WO2002077714A1 - Self-flame-retardant resist material and insulating material - Google Patents

Self-flame-retardant resist material and insulating material Download PDF

Info

Publication number
WO2002077714A1
WO2002077714A1 PCT/JP2002/002633 JP0202633W WO02077714A1 WO 2002077714 A1 WO2002077714 A1 WO 2002077714A1 JP 0202633 W JP0202633 W JP 0202633W WO 02077714 A1 WO02077714 A1 WO 02077714A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polysilane
organic solvent
solder resist
resist film
Prior art date
Application number
PCT/JP2002/002633
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tsushima
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Publication of WO2002077714A1 publication Critical patent/WO2002077714A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a self-flammable resist material and an insulating material that can be used for forming a solder resist film on a printed wiring board, and a method for forming a printed wiring board or an insulating film using the same.
  • solder resist is used to apply solder only to places where the pattern is not formed, prevent solder from sticking to the place where the pattern is formed, and protect the circuit where the pattern is formed. belongs to.
  • Halogen-based flame retardants are used in solder resists as a measure to make electrical components flame-retardant. Since this flame retardant contains halogen, it is highly likely to be a causative substance of dioxin.
  • the conventional solder resist contains epoxy resin as a main component, it contains bisphenol A, a causative substance of environmental hormones, and may be subject to use restrictions in the future.
  • the use of heat-resistant resin such as polyimide as solder resist is being studied. However, in the case of solder resist, crosstalk between conductors poses a problem, and a material having a low dielectric constant is required. In this respect, polyimide is not a satisfactory material.
  • An object of the present invention is to provide a resist material and an insulating material having a low dielectric constant and self-flammability.
  • the self-flame retardant resist material of the present invention comprises: (A) a polysilane having a weight average molecular weight of 10,000 or more soluble in an organic solvent; (B) a photoradical generator and an oxidizing agent; A silicone compound having a structure represented by the formula:
  • R 1 R 2 , R 3 , R 4 , R 5 and R 6 each have a carbon number of from 1 to 10 and may be substituted with a halogen or daricidyl group, an aliphatic hydrocarbon group, A group selected from the group consisting of an aromatic hydrocarbon group which may be substituted with a halogen having 6 to 12 carbon atoms and an alkoxy group having 1 to 8 carbon atoms, which may be the same or different from each other However, at least two of the above alkoxy groups are contained in one molecule, and m and n are integers and satisfy m + n ⁇ l.)
  • (D) It is characterized by comprising a photosensitive resin composition containing an organic solvent.
  • the insulating material of the present invention is characterized by comprising the above-mentioned photosensitive resin composition, like the self-flame-retardant resist material of the present invention.
  • the Si—Si bond present in the polysilane is broken, and Si—OH (silanol group) is generated. Since the silanol group is weakly acidic, it can be dissolved in an alkaline aqueous solution or the like, so that the exposed portion can be removed and developed. Therefore, it can be used as a resist material.
  • the alkoxy group in the silicone compound contained in the thin film is decomposed to generate a silanol group, and the silanol group reacts with the polysilane to crosslink polycyan. Can be cured. Therefore, a thin film having heat resistance can be obtained.
  • a method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board having a solder resist film formed on a surface thereof.
  • the resist material of the present invention is applied on the printed wiring board to form a solder resist film.
  • the method includes a step of forming, a step of selectively exposing and developing the solder resist film to expose a wiring portion to which the solder is attached, and a step of heating and curing the developed solder resist film.
  • the method for forming an insulating film of the present invention is characterized in that the insulating material of the present invention is applied on a substrate, dried, and then heated and cured.
  • the photosensitive resin composition used as the resist material and the insulating material in the present invention is a polysilane having a weight average molecular weight of 100,000 or more soluble in an organic solvent, a photoradical generator, an oxidizing agent, a silicone compound, and an organic solvent. Is included. Hereinafter, these will be described.
  • Examples of the polysilane used in the present invention include a network type and a linear type. Considering the mechanical strength of the photosensitive material, a network-like polysilane is preferable. Network-like and chain-like are distinguished by the bonding state of Si atoms contained in polysilane.
  • the network-like polysilane is a polysilane containing Si atoms in which the number (the number of bonds) bonded to adjacent Si atoms is 3 or 4. On the other hand, in a linear polysilane, the number of Si atoms bonded to adjacent Si atoms is two.
  • the Si atom present in polysilane having a bond number of 3 or less is considered to be a hydrocarbon group, an alkoxy group or a hydrogen atom in addition to the Si atom.
  • a hydrocarbon group an aliphatic hydrocarbon group having 1 to 10 carbon atoms and optionally substituted with halogen, and an aromatic hydrocarbon group having 6 to 14 carbon atoms are preferable.
  • aliphatic hydrocarbon group examples include a linear group such as a methyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a trifluoropropyl group and a nonafluorohexyl group;
  • aromatic hydrocarbon group examples include a phenyl group, a p-tolyl group, a biphenyl group and an anthracyl group.
  • alkoxy group examples include those having 1 to 8 carbon atoms.
  • Specific examples include a methoxy group, an ethoxy group, a phenoxy group, and an octyloxy group.
  • a methyl group and a phenyl group are particularly preferable in view of ease of synthesis.
  • the number of Si atoms having 3 or 4 bonds with adjacent Si atoms should be 2 to 50% of the total number of Si atoms in the network-like polysilane. Is preferred. This value can be determined by measuring the nuclear magnetic resonance spectrum of silicon.
  • the polysilane in the present specification includes a mixture of a network-like polysilane and an i: chain-like polysilane.
  • the content of the above s i atoms is calculated by the average of the network-like polysilane and the linear polysilane.
  • the polysilane used in the present invention is polycondensed by heating a halogenated silane compound to 80 ° C or higher in an organic solvent such as n-decane or toluene in the presence of an alkali metal such as sodium. It can be produced by a reaction.
  • the network-like polysilane is composed of, for example, an organotrihalosilane compound, a tetrahalosilane compound, and a diorganodihalosilane compound.
  • 0 / halosilane mixture is less than 0 can be obtained by polycondensation by heating.
  • the organotrihalosilane compound is a Si atom source having 3 bonds with adjacent Si atoms
  • the tetrahalosilane compound is 4 bonds with adjacent Si atoms. It becomes a Si atom source.
  • the structure of the network can be confirmed by measuring the ultraviolet absorption spectrum or the nuclear magnetic resonance spectrum of silicon.
  • the linear polysilane is subjected to the same reaction as that of the above-mentioned network-type polysilane except that a plurality or a single diorganodichlorosilane is used. Can be manufactured more.
  • the halogen atoms contained in each of the organotrihalosilane compound, the tetrahalosilane compound, and the diorganodihalosilane compound used as the raw material for the polysilane are preferably chlorine atoms.
  • Examples of the substituent other than the halogen atom contained in the organotrihalosilane compound and the diorganodihalosilane compound include the above-mentioned hydrocarbon group, alkoxy group and hydrogen atom.
  • These network-like and straight-chain polysilanes are not particularly limited as long as they are soluble in an organic solvent and have a weight-average molecular weight of 1000 or more.
  • the polysilane used in the present invention is soluble in an evaporable organic solvent.
  • organic solvents include hydrocarbons having 5 to 12 carbon atoms, halogenated hydrocarbons, and ethers.
  • hydrocarbons examples include pentane, hexane, heptane, cyclohexane, n-decane, n-dodecane, benzene, toluene, xylene, methoxybenzene, and the like.
  • halogenated hydrocarbons include carbon tetrachloride, chloroform, 1,2-dichloroethane, dichloromethane, and cyclobenzene.
  • ethers examples include dimethyl ether, dibutynoleatenole, and tetrahide-furan.
  • the polysilane used in the present invention has a weight average molecular weight of 100,000 or more. If the weight average molecular weight is less than 1000, the film properties such as chemical resistance and heat resistance may be insufficient.
  • the preferred weight average molecular weight is from 1,000 to 500,000, and more preferably from 1500 to 300,000.
  • the photo-radical generator used in the present invention is not particularly limited as long as it is a compound that generates halogen radicals by light, and 2,4,6-tris (trihalomethyl) -11,3,5-triazine and its 2- Compound substituted at the 2- or 4-position, phthalimid trihalomethanesulfonate and a compound having a substituent on its benzene ring, naphthalimid trihalomethanesulfonate and a compound having a substituent on the benzene ring And the like.
  • the substituents of these compounds are an aliphatic or aromatic hydrocarbon group which may have a substituent.
  • the oxidizing agent used in the present invention is not particularly limited as long as it is a compound serving as an oxygen supply source, and examples thereof include peroxides, amine oxides, and phosphine oxides.
  • a combination of a tricyclic triazine compound as the photoradical generating agent and a peroxide as the oxidizing agent is particularly preferable.
  • the photo-radical generator is added for the purpose of efficiently breaking the Si-Si bond by halogen radicals when the polysilane is decomposed by light irradiation.
  • the oxidizing agent is added so that oxygen is easily introduced into the Si bond after the cleavage.
  • a coumarin-based, cyanine-based, or merocyanine-based soluble dye may be added in order to increase the generation of halogen radicals by the photoexcitation of the dye. Further, by adding a soluble dye, the sensitivity of polysilane to light can be improved.
  • silicone compound used in the present invention a silicone compound having a structure represented by the following general formula is preferably used.
  • RR 2 , RR 4 , 1 ⁇ 5 and 1 ⁇ 6 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms, which may be substituted with a halogen or glycidyl group, and 6 to 1 carbon atoms.
  • 2 is a group selected from the group consisting of an aromatic hydrocarbon group optionally substituted by o, and an alkoxy group having 1 to 8 carbon atoms, and may be the same or different from each other;
  • One molecule contains at least two of the above alkoxy groups, where m and n are integers and satisfy m + n ⁇ l.
  • examples thereof include linear ones such as a propyl group, and alicyclic ones such as a cyclohexyl group and a methylcyclohexyl group.
  • specific examples of the aromatic hydrocarbon group include a phenyl group, a p-tolyl group, a biphenyl group and the like.
  • alkoxy group include a methoxy group, an ethoxy group, a phenoxy group, an octyloxy group, a ter-butoxy group, and the like.
  • R ′ to 6 and the values of m and n are not particularly important, and are not particularly limited as long as they are compatible with polysilane and an organic solvent.
  • the polysilane used preferably has the same hydrocarbon group as the polysilane used.
  • a phenylmethyl-based polysilane it is preferable to use the same phenylmethyl-based or diphenyl-based silicone compound.
  • R 1 in one molecule Of to R 6, two at least, but is an alkoxy group having 1-8 carbon atoms. Therefore, since one molecule has two or more alkoxy groups, it functions as a crosslinking agent for polysilane. As such, the alkoxy group is 15-35 weight 0/0 . Examples include methylphenylmethoxysilicone and phenylmethoxysilicone.
  • the weight average molecular weight of the silicone compound used in the present invention is preferably 1000 or less, more preferably 300 or less. If the weight average molecular weight is too high, the compatibility with the polysilane will be reduced, resulting in a non-uniform film or reduced sensitivity.
  • the organic solvent contained in the photosensitive resin composition of the present invention is not particularly limited as long as it can dissolve polysilane, and specific examples include the organic solvents exemplified in the description of polysilane. Is received.
  • the mixing ratio of the photosensitive resin composition used in the present invention is as follows: 100 to 100 parts by weight of polysilane, 1 to 30 parts by weight of a photo radical generator, oxidizing agent:! To 30 parts by weight, silicone compound 5 to Preferably it is 100 parts by weight. Further, when the above-mentioned soluble dye is added, the amount is preferably 1 to 20 parts by weight based on 100 parts by weight of the polysilane.
  • the organic solvent is preferably used so that the concentration with respect to the whole is 20 to 60% by weight.
  • the silicone compound functions as a crosslinking agent for the polysilane, increases the solubility of the polysilane in an organic solvent, and also functions as a compatibilizer between the polysilane, the photoradical generator, and the oxidizing agent. Therefore, by using a silicon compound, the amount of the photo radical generator and the oxidizing agent can be increased. Can be included.
  • the method for applying the photosensitive resin composition is not particularly limited, and can be performed by a method known to those skilled in the art. It can be applied by a spin coater method, a screen printing method, a method using an applicator, or the like. The application method is appropriately selected depending on the intended use.
  • the method When used as a resist material for a printed wiring board, it is generally preferable to apply the method by screen printing or a method using an applicator.
  • the thickness of the resist film is generally applied to a dry film thickness in the range of 10 to 50 ⁇ m.
  • the insulating material of the present invention When used as an interlayer insulating film in the semiconductor field, it is generally applied by a spin coater method or the like.
  • the film thickness is often in the range of about 0.1 to 5 ⁇ m.
  • FIG. 1 is a schematic cross-sectional view showing one example of a manufacturing process of a printed wiring board of the present invention.
  • a wiring section 2 formed by patterning a copper layer is provided on a substrate 1.
  • a solder resist film 3 is formed by applying a resist material made of a photosensitive resin composition on the wiring portion 2.
  • a mask 4 patterned so as to irradiate the wiring portion 2 to be exposed with light is placed on the solder resist film 3 and irradiated with ultraviolet rays 5. Expose.
  • the ultraviolet light to be irradiated has a wavelength of 250 to 40 O nm, which is the ⁇ - ⁇ * absorption region of polysilane. This irradiation is performed at a rate of 0.01 to IJ cm 2 , preferably 0.1 to 0.5 J / cm 2 per ⁇ m of the thickness of the solder resist film 3.
  • irradiation light quantity is less than 0.01 J / cm 2 , the developability will be reduced, and if it exceeds 1 J / cm 2 , the pattern reproducibility will be reduced.
  • High- and ultra-high-pressure mercury lamps, xenon lamps, metal halide lamps, etc. are used as UV light sources, and He-Cd lasers, Ar lasers, YAG lasers, excimer lasers, etc. are used for laser scanning. it can.
  • the Si—Si bond is broken by the ultraviolet light irradiation, and Si—OH (silanol group) is generated. Accordingly, a latent image having a silanol group according to the pattern of the mask 4 is formed on the solder resist film 3 irradiated with the ultraviolet rays. Since the silanol group is weakly acidic, it can be dissolved in an alkaline aqueous solution. Therefore, as shown in FIG. 1 (c), after irradiation with ultraviolet rays, the exposed portions can be removed and developed using an alkaline aqueous solution.
  • an amine type such as tetramethylammonium hydroxide (TMAH) or an inorganic base such as sodium hydroxide can be used, and a 2.4% aqueous solution of TMAH is particularly preferable. Used.
  • TMAH tetramethylammonium hydroxide
  • an alcohol-based solvent may be added for the purpose of swelling the exposed portions of the solder resist film 3.
  • the wiring portion 2 to which the solder is attached can be exposed.
  • the photosensitive resin composition When the photosensitive resin composition is used as a material for forming an interlayer insulating film in the semiconductor field, etc., as described above, the photosensitive resin composition is formed by a method well known to those skilled in the art such as a spin coater method. Is applied. If the interlayer insulating film requires patterning, it is necessary to selectively irradiate ultraviolet rays and develop it in the same manner as the resist material on the printed wiring board. More patterning is possible. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic cross-sectional view for explaining a manufacturing process of a printed wiring board according to the present invention.
  • a 1000 ml flask equipped with a stirrer was charged with 400 ml of toluene and 13.3 g of sodium.
  • the contents of the flask were heated to 111 ° C in a yellow room where ultraviolet rays were blocked, and sodium was finely dispersed in toluene by high-speed stirring.
  • 42.1 g of phenylmethyldichlorosilane and 4.lg of tetrachlorosilane were added, and the mixture was stirred for 3 hours to carry out polymerization. Thereafter, excess sodium was quenched by adding ethanol to the resulting reaction mixture. After washing with water, the separated organic layer was poured into ethanol to precipitate polysilane.
  • the obtained crude polysilane was reprecipitated from ethanol three times to obtain a network-like polymethylphenylsilane having a weight-average molecular weight of 11,600.
  • the exposed portion of the copper wiring of the printed wiring board was exposed to a mask with a light exposure of 2000 mJ / cm 2 using an exposure machine for printed wiring boards (Own HMW661). Subsequently, development was performed at 23 ° C. for 5 minutes using a 2.4% TMAH solution containing 20% isopropanol. After completion of the image development, the film was washed with water and dried by air blow, and then heated at 170 ° C. for 30 minutes to cure the resist film.
  • the resolution of the obtained resist pattern was 20 ⁇ mLZS.
  • a UL flame retardancy test was performed on the obtained printed wiring board, it was found to be flame retardant corresponding to V-0.
  • a photosensitive resin composition 100 parts by weight of the network-like polysilane obtained in Preparation Example 1, 100 parts by weight of TSR-1650, 10 parts by weight of TAZ_1110, and BTT B1 5 parts by weight was dissolved in 125 parts by weight of toluene to obtain a photosensitive resin composition.
  • the photosensitive resin composition was applied on a silicon wafer substrate using a spin coater to a thickness of 2 ⁇ m, and dried in an oven at 120 ° C. for 10 minutes.
  • this substrate was exposed and patterned at an exposure amount of 200 mJ / cm 2 using an ArF stepper for semiconductor (manufactured by Nikon Corporation). Subsequently, development was performed at 23 ° C for 2 minutes using a 2.4% TMAH solution containing 20% isopropanol.
  • the substrate was washed with water and dried by air blow, and the substrate was heated in an oven at 200 ° C. for 30 minutes to cure the insulating film. Observation of the pattern profile of the insulating film with an electron microscope revealed that the 0.5 ⁇ m LZS pattern was reproduced.
  • the dielectric constant and the dielectric loss tangent of the insulating film fabricated as described above were measured, it was found that the dielectric constant was 2.80 and the dielectric loss tangent was 0.008 at 1 MHz, indicating that the insulating film had excellent electric characteristics. Therefore, it was found that the film has good performance as a semiconductor interlayer insulating film.
  • the insulating material of the present invention is used for an interlayer insulating film.
  • the insulating material of the present invention is not limited to this, and the insulating film used for a multilayer printed circuit board and other uses. It can be used to form Industrial applicability
  • the resist material of the present invention has good self-flame retardancy without containing a halogen-based flame retardant. Also, since it contains polysilane as a main component, it has a low dielectric constant, and has good electrical properties as an insulating material.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Silicon Polymers (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resist material and an insulating material each characterized by comprising a photosensitive resin composition which comprises: (A) a polysilane which is soluble in organic solvents and has a weight-average molecular weight of 10,000 or higher; (B) a photo-radical generator and an oxidizing agent; (C) a silicone compound of a structure represented by the following general formula (1) (wherein R?1, R2, R3, R4, R5, and R6¿ may be the same or different and each represents a group selected from the group consisting of C¿1-10? aliphatic hydrocarbon groups optionally substituted by a halogen or glycidyl, optionally halogenated C6-12 aromatic hydrocarbon groups, and C1-8 alkoxys, provided that the molecule contains at least two C1-8 alkoxys; and m and n each is an integer satisfying the relationship m+n=1); and (D) an organic solvent.

Description

明 細 書 自己難燃性レジスト材料及び絶縁材料 技術分野  Description Self-flame retardant resist materials and insulating materials
本発明は、 プリント配線基板のソルダーレジス ト膜め形成に用いるこ とができる自己難燃性レジス ト材料及び絶縁材料並びにこれらを用いた プリント配線基板または絶縁膜の形成方法に関するものである。 背景技術  The present invention relates to a self-flammable resist material and an insulating material that can be used for forming a solder resist film on a printed wiring board, and a method for forming a printed wiring board or an insulating film using the same. Background art
プリント配線基板の配線部分の所定箇所にはんだを付着させる方法と して、 プリント配線基板の上にソルダーレジストパターンを形成する方 法が一般に採用されている。 ソルダーレジストは、 そのパターンが形成 されていない箇所にのみはんだを付着させ、 そのパターンが形成されて いる箇所へのはんだの付着を防止するとともに、 パターンが形成されて いる箇所の回路を保護するためのものである。  As a method of applying solder to a predetermined portion of a wiring portion of a printed wiring board, a method of forming a solder resist pattern on a printed wiring board is generally adopted. Solder resist is used to apply solder only to places where the pattern is not formed, prevent solder from sticking to the place where the pattern is formed, and protect the circuit where the pattern is formed. belongs to.
電気部品の難燃化対策として、 ソルダーレジストにハロゲン系の難燃 化剤が使用されている。 この難燃化剤は、 ハロゲンを含むためダイォキ シンの原因物質となる可能性が高い。 また、従来のソルダーレジス トは、 エポキシ樹脂を主成分とするものであるため、 環境ホルモンの原因物質 とされるビスフエノール Aを含んでおり、 将来使用規制の対象になる可 能性がある。 また、 ポリイミ ド等の耐熱性樹脂をソルダーレジス トとし て使用することも検討されている。 しかしながら、 ソルダーレジストに おいては、 導体部間のクロストークが問題となるため、 誘電率の低いも のが求められており、 この点においてポリイミ ドは満足し得る材料では ない。 R一方、 半導体の分野では、 従来のアルミ配線から銅配線に移行し、 そ こで使用される層間絶縁膜も従来の CVDで作製するシリカ膜から、 さ らに誘電率が低い材料へと移行してきている。 しかしながら、 簡易なェ 程でパターニングできる低誘電率の層間絶縁膜は現在のところ見い出さ れていない。 発明の開示 Halogen-based flame retardants are used in solder resists as a measure to make electrical components flame-retardant. Since this flame retardant contains halogen, it is highly likely to be a causative substance of dioxin. In addition, since the conventional solder resist contains epoxy resin as a main component, it contains bisphenol A, a causative substance of environmental hormones, and may be subject to use restrictions in the future. Also, the use of heat-resistant resin such as polyimide as solder resist is being studied. However, in the case of solder resist, crosstalk between conductors poses a problem, and a material having a low dielectric constant is required. In this respect, polyimide is not a satisfactory material. R On the other hand, in the field of semiconductors, conventional aluminum wiring has shifted to copper wiring, and the interlayer insulating film used there has also shifted from conventional silica films produced by CVD to materials with lower dielectric constants. Have been doing. However, a low dielectric constant interlayer insulating film that can be patterned by a simple process has not been found so far. Disclosure of the invention
本発明の目的は、 低誘電率で、 かつ自己難燃性を有するレジス ト材料 及び絶縁材料を提供することにある。  An object of the present invention is to provide a resist material and an insulating material having a low dielectric constant and self-flammability.
本発明の自己難燃性レジス ト材料は、 (A) 有機溶剤に可溶な重量平 均分子量 1 0000以上のポリシランと、 (B) 光ラジカル発生剤及び 酸化剤と、 (C) 以下の一般式で示される構造のシリコーン化合物と、  The self-flame retardant resist material of the present invention comprises: (A) a polysilane having a weight average molecular weight of 10,000 or more soluble in an organic solvent; (B) a photoradical generator and an oxidizing agent; A silicone compound having a structure represented by the formula:
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 R1 R2、 R3、 R4、 R5及び R6は、 炭素数;!〜 1 0のハ ロゲンまたはダリシジル基で置換されていてもょレ、脂肪族炭化水素基、 炭素数 6〜 1 2のハロゲンで置換されていてもよい芳香族炭化水素基、 炭素数 1〜8のアルコキシ基からなる群から選択される基であり、 互い に同一でも異なっていてもよいが、 一分子中には少なく とも 2つの上記 アルコキシ基が含まれている。 m及び nは整数であり、 m+n≥ lを満 たすものである。 ) (In the formula, R 1 R 2 , R 3 , R 4 , R 5 and R 6 each have a carbon number of from 1 to 10 and may be substituted with a halogen or daricidyl group, an aliphatic hydrocarbon group, A group selected from the group consisting of an aromatic hydrocarbon group which may be substituted with a halogen having 6 to 12 carbon atoms and an alkoxy group having 1 to 8 carbon atoms, which may be the same or different from each other However, at least two of the above alkoxy groups are contained in one molecule, and m and n are integers and satisfy m + n≥l.)
(D) 有機溶剤とを含む感光性榭脂組成物からなることを特徴として いる。 本発明の絶縁材料は、上記本発明の自己難燃性レジス ト材料と同様に、 上記感光性樹脂組成物からなることを特徴としている。 (D) It is characterized by comprising a photosensitive resin composition containing an organic solvent. The insulating material of the present invention is characterized by comprising the above-mentioned photosensitive resin composition, like the self-flame-retardant resist material of the present invention.
上記感光性樹脂組成物においては、 紫外線等の光が照射されると、 ポ リシラン中に存在する S i — S i結合が切断されて、 S i - O H (シラ ノール基) が生成する。 このシラノール基は、 弱酸性であるため、 アル カリ性の水溶液等により溶解させることができるので、 露光した部分を 除去し現像することができる。 従って、 レジス ト材料として用いること ができる。  When the photosensitive resin composition is irradiated with light such as ultraviolet rays, the Si—Si bond present in the polysilane is broken, and Si—OH (silanol group) is generated. Since the silanol group is weakly acidic, it can be dissolved in an alkaline aqueous solution or the like, so that the exposed portion can be removed and developed. Therefore, it can be used as a resist material.
また、 上記感光性樹脂組成物から形成した薄膜を加熱すると、 薄膜内 に含まれるシリコーン化合物中のアルコキシ基が分解してシラノール基 が生成し、 このシラノール基がポリシランと反応するため、 ポリシアン を架橋することができ、 硬化させることができる。 従って、 耐熱性を有 する薄膜にすることができる。  Further, when the thin film formed from the photosensitive resin composition is heated, the alkoxy group in the silicone compound contained in the thin film is decomposed to generate a silanol group, and the silanol group reacts with the polysilane to crosslink polycyan. Can be cured. Therefore, a thin film having heat resistance can be obtained.
また、 上記感光性樹脂組成物の主成分はポリシランであるため、 自己 難燃性を有しており、 また、 誘電率が低い。 このため、 低誘電率で、 か つ自己難燃性を有するレジス ト材料及び絶縁材料とすることができる。 本発明のプリント配線基板の製造方法は、 表面にソルダーレジスト膜 が形成されたプリント配線基板を製造する方法であり、 上記本発明のレ ジスト材料をプリント配線基板上に塗布してソルダーレジスト膜を形成 する工程と、 ソルダーレジスト膜を選択的に露光して現像し、 はんだを 付着させる配線部を露出させる工程と、 現像後のソルダーレジスト膜を 加熱して硬化させる工程とを備えている。  Further, since the main component of the photosensitive resin composition is polysilane, it has self-flame retardancy and a low dielectric constant. Therefore, a resist material and an insulating material having a low dielectric constant and having self-flammability can be obtained. A method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board having a solder resist film formed on a surface thereof. The resist material of the present invention is applied on the printed wiring board to form a solder resist film. The method includes a step of forming, a step of selectively exposing and developing the solder resist film to expose a wiring portion to which the solder is attached, and a step of heating and curing the developed solder resist film.
本発明の絶縁膜の形成方法は、 上記本発明の絶縁材料を基板の上に塗 布して乾燥させた後、 加熱して硬化させることを特徴としている。  The method for forming an insulating film of the present invention is characterized in that the insulating material of the present invention is applied on a substrate, dried, and then heated and cured.
本発明においてレジスト材料及び絶縁材料として用いる感光性樹脂組 成物について、 以下詳細に説明する。 <感光性樹脂組成物〉 The photosensitive resin composition used as a resist material and an insulating material in the present invention will be described in detail below. <Photosensitive resin composition>
本発明においてレジスト材料及び絶縁材料として用いる感光性樹脂組 成物は、有機溶剤に可溶な重量平均分子量 1 0 0 0 0以上のポリシラン、 光ラジカル発生剤、 酸化剤、 シリコーン化合物、 及び有機溶剤を含んで いる。 以下、 これらについて説明する。  The photosensitive resin composition used as the resist material and the insulating material in the present invention is a polysilane having a weight average molecular weight of 100,000 or more soluble in an organic solvent, a photoradical generator, an oxidizing agent, a silicone compound, and an organic solvent. Is included. Hereinafter, these will be described.
(ポリシラン)  (Polysilane)
本発明において用いるポリシランとしては、 ネッ トワーク状及び直鎖 状のものが挙げられる。 感光性材料としての機械的強度を考慮すると、 ネッ トワーク状ポリシランが好ましい。 ネッ トワーク状と鎖状は、 ポリ シラン中に含まれる S i原子の結合状態によって区別される。 ネッ トヮ ーク状ポリシランとは、 隣接する S i原子と結合している数 (結合数)が、 3または 4である S i原子を含むポリシランである。 これに対して、 直 鎖状のポリシランでは、 S i原子の、 隣接する S i原子との結合数は 2 である。 通常 S i原子の原子価は 4であるので、 ポリシラン中に存在す る S i原子の中で結合数が 3以下のものは、 S i原子以外に、 炭化水素 基、 アルコキシ基または水素原子と結合している。 このような炭化水素 基としては、 炭素数 1〜 1 0の、 ハロゲンで置換されていてもよい脂肪 族炭化水素基、 炭素数 6〜 1 4の芳香族炭化水素基が好ましい。  Examples of the polysilane used in the present invention include a network type and a linear type. Considering the mechanical strength of the photosensitive material, a network-like polysilane is preferable. Network-like and chain-like are distinguished by the bonding state of Si atoms contained in polysilane. The network-like polysilane is a polysilane containing Si atoms in which the number (the number of bonds) bonded to adjacent Si atoms is 3 or 4. On the other hand, in a linear polysilane, the number of Si atoms bonded to adjacent Si atoms is two. Since the valence of Si atom is usually 4, the Si atom present in polysilane having a bond number of 3 or less is considered to be a hydrocarbon group, an alkoxy group or a hydrogen atom in addition to the Si atom. Are combined. As such a hydrocarbon group, an aliphatic hydrocarbon group having 1 to 10 carbon atoms and optionally substituted with halogen, and an aromatic hydrocarbon group having 6 to 14 carbon atoms are preferable.
脂肪族炭化水素基の具体例としては、 メチル基、 プロピル基、 ブチル 基、 へキシル基、 ォクチル基、 デシル基、 トリフルォロプロピル基及び ノナフルォ口へキシル基などの鎖状のもの、 及びシクロへキシル基、 メ チルシク口へキシル基のような脂環式のものなどが挙げられる。  Specific examples of the aliphatic hydrocarbon group include a linear group such as a methyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a trifluoropropyl group and a nonafluorohexyl group; Examples include alicyclic groups such as a hexyl group and a methylcyclyl hexyl group.
また、 芳香族炭化水素基の具体例としては、 フエニル基、 p —トリル 基、 ビフエニル基及びアントラシル基などが挙げられる。 アルコキシ基 としては、 炭素数 1〜8のものが挙げられる。 具体例としては、 メ トキ シ基、 エトキシ基、 フエノキシ基、 ォクチルォキシ基などが挙げられる。 合成の容易さを考慮すると、 これらの中でメチル基及びフエニル基が特 に好ましい。 Specific examples of the aromatic hydrocarbon group include a phenyl group, a p-tolyl group, a biphenyl group and an anthracyl group. Examples of the alkoxy group include those having 1 to 8 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a phenoxy group, and an octyloxy group. Among these, a methyl group and a phenyl group are particularly preferable in view of ease of synthesis.
ネッ トワーク状ポリシランの場合には、 隣接する S i原子との結合数 が 3または 4である S i原子は、 ネッ トワーク状ポリシラン中の全体の S i原子数の 2〜 5 0 %であることが好ましい。 この値は、 硅素の核磁 気共鳴スぺク トル測定により決定することができる。  In the case of a network-like polysilane, the number of Si atoms having 3 or 4 bonds with adjacent Si atoms should be 2 to 50% of the total number of Si atoms in the network-like polysilane. Is preferred. This value can be determined by measuring the nuclear magnetic resonance spectrum of silicon.
なお、 本明細書におけるポリシランは、 ネッ トワーク状と i:鎖状のポ リシランを混合したものも含んでいる。 その場合における、 上記の s i 原子の含有率は、 ネットワーク状ポリシランと直鎖状ポリシランの平均 によって計算される。  The polysilane in the present specification includes a mixture of a network-like polysilane and an i: chain-like polysilane. In this case, the content of the above s i atoms is calculated by the average of the network-like polysilane and the linear polysilane.
本発明に使用されるポリシランはハロゲン化シラン化合物をナトリウ ムのようなアル力リ金属の存在下、 n —デカンやトルエンのような有機 溶媒中において 8 0 °C以上に加熱することによる重縮合反応によって製 造することができる。  The polysilane used in the present invention is polycondensed by heating a halogenated silane compound to 80 ° C or higher in an organic solvent such as n-decane or toluene in the presence of an alkali metal such as sodium. It can be produced by a reaction.
ネッ トワーク状ポリシランは、 例えば、 オルガノ トリハロシラン化合 物、 テトラハロシラン化合物、 及びジオルガノジハロシラン化合物から なり、 オルガノ トリハロシラン化合物及びテトラハロシラン化合物が全 体量の 2モル%以上 5 0モル0 /0未満であるハロシラン混合物を加熱して 重縮合することにより得ることができる。 ここで、 オルガノ トリハロシ ラン化合物は、 隣接する S i原子との結合数が 3である S i原子源とな り、 テトラハロシラン化合物は、 隣接する S i原子との結合数が 4であ る S i原子源となる。 なお、 ネッ トワーク構造の確認は、 紫外線吸収ス ぺク トルや硅素の核磁気共鳴スぺク トルの測定により確認することがで さる。 The network-like polysilane is composed of, for example, an organotrihalosilane compound, a tetrahalosilane compound, and a diorganodihalosilane compound. 0 / halosilane mixture is less than 0 can be obtained by polycondensation by heating. Here, the organotrihalosilane compound is a Si atom source having 3 bonds with adjacent Si atoms, and the tetrahalosilane compound is 4 bonds with adjacent Si atoms. It becomes a Si atom source. The structure of the network can be confirmed by measuring the ultraviolet absorption spectrum or the nuclear magnetic resonance spectrum of silicon.
直鎖状ポリシランは、 複数もしくは単一のジオルガノジクロロシラン を用いる他は、 上記のネッ トワーク状ポリシランの場合と同様の反応に より製造することができる。 The linear polysilane is subjected to the same reaction as that of the above-mentioned network-type polysilane except that a plurality or a single diorganodichlorosilane is used. Can be manufactured more.
ポリシランの原料として用いられるオルガノ トリハロシラン化合物、 テトラハロシラン化合物、 及びジオルガノジハロシラン化合物がそれぞ れ有するハロゲン原子は、 塩素原子であることが好ましい。 オルガノ ト リハロシラン化合物及びジオルガノジハロシラン化合物が有するハロゲ ン原子以外の置換基としては、 上述の炭化水素基、 アルコキシ基または 水素原子が挙げられる。  The halogen atoms contained in each of the organotrihalosilane compound, the tetrahalosilane compound, and the diorganodihalosilane compound used as the raw material for the polysilane are preferably chlorine atoms. Examples of the substituent other than the halogen atom contained in the organotrihalosilane compound and the diorganodihalosilane compound include the above-mentioned hydrocarbon group, alkoxy group and hydrogen atom.
これらのネッ トワーク状及び直鎖状のポリシランは、 有機溶剤に可溶 であり、 重量平均分子量が 1 0 0 0 0以上のものであれば特に限定され ない。 感光性材料としての利用を考慮すると、 本発明で使用するポリシ ランは蒸発性を有する有機溶媒に可溶であることが好ましい。 このよう な有機溶媒としては、 炭素数 5〜 1 2の炭化水素系、 ハロゲン化炭化水 素系、 エーテル系の有機溶剤が挙げられる。  These network-like and straight-chain polysilanes are not particularly limited as long as they are soluble in an organic solvent and have a weight-average molecular weight of 1000 or more. In consideration of use as a photosensitive material, it is preferable that the polysilane used in the present invention is soluble in an evaporable organic solvent. Examples of such organic solvents include hydrocarbons having 5 to 12 carbon atoms, halogenated hydrocarbons, and ethers.
炭化水素系の例としては、 ペンタン、 へキサン、 ヘプタン、 シクロへ キサン、 n—デカン、 n— ドデカン、 ベンゼン、 トルエン、 キシレン、 メ トキシベンゼンなどが挙げられる。 ハロゲン化炭化水素系の例として は、 四塩化炭素、 クロ口ホルム、 1 , 2—ジクロロェタン、 ジクロロメ タン、 クロ口ベンゼンなどが挙げられる。 エーテル系の例としては、 ジ ェチルエーテル、 ジブチノレエーテノレ、 テトラハイ ド口フランなどが挙げ られる。  Examples of hydrocarbons include pentane, hexane, heptane, cyclohexane, n-decane, n-dodecane, benzene, toluene, xylene, methoxybenzene, and the like. Examples of halogenated hydrocarbons include carbon tetrachloride, chloroform, 1,2-dichloroethane, dichloromethane, and cyclobenzene. Examples of ethers include dimethyl ether, dibutynoleatenole, and tetrahide-furan.
本発明において使用するポリシランは、 重量平均分子量が 1 0 0 0 0 以上のものである。 重量平均分子量が 1 0 0 0 0未満であると、 耐薬品 性や耐熱性などの膜特性が不十分な場合がある。 好ましい重量平均分子 量としては、 1 0 0 0 0〜 5 0 0 0 0であり、 さらに好ましくは 1 5 0 0 0〜 3 0 0 0 0である。  The polysilane used in the present invention has a weight average molecular weight of 100,000 or more. If the weight average molecular weight is less than 1000, the film properties such as chemical resistance and heat resistance may be insufficient. The preferred weight average molecular weight is from 1,000 to 500,000, and more preferably from 1500 to 300,000.
(光ラジカル発生剤及び酸化剤) 本発明において用いる光ラジカル発生剤は、 光によってハロゲンラジ カルを発生する化合物であれば特に限定されないが、 2, 4, 6—トリ ス(トリハロメチル)一 1, 3 , 5— トリアジン及びその 2位またはその 2位と 4位が置換された化合物、 フタルイミ ドト リハロメタンスルフォ ネート及びそのベンゼン環に置換基を有する化合物、 ナフタルイミ ドト リハロメタンスルフォネート及びそのベンゼン環に置換基を有する化合 物などを例として挙げることができる。 これらの化合物が有する置換基 は、 置換基を有していてもよい脂肪族及び芳香族炭化水素基である。 本発明において用いる酸化剤は、 酸素供給源となる化合物であれば特 に限定されないが、 例えば、 過酸化物、 アミンォキシド及びホスフィン ォキシドなどを例として挙げることができる。 (Photo radical generator and oxidizer) The photo-radical generator used in the present invention is not particularly limited as long as it is a compound that generates halogen radicals by light, and 2,4,6-tris (trihalomethyl) -11,3,5-triazine and its 2- Compound substituted at the 2- or 4-position, phthalimid trihalomethanesulfonate and a compound having a substituent on its benzene ring, naphthalimid trihalomethanesulfonate and a compound having a substituent on the benzene ring And the like. The substituents of these compounds are an aliphatic or aromatic hydrocarbon group which may have a substituent. The oxidizing agent used in the present invention is not particularly limited as long as it is a compound serving as an oxygen supply source, and examples thereof include peroxides, amine oxides, and phosphine oxides.
光ラジカル発生剤と酸化剤の組み合わせとしては、 光ラジカル発生剤 としてのト リ クロ口 トリァジン系のものと、 酸化剤としての過酸化物の 組み合わせが特に好ましい。  As the combination of the photoradical generator and the oxidizing agent, a combination of a tricyclic triazine compound as the photoradical generating agent and a peroxide as the oxidizing agent is particularly preferable.
光ラジカル発生剤は、 上記ポリシランが光照射により分解する際、 S i - S i結合がハロゲンラジカルにより効率よく切断されることを目的 として添加されるものである。 また、 酸化剤は、 切断された後の S iの 結合に酸素が容易に揷入されるように添加されるものである。  The photo-radical generator is added for the purpose of efficiently breaking the Si-Si bond by halogen radicals when the polysilane is decomposed by light irradiation. The oxidizing agent is added so that oxygen is easily introduced into the Si bond after the cleavage.
色素の光励起によるハロゲンラジカルの発生を高めるため、 クマリン 系、 シァニン系、 メロシアニン系等の可溶性色素を加えてもよい。 また、 可溶性色素を加えることにより、 ポリシランの光に对する感度を向上さ せることができる。  A coumarin-based, cyanine-based, or merocyanine-based soluble dye may be added in order to increase the generation of halogen radicals by the photoexcitation of the dye. Further, by adding a soluble dye, the sensitivity of polysilane to light can be improved.
(シリ コーン化合物)  (Silicone compound)
本発明において使用するシリコーン化合物は、 以下の一般式で示され る構造のシリ コーン化合物が好ましく用いられる。
Figure imgf000010_0001
As the silicone compound used in the present invention, a silicone compound having a structure represented by the following general formula is preferably used.
Figure imgf000010_0001
(式中、 R R 2、 R R 4、 1^ 5及び1^ 6は、 炭素数 1〜: 1 0のハ ロゲンまたはグリシジル基で置換されていてもよい脂肪族炭化水素基、 炭素数 6〜 1 2のハロゲン oで置換されていてもよい芳香族炭化水素基、 炭素数 1〜 8のアルコキシ基か n らなる群から選択される基であり、 互い に同一でも異なっていてもよいが R、 一分子中には少なく とも 2つの上記 アルコキシ基が含まれている。 m及び nは整数であり、 m + n≥ lを満 たすものである。 ) (Wherein, RR 2 , RR 4 , 1 ^ 5 and 1 ^ 6 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms, which may be substituted with a halogen or glycidyl group, and 6 to 1 carbon atoms. 2 is a group selected from the group consisting of an aromatic hydrocarbon group optionally substituted by o, and an alkoxy group having 1 to 8 carbon atoms, and may be the same or different from each other; One molecule contains at least two of the above alkoxy groups, where m and n are integers and satisfy m + n≥l.)
上記 R 1〜R 6の置換基となる脂肪族炭化水素基の具体例としては、 メチノレ基、 プロピル基、 ブチル基、 へキシル基、 ォクチル基、 デシル基、 トリフルォロプロピル基、 グリシジルォキシプロピル基などの鎖状のも の、 及ぴシクロへキシル基、 メチルシクロへキシル基のような脂環式の ものなどが挙げられる。 また、 芳香族炭化水素基の具体例としては、 フ ェニル基、 p—トリル基、 ビフエ二ル基などが挙げられる。 アルコキシ 基の具体例としては、 メ トキシ基、 エトキシ基、 フエノキシ基、 ォクチ ルォキシ基、 t e r 一ブトキシ基などが挙げられる。 Specific examples of the aliphatic hydrocarbon group which is a substituent of R 1 to R 6 include a methynole group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a trifluoropropyl group, and a glycidyloxy group. Examples thereof include linear ones such as a propyl group, and alicyclic ones such as a cyclohexyl group and a methylcyclohexyl group. Further, specific examples of the aromatic hydrocarbon group include a phenyl group, a p-tolyl group, a biphenyl group and the like. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a phenoxy group, an octyloxy group, a ter-butoxy group, and the like.
上記の R '〜 6の種類及び mと nの値は特に重要ではなく、 ポリシ ラン及び有機溶媒と相溶するようなものであれば特に限定されない。 相 溶性を考慮した場合には、 使用するポリシランが有する炭化水素基と同 じ基を有していることが好ましい。 例えば、 ポリシランとして、 フエ二 ルメチル系のものを使用する場合には、 同じフエニルメチル系またはジ フエニル系のシリコーン化合物を使用することが好ましい。 The types of R ′ to 6 and the values of m and n are not particularly important, and are not particularly limited as long as they are compatible with polysilane and an organic solvent. In consideration of the compatibility, the polysilane used preferably has the same hydrocarbon group as the polysilane used. For example, when a phenylmethyl-based polysilane is used, it is preferable to use the same phenylmethyl-based or diphenyl-based silicone compound.
また、 本発明において用いるシリコーン化合物では、 一分子中の R 1 〜R 6のうち、 少なく とも 2つが炭素数 1〜 8のアルコキシ基である。 従って、 一分子中にアルコキシ基を 2つ以上有しているので、 ポリシラ ンの架橋剤として働く。 そのようなものとしては、 アルコキシ基を 1 5 〜 3 5重量0 /。含んだメチルフエニルメ トキシシリ コーンやフエニルメ ト キシシリコーンなどを挙げることができる。 In the silicone compound used in the present invention, R 1 in one molecule Of to R 6, two at least, but is an alkoxy group having 1-8 carbon atoms. Therefore, since one molecule has two or more alkoxy groups, it functions as a crosslinking agent for polysilane. As such, the alkoxy group is 15-35 weight 0/0 . Examples include methylphenylmethoxysilicone and phenylmethoxysilicone.
本発明において用いるシリコーン化合物の重量平均分子量としては、 1 0 0 0 0以下であることが好ましく、 さらに好ましくは 3 0 0 0以下 である。 重量平均分子量が高くなり過ぎると、 ポリシランとの相溶性が 低下し不均一な膜になったり、 感度が低下する。  The weight average molecular weight of the silicone compound used in the present invention is preferably 1000 or less, more preferably 300 or less. If the weight average molecular weight is too high, the compatibility with the polysilane will be reduced, resulting in a non-uniform film or reduced sensitivity.
(有機溶剤)  (Organic solvent)
本発明における感光性樹脂組成物に含まれる有機溶剤としては、 ポリ シランを溶解させることができるものであれば特に限定されるものでは なく、 具体的にはポリシランの説明において例示した有機溶剤が挙げら れる。  The organic solvent contained in the photosensitive resin composition of the present invention is not particularly limited as long as it can dissolve polysilane, and specific examples include the organic solvents exemplified in the description of polysilane. Is received.
(感光性樹脂組成物における配合割合)  (Blending ratio in photosensitive resin composition)
本発明において用いる感光性樹脂組成物における配合割合は、 ポリシ ラン 1 0 0重量部に対して、 光ラジカル発生剤 1〜3 0重量部、 酸化剤 :!〜 3 0重量部、 シリコーン化合物 5〜 1 0 0重量部であることが好ま しい。 さらに、 上述の可溶性色素を添加する場合には、 ポリシラン 1 0 0重量部に対して 1〜 2 0重量部であることが好ましい。 有機溶剤は、 全体に対する濃度が 2 0〜 6 0重量%となるように用いることが好まし レ、。  The mixing ratio of the photosensitive resin composition used in the present invention is as follows: 100 to 100 parts by weight of polysilane, 1 to 30 parts by weight of a photo radical generator, oxidizing agent:! To 30 parts by weight, silicone compound 5 to Preferably it is 100 parts by weight. Further, when the above-mentioned soluble dye is added, the amount is preferably 1 to 20 parts by weight based on 100 parts by weight of the polysilane. The organic solvent is preferably used so that the concentration with respect to the whole is 20 to 60% by weight.
シリコーン化合物は、 ポリシランの架橋剤として働き、 かつポリシラ ンの有機溶剤への溶解性を高めるとともに、 ポリシランと光ラジカル発 生剤と酸化剤との相溶化剤としても機能するものである。 従って、 シリ コーン化合物を用いることにより、 光ラジカル発生剤及び酸化剤を多く 含むことが可能になる。 The silicone compound functions as a crosslinking agent for the polysilane, increases the solubility of the polysilane in an organic solvent, and also functions as a compatibilizer between the polysilane, the photoradical generator, and the oxidizing agent. Therefore, by using a silicon compound, the amount of the photo radical generator and the oxidizing agent can be increased. Can be included.
(感光性樹脂組成物の塗布方法)  (Coating method of photosensitive resin composition)
感光性樹脂組成物の塗布方法は、 特に限定されるものではなく、 当業 者に知られた方法によって行うことができる。 スピンコーター法、 スク リーン印刷法、 及びアプリケーターを用いた方法などにより塗布するこ とができる。 塗布方法は、 使用する用途によって適宜選択される。  The method for applying the photosensitive resin composition is not particularly limited, and can be performed by a method known to those skilled in the art. It can be applied by a spin coater method, a screen printing method, a method using an applicator, or the like. The application method is appropriately selected depending on the intended use.
プリント配線基板のレジスト材として用いる場合には、 一般に、 スク リーン印刷やアプリケーターを用いる方法で塗布することが好ましい。 レジス ト膜の厚みは、 一般に 1 0〜50 μ mの範囲の乾燥膜厚となるよ うに塗布される。  When used as a resist material for a printed wiring board, it is generally preferable to apply the method by screen printing or a method using an applicator. The thickness of the resist film is generally applied to a dry film thickness in the range of 10 to 50 μm.
また、 本発明の絶縁材料を半導体分野において層間絶縁膜などとして 用いる場合には、 一般にスピンコーター法などにより塗布される。 膜厚 は、 0. 1〜 5 μ m程度の範囲であることが多い。  When the insulating material of the present invention is used as an interlayer insulating film in the semiconductor field, it is generally applied by a spin coater method or the like. The film thickness is often in the range of about 0.1 to 5 μm.
<プリント配線基板の製造工程 >  <Printed wiring board manufacturing process>
図 1は、 本発明のプリント配線基板の製造工程の一例を示す模式的断 面図である。  FIG. 1 is a schematic cross-sectional view showing one example of a manufacturing process of a printed wiring board of the present invention.
図 1 (a) に示すように、 基板 1の上には銅層をパターニングして形 成した配線部 2が設けられている。 配線部 2の上に感光性樹脂組成物か らなるレジスト材を塗布することにより、 ソルダーレジスト膜 3が形成 されている。  As shown in FIG. 1A, a wiring section 2 formed by patterning a copper layer is provided on a substrate 1. A solder resist film 3 is formed by applying a resist material made of a photosensitive resin composition on the wiring portion 2.
次に、 図 1 (b) に示すように、 露出すべき配線部 2に光が照射され るようにパターニングされたマスク 4を、 ソルダーレジスト膜 3の上に 配置し、 紫外線 5を照射して露光する。  Next, as shown in FIG. 1 (b), a mask 4 patterned so as to irradiate the wiring portion 2 to be exposed with light is placed on the solder resist film 3 and irradiated with ultraviolet rays 5. Expose.
照射する紫外線は、 ポリシランの σ - σ*吸収域である 250〜40 O nmの波長を有する。 この照射は、 ソルダーレジスト膜 3の厚さ 1 μ m当り 0. 0 1〜 : I J c m2、 好ましくは 0. 1〜0. 5 J /c m2 The ultraviolet light to be irradiated has a wavelength of 250 to 40 O nm, which is the σ-σ * absorption region of polysilane. This irradiation is performed at a rate of 0.01 to IJ cm 2 , preferably 0.1 to 0.5 J / cm 2 per μm of the thickness of the solder resist film 3.
0 の光量で行われる。 照射光量が 0. 0 1 J / c m2を下回ると現像性が 低下し、 1 J / c m2を上回るとパターン再現性が低下する。 紫外線源 としては、 高圧及び超高圧水銀灯、 キセノンランプ、 メタルハライ ドラ ンプ等の他、 レーザー走査の場合には、 H e— C dレーザー、 A r レー ザ一、 Y AGレーザー、 エキシマレーザー等が使用できる。 0 Of light. If the irradiation light quantity is less than 0.01 J / cm 2 , the developability will be reduced, and if it exceeds 1 J / cm 2 , the pattern reproducibility will be reduced. High- and ultra-high-pressure mercury lamps, xenon lamps, metal halide lamps, etc. are used as UV light sources, and He-Cd lasers, Ar lasers, YAG lasers, excimer lasers, etc. are used for laser scanning. it can.
紫外線が照射された領域では、 S i— S i結合が紫外線照射により切 断されて、 S i -OH (シラノール基) が生成する。 従って、 紫外線が 照射されたソルダーレジス ト膜 3には、 マスク 4のパターンに応じたシ ラノール基を有する潜像が形成される。 シラノール基は弱酸性であるた め、 アルカリ性の水溶液によって溶解することができる。 従って、 図 1 (c) に示すように、 紫外線を照射した後、 アルカリ性の水溶液を用い て、 露光部分を除去し、 現像することができる。 アルカリ性の水溶液と しては、 テトラメチルアンモニゥムヒ ドロキシド (TMAH) 等のアミ ン系や、 水酸化ナトリウム等の無機塩基等を使用することができ、 特に 2. 4 %の TMAH水溶液が好適に用いられる。 これらの水溶液には、 ソルダーレジスト膜 3の露光部分を膨潤させる目的で、 アルコール系の 溶剤を添加してもよい。  In the region irradiated with ultraviolet light, the Si—Si bond is broken by the ultraviolet light irradiation, and Si—OH (silanol group) is generated. Accordingly, a latent image having a silanol group according to the pattern of the mask 4 is formed on the solder resist film 3 irradiated with the ultraviolet rays. Since the silanol group is weakly acidic, it can be dissolved in an alkaline aqueous solution. Therefore, as shown in FIG. 1 (c), after irradiation with ultraviolet rays, the exposed portions can be removed and developed using an alkaline aqueous solution. As the alkaline aqueous solution, an amine type such as tetramethylammonium hydroxide (TMAH) or an inorganic base such as sodium hydroxide can be used, and a 2.4% aqueous solution of TMAH is particularly preferable. Used. To these aqueous solutions, an alcohol-based solvent may be added for the purpose of swelling the exposed portions of the solder resist film 3.
図 1 (c) に示すように、 ソルダーレジスト膜 3の所定部分を除去し 現像することにより、 はんだを付着させる配線部 2を露出することがで さる。  As shown in FIG. 1 (c), by removing and developing a predetermined portion of the solder resist film 3, the wiring portion 2 to which the solder is attached can be exposed.
<層間絶縁膜の形成 >  <Formation of interlayer insulating film>
半導体分野などにおいて上記感光性樹脂組成物を層間絶縁膜形成用材 料として用いる場合には、 上述のように、 スピンコーター法などの当業 者によく知られた方法により、 上記感光性樹脂組成物を塗布する。 層間 絶縁膜のパターユングが必要な場合には、 上記プリント配線基板におけ るレジスト材と同様にして、 紫外線を選択的に照射し、 現像することに よりパターニングすることができる。 図面の簡単な説明 When the photosensitive resin composition is used as a material for forming an interlayer insulating film in the semiconductor field, etc., as described above, the photosensitive resin composition is formed by a method well known to those skilled in the art such as a spin coater method. Is applied. If the interlayer insulating film requires patterning, it is necessary to selectively irradiate ultraviolet rays and develop it in the same manner as the resist material on the printed wiring board. More patterning is possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明におけるプリント配線基板の製造工程を説明するため の模式的断面図である。 発明を実施するための最良の形態  FIG. 1 is a schematic cross-sectional view for explaining a manufacturing process of a printed wiring board according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により具体的に説明するが、 本発明は以下の実 施例に限定されるものではなく、 本発明の範囲内で適宜変更して実施す ることが可能なものである。  Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented within the scope of the present invention. is there.
<調製例 1 >  <Preparation Example 1>
(ポリシランの調製)  (Preparation of polysilane)
攪拌機を備えた 1 000m l フラスコに、 トルエン 400m l及びナ トリ ウム 1 3. 3 gを充填した。 紫外線を遮断したイェロールーム中で フラスコの内容物を 1 1 1°Cに昇温し、 高速攪拌することによりナトリ ゥムを トルエン中に微細に分散した。 ここにフエニルメチルジクロロシ ラン 4 2. l g、 テトラクロロシラン 4. l gを添加し、 3時間攪拌す ることにより重合を行った。 その後、 得られる反応混合物にエタノール を添加することにより、 過剰のナトリウムを失活させた。 水洗後、 分離 した有機層をエタノール中に投入することにより、 ポリシランを沈澱さ せた。 得られた粗製のポリシランをエタノールから 3回再沈殿させるこ とにより、 重量平均分子量 1 1 600のネットワーク状ポリメチルフエ ニルシランを得た。  A 1000 ml flask equipped with a stirrer was charged with 400 ml of toluene and 13.3 g of sodium. The contents of the flask were heated to 111 ° C in a yellow room where ultraviolet rays were blocked, and sodium was finely dispersed in toluene by high-speed stirring. To this, 42.1 g of phenylmethyldichlorosilane and 4.lg of tetrachlorosilane were added, and the mixture was stirred for 3 hours to carry out polymerization. Thereafter, excess sodium was quenched by adding ethanol to the resulting reaction mixture. After washing with water, the separated organic layer was poured into ethanol to precipitate polysilane. The obtained crude polysilane was reprecipitated from ethanol three times to obtain a network-like polymethylphenylsilane having a weight-average molecular weight of 11,600.
<実施例 1〉  <Example 1>
調製例 1で得られたネッ トワーク状ポリシラン 1 00重量部、 シリコ ーン化合物としての T S R— 1 6 5 (分子量 930のメチルフエニルメ トキシシリ コーンレジン、 メ トキシ基含有量: 1 5重量%、 東芝シリ コ ーン社製) 1 0重量部、 光ラジカル発生剤としての TAZ— 1 1 0(2, 4―ビス(ト リ クロロメチル)一 6— (p—メ トキシフエニノレビ二ノレ)一 1, 3, 5— トリアジン、 みどり化学社製) 1 0重量部、 及び酸化剤として の ΒΤΤΒ(3, 3' , 4, 4' —テ トラー( t—ブチルパーォキシカル ボニル)ベンゾフエノン、 日本油脂社製) 1 5重量部をトルエン 1 2 1 5 重量部に溶解して、 感光性樹脂組成物 (レジスト材) を得た。 この感光 性樹脂組成物を、 銅配線のあるエポキシ ·ガラス製プリント配線基板の 上にアプリケーターを用いて 20 μ mの厚さに塗布して 1 20°Cで 1 0 分間オーブンで乾燥させた。 100 parts by weight of the network-like polysilane obtained in Preparation Example 1, TSR-165 as a silicone compound (methylphenylmethyl with a molecular weight of 930) Toxicone corn resin, methoxy group content: 15% by weight, 10 parts by weight, TAZ-110 (2,4-bis (trichloromethylmethyl) as a photo-radical generator 1) 6- (p-Methoxypheninolebinin) -1,3,5-triazine, manufactured by Midori Kagaku Co., Ltd.) 10 parts by weight, and ΒΤΤΒ (3, 3 ', 4, 4') as an oxidizing agent —15 parts by weight of tetra (t-butylperoxycarbonyl) benzophenone (manufactured by NOF CORPORATION) was dissolved in 125 parts by weight of toluene to obtain a photosensitive resin composition (resist material). This photosensitive resin composition was applied to a thickness of 20 μm on an epoxy-glass printed wiring board having copper wiring using an applicator, and dried in an oven at 120 ° C. for 10 minutes.
このプリント配線基板の銅配線の露出必要部分をプリント配線基板用 の露光機 (オーク製 HMW6 6 1 ) を用いて 2000 m J / c m2の露 光量でマスク露光を行なった。 続いて、 20%のイソプロパノールを含 む 2. 4%の TMAH溶液を用いて、 23°C5分間現像を行なった。 現 像終了後、 水洗しエアーブローで乾燥させた後、 1 70°Cで 30分間加 熱しレジス ト膜を硬化させた。 The exposed portion of the copper wiring of the printed wiring board was exposed to a mask with a light exposure of 2000 mJ / cm 2 using an exposure machine for printed wiring boards (Own HMW661). Subsequently, development was performed at 23 ° C. for 5 minutes using a 2.4% TMAH solution containing 20% isopropanol. After completion of the image development, the film was washed with water and dried by air blow, and then heated at 170 ° C. for 30 minutes to cure the resist film.
得られたレジストパターンの解像度は、 20 μ mLZSであった。 得られたプリント配線基板について UL難燃性試験を行ったところ、 V- 0に相当する難燃性であることがわかった。  The resolution of the obtained resist pattern was 20 μmLZS. When a UL flame retardancy test was performed on the obtained printed wiring board, it was found to be flame retardant corresponding to V-0.
また、 鉛フリーのはんだである金 Z錫系のはんだをレジスト材の現像 部分に溶融してテストしたところ、 パターン形状及び膜の変質において 問題はなく、 鉛フリ一はんだでも使用することができるソルダーレジス ト材料であることが確認された。  In addition, when a test was conducted by melting gold-tin-tin solder, which is a lead-free solder, in the developed part of the resist material, there was no problem with the pattern shape and film deterioration, and a solder that can be used with lead-free solder It was confirmed that it was a resist material.
<実施例 2 >  <Example 2>
調製例 1で得られたネッ トワーク状ポリシラン 1 00重量部、 TS R - 1 6 5 1 0重量部、 T AZ _ 1 1 0 1 0重量部、 及び BTT B 1 5重量部をトルエン 1 2 1 5重量部に溶解して、 感光性樹脂組成物を 得た。 この感光性樹脂組成物を、 シリ コンウェハー基板の上に、 スピン コーターを用いて厚み 2 μ mとなるように塗布した後、 1 20°Cで 1 0 分間オーブンで乾燥させた。 100 parts by weight of the network-like polysilane obtained in Preparation Example 1, 100 parts by weight of TSR-1650, 10 parts by weight of TAZ_1110, and BTT B1 5 parts by weight was dissolved in 125 parts by weight of toluene to obtain a photosensitive resin composition. The photosensitive resin composition was applied on a silicon wafer substrate using a spin coater to a thickness of 2 μm, and dried in an oven at 120 ° C. for 10 minutes.
次に、 この基板に対して、 半導体用の A r Fステッパー (ニコン社製) を用いて、 200 m J / c m2の露光量で露光しパターニングした。 続 いて、 20 %のイソプロパノールを含む 2. 4%の TMAH溶液を用い て、 2 3°Cで 2分間現像を行った。 Next, this substrate was exposed and patterned at an exposure amount of 200 mJ / cm 2 using an ArF stepper for semiconductor (manufactured by Nikon Corporation). Subsequently, development was performed at 23 ° C for 2 minutes using a 2.4% TMAH solution containing 20% isopropanol.
現像終了後、水洗しエアーブローで乾燥させた後、この基板を 200°C で 30分間オーブン中で加熱することにより、 絶縁膜を硬化させた。 電子顕微鏡で絶縁膜のパターンのプロファイルを観察したところ、 0. 5 μ mの LZSのパターンが再現されていた。  After the development was completed, the substrate was washed with water and dried by air blow, and the substrate was heated in an oven at 200 ° C. for 30 minutes to cure the insulating film. Observation of the pattern profile of the insulating film with an electron microscope revealed that the 0.5 μm LZS pattern was reproduced.
上記のように作製した絶縁膜について誘電率と誘電正接を測定したと ころ、 1 MH zで誘電率 2. 80、 誘電正接 0. 008であり、 優れた 電気特性を有することがわかった。 従って、 半導体の層間絶縁膜として 良好な性能を有することがわかった。  When the dielectric constant and the dielectric loss tangent of the insulating film fabricated as described above were measured, it was found that the dielectric constant was 2.80 and the dielectric loss tangent was 0.008 at 1 MHz, indicating that the insulating film had excellent electric characteristics. Therefore, it was found that the film has good performance as a semiconductor interlayer insulating film.
本実施例では、本発明の絶縁材料を層間絶縁膜に用いた例を示したが、 本発明の絶縁材料はこれに限定されるものではなく、 多層プリント基板 やその他の用途に用いられる絶縁膜の形成に用いることができるもので ある。 産業上の利用可能性  In this embodiment, an example in which the insulating material of the present invention is used for an interlayer insulating film is shown. However, the insulating material of the present invention is not limited to this, and the insulating film used for a multilayer printed circuit board and other uses. It can be used to form Industrial applicability
本発明のレジスト材料は、 ハロゲン系難燃化剤を含むことなく、 良好 な自己難燃性を有している。 また、 ポリシランを主成分とするため、 低 誘電率であり、 絶縁材料としても良好な電気特性を有している。  The resist material of the present invention has good self-flame retardancy without containing a halogen-based flame retardant. Also, since it contains polysilane as a main component, it has a low dielectric constant, and has good electrical properties as an insulating material.
4 Four

Claims

請 求 の 範 囲 The scope of the claims
1. (A) 有機溶剤に可溶な重量平均分子量 1 0000以上のポリシ ランと、 1. (A) a polysilane having a weight average molecular weight of 10,000 or more soluble in an organic solvent,
(B) 光ラジカル発生剤及び酸化剤と、  (B) a photoradical generator and an oxidizing agent,
(C) 以下の一般式で示される構造のシリコーン化合物と、  (C) a silicone compound having a structure represented by the following general formula,
R2 R4 R 2 R 4
R 1 ~~ S i 0½ ~~ (-S i o -n ~ R6 R 1 ~~ S i 0½ ~~ (-S io- n ~ R 6
R 3 RR R 3 R R
(式中、 R1 R2、 R3、 R4、 R5及び R6は、 炭素数 1〜 1 0のハ ロゲンまたはダリシジル基で置換されていてもよい脂肪族炭化水素基、 炭素数 6〜 1 2のハロゲンで置換されていてもよい芳香族炭化水素基、 炭素数 1〜 8のアルコキシ基からなる群から選択される基であり、 互い に同一でも異なっていてもよいが、 一分子中には少なくとも 2つの上記 アルコキシ基が含まれている。 m及び nは整数であり、 m+n≥ lを満 たすものである。 ) (Wherein, R 1 R 2 , R 3 , R 4 , R 5, and R 6 are an aliphatic hydrocarbon group which may be substituted with a halogen or daricidyl group having 1 to 10 carbon atoms, a carbon number of 6 A group selected from the group consisting of an aromatic hydrocarbon group which may be substituted with a halogen of 12 to 12 and an alkoxy group having 1 to 8 carbon atoms, which may be the same or different from each other; It contains at least two of the above alkoxy groups, wherein m and n are integers and satisfy m + n≥l.)
( D ) 有機溶剤とを含む感光性樹脂組成物からなることを特徴とする 自己難燃性レジス ト材料。  (D) A self-flammable resist material comprising a photosensitive resin composition containing an organic solvent.
2. 表面にソルダーレジスト膜が形成されたプリント配線基板を製造 する方法であって、  2. A method of manufacturing a printed wiring board having a solder resist film formed on its surface,
請求項 1に記載のレジスト材料をプリント配線基板上に塗布してソル ダーレジス ト膜を形成する工程と、  Applying a resist material according to claim 1 onto a printed wiring board to form a solder resist film;
前記ソルダーレジス ト膜を選択的に露光して現像し、 はんだを付着さ せる配線部を露出させる工程と、  Selectively exposing and developing the solder resist film to expose a wiring portion to which solder is attached;
5 現像後の前記ソルダーレジス ト膜を加熱して硬化させる工程とを備え ることを特徴とするプリント配線基板の製造方法。 Five Heating the solder resist film after development to cure the solder resist film.
3. (A) 有機溶剤に可溶な重量平均分子量 1 0000以上のポリシ ランと、  3. (A) polysilane having a weight average molecular weight of 10,000 or more soluble in an organic solvent,
(B) 光ラジカル発生剤及び酸化剤と、  (B) a photoradical generator and an oxidizing agent,
(C) 以下の一般式で示される構造のシリコーン化合物と、  (C) a silicone compound having a structure represented by the following general formula,
Figure imgf000018_0001
Figure imgf000018_0001
(式中、 R'、 R2、 R'\ R R5及び R6は、 炭素数 1〜: 1 0のハ ロゲンまたはダリシジル基で置換されていてもよい脂肪族炭化水素基、 炭素数 6〜 1 2のハロゲンで置換されていてもよい芳香族炭化水素基、 炭素数 1〜 8のアルコキシ基からなる群から選択される であり、 互い に同一でも異なっていてもよいが、 一分子中には少なく とも 2つの上記 アルコキシ基が含まれている。 m及び nは整数であり、 m+n≥ lを満 たすものである。 ) (Wherein, R ′, R 2 , R ′ \ RR 5 and R 6 each represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a halogen or dalicidyl group; Selected from the group consisting of an aromatic hydrocarbon group optionally substituted with 12 halogens and an alkoxy group having 1 to 8 carbon atoms, which may be the same or different from each other; Contains at least two of the above alkoxy groups, m and n are integers, and satisfying m + n≥l.)
(D) 有機溶剤とを含む感光性樹脂組成物からなることを特徴とする 絶縁材料。  (D) An insulating material comprising a photosensitive resin composition containing an organic solvent.
4. 請求項 3に記載の絶縁材料を基板上に塗布して乾燥させた後、 加 熱して硬化させることを特徴とする絶縁膜の製造方法。  4. A method for producing an insulating film, comprising applying the insulating material according to claim 3 onto a substrate, drying the substrate, and then heating and curing the substrate.
PCT/JP2002/002633 2001-03-26 2002-03-20 Self-flame-retardant resist material and insulating material WO2002077714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001088157 2001-03-26
JP2001-88157 2001-03-26

Publications (1)

Publication Number Publication Date
WO2002077714A1 true WO2002077714A1 (en) 2002-10-03

Family

ID=18943293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002633 WO2002077714A1 (en) 2001-03-26 2002-03-20 Self-flame-retardant resist material and insulating material

Country Status (2)

Country Link
TW (2) TW573449B (en)
WO (1) WO2002077714A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664486A1 (en) * 1994-01-25 1995-07-26 Morton International, Inc. Waterborne photoresists having non-ionic fluorocarbon surfactants
EP0725315A2 (en) * 1995-01-25 1996-08-07 Nippon Paint Co., Ltd. Photosensitive resin composition and method for forming pattern using the same
JPH09208704A (en) * 1996-01-31 1997-08-12 Toshiba Corp Production of organosilicon polymeric material and colored member
JPH1165124A (en) * 1997-08-25 1999-03-05 Nippon Paint Co Ltd Exposing method of photosensitive resin composition and pattern forming method using the method
JPH11327150A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Positive photoresist composition
JP2000003047A (en) * 1998-06-17 2000-01-07 Nippon Paint Co Ltd Photosensitive resin composition and pattern forming method using that
JP2000298352A (en) * 1999-04-14 2000-10-24 Jsr Corp Material for electronic parts and method for using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664486A1 (en) * 1994-01-25 1995-07-26 Morton International, Inc. Waterborne photoresists having non-ionic fluorocarbon surfactants
EP0725315A2 (en) * 1995-01-25 1996-08-07 Nippon Paint Co., Ltd. Photosensitive resin composition and method for forming pattern using the same
JPH09208704A (en) * 1996-01-31 1997-08-12 Toshiba Corp Production of organosilicon polymeric material and colored member
JPH1165124A (en) * 1997-08-25 1999-03-05 Nippon Paint Co Ltd Exposing method of photosensitive resin composition and pattern forming method using the method
JPH11327150A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Positive photoresist composition
JP2000003047A (en) * 1998-06-17 2000-01-07 Nippon Paint Co Ltd Photosensitive resin composition and pattern forming method using that
JP2000298352A (en) * 1999-04-14 2000-10-24 Jsr Corp Material for electronic parts and method for using same

Also Published As

Publication number Publication date
TW556463B (en) 2003-10-01
TW200308192A (en) 2003-12-16
TW573449B (en) 2004-01-21

Similar Documents

Publication Publication Date Title
JP6637674B2 (en) Printed wiring board, method for manufacturing printed wiring board, and semiconductor device
JP4133968B2 (en) Anti-reflective hard mask composition and method for manufacturing semiconductor device using the same
JP5975582B2 (en) Epoxy functional radiation curable composition containing epoxy functional siloxane oligomer
US6258506B1 (en) Ultraviolet-curable polysiloxane composition and method for the formation of cured patterns therefrom
KR101197526B1 (en) Organosilicate resin formulation for use in microelectronic devices
JP3628098B2 (en) Radiation curable composition and method for producing cured product pattern using the same
TWI402311B (en) Composite composition for micropatterned layers having high relaxation ability, high chemical resistance and mechanical stability
EP0231497A1 (en) Silicone resist materials containing polysiloxanes
KR20060099532A (en) Antireflective coatings for via fill and photolithography applications and methods of preparation thereof
US5861235A (en) Ultraviolet-curable composition and method for patterning the cured product therefrom
CN1399439A (en) Waveguide tube and composition
KR930007921B1 (en) Polyisophenylene siloxane, production process thereof and resist material and semiconductor device formed thereof
KR20040028619A (en) Composition Having Permitivity Being Radiation-Sensitively Changeable and Method for Forming Permitivity Pattern
KR20010011635A (en) Polyamides having acetal and/or its cyclic derivative, and heat-resistant photoresist composition therefrom
TW200426502A (en) Negative type photosensitive resin composition containing a phenol-biphenylene resin
JP2007248885A (en) Silicon-containing photosensitive composition, method for producing thin-film pattern using the same, protective film for electronic device, transistor, color filter, organic el element, gate insulating film and thin-film transistor
WO2002077713A1 (en) Method for forming metal pattern
WO2002077714A1 (en) Self-flame-retardant resist material and insulating material
JP2005042050A (en) Curable silicone composition and method for forming pattern by using the same
JP2002372786A (en) Self-flame-resistant resist material and insulating material
JP6433806B2 (en) Photopolymerizable resin composition, cured product thereof and method for producing cured product
JP2007256782A (en) Silicon-containing photosensitive composition, method for producing thin film pattern using same, protective film for electronic device, transistor, color filter, organic el device, gate insulating film and thin film transistor
JP4010832B2 (en) Method for forming metal pattern
JP4918578B2 (en) Curable silicone composition for negative pattern formation and pattern formation method using the same
JP3856237B1 (en) Silicon-containing photosensitive composition, method for producing thin film pattern using the same, protective film for electronic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase