WO2002078032A1 - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
WO2002078032A1
WO2002078032A1 PCT/JP2001/002486 JP0102486W WO02078032A1 WO 2002078032 A1 WO2002078032 A1 WO 2002078032A1 JP 0102486 W JP0102486 W JP 0102486W WO 02078032 A1 WO02078032 A1 WO 02078032A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
extinguishing
circuit breaker
flame
movable contact
Prior art date
Application number
PCT/JP2001/002486
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Sugano
Takamitsu Fujimoto
Takao Mitsuhashi
Mitsuru Tsukima
Masahiro Fushimi
Shigeki Koumoto
Yoshio Asou
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2001/002486 priority Critical patent/WO2002078032A1/en
Priority to CN01808805.8A priority patent/CN1255837C/en
Priority to JP2002575975A priority patent/JPWO2002078032A1/en
Priority to EP01915844A priority patent/EP1313121A1/en
Priority to TW090107461A priority patent/TW563151B/en
Publication of WO2002078032A1 publication Critical patent/WO2002078032A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/302Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts

Definitions

  • the present invention relates to a circuit breaker.
  • FIG. 1 and 2 are cross-sectional views of the circuit breaker.
  • FIG. 1 shows an ON state of the circuit breaker
  • FIG. 2 shows an OFF state of the circuit breaker.
  • FIG. 3 is a side view (a) and a plan view (b) showing an enlarged view of an arc extinguishing member of an arc extinguishing device for a circuit breaker.
  • 1 is a movable contact made of a conductor such as copper
  • 2 is a movable contact fixed to one end of the movable contact
  • 3 is a fixed contact that comes into contact with or separates from the movable contact 2
  • 4 is a fixed contact 3 fixed.
  • the fixed contact 5 having a body made of copper or the like is a power-supply-side terminal formed at the other end of the fixed contact 4, and a wiring is connected from an external power supply.
  • Reference numeral 6 denotes a plurality of arc extinguishing devices (grids) made of magnetic metal that is stacked and arranged with a gap therebetween to cool and extinguish an arc generated between the movable contact 2 and the fixed contact 3. 6a, the arc-extinguishing side plate 6b that holds the grid 6a on both sides, and the arc-extinguishing member 6c shown in Fig. 3.
  • the arc-extinguishing member 6c and the arc-extinguishing side plate 6b are made of an insulating material.
  • the arc-extinguishing member 6c is provided between the movable contact 2 and the fixed contact 3, and is provided so as to cover the entire surface of the fixed contact 4 exposed to the arc with the fixed contact 3 exposed.
  • 7 is an opening / closing mechanism for rotating the movable contact 1 to open and close
  • 8 is a handle for manually operating the opening / closing mechanism
  • 9 is a bow I remover
  • 10 is a load terminal. It is.
  • Reference numeral 11 denotes a force par
  • 12 denotes a base.
  • the parts are stored and fixed, and constitute a part of the housing 16.
  • Reference numeral 13 denotes an end plate for isolating the terminal portion 5 from the inside of the housing 16 and having an exhaust port 13a for discharging hot gas by an arc. Inserted and mounted.
  • Reference numeral 14 denotes an arc runner for driving the arc toward the terminal portion 5.
  • FIG. 1 when the handle 8 is operated, the opening / closing mechanism 7 operates, the movable contact 1 rotates, and the movable contact 2 and the fixed contact 3 are separated from each other.
  • the terminal 5 is connected to the power supply, the terminal 10 is connected to the load, and the power is supplied from the power supply to the load by contacting the contacts.
  • the movable contact 2 is pressed against the fixed contact 3 with a specified contact pressure in order to ensure the reliability of energization.
  • the overcurrent flows to the load side, the overcurrent is detected by the trip device 9 and the switching mechanism ⁇ operates to generate an arc 15 between the two contacts 2 and 3 as shown in FIG. I do.
  • the arc-extinguishing plate 6a of the arc-extinguishing device 6 absorbs the heat of the arc 15 and cools and, at the same time, bends the arc 15 to act to separate the contact between the movable contact 2 and the fixed contact 3. .
  • the arc-extinguishing member 6 c prevents the starting point of the arc from the movable contact 2 to the fixed contact 4 (arc stop), and generates a pyrolysis gas when exposed to the high-temperature arc 15. This pyrolysis gas acts as an arc-extinguishing gas that cools and blows out the arc 15.
  • circuit breakers have tended to be more compact as switchboard sizes have shrunk, and the level of flame retardancy required for plastic materials used in circuit breakers has tended to increase. .
  • the globalization of product sales calls for products that comply with the European IEC 6947 standard and the US UL 746 standard.
  • the IEC 60947 standard covers global wire ignition with regard to the flame retardancy of materials that hold energized parts, such as arc extinguishers, which have relatively low ULHB requirements in Japan.
  • GW I 960 ° C or higher
  • hot wire ignition (HW I) is UL 94-V0 HW I index 4 or UL 94-V 2 stipulates HW I index 2 or higher
  • UL 746 standard requires V 0 or higher at UL 94 and the highest level of flame retardancy in each standard Has been done.
  • a flame-retardant resin As a countermeasure, application of a flame-retardant resin to an arc-extinguishing member is considered.
  • a typical example is a halogen-retardant resin filled with a halogen compound such as bromine, which is effective with a small filling amount.
  • Non-halogen flame-retardant resins have been actively developed in recent years, such as flame-retardant resins filled with inorganic flame retardants such as phosphorus compound, silicon resin or aluminum hydroxide, and resins themselves such as polyphenylene sulfide. Aromatic resins having flame retardancy are known.
  • Phosphorus compound-based flame retardants are generally difficult to use, and particularly in systems using red phosphorus, metal corrosion is more severe than in halogen-based systems, and power cannot be applied after repeated interruption due to defective electrode contacts.
  • insulating ceramics such as metal oxides and silicon oxides generated in the plasma field of pyrolysis gas are deposited on electrode contacts. The deposition induces a contact failure that contaminates the electrode surface, making it impossible to energize after repeated interruptions.
  • inorganic flame retardants must be highly filled in order to exhibit flame retardancy.
  • general-purpose inorganic flame retardants aluminum hydroxide and magnesium hydroxide are required for kneading into heat-resistant high-melting thermoplastic resins.
  • the present invention has been made in order to solve the above-mentioned problems, and it has been made difficult to suppress poor electrical conduction due to corrosion and contamination of electrode contacts due to flame retardancy, or to suppress mechanical strength reduction and insulation deterioration.
  • An object of the present invention is to provide a circuit breaker that is excellent in flammability and breaking performance and can be downsized. Disclosure of the invention
  • the present invention provides: a fixed contact having a fixed contact fixed to a conductor; a movable contact having a movable contact fixed to and separated from the fixed contact; an opening and closing mechanism for rotating the movable contact;
  • the arc extinguishing device includes the fixed contact
  • An arc extinguishing member is provided so as to cover the entire surface, and the arc extinguishing member includes an arc extinguishing insulating material formed mainly from a non-halogen flame-retardant resin. Things.
  • the present invention also provides the circuit breaker described above, wherein the arc-extinguishing insulating material molded product contains a triazine-based organic compound as a flame retardant.
  • the present invention also provides the circuit breaker described above, wherein the matrix resin of the arc-extinguishing insulating material molded body is a polyamide.
  • the non-halogen flame-retardant resin is composed of 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and 15% by weight or less of a ceramic wisdom based on the non-halogen flame-retardant resin.
  • the circuit breaker according to the present invention is characterized by containing one or more fillers selected from the group.
  • the arc-extinguishing member is formed of a laminate of an arc-exposed layer exposed to an arc, and a backup layer supporting the arc-exposed layer, wherein the arc-exposed layer is made of a non-halogen flame-retardant resin
  • An arc extinguishing insulating material molded body as a main component, and Layer is selected from the group consisting of glass fibers, inorganic minerals and ceramic fibers
  • circuit breaker which is made of a flame-retardant resin containing at least one kind.
  • the present invention also provides the circuit breaker described above, wherein a part of the backup layer penetrates the arc-receiving layer at a plurality of locations.
  • FIG. 1 is a sectional view showing an ON state of the circuit breaker.
  • FIG. 2 is a partial cross-sectional view showing an off state of the circuit breaker.
  • FIG. 3 is a side view (a) and a plan view (b) of the arc extinguishing member.
  • FIG. 4 is a perspective view of the arc extinguishing member.
  • FIG. 5 is a perspective view (a) of an example of a two-layer structure of the arc extinguishing member, and (b) of another example.
  • circuit breaker of the present invention will be further described.
  • the circuit breaker of the present invention is an arc-extinguishing member that is closest to the arc of the arc-extinguishing device 6 that is exposed to the arc generated between the contacts 2 and 3 in the configuration of the main part of FIGS.
  • the feature of 6c is that an arc-extinguishing insulating material molded article mainly composed of non-halogen flame-retardant resin is used.
  • the arc-extinguishing insulating material molded product preferably contains a triazine-based organic compound as a flame retardant.
  • triazine-based organic compounds examples include compounds described in Japanese Patent Application Publication No. Sho 53-31759, and in particular, metal corrosion or metal in the pyrolysis gas generated by exposure to an arc Oxides that do not contain oxides are preferred.
  • melamine derivatives such as melamin, ammelide, ammeline, formoguanamine, guanylmelamine, cyanomemelamine, arylegamine, melam, melem, melon, melamine compounds or melamine condensation Melamines containing substances; trimethyl cyanurate, triethyl cyanurate, tri (n-propyl) cyanurate, methyl shear Cyanuric acid compounds such as nurate and getylcyanurate, and isocyanuric acid compounds such as trimethyl isocyanurate, triethyl isocyanurate, tri (n-propyl) isocyanurate, methyl isocyanurate and getyl isocyanurate.
  • triazine-based organic compounds are preferably contained in an amount of 5 to 20% by weight, preferably 10 to 15% by weight, based on a matrix resin described below.
  • the matrix resin of the arc-extinguishing insulating material molded product may be, for example, a polyolefin, a polyolefin copolymer, a polyacetal, or a polyacetyl copolymer described in Japanese Patent Publication No. 7-250355.
  • Polyamides, polyamide copolymers, etc. in the pyrolysis gas generated by exposure to an arc such as metal corrosion, electrode contact contamination or free carbon.
  • those having a low content are preferred, and more preferably, nylon 12, nylon 11, nylon 61, nylon 6, nylon 6, nylon 66, which have excellent mechanical properties--compatibility with the triazine-based organic compound.
  • Polyamides such as nylon 46, nylon 6T, and nylon 9 ⁇ ⁇ are good, and non-aromatic polyamides such as nylon 6, nylon 66, and nylon 46 with low carbon content are arc-coated. Formation of the surface carbide layer of the arc extinguishing insulative material molded body is less favorable preferable due.
  • non-halogen flame-retardant resin contains 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and the ceramic whisker contains 15% by weight or less based on the non-halogen flame-retardant resin. It preferably contains one or more fillers selected from the group consisting of:
  • organic fiber used in the present invention examples include ultra-high molecular weight polyethylene fiber, nylon fiber, polyarylate fiber, aramide fiber, polyparaphenylenebenzobenzoxazole, phenol fiber, etc.
  • organic fibers Preferably, in consideration of the kneadability with the matrix resin, the melting point above the molding temperature, the decomposition temperature, and the mechanical properties, aramide fibers, polyparaphenylene benzobisoxazole fibers and the like are preferred.
  • the ceramics used in the present invention include alumina, zinc oxide, magnesium hydroxide, silicon nitride, silicon carbide, potassium titanate, and aluminum borate. Whiskers of needle-like crystals having a diameter of several ⁇ m or less, such as metal oxides, hydroxides, nitrides, carbides, and borate compounds, but preferably do not impair the insulation resistance of the molded product It is difficult to be ionized by an arc, and magnesium hydroxide whiskers and aluminum borate are preferred from the viewpoint of availability.
  • a flame-retardant resin containing a triazine-based organic compound is formed by a filler layer, such as an inorganic compound or glass fiber, which is used to form a layer forming a flame-retardant effect when the triazine organic compound is burned.
  • a filler layer such as an inorganic compound or glass fiber
  • combustion residue such as glass is destroyed, that is, flame retardancy is deteriorated due to the candle effect of the combustion residue remaining on the surface of the molded body.
  • Organic fibers and ceramic wisdom which have less residual combustion on the body surface, were used.
  • a resin pellet containing a flame retardant, or a flame retardant powder and a neat resin pellet are simultaneously introduced into a hopper of an extruder, and thereafter, an organic fiber or a ceramic resin is melted into a resin.
  • a predetermined amount is added into the zone through a side feeder of an extruder to prepare a pellet-shaped non-halogen flame-retardant resin, which can be obtained by molding by a known injection molding method.
  • the arc-extinguishing member may be constituted by a laminate of an arc-exposed layer exposed to an arc and a backup layer supporting the arc-exposed layer.
  • the arc-receiving layer 6a-1 is made of a non-halogen flame-retardant resin.
  • An arc-extinguishing insulating material molded product as a main component, and the backup layer 6a-2 is made of a flame-retardant resin containing at least one selected from the group consisting of glass fibers, inorganic minerals, and ceramic fibers. be able to.
  • a part of the back-up layer resin 6a-2 penetrates the arc-receiving layer 6a-1 at a plurality of locations, for example, in a comb shape.
  • the bonding strength between 1 and the backup layer 6a-2 is strengthened.
  • the filler for reinforcing the flame-retardant resin contained in the backup layer 6a-2 is a general-purpose glass fiber, inorganic mineral and / or ceramic fiber, and is not particularly limited as long as the insulation resistance of the molded product is not impaired. .
  • the amount of the filler is preferably 5 to 50% by weight, and more preferably 15 to 30% by weight, based on the matrix resin described below. Ma If necessary, an appropriate amount of a halogen-based flame retardant can be used.
  • the back-up layer 6a-2 is disposed on the back side of the arc-receiving layer 6a-1 or away from the high-energy arc core with respect to the arc, it is exposed to a relatively weak arc wind wrapping around.
  • the thermal decomposition by the arc and the formation of the carbonized layer are relatively small.
  • the flame retardant is not particularly limited as long as it does not impair the mechanical strength of the back-up layer as long as it exhibits flame retardancy of V0 or more at gross wire 960 ° C, UL 94. is not.
  • examples of the matrix resin used for the backup layer 6a-2 include polyolefin, polyacetyl, polyamide, aromatic polyamide, aromatic polyester, aromatic polyether, aromatic polysulfone, and copolymers thereof.
  • thermoplastic resins or thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, melamine resins, urea resins, and aryl resins are preferred, but thermoplastic resins are preferred from the viewpoint of moldability. It is more preferable to use an aromatic polyamide which is excellent in heat resistance and impact resistance and has good compatibility with the resin of the arc-receiving layer 6a-1.
  • the production of the arc-extinguishing insulating material formed of the arc-receiving layer 6a-1 and the backup layer 6a-2 is performed by a known two-color molding by injection molding. can do.
  • the present invention is not limited to this production method, and the arc-receiving layer 6a-1 and the ark-up layer 6a-2 may be formed and then bonded together with an adhesive or the like.
  • the non-halogen flame-retardant resin of Example 1 was obtained by filling matrix resin nylon 66 with 10% cyanomamelamine as a flame retardant with respect to the matrix resin. Specifically, a predetermined amount of DSM: melapur MC was mixed in advance with Toyobo: T-662 resin pellets and kneaded with a twin-screw extruder. Flame retardancy was evaluated by cutting out injection molded 1,6 mm thick flat plates into various test specimen shapes. Also cut off The performance was evaluated by using an injection molding method for an arc-extinguishing insulating material having the shape shown in Fig. 4 and having a thickness of 1.6 thighs for a simulation test of an actual machine.
  • Flame retardancy test is based on UL94, UL746: HWI (Hot wire ignitability test), IEC707: GW I (Grow-wire-one test).
  • the evaluation was performed using a Suga Test Machine Co., Ltd.), an HWI ignitability test machine (manufactured by Suga Test Machine Co., Ltd.) and a GWI flammability test machine (manufactured by Suga Test Machine Co., Ltd.)
  • Overload test A current of 6 times the rated current (for example, 60 OA for a 10 OA circuit breaker) is applied to the circuit breaker including the arc extinguishing device with the above configuration, and the movable contact 2 and the fixed contact 3 are turned on. This test is passed when the contacts are separated at a contact separation distance L (distance between movable contact 2 and fixed contact 3) of 25 strokes, and the arc current is successfully interrupted the specified number of times (12 times).
  • L distance between movable contact 2 and fixed contact 3
  • Short-circuit test In the ON state, an excess current of 50 KA is applied at a voltage of 230 to 690 V to open the movable contact, an arc current is generated, and the arc current is cut off a specified number of times (three times). This test passes if there is no damage and no damage (specifically, no loss of the housing).
  • the test conditions assume a 100 to 25 OAF class circuit breaker.
  • Overload test 1 is 3-phase 720 V / 600 A
  • overload test 2 is 3-phase 720 V / 1050 A
  • overload test 3 is 3 Evaluated at phase 720V / 150 OA.
  • Short-circuit test 1 was evaluated at three-phase 500 V / 30 KA, short-circuit test 2 at 500 V / 50 KA, and short-circuit test 3 at 440 V / 65 KA.
  • Table 1 shows the results of the evaluation of the resin composition, the flame retardancy, and the barrier performance.
  • the overload test showed the number of successful breaks and the short circuit test showed the number of successful breaks and whether there was any damage.
  • the flame retardancy was UL94 V0, HWI index 4, and GWI 960. C and both passed.
  • the breaking performance of the overload tests 1, 2, and 3 cleared the specified number of breaks of 12 times, and the short-circuit tests 1 and 2 cleared the specified number of breaks of three times, but succeeded in the short-circuit test 3.
  • the number of interruptions was two, and a part of the housing was cracked. In this short-circuit test 3, the arc energy was large and was lost due to the arc wind pressure.
  • Part of the arc-extinguishing member is entrained in the arc field, which increases the amount of pyrolysis gas generated and destroys the housing.
  • the arc-extinguishing member is broken by the second short-circuit interruption, causing an arc.
  • Example 2 the type of matrix resin was changed, and a reinforcing resin and a bite resin containing no flame retardant were used. Resin pellets, test pieces, etc. were prepared in the same manner as in Example 1 except for the type of matrix resin, and the flame retardancy and blocking performance were evaluated. Table 1 shows the test results.
  • Example 2 The matrix resin used in Example 2 was nylon 6 (manufactured by Toyobo: T-803), Example 3 was nylon 46 (manufactured by DJEP: Suga Neil TS-300), and Example 6 was nylon 6 T (Toyobo). Spinning: TY-502NZ), Nylon 9T (manufactured by Kuraray) in Example 5 was used.
  • the neat resin was not filled with the stiffener, either part of the slit member was broken by the arc wind as in Example 1 or the short circuit test 3
  • the number of successful shutdowns is two, both short-circuit tests and overload tests are good.
  • the components in the resin contained aromatics, and this was probably due to the carbonization of the surface of the slit member due to repeated blocking. However, both the overload test and the short-circuit test are good. Examples 6 to 9
  • Example 6 the chopped strand aramide fiber (Tecnora: Tecnola) was used as a reinforcing material and the matrix resin was filled at 5% and 10%, respectively.
  • Examples 8 and 9 were aluminum borate. Iskar (Shikoku Chemicals: Arbolex) is filled with 10% and 15% respectively. These resin pellets are the same as those in Example 1.
  • the evaluation was performed under exactly the same conditions as in Example 1 except that a halogen flame-retardant resin was used as a matrix resin, and a predetermined amount of reinforcing material was added and kneaded from a side feeder of a twin-screw extruder. Table 1 shows the test results.
  • Comparative Examples 1 and 2 used halogen-based brominated polystyrene (Br-PS) as a flame retardant.
  • Comparative Example 1 used matrix resin nylon 66 (Toyobo: ⁇ -662) and bromine. polystyrene which was filled with 1 0% of antimony trioxide (S b 2 0 3) and (Tosoh one manufactured / frame cut 210R) as 25% and the flame retardant aid, the ratio Comparative examples 2 Comparative example 1 It is 30% filled with glass fiber.
  • Examples 10 to 14 are examples in which the arc extinguishing member of the embodiment of FIG. 5 was tested.
  • the nylon 66 to which the cyanomeramine was added as in Example 1 was used as the arc-receiving layer 6a-1, and the backup layer 6a-2 was as shown in Table 2.
  • It is a molded article having a simple two-layer structure obtained by laminating and molding a non-flammable compound or a halogen flame-retardant resin reinforced with glass fiber.
  • an arc-extinguishing member was produced by a two-color molding method in which an arc-receiving layer having a thickness of 0.8 pixels was first injection-molded, and then a backup layer was injection-molded so that the total thickness became 1.6 cells.
  • Example 14 as shown in FIG. 5B, a partially penetrating two-layer laminated structure was formed such that a part of the backup layer resin 6a-2 penetrated the surface of the arc-receiving layer 6a-1. And the bonding strength of the backup layer are strengthened. That is, a part of the pack-up layer is formed by penetrating the arc-receiving layer made of a non-halogen flame-retardant resin in a comb-like cross section.
  • the backup layer resin used in Examples 10 to 14 of each was 1194, which is a commercially available flame-retardant resin that meets the standards for both HW I and GW I for ⁇ 0, and Example 10 is glass.
  • Example 1 2 is a brominated flame retardant PA 46 made of 20% glass fiber (manufactured by DJEP: SUNEIL TS250F40), and
  • Example 13 is a brominated flame retardant PA 46 made of 45% glass fiber.
  • Example 14 the same glass fiber as in Example 10 was used, and bromine flame retardant PA 66 (DuPont: Zitel F R50) of 25% was used in Example 14.
  • bromine flame retardant PA 66 DuPont: Zitel F R50
  • Table 2 shows the evaluation results of the breaking performance of Examples 10 to 14. As a result, both the short-circuit test and the overload test were stipulated because the layer to be arced did not suffer any breakage due to the arc wind in the short-circuit test and the formation of the carbonized layer in the overload test of the backup layer resin was small. The number of successful cutoffs was satisfied and good cutoff performance was obtained.
  • Example 14 since the backup layer resin was exposed on a part of the surface of the layer to be arced, there was a concern that the overload breaking performance would deteriorate due to the carbonization of the exposed portion resin. Good results were obtained under any of the overload test conditions, probably because the creep resistance of the resin part of the arc-receiving layer was maintained because only the layers were scattered, and a conduction path to the fixed contact was not formed through the creepage of the arc-extinguishing member. Was done.
  • the two-color molding method was used for joining the arc-receiving layer and the back-up layer from the viewpoint of mass productivity, but it is not limited to this molding method. Absent.
  • Example 1 2 ⁇ 66 / cyan melamine (glass fiber 12 12 12 3 /
  • Glass fiber 25W Partially penetrating two layers 12 12 12 3 No 3 No 3 3 / None
  • a fixed contact having a fixed contact fixed to a conductor, a movable contact having a movable contact fixed to and separated from the fixed contact, and a movable contact
  • a circuit breaker comprising: an opening / closing mechanism for rotating a child; an arc extinguishing device for extinguishing an arc generated when the fixed contact and the movable contact come and go; and a housing for accommodating them.
  • the arc-extinguishing device is provided with an arc-extinguishing member so as to cover the entire surface of the fixed contact, and the arc-extinguishing member includes an arc-extinguishing insulating material molded body mainly containing a non-halogen flame-retardant resin.
  • the arc-extinguishing insulating material molded article contains a triazine-based organic compound as a flame retardant, the flame-retardant gas can be ensured and the arc-extinguishing gas can be suppressed.
  • a phosphorus compound having high metal corrosion such as a contact, or silicon or a metal oxide that causes a contact failure, overload breaking performance can be further improved, and the arc extinguishing device can be downsized.
  • the matrix resin of the arc-extinguishing insulating material molded body is polyamide, deterioration of insulation due to carbonization of the surface of the arc-extinguishing insulating material molded body is reduced. Controlled overload rejection performance can be further improved.
  • the arc-extinguishing insulating material molded product is formed by using a non-aromatic polyamide as the matrix resin as the matrix resin of the arc-extinguishing insulating material molded product. Deterioration of insulation due to carbonization of the body surface is further controlled, and the overload rejection performance can be further improved, and the arc extinguishing device can be downsized.
  • the non-halogen flame-retardant resin contains 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and the non-halogen flame retardant. Impact resistance of the arc-extinguishing member without impairing flame resistance by containing at least one filler selected from the group consisting of 15% by weight or less of ceramic wiping force based on the conductive resin And the short circuit breaking performance can be improved.
  • the arc-extinguishing member is formed of a laminate of an arc-receiving layer exposed to an arc and a backup layer supporting the arc-receiving layer.
  • the arc-receiving layer is formed of an arc-extinguishing insulating material formed mainly of a non-halogen flame-retardant resin
  • the back-up layer is formed of a group consisting of glass fibers, inorganic minerals, and ceramic fibers.
  • the seventh circuit breaker of the present invention since a part of the backup layer penetrates the arc-receiving layer at a plurality of locations, the joining of the arc-receiving layer and the backup layer of the arc-extinguishing member is achieved. It becomes strong and further improves short-circuit breaking performance.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A small circuit breaker which effectively provides interception for overload protection and short-circuit protection while exhibiting outstanding flame retardancy. The circuit breaker comprises a fixed contact member or conductor carrying a fixed contact, a movable contact member carrying a movable contact for engagement with the fixed contact, a switch mechanism for rotating the movable contact member, an arc-extinguishing device for extinguishing an arc when the movable contact is engaged or disengaged with the fixed contact, and a housing for enclosing the components described above. The arc-extinguishing device is provided with an arc-extinguishing member that entirely covers the fixed contact member. The arc-extinguishing member includes an arc-extinguishing mold of insulator with a base material of frame-retardant non-halogen resin.

Description

明 細 書 回路遮断器 技術分野  Description Circuit breaker Technical field
本発明は、 回路遮断器に関するものである。 背景技術  The present invention relates to a circuit breaker. Background art
図 1および図 2は、回路遮断器の断面図であり、図 1は回路遮断器のオン状態、 図 2は回路遮断器のオフ状態を示す。 また、 図 3は回路遮断器の消弧装置の消弧 部材の拡大図を示す側面図 (a ) および平面図 (b ) である。 図において、 1は 銅などの導体からなる可動接触子、 2は可動接触子 1の一端に固着された可動接 点、 3は可動接点 2と接離する固定接点、 4は固定接点 3が固着された銅などの 胴体からなる固定接触子、 5は固定接触子 4の他端部に構成された電源側の端子 部であり、 外部電源から配線が接続される。 6は消弧装置であり、 互いに空隙を 介して積層配列され、 可動接点 2と固定接点 3の間に発生したアークを冷却、 消 弧する磁性体の金属からなる複数の消弧板 (グリッド) 6 a と、 グリッド 6 a を 両側で保持する消弧側板 6 b と、 図 3に示した消弧部材 6 c で構成されて、 消弧 部材 6 c および消弧側板 6 bは絶縁材料からなる。 消弧部材 6 c は可動接点 2お よび固定接点 3の間に設けられており、 固定接点 3を露出した状態でアークに曝 される固定接触子 4の全面を覆うように設けられている。 7は可動接触子 1を回 動し、 開閉駆動する開閉機構部、 8はこの開閉機構部 7を手動で操作するための ハンドル、 9は弓 Iき外し装置、 1 0は負荷側の端子部である。 1 1は力パー、 1 2はベースで、 前記部品を収納 ·固定し、 筐体 1 6の一部を構成している。 1 3 は端子部 5を筐体 1 6内と隔離するエンドプレートであり、 アークによるホット ガスを排出する排気口 1 3 aを有し、 ベース 1 2に設けられたガイ ド溝 1 2 a に 挿入装着されている。 1 4はアークを端子部 5の方向へ走行させるァ一クランナ である。  1 and 2 are cross-sectional views of the circuit breaker. FIG. 1 shows an ON state of the circuit breaker, and FIG. 2 shows an OFF state of the circuit breaker. FIG. 3 is a side view (a) and a plan view (b) showing an enlarged view of an arc extinguishing member of an arc extinguishing device for a circuit breaker. In the figure, 1 is a movable contact made of a conductor such as copper, 2 is a movable contact fixed to one end of the movable contact 1, 3 is a fixed contact that comes into contact with or separates from the movable contact 2, 4 is a fixed contact 3 fixed. The fixed contact 5 having a body made of copper or the like is a power-supply-side terminal formed at the other end of the fixed contact 4, and a wiring is connected from an external power supply. Reference numeral 6 denotes a plurality of arc extinguishing devices (grids) made of magnetic metal that is stacked and arranged with a gap therebetween to cool and extinguish an arc generated between the movable contact 2 and the fixed contact 3. 6a, the arc-extinguishing side plate 6b that holds the grid 6a on both sides, and the arc-extinguishing member 6c shown in Fig. 3.The arc-extinguishing member 6c and the arc-extinguishing side plate 6b are made of an insulating material. . The arc-extinguishing member 6c is provided between the movable contact 2 and the fixed contact 3, and is provided so as to cover the entire surface of the fixed contact 4 exposed to the arc with the fixed contact 3 exposed. 7 is an opening / closing mechanism for rotating the movable contact 1 to open and close, 8 is a handle for manually operating the opening / closing mechanism 7, 9 is a bow I remover, and 10 is a load terminal. It is. Reference numeral 11 denotes a force par, and 12 denotes a base. The parts are stored and fixed, and constitute a part of the housing 16. Reference numeral 13 denotes an end plate for isolating the terminal portion 5 from the inside of the housing 16 and having an exhaust port 13a for discharging hot gas by an arc. Inserted and mounted. Reference numeral 14 denotes an arc runner for driving the arc toward the terminal portion 5.
次の前記の回路遮断器の動作について説明する。 図 1において、 ハンドル 8を操作すると、 開閉機構部 7が動作して可動接触子 1が回動し、 可動接点 2と固定接点 3とが接触開離する。 端子部 5を電源に、 端 子部 1 0を負荷に接続し、 接点を接触させることにより電力が電源から負荷に供 給される。 この状態で、 通電の信頼性を確保するために可動接点 2は固定接点 3 に規定の接触圧力で押さえつけられている。ここで、負荷側に過電流が流れると、 過電流を引き外し装置 9で検出し、 開閉機構部 Ίが動作して図 2に示すように両 接点 2, 3の間にアーク 1 5が発生する。 Next, the operation of the circuit breaker will be described. In FIG. 1, when the handle 8 is operated, the opening / closing mechanism 7 operates, the movable contact 1 rotates, and the movable contact 2 and the fixed contact 3 are separated from each other. The terminal 5 is connected to the power supply, the terminal 10 is connected to the load, and the power is supplied from the power supply to the load by contacting the contacts. In this state, the movable contact 2 is pressed against the fixed contact 3 with a specified contact pressure in order to ensure the reliability of energization. Here, if an overcurrent flows to the load side, the overcurrent is detected by the trip device 9 and the switching mechanism 動作 operates to generate an arc 15 between the two contacts 2 and 3 as shown in FIG. I do.
一方、 短絡事故などが起こり回路に大きな過電流が流れると、 両接点 2, 3間 の接触面における電磁反発力が強くなり、 前記可動接点 2に加わっている接触圧 に打ち勝つために、 可動接触子 1は引き外し装置 9および開閉機構部 Ίの動作を 待たずに回動し、 接点 2, 3の開離が起こる。 アーク電圧は、 固定接点 3から可 動接点 2までの開離距離が増大するに従って上昇し、 また、 同時にアーク 1 5が 消弧装置 6の方向へ磁気力によって引き付けられ伸張するために、 さらに上昇す る。 このようにして、 アーク電流は電流零点を迎えアーク 1 5を消弧し、 遮断が 兀 J 9  On the other hand, when a large overcurrent flows in the circuit due to a short circuit accident or the like, the electromagnetic repulsion at the contact surface between the two contacts 2 and 3 increases, and the movable contact 2 overcomes the contact pressure applied to the movable contact 2. The child 1 rotates without waiting for the operation of the tripping device 9 and the opening / closing mechanism Ί, and the contacts 2 and 3 are separated. The arc voltage increases as the separation distance from the fixed contact 3 to the movable contact 2 increases, and at the same time further increases because the arc 15 is attracted and extended by the magnetic force in the direction of the arc-extinguishing device 6. You. In this way, the arc current reaches the current zero point, extinguishes the arc 15 and the interruption stops.
すなわち、 消弧装置 6の消弧板 6 a はアーク 1 5の熱を吸収し、 冷却するとと もにアーク 1 5を屈曲させ可動接点 2と固定接点 3の接点間距離を引き離すよう に作用する。 また、 消弧部材 6 c は可動接点 2から固定接触子 4へのアークの起 点移動 (アーク夕ツチ) を防ぐとともに高温のアーク 1 5に曝されることによつ て熱分解ガスを発生し、 この熱分解ガスはアーク 1 5を冷却 ·吹消す消弧ガスと して作用している。  In other words, the arc-extinguishing plate 6a of the arc-extinguishing device 6 absorbs the heat of the arc 15 and cools and, at the same time, bends the arc 15 to act to separate the contact between the movable contact 2 and the fixed contact 3. . The arc-extinguishing member 6 c prevents the starting point of the arc from the movable contact 2 to the fixed contact 4 (arc stop), and generates a pyrolysis gas when exposed to the high-temperature arc 15. This pyrolysis gas acts as an arc-extinguishing gas that cools and blows out the arc 15.
近年、 配電盤サイズの縮小化にともない回路遮断器自体コンパクト化される傾 向にあり、 また、 回路遮断器に使用されるプラスチック材料に対して要求される 難燃性のレベルが向上する傾向にある。  In recent years, circuit breakers have tended to be more compact as switchboard sizes have shrunk, and the level of flame retardancy required for plastic materials used in circuit breakers has tended to increase. .
具体的には、 製品拡販のグローバル化により、 欧州の I E C 6 0 9 4 7規格や 米国の U L 7 4 6規格に適合する製品が要望されている。 両規格の中では、 国内 では U L-H Bの比較的低い難燃要求の消弧部材等の通電部を保持する材料の難 燃性に関して、 I E C 6 0 9 4 7規格はグロ一ワイヤーィグニッシヨン(GW I ) 9 6 0 °C以上でかつホットワイヤ一ィグニッシヨン (HW I ) が U L 94- V0 で HW I指数 4または U L94- V 2で HW I指数 2以上を規定し、 一方、 U L 7 4 6規格は U L 9 4で V 0以上とそれそれの規格で最上級レベルの難燃性が要求さ れている。 Specifically, the globalization of product sales calls for products that comply with the European IEC 6947 standard and the US UL 746 standard. In both standards, the IEC 60947 standard covers global wire ignition with regard to the flame retardancy of materials that hold energized parts, such as arc extinguishers, which have relatively low ULHB requirements in Japan. (GW I) 960 ° C or higher and hot wire ignition (HW I) is UL 94-V0 HW I index 4 or UL 94-V 2 stipulates HW I index 2 or higher, whereas UL 746 standard requires V 0 or higher at UL 94 and the highest level of flame retardancy in each standard Has been done.
この対応策として、 難燃性樹脂の消弧部材への適用が考えられ、 その代表格と して少量の充填量で効果を発揮する臭素などハロゲン化合物.を充填したハロゲン 難燃樹脂あげられる。  As a countermeasure, application of a flame-retardant resin to an arc-extinguishing member is considered. A typical example is a halogen-retardant resin filled with a halogen compound such as bromine, which is effective with a small filling amount.
しかし、 ノ、ロゲン難燃樹脂はアークに曝されて発生する熱分解ガス中に金属に 活性な成分を含有するためか、 金属腐食が著しく電極接点不良の原因となり繰返 し遮断後の通電が不能となる。 特にハロゲン化合物系ではアークの高温 (7000~ 20000°C) によりプラズマ化された分解ガスにハロゲンイオンが存在されるため か消弧性が劣り遮断性能が悪化し遮断が不能となったり、 あるいは、 遮断を確実 にするには電極間の距離を大きくすることが必要となり開閉遮断器の小型化が困 難となるなどの問題があつた。  However, because of the fact that the flame retardant resin generated by exposure to the arc contains an active component of the metal in the pyrolysis gas generated by the arc, metal corrosion is remarkable and electrode contact failure is caused. Becomes impossible. In particular, in the case of halogen compounds, the arc extinguishing performance is deteriorated due to the presence of halogen ions in the decomposition gas converted into plasma due to the high temperature of the arc (7000 to 20000 ° C). In order to ensure the cutoff, it is necessary to increase the distance between the electrodes, and it has been difficult to reduce the size of the switchgear.
なお、 非ハロゲン難燃樹脂は近年開発が盛んに行われており、 リン化合物系、 珪素樹脂系あるいは水酸化アルミニウムなど無機系難燃剤を充填した難燃性樹脂 や、 ポリフエ二レンサルフアイ ドなど樹脂自体で難燃性を有する芳香族系樹脂が 知られている。  Non-halogen flame-retardant resins have been actively developed in recent years, such as flame-retardant resins filled with inorganic flame retardants such as phosphorus compound, silicon resin or aluminum hydroxide, and resins themselves such as polyphenylene sulfide. Aromatic resins having flame retardancy are known.
リン化合物系難燃剤は一般に使用し難い上に、 特に赤燐を用いた系ではハロゲ ン系よりも金属腐食が著しく、 電極接点不良による繰返し遮断後に通電不能とな る。  Phosphorus compound-based flame retardants are generally difficult to use, and particularly in systems using red phosphorus, metal corrosion is more severe than in halogen-based systems, and power cannot be applied after repeated interruption due to defective electrode contacts.
また、 珪素樹脂系難燃剤や無機系難燃剤を充填した難燃樹脂は、 熱分解ガスの プラズマ場で生成される金属酸化物や酸化ケィ素などの絶縁性セラミックスが電 極接点上へ蒸着 ·堆積することにより電極表面を汚染する接点不良を誘引し、 繰 返し遮断後の通電が不能となる。 さらに、 無機系難燃剤は難燃性を発揮させるた めに高充填化が必須であるが、 耐熱性の高融熱可塑性樹脂への混練には汎用無機 難燃剤 (水酸化アルミニウムや水酸化マグネシウム) の熱分解温度が低くすぎて 高充填化が難しく難燃性が満足できなかったり、 あるいは、 低融点熱可塑性樹脂 への高充填化を達成し難燃性を満足しても、 消弧部材の機械強度は低下する。 一方、 ポリフエ二レンサルフアイ ドなど樹脂自体で難燃性を発揮する芳香族樹 脂は、 ポリマ一分子中の炭素含有率が高いため、遮断性能を悪化する傾向があり、 遮断性能を確保するためにはアークと固定接触子の距離の拡大が必要で回路遮断 器の小型化の障害となるなどの問題があつた。 In addition, for flame-retardant resins filled with silicon resin-based flame retardants and inorganic flame retardants, insulating ceramics such as metal oxides and silicon oxides generated in the plasma field of pyrolysis gas are deposited on electrode contacts. The deposition induces a contact failure that contaminates the electrode surface, making it impossible to energize after repeated interruptions. In addition, inorganic flame retardants must be highly filled in order to exhibit flame retardancy. However, general-purpose inorganic flame retardants (aluminum hydroxide and magnesium hydroxide) are required for kneading into heat-resistant high-melting thermoplastic resins. If the thermal decomposition temperature of is too low to achieve high filling and flame retardancy is unsatisfactory, or if high filling into low melting thermoplastic resin is achieved and flame retardancy is satisfied, arc extinguishing members Has a reduced mechanical strength. On the other hand, aromatic resins, such as polyphenylene sulfide, exhibit flame retardancy with the resin itself. Since fat has a high carbon content in one polymer molecule, the breaking performance tends to deteriorate.In order to secure the breaking performance, the distance between the arc and the fixed contact must be increased, and the circuit breaker must be downsized. And other problems.
本発明は、 前記のような問題点を解消するためになされたもので、 難燃化によ る電極接点の腐食や汚染による導通不良、 あるいは機械強度低下や絶縁悪化を抑 制することにより難燃性と遮断性能の優れた、 小型化の可能な回路遮断器を提供 することを目的とする。 発明の開示  The present invention has been made in order to solve the above-mentioned problems, and it has been made difficult to suppress poor electrical conduction due to corrosion and contamination of electrode contacts due to flame retardancy, or to suppress mechanical strength reduction and insulation deterioration. An object of the present invention is to provide a circuit breaker that is excellent in flammability and breaking performance and can be downsized. Disclosure of the invention
本発明は、 導体に固定接点が固着された固定接触子と、 前記固定接点と接離す る可動接点が固着された可動接触子と、 この可動接触子を回動させる開閉機構部 と、 前記固定接点と可動接点とが接離する時に発生するアークを消弧する消弧装 置と、 これらを収納する筐体とを備えた回路遮断器において、前記消弧装置には、 前記固定接触子の全面を覆うように消弧部材が設けられ、 かつ前記消弧部材が、 非ハロゲン難燃性樹脂を主成分とする消弧用絶縁材料成形体を含むことを特徴と する回路遮断器を提供するものである。  The present invention provides: a fixed contact having a fixed contact fixed to a conductor; a movable contact having a movable contact fixed to and separated from the fixed contact; an opening and closing mechanism for rotating the movable contact; In a circuit breaker including an arc extinguishing device for extinguishing an arc generated when a contact and a movable contact come and go, and a housing for accommodating the arc, the arc extinguishing device includes the fixed contact An arc extinguishing member is provided so as to cover the entire surface, and the arc extinguishing member includes an arc extinguishing insulating material formed mainly from a non-halogen flame-retardant resin. Things.
また本発明は、 消弧用絶縁材料成形体に、 難燃剤としてトリアジン系有機化合 物が含まれていることを特徴とする前記の回路遮断器を提供するものである。 また本発明は、 消弧用絶縁材料成形体のマトリックス樹脂が、 ポリアミ ドであ ることを特徴とする前記の回路遮断器を提供するものである。  The present invention also provides the circuit breaker described above, wherein the arc-extinguishing insulating material molded product contains a triazine-based organic compound as a flame retardant. The present invention also provides the circuit breaker described above, wherein the matrix resin of the arc-extinguishing insulating material molded body is a polyamide.
消弧用絶縁材料成形体のマトリックス樹脂であるポリアミ ドが、 非芳香族系ポ リアミ ドであることを特徴とする前記の回路遮断器を提供するものである。  It is another object of the present invention to provide the circuit breaker described above, wherein the polyamide, which is a matrix resin of the arc-extinguishing insulating material molded product, is a non-aromatic polyamide.
非ハロゲン難燃性樹脂が、 前記非ハロゲン難燃性樹脂に対して 1 0重量%以下 の有機繊維、 および前記非ハロゲン難燃性樹脂に対して 1 5重量%以下のセラミ ックウイス力一からなる群から選択された 1種以上の充填材を含有していること を特徴とする前記の回路遮断器を提供するものである。  The non-halogen flame-retardant resin is composed of 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and 15% by weight or less of a ceramic wisdom based on the non-halogen flame-retardant resin. The circuit breaker according to the present invention is characterized by containing one or more fillers selected from the group.
また本発明は、 消弧部材が、 アークに曝される被アーク層と、 前記被アーク層 を支持するパックアップ層との積層体からなり、 前記被アーク層が、 非ハロゲン 難燃性樹脂を主成分とする消弧用絶縁材料成形体からなり、 かつ前記ノ、"ックァッ プ層が、 ガラス繊維、 無機鉱物およびセラミック繊維からなる群から選択されたFurther, in the present invention, the arc-extinguishing member is formed of a laminate of an arc-exposed layer exposed to an arc, and a backup layer supporting the arc-exposed layer, wherein the arc-exposed layer is made of a non-halogen flame-retardant resin An arc extinguishing insulating material molded body as a main component, and Layer is selected from the group consisting of glass fibers, inorganic minerals and ceramic fibers
1種以上を含有する難燃性樹脂からなることを特徴とする前記の回路遮断器を提 供するものである。 It is intended to provide the above-mentioned circuit breaker, which is made of a flame-retardant resin containing at least one kind.
また本発明は、 パックアップ層の一部が、 被アーク層を複数箇所貫通している ことを特徴とする前記の回路遮断器を提供するものである。 図面の簡単な説明  The present invention also provides the circuit breaker described above, wherein a part of the backup layer penetrates the arc-receiving layer at a plurality of locations. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 回路遮断器のオン状態を示す断面図である。  FIG. 1 is a sectional view showing an ON state of the circuit breaker.
図 2は、 回路遮断器のオフ状態を示す部分断面図である。  FIG. 2 is a partial cross-sectional view showing an off state of the circuit breaker.
図 3は、 消弧部材の側面図 (a )、 および平面図 (b ) である。  FIG. 3 is a side view (a) and a plan view (b) of the arc extinguishing member.
図 4は、 消弧部材の斜視図である。  FIG. 4 is a perspective view of the arc extinguishing member.
図 5は、 消弧部材のニ層構造の一例の斜視図 (a )、 およびその他の例の斜視 図 (b ) である。 発明の実施の形態  FIG. 5 is a perspective view (a) of an example of a two-layer structure of the arc extinguishing member, and (b) of another example. Embodiment of the Invention
以下、 本発明の回路遮断器についてさらに説明する。  Hereinafter, the circuit breaker of the present invention will be further described.
本発明の回路遮断器は、 既に説明した図 1ないし図 3の主用部品の構成におい て接点 2 , 3間に発生するアークに曝される消弧装置 6の最もアークに近接した 消弧部材 6 c の部分に非ハ口ゲン難燃性樹脂を主成分とする消弧用絶縁材料成形 体を用いることを特徴としている。  The circuit breaker of the present invention is an arc-extinguishing member that is closest to the arc of the arc-extinguishing device 6 that is exposed to the arc generated between the contacts 2 and 3 in the configuration of the main part of FIGS. The feature of 6c is that an arc-extinguishing insulating material molded article mainly composed of non-halogen flame-retardant resin is used.
消弧用絶縁材料成形体は、 難燃剤としてトリアジン系有機ィ匕合物が含まれてい ることが好ましい。  The arc-extinguishing insulating material molded product preferably contains a triazine-based organic compound as a flame retardant.
このようなトリアジン系有機化合物としては、 例えば特閧昭 5 3— 3 1 7 5 9 号公報に記載される化合物が挙げられ、 とくにアークに曝されて発生する熱分解 ガス中に金属腐食や金属酸化物を含まないものが好ましく、 具体的には例えばメ ラミン、 アンメリ ド、 アンメリン、 ホルモグアナミン、 グァニルメラミン、 シァ ノメラミン、 ァリーグアナミン、 メラム、 メレム、 メロンなどメラミン誘導体、 メラミン化合物あるいはメラミン縮合物を含むメラミン類; トリメチルシアヌレ —ト、 トリェチルシアヌレート、 トリ (n-プロビル) シァヌレート、 メチルシア ヌレート、 ジェチルシナヌレートなどシァヌル酸化合物類、 トリメチルイソシァ ヌレート、 トリェチルイソシァヌレート、 トリ (n-プロビル)イソシァヌレート、 メチルイソシァヌレート、 ジェチルイソシナヌレートなどィソシァヌル酸化合物 類が挙げられる。 Examples of such triazine-based organic compounds include compounds described in Japanese Patent Application Publication No. Sho 53-31759, and in particular, metal corrosion or metal in the pyrolysis gas generated by exposure to an arc Oxides that do not contain oxides are preferred.Specifically, for example, melamine derivatives such as melamin, ammelide, ammeline, formoguanamine, guanylmelamine, cyanomemelamine, arylegamine, melam, melem, melon, melamine compounds or melamine condensation Melamines containing substances; trimethyl cyanurate, triethyl cyanurate, tri (n-propyl) cyanurate, methyl shear Cyanuric acid compounds such as nurate and getylcyanurate, and isocyanuric acid compounds such as trimethyl isocyanurate, triethyl isocyanurate, tri (n-propyl) isocyanurate, methyl isocyanurate and getyl isocyanurate.
これらのトリアジン系有機化合物は、 下記で説明するマトリックス樹脂に対し 5〜2 0重量%、 好ましくは 1 0〜 1 5重量%含まれるのが好ましい。  These triazine-based organic compounds are preferably contained in an amount of 5 to 20% by weight, preferably 10 to 15% by weight, based on a matrix resin described below.
また、 消弧用絶縁材料成形体のマトリックス樹脂は、 例えば特閧平 7— 3 0 2 5 3 5号公報などに記載されるポリオレフイン、 ポリオレフィン共重合体、 ポリ ァセタール、 ポリアセ夕一ル共重合体、 ポリアミ ド、 ポリアミ ド共重合体等が挙 げられ、 アークに曝されて発生する熱分解ガス中に金属腐食や電極接点汚染ある いは遊離炭素など導通不良や消弧性を悪化する組成の含有量が少ないものが好ま しく、 さらに好ましくは、 機械特性ゃトリアジン系有機ィ匕合物との相溶性の優れ たナイロン 1 2、 ナイロン 1 1、 ナイロン 6 1 0、 ナイロン 6、 ナイロン 6 6、 ナイロン 4 6、 ナイロン 6 T、 ナイロン 9 Τなどのポリアミ ドがよく、 さらには 炭素含有量の少ないナイロン 6, ナイロン 6 6 , ナイロン 4 6など非芳香族ポリ アミ ドがアーク被曝による消弧用絶縁材料成形体の表面炭化層の形成が少なく好 ましい。  Further, the matrix resin of the arc-extinguishing insulating material molded product may be, for example, a polyolefin, a polyolefin copolymer, a polyacetal, or a polyacetyl copolymer described in Japanese Patent Publication No. 7-250355. , Polyamides, polyamide copolymers, etc. in the pyrolysis gas generated by exposure to an arc, such as metal corrosion, electrode contact contamination or free carbon. Those having a low content are preferred, and more preferably, nylon 12, nylon 11, nylon 61, nylon 6, nylon 6, nylon 66, which have excellent mechanical properties--compatibility with the triazine-based organic compound. Polyamides such as nylon 46, nylon 6T, and nylon 9 よ く are good, and non-aromatic polyamides such as nylon 6, nylon 66, and nylon 46 with low carbon content are arc-coated. Formation of the surface carbide layer of the arc extinguishing insulative material molded body is less favorable preferable due.
また、非ハロゲン難燃性樹脂が、前記非ハロゲン難燃性樹脂に対して 1 0重量% 以下の有機繊維、 および前記非ハロゲン難燃性樹脂に対して 1 5重量%以下のセ ラミツクウイスカーからなる群から選択された 1種以上の充填材を含有している のが好ましい。  In addition, the non-halogen flame-retardant resin contains 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and the ceramic whisker contains 15% by weight or less based on the non-halogen flame-retardant resin. It preferably contains one or more fillers selected from the group consisting of:
本発明で用いる有機繊維としては、 例えば超高分子ポリエチレン繊維、 ナイ口 ン繊維、 ポリアリレート繊維、 ァラミ ド繊維、 ポリパラフエ二レンべンゾビスォ キサゾ一ル繊維、 フエノール繊維など燃焼時に焼失するものであって、 好ましく はマトリックス樹脂との混練性、 成形温度以上の融点、 分解温度、 機械的特性を 考慮すると、 ァラミド繊維、 ポリパラフヱニレンべンゾビスォキサゾール繊維な どがよい。  Examples of the organic fiber used in the present invention include ultra-high molecular weight polyethylene fiber, nylon fiber, polyarylate fiber, aramide fiber, polyparaphenylenebenzobenzoxazole, phenol fiber, etc. Preferably, in consideration of the kneadability with the matrix resin, the melting point above the molding temperature, the decomposition temperature, and the mechanical properties, aramide fibers, polyparaphenylene benzobisoxazole fibers and the like are preferred.
本発明で用いるセラミツクウイス力一としては、 アルミナ、 酸化亜鉛、 水酸化 マグネシユーム、 窒化珪素、 炭化珪素、 チタン酸カリウム、 ホウ酸アルミニウム など金属酸化物類や水酸化物類、 窒化物類、 炭化物類あるいは硼酸化合物類など 直径数〃 m以下の針状結晶のウイスカ一が挙げられるが、 好ましくは成形物の絶 縁抵抗を損なわず、 アークによりイオン化され難く、 また、 入手性の観点より水 酸化マグネシュ一ムゥイスカーやホウ酸アルミニウムがよい。 The ceramics used in the present invention include alumina, zinc oxide, magnesium hydroxide, silicon nitride, silicon carbide, potassium titanate, and aluminum borate. Whiskers of needle-like crystals having a diameter of several μm or less, such as metal oxides, hydroxides, nitrides, carbides, and borate compounds, but preferably do not impair the insulation resistance of the molded product It is difficult to be ionized by an arc, and magnesium hydroxide whiskers and aluminum borate are preferred from the viewpoint of availability.
なお、 一般にトリアジン系有機ィ匕合物を含む難燃性樹脂は、 無機系化合物ゃガ ラス繊維など充填剤の添加により、 トリァジン有機化合物の燃焼時に難燃性付与 効果を発揮するチヤ一形成層をガラスなどの燃焼残査が破壊する、 すなわち、 成 形体表面に残留する燃焼残査のローソク効果により難燃性が悪化することが知ら れているが、 本発明では燃焼とともに焼失あるいは欠落し成形体表面の燃焼残査 が少ない、 有機繊維やセラミツクウイス力一を用いた。  In general, a flame-retardant resin containing a triazine-based organic compound is formed by a filler layer, such as an inorganic compound or glass fiber, which is used to form a layer forming a flame-retardant effect when the triazine organic compound is burned. It is known that combustion residue such as glass is destroyed, that is, flame retardancy is deteriorated due to the candle effect of the combustion residue remaining on the surface of the molded body. Organic fibers and ceramic wisdom, which have less residual combustion on the body surface, were used.
本発明で用いる消弧用絶縁材料成形体は、 難燃剤入り樹脂ペレツトあるいは、 難燃剤粉体とニート樹脂ペレヅトを同時に押出機のホッパーに導入し、 その後、 有機繊維またはセラミヅクウイス力一を樹脂の溶融帯域中へ押出し機のサイドフ ィーダより所定量を添加し、 ペレット状の非ハロゲン難燃性樹脂を作製し、 これ を公知の射出成形法により成形して得ることができる。  In the arc-extinguishing insulating material molded body used in the present invention, a resin pellet containing a flame retardant, or a flame retardant powder and a neat resin pellet are simultaneously introduced into a hopper of an extruder, and thereafter, an organic fiber or a ceramic resin is melted into a resin. A predetermined amount is added into the zone through a side feeder of an extruder to prepare a pellet-shaped non-halogen flame-retardant resin, which can be obtained by molding by a known injection molding method.
また本発明において、 消弧部材は、 アークに曝される被アーク層と、 この被ァ —ク層を支持するバックアップ層との積層体から構成されていてもよい。  In the present invention, the arc-extinguishing member may be constituted by a laminate of an arc-exposed layer exposed to an arc and a backup layer supporting the arc-exposed layer.
例えば図 4に示されるような消弧用絶縁材料成形体 6 aを消弧部材に用いる場 合、 例えば図 5 aに示すように、 被アーク層 6 a— 1が非ハロゲン難燃性樹脂を 主成分とする消弧用絶縁材料成形体からなり、 バックアップ層 6 a— 2が、 ガラ ス繊維、 無機鉱物およびセラミック繊維からなる群から選択された 1種以上を含 有する難燃性樹脂からなることができる。 また、 図 5 bに示すようにバックアツ プ層樹脂 6 a— 2の一部が、 被アーク層 6 a— 1を複数箇所、 例えば櫛状に貫通 しているようにし、 被アーク層 6 a— 1とバックアップ層 6 a— 2との接合力を 強固にするのが好ましい態様である。  For example, when an arc-extinguishing insulating material molded body 6a as shown in FIG. 4 is used as an arc-extinguishing member, for example, as shown in FIG. 5a, the arc-receiving layer 6a-1 is made of a non-halogen flame-retardant resin. An arc-extinguishing insulating material molded product as a main component, and the backup layer 6a-2 is made of a flame-retardant resin containing at least one selected from the group consisting of glass fibers, inorganic minerals, and ceramic fibers. be able to. In addition, as shown in FIG. 5B, a part of the back-up layer resin 6a-2 penetrates the arc-receiving layer 6a-1 at a plurality of locations, for example, in a comb shape. In a preferred embodiment, the bonding strength between 1 and the backup layer 6a-2 is strengthened.
バックアップ層 6 a— 2に含まれる難燃性樹脂を補強する充填剤は汎用のガラ ス繊維、 無機鉱物および/またはセラミック繊維であって、 成形物の絶縁抵抗を 損なわない限り特に限定するものでない。 充填剤の配合量は、 下記で説明するマ トリックス樹脂に対し 5〜5 0重量%、 好ましくは 1 5 ~ 3 0重量%がよい。 ま た必要に応じてハロゲン系難燃剤も適量用いることができる。 また、 バックアツ プ層 6 a— 2はアークに対し被アーク層 6 a— 1の裏側あるいはエネルギーの大 きいアーク芯より離して配設するため、 回りこんでくる比較的弱いアーク風に曝 されるだけなのでアークによる熱分解や炭化層の形成も比較的少ない。このため、 難燃剤はグロ一ワイヤ 9 6 0 °C、 U L 94で V0以上の難燃性を発揮するものであ れば、. ノ、'ックアツプ層の機械強度を損なわない限り特に限定するものではない。 次に、 バックアップ層 6 a— 2に用いるマトリックス樹脂としてはポリオレフ イン、 ポリアセ夕一ル、 ポリアミド、 芳香族ポリアミド、 芳香族ポリエステル、 芳香族ポリエーテル、 芳香族ポリスルホンなどや、 それらの共重合体の熱可塑性 樹脂、 あるいは、 エポキシ樹脂、 不飽和ポリエステル樹脂、 フエノール樹脂、 メ ラミン樹脂、 ユリア樹脂、 ァリル樹脂など熱硬化性樹脂が挙げられるが、 好まし くは成形性の観点より熱可塑性樹脂が望ましく、 さらに好ましくは耐熱性、 耐衝 撃性に優れかつ被アーク層 6 a— 1の樹脂との相溶性の良い芳香族ポリアミ ドが 望ましい。 The filler for reinforcing the flame-retardant resin contained in the backup layer 6a-2 is a general-purpose glass fiber, inorganic mineral and / or ceramic fiber, and is not particularly limited as long as the insulation resistance of the molded product is not impaired. . The amount of the filler is preferably 5 to 50% by weight, and more preferably 15 to 30% by weight, based on the matrix resin described below. Ma If necessary, an appropriate amount of a halogen-based flame retardant can be used. In addition, since the back-up layer 6a-2 is disposed on the back side of the arc-receiving layer 6a-1 or away from the high-energy arc core with respect to the arc, it is exposed to a relatively weak arc wind wrapping around. Therefore, the thermal decomposition by the arc and the formation of the carbonized layer are relatively small. For this reason, the flame retardant is not particularly limited as long as it does not impair the mechanical strength of the back-up layer as long as it exhibits flame retardancy of V0 or more at gross wire 960 ° C, UL 94. is not. Next, examples of the matrix resin used for the backup layer 6a-2 include polyolefin, polyacetyl, polyamide, aromatic polyamide, aromatic polyester, aromatic polyether, aromatic polysulfone, and copolymers thereof. Thermoplastic resins or thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, melamine resins, urea resins, and aryl resins are preferred, but thermoplastic resins are preferred from the viewpoint of moldability. It is more preferable to use an aromatic polyamide which is excellent in heat resistance and impact resistance and has good compatibility with the resin of the arc-receiving layer 6a-1.
図 5に示されるような態様において、 被アーク層 6 a— 1とバックアップ層 6 a - 2からなる消弧用絶縁材料成形体の作製は、 公知の射出成形による二色成形 により一体ィ匕成形することができる。 なお、 この製造法に限定されるものではな く被アーク層 6 a— 1とパヅクアップ層 6 a— 2それそれを成形した後に両者を 接着剤などで貼り合わせてもよい。 実施例  In the embodiment as shown in FIG. 5, the production of the arc-extinguishing insulating material formed of the arc-receiving layer 6a-1 and the backup layer 6a-2 is performed by a known two-color molding by injection molding. can do. The present invention is not limited to this production method, and the arc-receiving layer 6a-1 and the ark-up layer 6a-2 may be formed and then bonded together with an adhesive or the like. Example
以下、 本発明を実施例にて具体的に説明するが、 本発明はこれらに限定される ものではない。 なお、 以下の実施例中%とは、 特に断らない限り重量%を示す。 実施例 1  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following examples, “%” means “% by weight” unless otherwise specified. Example 1
実施例 1の非ハロゲン難燃性樹脂はマトリックス樹脂ナイロン 6 6に、 マトリ ックス樹脂に対して難燃剤としてシァノメラミンを 1 0 %充填したものである。 具体的には、 東洋紡製: T-662樹脂ペレットに D S M製: melapur MCの所定量を 予めドライブレンドしたのち二軸押出機にて混練し作製した。 難燃性は射出成形 した厚さ 1,6删の平板をそれそれの試験片形状に切出して評価した。 また、 遮断 性能は実機模擬試験用として図 4の形状で肉厚 1.6腿とした消弧用絶縁材料成形 体を射出成形法により作製し評価た。 The non-halogen flame-retardant resin of Example 1 was obtained by filling matrix resin nylon 66 with 10% cyanomamelamine as a flame retardant with respect to the matrix resin. Specifically, a predetermined amount of DSM: melapur MC was mixed in advance with Toyobo: T-662 resin pellets and kneaded with a twin-screw extruder. Flame retardancy was evaluated by cutting out injection molded 1,6 mm thick flat plates into various test specimen shapes. Also cut off The performance was evaluated by using an injection molding method for an arc-extinguishing insulating material having the shape shown in Fig. 4 and having a thickness of 1.6 thighs for a simulation test of an actual machine.
難燃性試験は UL94、 UL746: HWI (熱線着火性試験)、 I EC707: GW I (グロ一ワイヤ一試験) それそれの規定に基づき、 それそれの専用試験機、 U L94燃焼性試験機(スガ試験機㈱製)、 HWI着火性試験機(スガ試験機㈱製)、 GWI燃焼性試験機 (スガ試験機㈱製) を用いて評価した。  Flame retardancy test is based on UL94, UL746: HWI (Hot wire ignitability test), IEC707: GW I (Grow-wire-one test). The evaluation was performed using a Suga Test Machine Co., Ltd.), an HWI ignitability test machine (manufactured by Suga Test Machine Co., Ltd.) and a GWI flammability test machine (manufactured by Suga Test Machine Co., Ltd.)
遮断性能試験は実機を模擬した回路遮断器を試作し下記に示す過負荷試験およ び短絡試験を行った。  In the breaking performance test, a circuit breaker simulating the actual machine was prototyped and the following overload test and short-circuit test were performed.
過負荷試験:前記構成の消弧装置を含む回路遮断器にオン状態で定格電流の 6 倍の電流 (たとえば 10 OA用回路遮断器の場合 60 OA) を通電し、 可動接点 2と固定接点 3とを接点開離距離 L (可動接点 2と固定接点 3との距離) 25画 で開離させ、 アーク電流の遮断を規定回数 (12回) 成功させることをもって合 格とする試験である。  Overload test: A current of 6 times the rated current (for example, 60 OA for a 10 OA circuit breaker) is applied to the circuit breaker including the arc extinguishing device with the above configuration, and the movable contact 2 and the fixed contact 3 are turned on. This test is passed when the contacts are separated at a contact separation distance L (distance between movable contact 2 and fixed contact 3) of 25 strokes, and the arc current is successfully interrupted the specified number of times (12 times).
短絡試験:オン状態において、 電圧 230〜 690 Vで 50 K Aの過剰電流を 流して可動接触子を開離させ、 アーク電流を発生し、 このアーク電流の遮断を規 定回数 (3回) の成功と破損 (具体的には筐体の欠損) がないことをもって合格 とする試験である。  Short-circuit test: In the ON state, an excess current of 50 KA is applied at a voltage of 230 to 690 V to open the movable contact, an arc current is generated, and the arc current is cut off a specified number of times (three times). This test passes if there is no damage and no damage (specifically, no loss of the housing).
試験条件としては、 100〜25 OAFクラスの回路遮断器を想定し、 過負荷 試験 1は 3相 720 V/600 A、 過負荷試験 2は 3相 720 V/ 1050 A、 過負荷試験 3は 3相 720V/150 OAで評価した。 また、 短絡試験 1は 3相 500 V/30KA、 短絡試験 2は 500 V/50KA、 短絡試験 3は 440V /65 K Aで評価した。  The test conditions assume a 100 to 25 OAF class circuit breaker.Overload test 1 is 3-phase 720 V / 600 A, overload test 2 is 3-phase 720 V / 1050 A, and overload test 3 is 3 Evaluated at phase 720V / 150 OA. Short-circuit test 1 was evaluated at three-phase 500 V / 30 KA, short-circuit test 2 at 500 V / 50 KA, and short-circuit test 3 at 440 V / 65 KA.
この樹脂組成と難燃性および遮断性能評価結果を結果と表 1に示す。 過負荷試 験は成功遮断回数を短絡試験は成功遮断回数と破損の有無を示した。  Table 1 shows the results of the evaluation of the resin composition, the flame retardancy, and the barrier performance. The overload test showed the number of successful breaks and the short circuit test showed the number of successful breaks and whether there was any damage.
この結果、 難燃性は UL94が V0、 HWI指数が 4、 GWI 960。Cと、 い ずれも合格である。 また、 遮断性能は過負荷試験 1、 2、 3ともに規定遮断回数 の 12回をクリア一し、 短絡試験 1, 2も規定遮断回数の 3回をクリア一するも のの、 短絡試験 3では成功遮断回数が 2回で、 しかも筐体の一部に亀裂が発生し た。 この短絡試験 3ではアークエネルギーが大きく、 アーク風圧により欠落した 消弧部材一部がアーク場に巻き込まれることにより熱分解ガスの発生量が増大し 筐体を破壊すると共に、 3回目の短絡試験では、 消弧部材が 2回目の短絡遮断で 欠損し、 アーク電流を吹消すだけの熱分解ガスを発生することができないため遮 断不能となったものと考えられ、 この実施例 1の樹脂組成で遮断条件の厳しい高 定格な回路遮断器に適用するためには、 すなわち、 短絡試験 3をクリア一するた めには、 アークの芯となる固定接点と可動接点の法線と、 消弧部材の被アーク面 とのギャップ距離を拡大 (消弧装置の大型化) するか、 あるいは、 アーク風圧に よって欠損しないよう消弧部材の補強が必要と考えられる。 実施例 2〜 5 As a result, the flame retardancy was UL94 V0, HWI index 4, and GWI 960. C and both passed. The breaking performance of the overload tests 1, 2, and 3 cleared the specified number of breaks of 12 times, and the short-circuit tests 1 and 2 cleared the specified number of breaks of three times, but succeeded in the short-circuit test 3. The number of interruptions was two, and a part of the housing was cracked. In this short-circuit test 3, the arc energy was large and was lost due to the arc wind pressure. Part of the arc-extinguishing member is entrained in the arc field, which increases the amount of pyrolysis gas generated and destroys the housing.In the third short-circuit test, the arc-extinguishing member is broken by the second short-circuit interruption, causing an arc. It is considered that the circuit could not be cut off because it was not possible to generate the pyrolysis gas just to blow off the current.In order to apply it to a high-rated circuit breaker with severe cut-off conditions using the resin composition of Example 1, In other words, in order to clear short-circuit test 3, the gap distance between the normal line of the fixed contact and the movable contact, which are the core of the arc, and the surface to be arced of the arc-extinguishing member must be increased (the It is considered necessary to reinforce the arc extinguishing member so that it does not break due to the arc wind pressure. Examples 2 to 5
実施例 2〜 5はマトリックス樹脂のナイ口ン種類を変えたもので、 強化材ゃ難 燃剤を含まない二一ト樹脂を用いた。 マトリックス樹脂の種類の他は全て実施例 1と同様にして樹脂ペレット、 試験片などを作製し、 難燃性や遮断性能を評価し た。 試験結果を表 1に示す。  In Examples 2 to 5, the type of matrix resin was changed, and a reinforcing resin and a bite resin containing no flame retardant were used. Resin pellets, test pieces, etc. were prepared in the same manner as in Example 1 except for the type of matrix resin, and the flame retardancy and blocking performance were evaluated. Table 1 shows the test results.
ここでマトリックス樹脂は、 実施例 2がナイロン 6 (東洋紡製: T- 803)、 実施 例 3がナイロン 4 6 (DJEP製:ス夕ニール TS-300)、実施例 4でナイロン 6 T (東 洋紡製: TY-502NZ)、 実施例 5でナイロン 9 T (クラレ製) をそれそれ用いた。 この結果、 実施例 2, 3はいずれも強ィ匕材の充填してないニート樹脂のため実 施例 1と同様にアーク風により細隙部材の一部が欠損するためか、 短絡試験 3で 成功遮断回数が 2回となるものの、 他の短絡試験および過負荷試験ともに良好で ある。 また、 実施例 4, 5は樹脂中の成分に芳香族が含まれるため繰返し遮断に よる細隙部材表面の炭化のためか、 過負荷試験 3の成功遮断回数が 11 回と僅か に及ばな t、が、 他の過負荷試験や短絡試験ともに良好である。 実施例 6 ~ 9  The matrix resin used in Example 2 was nylon 6 (manufactured by Toyobo: T-803), Example 3 was nylon 46 (manufactured by DJEP: Suga Neil TS-300), and Example 6 was nylon 6 T (Toyobo). Spinning: TY-502NZ), Nylon 9T (manufactured by Kuraray) in Example 5 was used. As a result, in Examples 2 and 3, because the neat resin was not filled with the stiffener, either part of the slit member was broken by the arc wind as in Example 1 or the short circuit test 3 Although the number of successful shutdowns is two, both short-circuit tests and overload tests are good. In Examples 4 and 5, the components in the resin contained aromatics, and this was probably due to the carbonization of the surface of the slit member due to repeated blocking. However, both the overload test and the short-circuit test are good. Examples 6 to 9
実施例 6、 7は強化材としてチョップストランドのァラミ ド繊維 (帝人製:テ クノーラ) をマトリックス樹脂に対してそれそれ 5 %、 1 0 %充填したもので、 実施例 8 , 9はホウ酸アルミゥイスカー (四国化成製:アルボレックス) をそれ それ 1 0 %、 1 5 %充填したものである。 これらの樹脂ペレットは実施例 1の非 ハロゲン難燃樹脂をマトリックス樹脂として、 それそれ強化材の所定量を 2軸押 出し機のサイ ドフィーダ一より添加、 混練し作製した他は、 実施例 1とまったく 同一の条件で評価した。 試験結果を表 1に示す。 In Examples 6 and 7, the chopped strand aramide fiber (Tecnora: Tecnola) was used as a reinforcing material and the matrix resin was filled at 5% and 10%, respectively. Examples 8 and 9 were aluminum borate. Iskar (Shikoku Chemicals: Arbolex) is filled with 10% and 15% respectively. These resin pellets are the same as those in Example 1. The evaluation was performed under exactly the same conditions as in Example 1 except that a halogen flame-retardant resin was used as a matrix resin, and a predetermined amount of reinforcing material was added and kneaded from a side feeder of a twin-screw extruder. Table 1 shows the test results.
この結果、 いずれの実施例も難燃試験および遮断性能試験をクリア一した。 こ れは、 強化材として添カ卩した 1 0 %以下のァラミ ド繊維や 1 5 %以下のホウ酸ァ ルミウイスカ一は難燃性の悪化に影響を及ぼすことなく、 かつ消弧部材の耐衝撃 性が向上されたものと考えられる。 比較例 1〜 2  As a result, all Examples passed the flame retardancy test and the breaking performance test. This is because 10% or less of aramide fibers or 15% or less of boric acid whiskers, which are added as reinforcing materials, do not affect the deterioration of flame retardancy and the impact resistance of arc extinguishing members It is considered that the property was improved. Comparative Examples 1-2
比較例 1、 比較例 2は難燃剤として、 ハロゲン系の臭化ポリスチレン (B r - P S ) を用いたもので、 比較例 1はマトリックス樹脂ナイロン 6 6 (東洋紡製: Τ-662) に、 臭素化ポリスチレン (東ソ一製/フレームカット 210R ) を 2 5 % および難燃助剤として三酸化アンチモン(S b203) 1 0 %を充填したもので、 比 較例 2は比較例 1にガラス繊維を 3 0 %充填したものである。 Comparative Examples 1 and 2 used halogen-based brominated polystyrene (Br-PS) as a flame retardant. Comparative Example 1 used matrix resin nylon 66 (Toyobo: Τ-662) and bromine. polystyrene which was filled with 1 0% of antimony trioxide (S b 2 0 3) and (Tosoh one manufactured / frame cut 210R) as 25% and the flame retardant aid, the ratio Comparative examples 2 Comparative example 1 It is 30% filled with glass fiber.
これらハロゲン系の臭化ポリスチレンの難燃効果は良好で、 ガラス繊維を充填 した比較例 2でも U L 94 および GW Iも合格で、 また両比較例ともに HW Iは シァノメラミンの指数 4〜 3に比べ指数 2と極めて良い。 しかし、 遮断性能は比 較例 1で過負荷試験、 短絡試験ともに度の試験条件でもクリア一できるものがな いほど悪く、 また比較例 2では短絡遮断性能は短絡試験 3が、 過負荷遮断性能は 全ての試験条件で要求成功遮断回数の半数回以下で導通不能となる。 これは、 過 負荷試験ではアークに曝されて発生するガスに臭素が含まれるため接点金属を腐 食し導通不能を引き起こし、 また、 短絡試験では消弧ガス中に臭素イオンが存在 するため消弧時間が長くなり、 消弧装置のグリツドを消耗させるなどの現象によ り遮断性能を悪化させたものと想定される。
Figure imgf000014_0001
The flame retardant effect of these halogen-based brominated polystyrenes was good, and UL 94 and GW I were also passed in Comparative Example 2 filled with glass fiber.In both Comparative Examples, HW I was an index higher than that of Cyanomelamin 4 to 3. Very good with 2. However, the breaking performance is so bad that there is no one that can be cleared under both the overload test and the short-circuit test in Comparative Example 1 under the same test conditions.In Comparative Example 2, the short-circuit test 3 shows that the short-circuit test 3 Becomes incapable of conducting under less than half of the number of successful request interruptions under all test conditions. This is because in the overload test, the gas generated by exposure to the arc contains bromine, which corrodes the contact metal and causes conduction failure.In the short-circuit test, bromine ions are present in the arc-extinguishing gas, and the arc extinction time It is assumed that the breaking performance became longer and the breaking performance deteriorated due to phenomena such as depletion of the grid of the arc extinguishing device.
Figure imgf000014_0001
実施例 1 0 ~ 1 4 Examples 10 to 14
実施例 1 0〜 1 4は、 図 5の態様の消弧部材を試験した例である。 実施例 1 0 〜1 3は図 5 aに示すように、 被アーク層 6 a— 1として実施例 1のシァノメラ ミンを添加したナイロン 6 6を、 バックアップ層 6 a— 2は表 2に示すような無 機ィ匕合物やガラス繊維で強化されたハロゲン難燃性樹脂を積層成形した単純二層 構造の成形体である。 ここで、 まず 0.8画厚さの被アーク層を射出成形し、 つい でバックアップ層を全体の肉厚が 1.6腦になるように射出成形する二色成形法で 消弧部材を作製した。 また、 実施例 1 4は図 5 bに示すようにバヅクアツプ層樹 脂 6 a— 2の一部が被アーク層 6 a— 1の表面に貫通するよう部分貫通二層積層 構造とし、 被アーク層とバックアップ層の接合力を強固にした。 すなわち、 パッ クアップ層の一部が、 非ハロゲン難燃性樹脂からなる被アーク層に断面が櫛状に 貫通成形したものである。  Examples 10 to 14 are examples in which the arc extinguishing member of the embodiment of FIG. 5 was tested. In Examples 10 to 13, as shown in FIG. 5a, the nylon 66 to which the cyanomeramine was added as in Example 1 was used as the arc-receiving layer 6a-1, and the backup layer 6a-2 was as shown in Table 2. It is a molded article having a simple two-layer structure obtained by laminating and molding a non-flammable compound or a halogen flame-retardant resin reinforced with glass fiber. Here, an arc-extinguishing member was produced by a two-color molding method in which an arc-receiving layer having a thickness of 0.8 pixels was first injection-molded, and then a backup layer was injection-molded so that the total thickness became 1.6 cells. Further, in Example 14, as shown in FIG. 5B, a partially penetrating two-layer laminated structure was formed such that a part of the backup layer resin 6a-2 penetrated the surface of the arc-receiving layer 6a-1. And the bonding strength of the backup layer are strengthened. That is, a part of the pack-up layer is formed by penetrating the arc-receiving layer made of a non-halogen flame-retardant resin in a comb-like cross section.
それそれの実施例 1 0〜 1 4で用いたバックアップ層樹脂は、 11 9 4は¥ 0 で、 HW I、 GW Iともに規格をクリア一する市販の難燃樹脂で、 実施例 1 0は ガラス繊維 2 5 %のブロム難燃 P A 6 6 (デュポン製:ザィテル F R50) を、 実 施例 1 1はタルク 3 0 %充填ブロム難燃 P A 6 6 (デュポン製:ザィテル F R 70 M30) を、 実施例 1 2はガラス繊維 2 0 %のブロム難燃 P A 4 6 (DJEP 製:ス 夕ニール TS250F40) を、 実施例 1 3はガラス繊維 4 5 %のブロム難燃 P A 4 6 The backup layer resin used in Examples 10 to 14 of each was 1194, which is a commercially available flame-retardant resin that meets the standards for both HW I and GW I for ¥ 0, and Example 10 is glass. 25% Fiber Brom Flame Retardant PA66 (Dupont: Zytel F R50), Example 11 1 Talcum 30% Filled Brom Flame Retardant PA66 (Dupont: Zytel FR70 M30) Example 1 2 is a brominated flame retardant PA 46 made of 20% glass fiber (manufactured by DJEP: SUNEIL TS250F40), and Example 13 is a brominated flame retardant PA 46 made of 45% glass fiber.
(DJEP製:ス夕ニール TS250F 90) を、 実施例 1 4は実施例 1 0と同じガラス繊 維 2 5 %のブロム難燃 P A 6 6 (デュポン製:ザィテル F R50) を用いた。 In Example 14, the same glass fiber as in Example 10 was used, and bromine flame retardant PA 66 (DuPont: Zitel F R50) of 25% was used in Example 14.
表 2に実施例 1 0〜1 4の遮断性能の評価結果を示す。 この結果、 被アーク層 は、 短絡試験におけるアーク風による欠損も無く、 かつ、 バックアップ層樹脂の 過負荷試験における炭化層の形成が少ないためか、 短絡試験および過負荷試験の いずれの試験も規定の成功遮断回数を満足し良好な遮断性能が得られた。  Table 2 shows the evaluation results of the breaking performance of Examples 10 to 14. As a result, both the short-circuit test and the overload test were stipulated because the layer to be arced did not suffer any breakage due to the arc wind in the short-circuit test and the formation of the carbonized layer in the overload test of the backup layer resin was small. The number of successful cutoffs was satisfied and good cutoff performance was obtained.
ここで、 実施例 1 4は被アーク層の一部表面にバックアップ層樹脂が露出して いるため、 この露出部樹脂の炭化による過負荷遮断性能の悪化が懸念されたが、 露出部樹脂の炭化層が点在するのみで被アーク層樹脂部の沿面抵抗は保たれ、 消 弧部材の沿面を通して固定接触子への導通パスが形成されないためか、 いずれの 過負荷試験条件でも良好な結果が得られた。 ここでは、 被アーク層とバックアツプ層の接合に量産性の観点より二色成形法 を用いたが、 特にこの成形法にこだわるものではなく必要に応じ接着剤などで接 合しても一向に構わない。 Here, in Example 14, since the backup layer resin was exposed on a part of the surface of the layer to be arced, there was a concern that the overload breaking performance would deteriorate due to the carbonization of the exposed portion resin. Good results were obtained under any of the overload test conditions, probably because the creep resistance of the resin part of the arc-receiving layer was maintained because only the layers were scattered, and a conduction path to the fixed contact was not formed through the creepage of the arc-extinguishing member. Was done. Here, the two-color molding method was used for joining the arc-receiving layer and the back-up layer from the viewpoint of mass productivity, but it is not limited to this molding method. Absent.
消弧用絶縁材料成形体 過負荷遮断性能 短絡遮断性能 パックアップ層榭 過負荷試験 1過負荷試験 2過負荷試験 3 短絡試験 1 短絡試験 2 短絡試験 3 実施例番号 被アーク層樹脂 積層構造 Molded insulating material for arc extinction Overload breaking performance Short-circuit breaking performance Pack-up layer 過 Overload test 1 Overload test 2 Overload test 3 Short-circuit test 1 Short-circuit test 2 Short-circuit test 3 Example No.
脂 成功回数 成功回数 成功回数 遮断 破損 遮断/破損 遮断/破損 Fat Successes Successes Successes Breaks Breaks Breaks / breaks Breaks / breaks
PA66/Br PA66 / Br
実施例 10 ΡΑ66/シァノメラミン 12 Example 10 # 66 / cyan melamine 12
(ガラス繊維 12 3/なし 3Zなし 3 なし  (Glass fiber 12 3 / None 3Z No 3 No
2596) 単純二層 12  2596) Simple double layer 12
PA66/Br  PA66 / Br
実施例 1 1 ΡΑ66/シァノメラミン 12 12 3 Example 1 1 ΡΑ66 / cyan melamine 12 12 3
(タルク 30%) 単純二層 12 なし 3ノなし 3/なし (Talc 30%) Simple double layer 12 None 3 No 3 / None
PA46/Br PA46 / Br
実施例 1 2 ΡΑ66/シァノメラミン (ガラス繊維 12 12 12 3/ Example 1 2 ΡΑ66 / cyan melamine (glass fiber 12 12 12 3 /
20%) 単純二層 なし ■3ノなし 3/なし 20%) Simple two-layer None 3No None 3 / None
PA46/Br PA46 / Br
実施例 1 3 ΡΑ66/シァノメラミン 12 3 なし 3 なし 3 なし Example 1 3 ΡΑ66 / cyan melamine 12 3 None 3 None 3 None
(ガラス繊維 45%) 単純二層 12 12  (45% glass fiber) Simple double layer 12 12
実施例 1 4 ΡΑ66/シァノメラミン PA66/Br Example 14 4 66 / cyan melamine PA66 / Br
(ガラス繊維 25W) 部分貫通二層 12 12 12 3ノなし 3ノなし 3/なし (Glass fiber 25W) Partially penetrating two layers 12 12 12 3 No 3 No 3 3 / None
本発明の効果を以下に記す。 The effects of the present invention are described below.
1 ) 本発明に係わる第 1の回路遮断器によれば、 導体に固定接点が固着され た固定接触子と、 前記固定接点と接離する可動接点が固着された可動接触子と、 この可動接触子を回動させる開閉機構部と、 前記固定接点と可動接点とが接離す る時に発生するアークを消弧する消弧装置と、 これらを収納する筐体とを備えた 回路遮断器において、 前記消弧装置には、 前記固定接触子の全面を覆うように消 弧部材が設けられ、 かつ前記消弧部材が、 非ハロゲン難燃性樹脂を主成分とする 消弧用絶縁材料成形体を含むことによって、 電極接点の腐食や汚染による導通不 良、 あるいは機械強度低下や絶縁悪化を抑制することにより難燃性確保するとと もに過負荷遮断や短絡遮断などの遮断性能を向上することができる。  1) According to the first circuit breaker of the present invention, a fixed contact having a fixed contact fixed to a conductor, a movable contact having a movable contact fixed to and separated from the fixed contact, and a movable contact A circuit breaker comprising: an opening / closing mechanism for rotating a child; an arc extinguishing device for extinguishing an arc generated when the fixed contact and the movable contact come and go; and a housing for accommodating them. The arc-extinguishing device is provided with an arc-extinguishing member so as to cover the entire surface of the fixed contact, and the arc-extinguishing member includes an arc-extinguishing insulating material molded body mainly containing a non-halogen flame-retardant resin. As a result, it is possible to secure the flame retardancy by suppressing poor conduction due to corrosion and contamination of the electrode contacts, or to reduce the mechanical strength and insulation deterioration, and to improve the breaking performance such as overload breaking and short-circuit breaking. .
2 ) 本発明に係わる第 2の回路遮断器によれば、 消弧用絶縁材料成形体に、 難燃剤としてトリアジン系有機化合物が含まれていることによって、 難燃性確保 をするとともに消弧ガスに接点など金属腐食性の強いリン化合物や接点不良の原 因となる珪素や金属酸化物が含有されないため過負荷遮断性能をさらに向上する ことができ消弧装置の小型化ができる。  2) According to the second circuit breaker of the present invention, since the arc-extinguishing insulating material molded article contains a triazine-based organic compound as a flame retardant, the flame-retardant gas can be ensured and the arc-extinguishing gas can be suppressed. In addition, since it does not contain a phosphorus compound having high metal corrosion, such as a contact, or silicon or a metal oxide that causes a contact failure, overload breaking performance can be further improved, and the arc extinguishing device can be downsized.
3 ) 本発明に係わる第 3の回路遮断器によれば、 消弧用絶縁材料成形体のマ トリックス樹脂が、 ポリアミ ドであることによって、 消弧用絶縁材料成形体表面 の炭化による絶縁悪化が制御され過負荷遮断性能をさらに向上することができる。  3) According to the third circuit breaker of the present invention, since the matrix resin of the arc-extinguishing insulating material molded body is polyamide, deterioration of insulation due to carbonization of the surface of the arc-extinguishing insulating material molded body is reduced. Controlled overload rejection performance can be further improved.
4 ) 本発明に係わる第 4の回路遮断器によれば、 消弧用絶縁材料成形体のマ トリックス樹脂であるポリアミ ドが、非芳香族系ポリアミ ドであることによって、 消弧用絶縁材料成形体表面の炭化による絶縁悪化が一層制御され過負荷遮断性能 をさらに向上することができ消弧装置の小型化ができる。  4) According to the fourth circuit breaker of the present invention, the arc-extinguishing insulating material molded product is formed by using a non-aromatic polyamide as the matrix resin as the matrix resin of the arc-extinguishing insulating material molded product. Deterioration of insulation due to carbonization of the body surface is further controlled, and the overload rejection performance can be further improved, and the arc extinguishing device can be downsized.
5 ) 本発明に係わる第 5の回路遮断器によれば、 非ハロゲン難燃性樹脂が、 前記非ハロゲン難燃性樹脂に対して 1 0重量%以下の有機繊維、 および前記非ハ ロゲン難燃性樹脂に対して 1 5重量%以下のセラミツクウイス力一からなる群か ら選択された 1種以上の充填材を含有していることにより、 難燃性を損なうこと なく消弧部材の耐衝撃性が向上し短絡遮断性能を向上することができる。  5) According to the fifth circuit breaker of the present invention, the non-halogen flame-retardant resin contains 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and the non-halogen flame retardant. Impact resistance of the arc-extinguishing member without impairing flame resistance by containing at least one filler selected from the group consisting of 15% by weight or less of ceramic wiping force based on the conductive resin And the short circuit breaking performance can be improved.
6 ) 本発明に係わる第 6の回路遮断器によれば、 消弧部材が、 アークに曝さ れる被アーク層と、 前記被アーク層を支持するバックアップ層との積層体からな り、 前記被アーク層が、 非ハロゲン難燃性樹脂を主成分とする消弧用絶縁材料成 形体からなり、 かつ前記パックアップ層が、 ガラス繊維、 無機鉱物およびセラミ ック繊維からなる群から選択された 1種以上を含有する難燃性樹脂からなること により、 難燃性を確保するとともに、 消弧部材の耐衝撃性が向上し短絡遮断性能 をさらに向上することができる。 6) According to the sixth circuit breaker of the present invention, the arc-extinguishing member is formed of a laminate of an arc-receiving layer exposed to an arc and a backup layer supporting the arc-receiving layer. The arc-receiving layer is formed of an arc-extinguishing insulating material formed mainly of a non-halogen flame-retardant resin, and the back-up layer is formed of a group consisting of glass fibers, inorganic minerals, and ceramic fibers. By using a flame-retardant resin containing at least one selected material, flame retardancy can be ensured, and the impact resistance of the arc-extinguishing member can be improved, thereby further improving short-circuit breaking performance.
7 ) 本発明に係わる第 7の回路遮断器によれば、 バックアップ層の一部が、 被アーク層を複数箇所貫通していることにより、 消弧部材の被アーク層とバック ァップ層の接合が強固となり短絡遮断性能をさらに向上する。  7) According to the seventh circuit breaker of the present invention, since a part of the backup layer penetrates the arc-receiving layer at a plurality of locations, the joining of the arc-receiving layer and the backup layer of the arc-extinguishing member is achieved. It becomes strong and further improves short-circuit breaking performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . 導体に固定接点が固着された固定接触子と、 前記固定接点と接離する可動 接点が固着された可動接触子と、 この可動接触子を回動させる開閉機構部と、 前 記固定接点と可動接点とが接離する時に発生するアークを消弧する消弧装置と、 これらを収納する筐体とを備えた回路遮断器において、 前記消弧装置には、 前記 固定接触子の全面を覆うように消弧部材が設けられ、 かつ前記消弧部材が、 非ハ ロゲン難燃性樹脂を主成分とする消弧用絶縁材料成形体を含むことを特徴とする 回路遮断器。 1. A fixed contact in which a fixed contact is fixed to a conductor; a movable contact in which a movable contact that comes into contact with and separates from the fixed contact is fixed; an opening / closing mechanism for rotating the movable contact; A circuit breaker having an arc extinguishing device for extinguishing an arc generated when the movable contact and the movable contact are separated from each other, and a housing accommodating them. An arc extinguishing member is provided so as to cover the arc extinguishing member, and the arc extinguishing member includes an arc extinguishing insulating material formed mainly of a non-halogen flame-retardant resin.
2 . 消弧用絶縁材料成形体に、 難燃剤としてトリアジン系有機ィ匕合物が含まれ ていることを特徴とする請求の範囲第 1項記載の回路遮断器。  2. The circuit breaker according to claim 1, wherein the arc-extinguishing insulating material molded product contains a triazine-based organic compound as a flame retardant.
3 . 消弧用絶縁材料成形体のマトリックス樹脂が、 ポリアミ ドであることを特 徴とする請求の範囲第 1項記載の回路遮断器。 3. The circuit breaker according to claim 1, wherein the matrix resin of the arc-extinguishing insulating material molded body is a polyamide.
4 . 消弧用絶縁材料成形体のマトリックス樹脂であるポリァミドが、 非芳香族 系ポリアミ ドであることを特徴とする請求の範囲第 3項記載の回路遮断器。 4. The circuit breaker according to claim 3, wherein the polyamide, which is a matrix resin of the arc-extinguishing insulating material molded body, is a non-aromatic polyamide.
5 . 非ハロゲン難燃性樹脂が、 前記非ハロゲン難燃性樹脂に対して 1 0重量% 以下の有機繊維、 および前記非ハロゲン難燃性樹脂に対して 1 5重量%以下のセ ラミツクウイスカーからなる群から選択された 1種以上の充填材を含有している ことを特徴とする請求の範囲第 1項記載の回路遮断器。 5. The non-halogen flame-retardant resin contains 10% by weight or less of organic fibers based on the non-halogen flame-retardant resin, and the ceramic whisker contains 15% by weight or less based on the non-halogen flame-retardant resin. 2. The circuit breaker according to claim 1, wherein the circuit breaker contains one or more fillers selected from the group consisting of:
6 . 消弧部材が、 アークに曝される被アーク層と、 前記被アーク層を支持する バックアップ層との積層体からなり、 前記被アーク層が、 非ハロゲン難燃性樹脂 を主成分とする消弧用絶縁材料成形体からなり、 かつ前記バックアップ層が、 ガ ラス繊維、 無機鉱物およびセラミック繊維からなる群から選択された 1種以上を 含有する難燃性樹脂からなることを特徴とする請求の範囲第 1項記載の回路遮断 器。  6. The arc-extinguishing member is composed of a laminate of an arc-exposed layer exposed to an arc and a backup layer supporting the arc-exposed layer, wherein the arc-exposed layer is mainly composed of a non-halogen flame-retardant resin. An arc-extinguishing insulating material molded body, and the backup layer is made of a flame-retardant resin containing at least one selected from the group consisting of glass fibers, inorganic minerals, and ceramic fibers. The circuit breaker according to item 1 of the above.
7 . バックアップ層の一部が、 被アーク層を複数箇所貫通していることを特徴 とする請求の範囲第 6項記載の回路遮断器。  7. The circuit breaker according to claim 6, wherein a part of the backup layer penetrates a plurality of arc-receiving layers.
PCT/JP2001/002486 2001-03-27 2001-03-27 Circuit breaker WO2002078032A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2001/002486 WO2002078032A1 (en) 2001-03-27 2001-03-27 Circuit breaker
CN01808805.8A CN1255837C (en) 2001-03-27 2001-03-27 Circuit breaker
JP2002575975A JPWO2002078032A1 (en) 2001-03-27 2001-03-27 Circuit breaker
EP01915844A EP1313121A1 (en) 2001-03-27 2001-03-27 Circuit breaker
TW090107461A TW563151B (en) 2001-03-27 2001-03-29 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002486 WO2002078032A1 (en) 2001-03-27 2001-03-27 Circuit breaker

Publications (1)

Publication Number Publication Date
WO2002078032A1 true WO2002078032A1 (en) 2002-10-03

Family

ID=11737165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002486 WO2002078032A1 (en) 2001-03-27 2001-03-27 Circuit breaker

Country Status (5)

Country Link
EP (1) EP1313121A1 (en)
JP (1) JPWO2002078032A1 (en)
CN (1) CN1255837C (en)
TW (1) TW563151B (en)
WO (1) WO2002078032A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070780A (en) * 2007-09-18 2009-04-02 San'eisha Mfg Co Ltd Insulating barrier of power switch
JP2013528687A (en) * 2010-06-18 2013-07-11 ディーエスエム アイピー アセッツ ビー.ブイ. Electric circuit breaker
WO2015029400A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 Contact apparatus
JP2015049937A (en) * 2013-08-29 2015-03-16 パナソニックIpマネジメント株式会社 Contactor
JP2017204480A (en) * 2017-07-14 2017-11-16 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay
JP2021520032A (en) * 2018-06-26 2021-08-12 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Arc extinguishing chamber base of circuit breaker for wiring
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266794A1 (en) * 2006-03-29 2009-10-29 Heydendorf Juergen Arc Quenching Device With an Arc Quenching Material for a Circuit Breaker
DE102006015305A1 (en) * 2006-03-29 2007-10-04 Siemens Ag Electric arc discharge device for electric switch, has discharge plates arranged parallel to each other, and part made of gaseous plastic material, overlapping two plates and extending parallel to arc running direction
WO2008087136A1 (en) * 2007-01-18 2008-07-24 Siemens Aktiengesellschaft Quenching element, quenching unit, quenching and plugging unit, and switching device
CN102108204B (en) * 2009-12-24 2013-03-20 合肥杰事杰新材料股份有限公司 Plastic case material for breaker and preparation method thereof
EP2393093B1 (en) * 2010-06-01 2015-09-16 ABB Technology AG Arc chute, circuit breaker for a medium voltage circuit, and use of a polymer plate
CN109166774B (en) * 2018-10-27 2023-09-05 上图电气有限公司 Plastic case circuit breaker
US20220262540A1 (en) * 2021-02-17 2022-08-18 Eaton Intelligent Power Limited Thermoplastic based arc resistant material for electrical application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302535A (en) * 1994-03-10 1995-11-14 Mitsubishi Electric Corp Insulating material composition for extinguishing arc and insulating material formed body for extinguishing arc and arc extinguishing apparatus using them
JPH11335534A (en) * 1998-05-25 1999-12-07 Toray Ind Inc Resin composition for housing and housing made therefrom
JP2000119494A (en) * 1998-10-15 2000-04-25 Kanegafuchi Chem Ind Co Ltd Reinforced flame-retardant polyester resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129263A (en) * 1998-10-27 2000-05-09 Rin Kagaku Kogyo Kk Low-smoke-generation flame retardant composition and low-smoke-generation flame-retardant resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302535A (en) * 1994-03-10 1995-11-14 Mitsubishi Electric Corp Insulating material composition for extinguishing arc and insulating material formed body for extinguishing arc and arc extinguishing apparatus using them
JPH11335534A (en) * 1998-05-25 1999-12-07 Toray Ind Inc Resin composition for housing and housing made therefrom
JP2000119494A (en) * 1998-10-15 2000-04-25 Kanegafuchi Chem Ind Co Ltd Reinforced flame-retardant polyester resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070780A (en) * 2007-09-18 2009-04-02 San'eisha Mfg Co Ltd Insulating barrier of power switch
JP2013528687A (en) * 2010-06-18 2013-07-11 ディーエスエム アイピー アセッツ ビー.ブイ. Electric circuit breaker
WO2015029400A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 Contact apparatus
JP2015049937A (en) * 2013-08-29 2015-03-16 パナソニックIpマネジメント株式会社 Contactor
US10102991B2 (en) 2013-08-29 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Contact apparatus
JP2017204480A (en) * 2017-07-14 2017-11-16 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay
JP2021520032A (en) * 2018-06-26 2021-08-12 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Arc extinguishing chamber base of circuit breaker for wiring
JP6999837B2 (en) 2018-06-26 2022-01-19 エルエス、エレクトリック、カンパニー、リミテッド Arc extinguishing chamber base of molded case circuit breaker
US11764019B2 (en) 2018-06-26 2023-09-19 Ls Electric Co., Ltd. Arc extinguishing chamber base of molded case circuit breaker
JP2022532577A (en) * 2019-07-10 2022-07-15 中国南方電网有限責任公司超高圧輸電公司検修試験中心 How to evaluate the overall performance of DC high-speed switches
JP7201956B2 (en) 2019-07-10 2023-01-11 中国南方電网有限責任公司超高圧輸電公司検修試験中心 A Method for Evaluating the Overall Performance of DC High-Speed Switches

Also Published As

Publication number Publication date
CN1426592A (en) 2003-06-25
JPWO2002078032A1 (en) 2004-07-15
TW563151B (en) 2003-11-21
CN1255837C (en) 2006-05-10
EP1313121A1 (en) 2003-05-21

Similar Documents

Publication Publication Date Title
WO2002078032A1 (en) Circuit breaker
EP2133388A2 (en) Metal-hydrate containing arc-extinguishing compositions and methods
US20090213518A1 (en) Voltage surge protection device comprising selective disconnection means
US4950852A (en) Electric circuit breaker arc chute composition
JP5879636B2 (en) Electric circuit breaker
US6710699B2 (en) Fusible link
CA2789187C (en) Limiter including a number of gas channels and electrical switching apparatus employing the same
JP4753263B2 (en) Circuit breaker
EP0983600A1 (en) Phase barrier for use in a multiphase circuit breaker
JP5286537B2 (en) Insulation molding for arc extinction and circuit breaker using the same
KR20180087344A (en) Molded case circuit breaker base
JP2007194058A (en) Circuit breaker
JP2000208022A (en) Circuit breaker
JP4177255B2 (en) Circuit breaker
KR20030005406A (en) Circuit breaker
WO2022134743A1 (en) Switch
CN117321717A (en) Electrical protection device and system with integrated shut-off module
JP5741148B2 (en) Insulation material molded body for arc extinguishing, and circuit breaker using the same
Keim Developments in Pyrotechnic-Assisted Fuses [Happenings]
JP2001176372A (en) Circuit breaker
JP2003162949A (en) Circuit breaker
JP6407131B2 (en) Switchgear
JP4175400B2 (en) Circuit breaker
KR200404802Y1 (en) High current limited fuse that apply soluble conductor of dual structure
JP2012216494A (en) Arc-extinguishing insulating material molding, and circuit breaker using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 575975

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018088058

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027016064

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001915844

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027016064

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001915844

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001915844

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027016064

Country of ref document: KR