た天然由来のイオン化ミネラル濃縮液(株式会社リオン製のクレイェクストラク ト W. W;以下、ミネラル液と称する。)と、有機物化合物混合物とを原料として、 下記の製造工程により製造される。  The ferrihydrite humus complex of the present embodiment is obtained by adding a 10 to 20% by weight sulfuric acid aqueous solution to a sedimentary rock soil such as basalt and andesite to extract an acid-soluble component, and a naturally-derived ionized mineral concentrate ( It is manufactured by the following manufacturing process using Clay Extract W. W (manufactured by Rion Co., Ltd .; hereinafter, referred to as a mineral liquid) and an organic compound mixture as raw materials.
ミネラ レ液は、鉄を 7000〜"! 3000(ppm)程度含む。ミネラ レ液に含まれ る鉄は、 pHによって異なる形態で存在する。 pH3以下では、鉄は、 Fe3 +、 pH 3~pH4では、 Fe3 +と Fe(OH)2+、 pH4~pH5では、 Fe3 +と Fe (OH) 2 +と Fe (OH)2+、 pH5より高い pHでは、 Fe(OH)2+と Fe(OH)2 +と Fe(OH)3として存 在する。 Minera Les solution 7000 to iron "! Containing about 3000 (ppm). Iron that is part of the minerals Les liquid is present in different forms by pH. In pH3 or less, iron, Fe 3 +, pH 3 ~ In pH 4, Fe 3 + and Fe (OH) 2 +, the pH4 ~ pH5, Fe 3 + and Fe (OH) 2 + and Fe (OH) 2 +, the pH greater than pH 5, and Fe (OH) 2+ Exists as Fe (OH) 2 + and Fe (OH) 3 .
また、本実施形態のミネラル液の母材である土壌を硫酸抽出した残渣は、 純鉄(Fe (3 + ) )と、非結晶質の針鉄鉱(ひ一 FeOOH)とを含んでいる。ここで、 純鉄(Fe(3 + ))とは、変化しにくい安定した鉄をいい、酸化されず、溶出しな いという性質を有する鉄をいう。 Further, the residue obtained by extracting sulfuric acid from the soil, which is the base material of the mineral liquid of the present embodiment, contains pure iron (Fe (3+)) and amorphous goethite (Hi-FeOOH). Here, pure iron (Fe (3+)) refers to stable iron that is hard to change, and is not oxidized and does not elute. It means iron having the property of
有機化合物混合物としては、畜糞、生ゴミ、食品廃棄物、剪定枝や廃材チッ プ、浄化槽汚泥等の有機廃棄物を用いる。  As the organic compound mixture, organic waste such as animal dung, garbage, food waste, pruned branches and waste material chips, and septic tank sludge are used.
フェリハイドライト腐植複合体の製造方法について説明する。  A method for producing a ferrihydrite humus complex will be described.
まず、公知のシュレッダーで破砕した有機物廃棄物の pH調整工程を行う。こ の工程では、消石灰(水酸化カルシウム: Ca (OH) 2)を添加して、有機物の p Hを、 5以上に調整する。この pH調整工程により、後のミネラル液浸漬工程以 降の各工程で、有機物とミネラル液水溶液との混合物の pHが 5以上となるた め、フェリハイドライト形成が可能となる。 First, a pH adjusting step of the organic waste crushed by a known shredder is performed. In this step, slaked lime (calcium hydroxide: Ca (OH) 2 ) is added to adjust the pH of the organic matter to 5 or more. By this pH adjustment step, the pH of the mixture of the organic substance and the aqueous solution of the mineral liquid becomes 5 or more in each of the steps subsequent to the step of immersing in the mineral liquid, so that ferrihydrite can be formed.
pH調整工程の後、 pH5以上に調整された有機物を、 5000倍に水で希釈し たミネラル液希釈水槽に浸潰し、 5時間以上放置するミネラル液希釈水浸漬 工程を行う。  After the pH adjustment step, the organic matter adjusted to pH 5 or more is immersed in a mineral liquid dilution water tank diluted 5000 times with water, and a mineral liquid diluting water immersion step of leaving it for 5 hours or more is performed.
このように、ミネラル液を水で希釈するのは、ミネラル液は、 1"1カ《0. 1〜0. 2程度であるため、ミネラル液原液に有機物化合物を添加すると、堆肥化過 程で発酵を行う菌が死滅してしまい、後のミネラル添加-発酵工程で、堆肥化 することができなくなるからである。  As described above, the mineral liquid is diluted with water because the amount of the mineral liquid is about 0.1 to 0.2, so if an organic compound is added to the mineral liquid undiluted solution, the mineral liquid is diluted during the composting process. This is because the fermenting bacterium is killed and cannot be composted in the subsequent mineral addition-fermentation process.
このミネラル液希釈水は、菌死滅防止のためには、 pH 5〜7とすると好適で ある。  The mineral water dilution water is preferably adjusted to pH 5 to 7 in order to prevent bacterial killing.
その後、公知のプレンダ内で、ミネラル液希釈水を添加し、攪拌しながら有 機物を発酵させる一次発酵(ミネラル液添加)工程を行う。ここでは、公知の発 酵助剤を添加してもよい。  Thereafter, in a known blender, a mineral liquid dilution water is added, and a primary fermentation (mineral liquid addition) step of fermenting an organic substance with stirring is performed. Here, a known fermentation aid may be added.
次いで、有機物をプレンダ 1 1から取りだし、二次発酵'完熟(ミネラル液添 力 工程を行う。この工程では、プレンダから取り出した有機物を、屋根のある 堆肥場内で堆積して発酵させながら、ミネラル液希釈水を更に添加する。有機 物の温度が 65°C〜70°Cに達した時点で、ブルドーザー、ショベルカー等を用 いた攪拌による切り返しをしながら、 7000倍ミネラル液希釈水の補給を行う。 二次発酵■完熟(ミネラル液添加)工程開始から 3週間程度で有機物は完熟 堆肥となる。 Next, the organic matter is taken out from the blender 11 and subjected to secondary fermentation and “ripening” (a mineral liquid addition step. In this step, the organic matter taken out of the blender is deposited in a compost plant with a roof and fermented while the mineral liquid is fermented. When the temperature of the organic material reaches 65 ° C to 70 ° C, replenish the 7000-fold diluted mineral water while turning it over using a bulldozer, excavator, etc. . Secondary fermentation-About 3 weeks after the start of the ripeness (addition of mineral liquid) process, the organic matter becomes ripe compost.
その後、完熟した有機物堆肥に、攪拌しながらミネラル液希釈水を添加する 堆肥化後ミネラル添加工程を行う。  Thereafter, a mineral liquid dilution water is added to the ripe organic compost while stirring, and a post-composting mineral addition step is performed.
以上で、本実施形態で用いるフェリハイドライト腐植複合体を完成する。この フェリハイドライト腐植複合体中のフェリハイドライト量は 5P PMとする。また、 このフェリハイドライト腐植複合体の CEC (陽イオン交換容量)は約 80 (meq) (肥料分析法の酢酸アンモニゥム法による測定)である。  Thus, the ferrihydrite humus complex used in the present embodiment is completed. The amount of ferrihydrite in this ferrihydrite humus complex is 5 ppm. The CEC (cation exchange capacity) of this ferrihydrite humus complex is about 80 (meq) (measured by ammonium acetate method in fertilizer analysis).
なお、本実施形態では、上記方法により製造されたフェリハイドライト腐植複 合体を用いるが、これに限定されず、他の方法により製造されたもの、または 天然のフェリハイドライト腐植複合体を用いてもよい。  In the present embodiment, the ferrihydrite humus complex produced by the above method is used, but the present invention is not limited to this, and a ferrihydrite humus complex produced by another method or a natural ferrihydrite humus complex may be used. Is also good.
なお、このフェリハイドライト腐植複合体の汚染改善効果は、陽イオン交換容 量(CEC)にて特定する。陽イオン交換容量とは、土壌が陽イオンを吸着でき る最大量(陰荷電の総量)をいい、塩基置換容量ともいわれている。本実施形 態で用いるフェリハイドライト腐植複合体としては、陽イオン交換容量が 30 (m eq)以上、好ましくは 50 (meq)以上のものを用いるとよい。  The effect of improving the contamination of the ferrihydrite humus complex is specified by the cation exchange capacity (CEC). Cation exchange capacity refers to the maximum amount of soil capable of adsorbing cations (total amount of negative charge), and is also called base substitution capacity. The ferrihydrite humus complex used in the present embodiment may have a cation exchange capacity of 30 (meq) or more, preferably 50 (meq) or more.
次に、本実施形態に係る土壌の浄化方法について説明する。  Next, a soil purification method according to the present embodiment will be described.
予め、土壌 1のうち問題となっている汚染土壌 2の付近の場所に、公知のト ラック自動車を用いてフェリハイドライト腐植複合体(以下、腐植複合体と称す る。) 3を積んでおく。  A ferrihydrite humus complex (hereinafter, referred to as a humus complex) 3 is previously loaded on a soil 1 in the vicinity of the contaminated soil 2 in question using a known truck vehicle. .
次いで、図 1 (B)のように、構内の汚染土壌 2近くの土壌 4の上に、腐植複合 体を、略円盤状または略板状となるように載置して腐植複合体最下層 5を形 成する腐植複合体最下層配置工程 2 1を行う。この工程は、公知のブルドー ザで腐植複合体を移動させることにより行う。  Next, as shown in FIG. 1 (B), the humus complex is placed on the soil 4 near the contaminated soil 2 on the premises so as to be substantially disc-shaped or substantially plate-shaped, and the lowermost layer 5 of the humus complex is formed. Step 21 for arranging the lowermost layer of the humus complex is performed. This step is performed by moving the humus complex with a known bulldozer.
なお、本実施形態では、土壌 4の上に、まず腐植複合体を載置している。土 壌 4の上に、腐植複合体よりも先に汚染土壌 2を載置すると、汚染土壌 2に含 まれる重金属や有害有機化合物が、土壌 4に移行する恐れがあるからであ る。 In the present embodiment, the humus complex is first placed on the soil 4. If contaminated soil 2 is placed on soil 4 before the humus complex, Heavy metals and harmful organic compounds may migrate to the soil 4.
次いで、図 1 ( B)のように、腐植複合体最下層 4の上に、汚染土壌 2を略円 盤状または略板状となるように載置して汚染土壌第一層 6を形成する汚染土 壌第一層配置工程を行う。この工程は、公知のブルドーザで汚染土壌 2を移 動させることにより行う。  Next, as shown in FIG. 1 (B), the contaminated soil 2 is placed on the lowermost layer 4 of the humus complex so as to be substantially disc-shaped or substantially plate-shaped to form the first contaminated soil layer 6. Conduct the first layer of contaminated soil. This step is performed by moving the contaminated soil 2 with a known bulldozer.
その後、腐植'土壌積層工程 22を行う。この工程では、まず、腐植複合体を, 汚染土壌第一層 6の上に略円盤状または略板状となるように載置して腐植複 合体第二層 7を形成する腐植複合体第二層配置工程と、腐植複合体第二層 7の上に、汚染土壌 2を略円盤状または略板状となるように載置して汚染土壌 第二層 8を形成する汚染土壌第二層配置工程を行う。  Then, the humus' soil stacking step 22 is performed. In this step, first, the humus complex is placed on the contaminated soil first layer 6 so as to be substantially disc-shaped or substantially plate-shaped to form the humus complex second layer 7. Layer arranging step and arranging the contaminated soil 2 on the second layer 7 of the humus complex in a substantially disk or plate shape to form the second layer 8 of the contaminated soil. Perform the process.
さらに、この腐植複合体第二層配置工程と同様の手順で、汚染土壌第二層 8の上に腐植複合体第三層 9を形成する腐植複合体第三層配置工程と、汚 染土壌第二層配置工程と同様の手順で、腐植複合体第三層 9の上に汚染土 壌第三層 1 0を形成する汚染土壌第三層配置工程を行う。  Further, in the same procedure as the humus complex second layer disposing step, the humus complex third layer disposing step of forming the humus complex third layer 9 on the contaminated soil second layer 8 is performed. In the same procedure as the two-layer arrangement step, a contaminated soil third layer arrangement step of forming the contaminated soil third layer 10 on the humus complex third layer 9 is performed.
以上のようにして、図 1 (C)に示す腐植'土壌積層体 1 1が完成する。上記汚 染土壌第一層配置工程から汚染土壌第三層配置工程が、請求項 2の腐植土壌積層工程 22を構成する。  As described above, the humus' soil laminate 11 shown in FIG. 1 (C) is completed. The contaminated soil first layer disposing step to the contaminated soil third layer disposing step constitute the humus soil laminating step 22 of claim 2.
このように、腐植複合体最下層配置工程 2 1と腐植 '土壌積層工程 22とを 行って、腐植複合体層 5、 7、 9と汚染土壌層 6、 8、 1 0とを交互に形成するこ とにより、後工程である腐植 '土壌攪拌工程 23で、腐植複合体と汚染土壌と を、容易にまんべんなく混合させることが可能となる。  In this way, the humus complex bottom layer arrangement step 21 and the humus' soil layering step 22 are performed to alternately form the humus complex layers 5, 7, 9 and the contaminated soil layers 6, 8, 10 This makes it possible to easily and evenly mix the humus complex and the contaminated soil in the humus / soil stirring step 23 which is the subsequent step.
処理する汚染土壌の量によって異なるが、各腐植複合体配置工程では、腐 植-土壌積層体 1 1全体の高さを 2〜3m程度とすると、作業効率の点から好 適である。  Although it depends on the amount of contaminated soil to be treated, it is preferable in terms of work efficiency that the total height of the humus-soil stack 11 be about 2 to 3 m in each humus complex arranging step.
次いで、図 1 (C)の腐植-土壌積層体 1 1を、公知のブルドーザを用いて攪拌 混合し、腐植_土壌混合物 1 2を得る腐植'土壌攪拌工程 23を行う。 Next, the humus-soil laminate 11 of FIG. 1 (C) was stirred using a known bulldozer. The humus-soil agitation step 23 is performed to obtain a humus-soil mixture 12 by mixing.
腐植 '土壌攪拌工程 23は、フェリハイドライト表面の OH基と重金属カチオン とをよく接触させ、フェリハイドライト表面にまんべんなく重金属を吸着させる為 に行う。  The humus' soil stirring step 23 is carried out in order to bring the OH groups on the ferrihydrite surface into good contact with the heavy metal cations, and to adsorb the heavy metal evenly on the ferrihydrite surface.
この腐植 '土壌攪拌工程 23で、腐植複合体に含まれるフェリハイドライトに、 重金属および有機物を吸着させることとなる。この場合の吸着は、紙のフィル ターに重金属が付着する機構と類似した機構により進行する。  In the humus soil agitation step 23, heavy metals and organic substances are adsorbed to ferrihydrite contained in the humus complex. The adsorption in this case proceeds by a mechanism similar to the mechanism by which heavy metals adhere to the paper filter.
腐植 '土壌攪拌工程 23では、充分に攪拌する。酸素を充分に供給して、土 壌中又は複合体中の微生物の活性を促すためである。また、紫外線を腐植- 土壌混合物 1 2中に充分に取り込んで、フ: Lリハイドライ卜の有機化合物分解 反応の触媒能を活性化させるためである。  Humus' Soil agitation step 23, agitate well. The purpose is to supply sufficient oxygen to promote the activity of microorganisms in the soil or the complex. In addition, ultraviolet rays are sufficiently taken into the humus-soil mixture 12 to activate the catalytic ability of the organic compound decomposition reaction of the hull-L rehydrate.
その後、腐植'土壌混合物 1 2を、図 1 (D)に示すように、土壌 4とは異なる場 所に移動する移動工程 24を行し、、次の汚染土壌浄化処理に備える。  Thereafter, as shown in FIG. 1 (D), the humus' soil mixture 12 is moved to a location different from that of the soil 4 to carry out a transfer step 24 to prepare for the next contaminated soil purification treatment.
その後、腐植 '土壌攪拌工程 23で得た腐植 '土壌混合物 1 2を、上記汚染 土壌 2の代わりに用い、新たな腐植複合体 3を用いて、上記腐植複合体最下 層配置工程から上記移動工程までの工程と同様の手順を行う。  Then, using the humus 'humus' soil mixture obtained in the soil agitation step 23 in place of the contaminated soil 2 and the new humus complex 3 using the new humus complex 3, the above-mentioned migration from the humus complex bottom layer arrangement step was performed. The same procedure as the steps up to the step is performed.
具体的には、構内の土壌の上に、腐植複合体を載置する腐植複合体最下 層 5再配置工程 25を行う。  Specifically, a humus complex lowermost layer 5 rearrangement step 25 for placing the humus complex on the soil in the premises is performed.
その後、この再配置工程 25で得た腐植複合体最下層 5の上に、攪拌工程 で形成された腐植'土壌混合物 1 2と、腐植複合体とを交互に載置して腐植- 混合物積層体 1 1を形成する腐植'混合物積層工程 26を行う。  Thereafter, the humus-soil mixture 12 formed in the stirring step and the humus complex are alternately placed on the lowermost layer 5 of the humus complex obtained in the rearrangement step 25, and the humus-mixture laminate is placed. 11. Perform humus' mixture lamination step 26 to form 1.
次いで、腐植'混合物積層工程 26で得た腐植'混合物積層体 1 1を攪拌し て腐植-混合物の混合物 1 2を得る腐植-混合物攪拌工程 27と、この腐植'混 合物の混合物 1 2を移動する移動工程 28を行う。  Next, a humus-mixture stirring step 27 of stirring the humus-mixture laminate 11 obtained in the humus-mixture stacking step 26 to obtain a humus-mixture mixture 12, and a humus-mixture mixture 12 The moving step 28 for moving is performed.
この後、腐植複合体最下層再配置工程、腐植'混合物積層工程、腐植-混 合物攪拌工程、移動工程を、所定回、例えば 2〜4回程度順次繰り返し行う 繰り返し工程 29を行う。なお、この所定回には、 2回以上の複数回のほか、 1 回も含まれるものとする。 Thereafter, the lowermost layer of the humus complex, the humus' mixture laminating step, the humus-mixture stirring step, and the moving step are sequentially repeated a predetermined number of times, for example, about 2 to 4 times. Step 29 is repeated. It should be noted that the predetermined number of times includes a plurality of times of two or more times and one time.
その後、原子吸光光度法により土壌の浄化処理を完了した浄化処理済土 壌の重金属量の定量を行う。また、ガラス電極法により、 pHを測定する。  After that, the amount of heavy metals in the purified soil after soil purification is determined by atomic absorption spectrometry. The pH is measured by the glass electrode method.
重金属が不活性化し、中和され、または弱酸性となったことを確認した後、 浄化処理済土壌を、もとの汚染土壌 2の場所に戻す戻し工程 30を行い、土壌 の浄化を完了する。  After confirming that the heavy metals have been deactivated, neutralized, or become weakly acidic, return the purified soil to the location of the original contaminated soil 2 and perform the return process 30 to complete the soil purification .
その後、必要がある場合には、新たな汚染土壌 2について、図 2に示す工程 【こより、土壌の浄化処理を行う。  After that, if necessary, the newly contaminated soil 2 is subjected to the soil purification process shown in FIG.
なお、本実施形態では、図 2に示す請求項 3に係る方法により土壌の浄化を 行っているが、図 2の腐植複合体最下層配置工程 21から移動工程 24のみ 行い、請求項 2に係る土壌の浄化方法としてもよい。  In the present embodiment, the soil is purified by the method according to claim 3 shown in FIG. 2, but only the moving step 24 from the bottom layer arrangement step 21 of the humus complex in FIG. It may be a soil purification method.
本実施形態で使用するフ Iリハイドライト腐植複合体の量は、処理する汚染 土壌の量、質によっても異なるが、一般的には、汚染土壌 1 tに対し、フエリハ イドライト腐植複合体の量が 0. 2 - 0. 5t、好ましくは 0. 4t程度となるようにす るとよい。汚染土壌 I tに対するフェリハイドライト腐植複合体量を 0. 5t以下と したのは、 0. 5tより多くなると、後の戻し工程 30で、元の場所に収まらない混 合物の量が多くなリ過ぎるからである。  The amount of the ferrihydrite humus complex used in the present embodiment varies depending on the quantity and quality of the contaminated soil to be treated. Should be set to 0.2 to 0.5 t, preferably about 0.4 t. The reason why the amount of the ferrihydrite humus complex with respect to the contaminated soil It was set to 0.5 t or less is that if the amount exceeds 0.5 t, the amount of the mixture that cannot be accommodated in the original place in the subsequent return step 30 increases. Because it is too much.
したがって、例えば、図 2の腐植複合体最下層配置工程 2 1から移動工程 2 4のみ行う場合には、すでに述べたように、積層体 1 1全体の高さが 2〜3mで あるので、腐植複合体層 5、 7、 9は、 20〜30cm程度の厚さ、汚染土壌層 6、 8、 1 0は、 50〜80cm程度の厚さとなる。  Therefore, for example, when only the lowermost layer arrangement step 21 of FIG. 2 and the movement step 24 are performed, as described above, the total height of the laminate 11 is 2 to 3 m. The composite layers 5, 7, and 9 have a thickness of about 20 to 30 cm, and the contaminated soil layers 6, 8, and 10 have a thickness of about 50 to 80 cm.
また、一般的には、汚染土壌 I tに対し、フェリハイドライト量力《1〜5g程度と なるように、フェリハイドライト腐植複合体を混合するとよい。  In general, the ferrihydrite humus complex is preferably mixed with the contaminated soil It so that the ferrihydrite capacity is about 1 to 5 g.
なお、腐植複合体最下層再配置工程 25、腐植,混合物積層工程 2 6、腐 植-混合物攪拌工程 27を行う代わりに、図 3に示す請求項 4に係る浄化方法 のように、混合物最下層配置工程 35、混合物 ·土壌積層工程 36、混合物- 土壌攪拌工程 37を行ってもよい。この請求項 4に係る浄化方法は、腐植-土 壌攪拌工程 23で得た腐植 '土壌混合物 1 2を腐植複合体 3の代わりに用い、 新たな汚染土壌 2を用いて、上記腐植複合体最下層配置工程 21から上記移 動工程 24までの工程と同様の手順を行うものである。 Instead of performing the humus complex bottom layer rearrangement step 25, the humus / mixture laminating step 26, and the humus / mixture stirring step 27, the purification method according to claim 4 shown in FIG. As described above, a mixture bottom layer arrangement step 35, a mixture / soil layering step 36, and a mixture-soil stirring step 37 may be performed. The humus-soil mixture 12 obtained in the humus-soil stirring step 23 is used in place of the humus complex 3, and the new humus complex The same procedure as the steps from the lower layer arrangement step 21 to the moving step 24 is performed.
具体的には、構内の汚染土壌 2近くの土壌の上に、攪拌工程 23で形成され た腐植 '土壌混合物を載置する混合物最下層配置工程 35を行う。  Specifically, a mixture bottom layer arrangement step 35 of placing the humus'soil mixture formed in the stirring step 23 on soil near the contaminated soil 2 in the premises is performed.
その後、この配置工程 35で得た混合物最下層の上に、汚染土壌 2と、攪拌 工程 23で形成された腐植 '土壌混合物とを交互に載置して混合物-土壌積層 体を形成する混合物 ·土壌積層工程 36を行う。  Thereafter, on the lowermost layer of the mixture obtained in the disposing step 35, the contaminated soil 2 and the humus-soil mixture formed in the stirring step 23 are alternately placed, and a mixture forming a mixture-soil laminate is obtained. Perform soil layering process 36.
次いで、混合物 '土壌積層工程 36で得た混合物 ·土壌積層体を攪拌して混 合物-土壌の混合物を得る混合物'土壌攪拌工程 37と、この混合物-土壌の 混合物を移動する移動工程 38を行う。  Next, the mixture 'the mixture obtained in the soil layering step · the mixture obtained by agitating the soil layered body to obtain a mixture-soil mixture 混合 the soil stirring step 移動 37 and the moving step 38for moving this mixture-soil mixture をDo.
この後、混合物最下層配置工程 35、混合物"土壌積層工程 36、混合物- 土壌攪拌工程 37、移動工程 38を、所定回、例えば 2 ~ 4回程度順次繰り返 し行う繰り返し工程 39を行う。なお、この所定回には、 2回以上の複数回のほ か、 1回も含まれるものとする。  Thereafter, a repetition step 39 is performed in which the mixture lowermost layer arrangement step 35, the mixture “soil stacking step 36, the mixture-soil stirring step 37, and the movement step 38 are sequentially repeated a predetermined number of times, for example, about 2 to 4 times. The predetermined times include two or more times and one time.
その後、重金属の定量、 pHの測定を行い、重金属が不活性化し、中和され、 または弱酸性となったことを確認した後、浄化処理済土壌を、もとの汚染土壌 2の場所に戻し、土壌の浄化を完了する。  After that, quantitative determination of heavy metals and measurement of pH were performed, and after confirming that heavy metals were inactivated, neutralized, or weakly acidic, the purified soil was returned to the original location of contaminated soil 2. Complete the soil purification.
なお、図 3に示す浄化方法では、移動工程 24の後で混合物最下層配置ェ 程を行っているが、戻し工程 30の後で混合物最下層配置工程を行ってもよ い。  In the purification method shown in FIG. 3, the lowermost layer of the mixture is placed after the transfer step 24, but the lowermost layer of the mixture may be placed after the return step 30.
なお、腐植-土壌積層工程 22では、 pH5以上に調整した前記したミネラル液 希釈水を、汚染土壌 6、 8、 1 0または腐植-土壌の混合物 1 2に散布して行つ てもよし、。腐植-土壌攪拌工程 23では、ミネラル液希釈水を散布しながら攪拌 してもよい。ミネラル液希釈水の散布は、散布する汚染土壌 6、 8、 1 0または 腐植 '土壌の混合物 1 2の pHを 5以上に維持した状態で行う。これにより、ミネ ラル液希釈水と、汚染土壌 6、 8、 1 0または腐植-土壌の混合物 1 2に含まれ る有機物とを原料とした新たなフェリハイドライトを形成させることが可能となる。 また、腐植'混合物積層工程 26、混合物'土壌積層工程 36、腐植'混合物攪 拌工程 27、混合物'土壌攪拌工程 37、繰り返し工程 29、 39でも、土壌等の pHを 5以上として、同様にミネラル液希釈水を散布してもよい。 In the humus-soil stacking step 22, the above-mentioned mineral solution dilution water adjusted to pH 5 or more may be sprayed onto the contaminated soil 6, 8, 10 or the humus-soil mixture 12 to carry out. Humus-soil agitation step 23 May be. The mineral water dilution is applied while maintaining the pH of the contaminated soil 6, 8, 10 or humus' soil mixture 12 at 5 or higher. This makes it possible to form a new ferrihydrite using the mineral liquid dilution water and the organic matter contained in the contaminated soil 6, 8, 10 or the humus-soil mixture 12 as raw materials. Also, in the humus 'mixture laminating step 26, the mixture' soil laminating step 36, the humus 'mixture stirring step 27, the mixture' soil mixing step 37, and the repetition steps 29 and 39, the pH of the soil etc. was set to 5 or more, and the mineral Liquid dilution water may be sprayed.
また、腐植複合体最下層配置工程 21の前に、腐植'土壌積層体 1 1を配置 する土壌 2に、予め pH5以上に調整した前記したミネラル液希釈水を、散布し ておいてもよい。このようにすれば、腐植複合体最下層 5よりも下に、第一層と して汚染土壌を載置することも可能となる。  Further, before the humus complex lowermost layer arranging step 21, the above-mentioned mineral liquid dilution water adjusted to pH 5 or more in advance may be sprayed on the soil 2 on which the humus' soil laminate 11 is arranged. This makes it possible to place contaminated soil as the first layer below the bottom layer 5 of the humus complex.
また、すべての工程の前に、予め汚染土壌 2にミネラル液希釈水を散布して おいてもよいし、汚染土壌 2を掘削しながらミネラル液希釈水を散布してもよ い。  Further, before all the steps, the diluted mineral water may be sprayed on the contaminated soil 2 in advance, or the diluted mineral water may be sprayed while excavating the contaminated soil 2.
本実施形態の土壌の浄化方法では、土壌回復資材としてフェリハイドライト 腐植複合体を用いているため、土壌回復資材に含まれるフェリハイドライト特 有の性質により、効率よく土壌の浄化を行うことが可能となる。  In the soil purification method of the present embodiment, since the ferrihydrite humus complex is used as the soil restoration material, the soil can be efficiently purified by the ferrihydrite-specific properties contained in the soil restoration material. It becomes possible.
フェリハイドライ卜は、表面で変異荷電特性をもつ一 OH基が、プラスのイオン を持つ重金属を吸着、キレート結合し、固定、不活性化させる性質を有するた め、重金属を含む土壌の浄化を行うことが可能となる。さらに、フェリノヽイドライ 卜は比表面積が 1 80〜200m2Zgと大き 重金属を吸着できる面積が広い ため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより、 効率よく重金属土壌の浄化を行うことが可能となるのである。 Ferrihydrite has the property that its mono-OH group, which has mutated charge properties on its surface, adsorbs, chelate-bonds, fixes and inactivates heavy metals with positive ions, so it purifies soils containing heavy metals. It is possible to do. Furthermore, ferrihydrite has a specific surface area of 180 to 200 m2 Zg, which is a large area capable of adsorbing heavy metals.Thus, by using a ferrihydrite humus complex containing ferrihydrite, it is possible to efficiently purify heavy metal soil. It is possible to do it.
また、フェリハイドライ卜は、負電荷を持つ有機化合物の官能基とキレート結 合して凝集する性質、鉄水和酸化物の有機化合物の分解を触媒する性質を 有するため、有機化合物の吸着分解、不活性化により、有機化合物を含む土 壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積力 1 8 0〜200m2Zgと大き 有機化合物を吸着分解、不活性化できる面積が広 いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることによ リ、効率よく有機物土壌の浄化を行うことが可能となるのである。 In addition, ferrihydrite has a property of chelating and aggregating with a functional group of a negatively charged organic compound and a property of catalyzing the decomposition of an organic compound of iron hydrated oxide, so that the adsorption and decomposition of the organic compound can be prevented. , Soil containing organic compounds by inactivation It is possible to purify the soil. Furthermore, ferrihydrite adsorptive decomposition specific surface force 1 8 0~200m 2 Z g and sizes organic compound, the area that can be inactivated fried wide, to the use of ferrihydrite humus complex comprising a ferrihydrite This makes it possible to efficiently purify organic soil.
(実施例 1 ) (Example 1)
以下、図 2に示す土壌の浄化方法により、汚染土壌を浄化した実施例につ いて説明する。  Hereinafter, an embodiment in which contaminated soil is purified by the soil purification method shown in FIG. 2 will be described.
本例では、廃棄物処理場に隣接した土地の汚染土壌の浄化を行った。重金 属であるカドミウム(Cd )を 280ppm、銅(Cu )を 350ppm含む汚染土壌 I tを 汚染土壌として用いた。  In this example, the contaminated soil on the land adjacent to the waste disposal site was purified. Contaminated soil It containing 280 ppm of heavy metal cadmium (Cd) and 350 ppm of copper (Cu) was used as the contaminated soil.
本例の浄化方法の手順について説明する。  The procedure of the purification method of this example will be described.
汚染土壌近くの土壌の上に、ブルドーザで、腐植複合体を、高さ 1 Ocmにな るように平らに載置し、その上に、汚染土壌を高さ 50cmになるように載置した。 その後、この汚染土壌の上に、腐植複合体と、汚染土壌とを、複合体層の高 さ力《1 0cm、汚染土壌層の高さが 50cmになるように順次積層し、腐植'土壌 積層体 1 1を形成した。全体として、腐植複合体層が 3層、汚染土壌層が 3層 で、合計 6層、腐植複合体が全体で 0. 2t、汚染土壌が全体で 1 tになるように した。  The humus complex was placed flat on a soil near the contaminated soil with a bulldozer to a height of 1 Ocm, and the contaminated soil was mounted on the soil to a height of 50 cm. After that, the humus complex and the contaminated soil are sequentially laminated on the contaminated soil so that the height of the composite layer is less than 10 cm and the height of the contaminated soil layer is 50 cm. Body 11 formed. As a whole, three layers of humus complex and three layers of contaminated soil were used, for a total of six layers. The total humic complex was 0.2 t and the total amount of contaminated soil was 1 t.
その後、この腐植'土壌積層体 1 1を、ブルドーザを用いてその場で攪拌し、 1 . 2tの腐植-土壌混合物 1 2を得た。  Thereafter, the humus' soil laminate 11 was stirred in place using a bulldozer to obtain 1.2 t of a humus-soil mixture 12.
この腐植'土壌混合物 1 2を、数 m移動させ、次の土壌浄化処理に備えた。 次いで、再度、ブルドーザで、腐植複合体を、高さ 1 Ocmになるように平らに 載置した。その上に、腐植-土壌混合物 1 2の一部を高さ 60cmになるように載 置した。その後、この腐植 '土壌混合物の上に、腐植複合体と、腐植-土壌混 合物とを、腐植複合体層の高さが 1 0cm、腐植 '土壌混合物層の高さが 60c mになるように順次積層し、腐植'混合物積層体 11 'を、合計 6層となるように 形成した。このとき用いた腐植 '土壌混合物 12は 1. 2t、腐植複合体は 0. 2t とした。 The humus' soil mixture 12 was moved several meters to prepare for the next soil purification treatment. The humus complex was then laid flat again on a bulldozer to a height of 1 Ocm. A portion of the humus-soil mixture 12 was placed on it to a height of 60 cm. The humus complex and the humus-soil mixture are then placed on top of this humus 'soil mixture, with a humus complex layer height of 10 cm and a humus' soil mixture layer height of 60 cm. The humus 'mixture laminate 11' was formed so as to have a total of six layers. The humus' soil mixture 12 used here was 1.2 t and the humus complex was 0.2 t.
その後、この腐植 '土壌積層体 11を、ブルドーザを用いてその場で攪拌し、 1. 4tの腐植'土壌混合物 12'を得て、土壌の浄化を完了した。  Thereafter, the humus' soil laminate 11 was stirred in place using a bulldozer to obtain 1.4 tons of the humus' soil mixture 12 ', and the soil purification was completed.
この土壌の浄化処理を行った腐植-土壌混合物 12'の重金属量を測定した ところ、カドミウムは 1 Oppm、銅は 8ppmになっていた。  When the amount of heavy metals in the humus-soil mixture 12 'that had been subjected to this soil purification treatment was measured, cadmium was 1 Oppm and copper was 8 ppm.
この測定結果より、土壌中の重金属量が目標値以下になっていたと判断し、 1. 4tの腐植 '土壌混合物 12'のうち 1tを、元の汚染土壌があった場所に戻し た。  Based on the measurement results, it was judged that the amount of heavy metals in the soil was below the target value, and 1 t of 1.4 t of humus 'soil mixture 12' was returned to the place where the original contaminated soil was.
以上で、土壌の浄化処理を終了した。  Thus, the soil purification process has been completed.
このように、本例の土壌の浄化方法によれば、土壌中の重金属量が減少し、 重金属が不活性されることが分かった。  Thus, according to the soil purification method of the present example, it was found that the amount of heavy metals in the soil was reduced and heavy metals were inactivated.
なお、腐植 '土壌混合物 12'のうち残り 0. 4tは、他の汚染土壌の浄化処理 に用いた。  The remaining 0.4 t of the humus 'Soil mixture 12' was used for purification of other contaminated soil.
また、廃棄物処理場に隣接した他の土地の汚染土壌の浄化を行った。重金 属である鉛(Pb)を 0. 1〜0. 2ppm含む汚染土壌 Itを汚染土壌として用い、 実施例 1と同様の手順を行ったところ、浄化処理後の腐植'土壌混合物 12' の鉛量を測定したところ、 0. 014-0. 020ppmになっていた。  In addition, purification of contaminated soil on other land adjacent to the waste disposal site was conducted. Contaminated soil containing 0.1 to 0.2 ppm of lead (Pb), a heavy metal, was used as the contaminated soil. The same procedure as in Example 1 was performed. When the amount was measured, it was 0.014-0.020 ppm.
このように、本例の土壌の浄化方法によれば、土壌中の重金属量が減少し、 重金属が不活性されることが分かった。 産業上の利用性  Thus, according to the soil purification method of the present example, it was found that the amount of heavy metals in the soil was reduced and heavy metals were inactivated. Industrial applicability
以上のように本発明によれば、土壌回復資材としてフェリハイドライト腐植複 合体を用いているため、土壌回復資材に含まれるフェリハイドライト特有の性 質により、効率よく土壌の浄化を行うことが可能となる。 フェリハイドライトは、表面で変異荷電特性をもつ一 OH基が、プラスのイオン を持つ重金属を吸着、キレー卜結合し、固定、不活性化させる性質を有するた め、重金属を含む土壌の浄化を行うことが可能となる。さらに、フェリハイドライ 卜は比表面積が 1 80〜200m2Zgと大きく、重金属を吸着できる面積が広い ため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることにより, 効率よく重金属土壌の浄化を行うことが可能となるのである。 As described above, according to the present invention, since the ferrihydrite humus complex is used as the soil restoration material, it is possible to efficiently purify the soil due to the unique properties of ferrihydrite contained in the soil restoration material. It becomes possible. Ferrihydrite has the property that its mono-OH group, which has mutated charge properties on its surface, adsorbs, chelates, fixes, and inactivates heavy metals with positive ions, thus purifying soil containing heavy metals. It is possible to do. Furthermore, ferrihydrite has a large specific surface area of 180-200 m 2 Zg and a large area capable of adsorbing heavy metals. Therefore, the use of ferrihydrite-containing humus complex containing ferrihydrite enables efficient purification of heavy metal soil. It is possible to do.
また、フェリハイドライトは、負電荷を持つ有機化合物の官能基とキレート結 合して凝集する性質、鉄水和酸化物の有機化合物の分解を触媒する性質を 有するため、有機化合物の吸着分解、不活性化により、有機化合物を含む土 壌の浄化を行うことが可能となる。さらに、フェリハイドライトは比表面積力《1 8 0〜200m2Zgと大き 有機化合物を吸着分解、不活性化できる面積が広 いため、フェリハイドライトを含むフェリハイドライト腐植複合体を用いることによ り、効率よく有機物土壌の浄化を行うことが可能となるのである。 In addition, ferrihydrite has the property of chelating and aggregating with the functional group of an organic compound having a negative charge, and the property of catalyzing the decomposition of an organic compound of iron hydrated oxide. Inactivation makes it possible to purify soil containing organic compounds. Furthermore, ferrihydrite adsorptive decomposition specific surface force "1 8 0~200m 2 Zg and size organic compounds, the area that can be inactivated fried wide, to the use of ferrihydrite humus complex comprising a ferrihydrite This makes it possible to efficiently purify organic soil.

Claims

請求の範囲 The scope of the claims
1 . 汚染土壌近くの土壌の上に、フヱリハイドライト腐植複合体と前記汚染土 壌とを交互に載置して腐植-土壌積層体を形成する腐植-土壌積層工程と、 前記腐植'土壌積層体を攪拌して腐植-土壌混合物を得る腐植 '土壌攪拌 工程と、を行うことを特徴とする汚染土壌の浄化方法。  1. A humus-soil stacking step of forming a humus-soil stack by alternately placing a polyhydrite humus complex and the contaminated soil on soil near the contaminated soil; A method for purifying contaminated soil, comprising performing a humus-soil stirring step of stirring a soil stack to obtain a humus-soil mixture.
2. 汚染土壌近くの土壌の上に、フェリハイドライト腐植複合体を載置する腐 植複合体最下層配置工程と、  2. A humus complex bottom layer laying step of placing the ferrihydrite humus complex on soil near the contaminated soil;
前記腐植複合体最下層の上に、前記汚染土壌と、前記フェリハイドライト腐 植複合体とを交互に載置して腐植'土壌積層体を形成する腐植-土壌積層ェ 程と、  A humus-soil stacking step of alternately placing the contaminated soil and the ferrihydrite humus complex on the bottom of the humus complex to form a humus' soil stack;
前記腐植 '土壌積層体を攪拌して腐植'土壌混合物を得る腐植'土壌攪拌 工程と、を行うことを特徴とする汚染土壌の浄化方法。  A method for purifying contaminated soil, comprising the steps of: performing the humus' humus' soil stirring to obtain a humus' soil mixture by stirring the soil laminate.
3. 前記攪拌工程の後で、  3. After the stirring step,
土壌の上に、フェリハイドライト腐植複合体を載置する腐植複合体最下層再 配置工程と、  A step of rearranging the bottom layer of the humus complex in which the ferrihydrite humus complex is placed on the soil;
該再配置工程で得た腐植複合体最下層の上に、前記攪拌工程で形成され た腐植-土壌混合物と、前記フェリハイドライト腐植複合体とを交互に載置して 腐植-混合物積層体を形成する腐植-混合物積層工程と、  On the lowermost layer of the humus complex obtained in the rearrangement step, the humus-soil mixture formed in the stirring step and the ferrihydrite humus complex are alternately placed to form a humus-mixture laminate. Forming a humus-mixture laminating step;
該腐植 '混合物積層工程で得た腐植-混合物積層体を攪拌して腐植'混合 物の混合物を得る腐植 '混合物攪拌工程と、を所定回順次繰り返して行うこと を特徴とする請求項 2記載の汚染土壌の浄化方法。  3. The humus-mixture stirring step of stirring the humus-mixture laminate obtained in the humus-mixture stacking step to obtain a mixture of the humus-mixture, which is sequentially and repeatedly performed a predetermined number of times. How to clean contaminated soil.
4. 前記攪拌工程の後で、  4. After the stirring step,
汚染土壌近くの土壌の上に、前記攪拌工程で形成された腐植'土壌混合物 を載置する混合物最下層配置工程と、  Placing the humus' soil mixture formed in the stirring step on the soil near the contaminated soil;
該配置工程で得た腐植_土壌混合物最下層の上に、前記汚染土壌と、前記 攪拌工程で形成された腐植'土壌混合物とを交互に載置して混合物-土壌積 層体を形成する混合物-土壌積層工程と、 The contaminated soil and the humus' soil mixture formed in the stirring step are alternately placed on the lowermost layer of the humus-soil mixture obtained in the disposing step, and the mixture-soil volume is placed. A layer-forming mixture-soil stacking process;
該混合物'土壌積層工程で得た混合物-土壌積層体を攪拌して混合物-土 壌の混合物を得る混合物'土壌攪拌工程と、を所定回繰り返して行うことを特 徴とする請求項 2記載の汚染土壌の浄化方法。  The mixture according to claim 2, characterized in that the step of `` mixing the mixture obtained in the soil layering step and the step of mixing the soil layered body to obtain a mixture of mixture and soil '' and the step of `` soil stirring '' are repeated a predetermined number of times. How to clean contaminated soil.
PCT/JP2002/002948 2001-03-28 2002-03-27 Method of purifying contaminated soil WO2002078871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002577125A JP4238036B2 (en) 2001-03-28 2002-03-27 Purification method for contaminated soil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001094169 2001-03-28
JP2001-94169 2001-03-28

Publications (1)

Publication Number Publication Date
WO2002078871A1 true WO2002078871A1 (en) 2002-10-10

Family

ID=18948409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002948 WO2002078871A1 (en) 2001-03-28 2002-03-27 Method of purifying contaminated soil

Country Status (2)

Country Link
JP (1) JP4238036B2 (en)
WO (1) WO2002078871A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218359A (en) * 2005-02-08 2006-08-24 Kochi Univ Heavy metal remover and removal method for heavy metal
JP2016060553A (en) * 2014-09-12 2016-04-25 株式会社御池鐵工所 Contaminant feeding device and contaminant separating device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000480B (en) * 2016-05-24 2019-07-05 马鞍山中创环保科技有限公司 A kind of soil remediation ion-exchange fibre and preparation method thereof
CN105923963B (en) * 2016-06-16 2019-08-30 中国科学院南京地理与湖泊研究所 The activity covering restorative procedure in situ of persistence organic pollutant in a kind of deposit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561147B2 (en) * 1976-01-16 1981-01-12
JPH06122519A (en) * 1991-05-27 1994-05-06 Toda Kogyo Corp Hydrated amorphous ferric oxide particle powder and its production
JPH08252564A (en) * 1995-03-16 1996-10-01 Ohbayashi Corp Insolubilization treeatment of selenium contaminated soil
JPH10338526A (en) * 1997-06-04 1998-12-22 Yoshida Seibutsu Kenkyusho:Kk Production of pipe-shaped fine particulate iron oxide
JPH11347525A (en) * 1998-06-03 1999-12-21 Motoo Kanke Fermentation method of garbage utilizing kuroboku soil (black porous soil)
JP2000051835A (en) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd Method for cleaning soil by using iron powder
EP1027940A1 (en) * 1997-08-07 2000-08-16 Toyota Jidosha Kabushiki Kaisha Method for purifying contaminated soil
JP2001062289A (en) * 1999-08-27 2001-03-13 Agency Of Ind Science & Technol Adsorbent for removing arsenic and treatment of arsenic ion-containing water to be treated

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561147B2 (en) * 1976-01-16 1981-01-12
JPH06122519A (en) * 1991-05-27 1994-05-06 Toda Kogyo Corp Hydrated amorphous ferric oxide particle powder and its production
JPH08252564A (en) * 1995-03-16 1996-10-01 Ohbayashi Corp Insolubilization treeatment of selenium contaminated soil
JPH10338526A (en) * 1997-06-04 1998-12-22 Yoshida Seibutsu Kenkyusho:Kk Production of pipe-shaped fine particulate iron oxide
EP1027940A1 (en) * 1997-08-07 2000-08-16 Toyota Jidosha Kabushiki Kaisha Method for purifying contaminated soil
JPH11347525A (en) * 1998-06-03 1999-12-21 Motoo Kanke Fermentation method of garbage utilizing kuroboku soil (black porous soil)
JP2000051835A (en) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd Method for cleaning soil by using iron powder
JP2001062289A (en) * 1999-08-27 2001-03-13 Agency Of Ind Science & Technol Adsorbent for removing arsenic and treatment of arsenic ion-containing water to be treated

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHELOBOLINA E.S. ET AL.: "Transformation of iron-containing minerals in kaolin during growth of a mixed bacterial culture derived from kaolin, effect of mineral-organic-microorganism interactions on soil and freshwater environments", 1999, pages 47 - 53, XP002953844 *
STRAUB KRISTINA L. ET AL.: "Rhodoculum iodosum sp.nov. and rhodovulum robiginosum sp.nov., two new marine phototrophic ferrous-ion-oxidizing purple bacteria", INT. J. SYST. BACTERIOLOGY, vol. 49, 1999, pages 729 - 735, XP002953843 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218359A (en) * 2005-02-08 2006-08-24 Kochi Univ Heavy metal remover and removal method for heavy metal
JP2016060553A (en) * 2014-09-12 2016-04-25 株式会社御池鐵工所 Contaminant feeding device and contaminant separating device

Also Published As

Publication number Publication date
JP4238036B2 (en) 2009-03-11
JPWO2002078871A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
Yang et al. Utilization of iron sulfides for wastewater treatment: a critical review
Pan et al. Rates of Cr (VI) generation from Cr x Fe1–x (OH) 3 solids upon reaction with manganese oxide
Blowes et al. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies
Guo et al. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review
CN1899717B (en) Process for united repairing heavy metal polluted soil by electric power and iron permeable reaction lattices
Gottinger et al. Development of an iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water
Zhang et al. Sediment phosphorus immobilization with the addition of calcium/aluminum and lanthanum/calcium/aluminum composite materials under wide ranges of pH and redox conditions
WO2002078871A1 (en) Method of purifying contaminated soil
Ebadian Mercury contaminated material decontamination methods: investigation and assessment
Sheoran Performance of three aquatic plant species in bench-scale acid mine drainage wetland test cells
Houben et al. Leaching and phytoavailability of zinc and cadmium in a contaminated soil treated with zero-valent iron
El Fadel et al. Purification performance of filtration process for leachate in Morocco by marine sands, clays and fly ash
Putra et al. Assessing the Effect of Weak and Strong Acids as Electrolytes in the Removal of Cesium by Soil Electrokinetic Remediation
Petrik et al. Utilization of fly ash for acid mine drainage remediation
Song Mechanisms of lead and zinc removal from lead mine drainage in constructed wetland
Dastgheibi Stormwater treatment using in-ground permeable reactive filter systems: batch test evaluation of media
Monga et al. Biochar, Clay, Zeolites, and Microorganism-based Methods for Remediation of Heavy Metals
Yang et al. “Soil for Soil Remediation” Strategy Driven on Converting Natural Soils into Fe2O3-CAN-Type Zeolite Composites for Dual Ionic Heavy Metal-Contaminated Soil Remediation: Universality, Synergistic Effects, and Mechanism
Kietliñska Engineered wetlands and reactive bed filters for treatment of landfill leachate
Bilal et al. Binder-Based Remediation of Heavy Metal Contaminated Soils: A Review of Solidification/Stabilization Methods
Lounate et al. Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment
US11479489B1 (en) Ground water contamination remediation using a man-made surface water feature
Speer et al. From problem statement to pilot scale: a hybrid passive treatment system for landfill leachate in North Bay, Ontario, Canada
Ibeje et al. Experimental Design for Optimal Removal of PAH from Crude Oil Waste using Aerobic Bioreactor
Calgaro Stabilized materials from contaminated waste recycling: characterization, immobilization, and leaching of contaminants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002577125

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase