WO2002077282A1 - Method of detecting gene - Google Patents

Method of detecting gene Download PDF

Info

Publication number
WO2002077282A1
WO2002077282A1 PCT/JP2002/002893 JP0202893W WO02077282A1 WO 2002077282 A1 WO2002077282 A1 WO 2002077282A1 JP 0202893 W JP0202893 W JP 0202893W WO 02077282 A1 WO02077282 A1 WO 02077282A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
nucleic acid
exonuclease
probe
dna
Prior art date
Application number
PCT/JP2002/002893
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yamamoto
Masafumi Ikeda
Original Assignee
International Reagents Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Reagents Corporation filed Critical International Reagents Corporation
Priority to JP2002575322A priority Critical patent/JPWO2002077282A1/en
Publication of WO2002077282A1 publication Critical patent/WO2002077282A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer

Definitions

  • the present invention relates to a method for analyzing genes mainly in the fields of clinical chemistry, drug chemistry, biochemistry, and food chemistry, and includes methods for detecting, quantifying, and mutating genomic genes, viruses, bacteria, and other genes. Used for detection of Background art
  • the southern blot hybridization method and the northern blot hybridization method have been widely used for a long time.
  • the operation was complicated, took a long time, and had to deal with radioactive materials.
  • Hybridization Protection Assay was used as a homogeneous analysis method. Law (Clinical Chemistry 35, 1588-1594, 1984) Force S Reported. In this method, after a DNA nucleic acid labeled with an ata-dimeric ester is hybridized to a target nucleic acid and subjected to a hydrolysis treatment, the hybridized acryl-dimethyl ester is converted into a double-stranded nucleic acid. Therefore, it utilizes the fact that only the acridinium ester of the unhybridized probe is hydrolyzed and loses chemiluminescence. However, the hydrolysis operation is complicated and time-consuming.
  • An object of the present invention is to provide a practical and simple homogeneous measurement method for a nucleic acid detection method using exonuclease.
  • the present inventors have conducted intensive studies and found that a signal-producing label substance and a pair of label substances arranged so as to effectively attenuate the generation of the signal are each bound to a capture probe to obtain a target nucleic acid.
  • a nucleotide that has a function of effectively attenuating the signal of the signal-labeling substance and / or the signal of the signal-generating substance by the action of a certain exonuclease.
  • the inventors have found that a signal can be obtained by releasing from the probe, and have completed a measurement technique capable of judging the presence / absence of a nucleic acid sequence and quantification using a homogeneous system using this mechanism.
  • a homogeneous measurement system for detecting a nucleic acid sequence using an oligonucleotide probe having a signal-generating label substance and a pair of label substances arranged to effectively attenuate the generation of the signal After the hybridization between the target nucleic acid and the probe DNA, the probe DNA is moved from the 5 ′ or 3 ′ end by the action of 5 ′ ⁇ 3, exonuclease or 3 ′ ⁇ 5, exonuclease.
  • a signal is obtained by digesting and releasing a signal-generating substance-labeled nucleotide inserted into the probe DNA and / or a nucleotide labeled with a substance having a function of effectively attenuating the signal of the signal-generating substance.
  • FIG. 1 is an explanatory diagram showing a range of a quantifiable amount of DNA (Example 3).
  • FIG. 2 is an explanatory diagram showing the minimum detection sensitivity (Example 3).
  • the present invention relates to a method for detecting a target nucleic acid (hereinafter, referred to as “target DNA”) and a method for detecting a gene mutation, which are intended to effectively attenuate the generation of a signal and a signal.
  • target DNA a target nucleic acid
  • probe DNA a capture probe
  • the signal-generating labeling substance is acted upon by the action of exonuclease.
  • the combination of the signal-generating label substance and the pair of label substances arranged so as to effectively attenuate the generation of the signal in the present invention may be any combination having such a function.
  • those corresponding to optically detected signals are easy to handle and suitable.
  • the optically detected signal is fluorescent, It does not need to be fluorescent and may not be particularly limited.
  • the probe substances of probe DNA are Fluorescein and Tetramethylrhodamine, FAM and TAMRA, EDANS and DABCYL, FITC and DABCYL, Fluorescein and DABCYL, Fluorescein and Cy3, FITC and Cy3, Fluorescein and QSY. 7dye, but is not limited to these.
  • This signal generation labeling substance (hereinafter, also referred to as “reporter group”) is paired with a labeling substance having a function of effectively attenuating the generation of the signal (hereinafter, this is also referred to as “taenching group”).
  • the reporter group has a function of effectively attenuating the signal generated by the reporter group when the distance from the quenching group is shorter by + minutes.
  • the combination of labeling substances having such a function For example, in the case of a fluorescent substance, when the fluorescence wavelength of the reporter group and the absorption wavelength of the quenching group have a common spectrum. It can be said that it has a function as such a pair of labeling substances.
  • FRET fluorescence resonance energy transfer
  • a probe DNA having a pair of quenching groups and a reporter group is used, but if the labeled probe DNA has not been digested with exonuclease, no signal is detected or exonuclease is not detected.
  • the pair of labeling substances must be arranged so that only a significantly lower signal is generated as compared with the case where the reporter group or the quenching group is released by the action of the above.
  • One such example is the 5 'end of the probe DNA.
  • the distance between the quenching group and the reporter group only needs to be able to effectively attenuate the signal generation of one reporter group, but is preferably within 20 bases, more preferably within 10 bases.
  • the present invention uses a mechanism in which a signal is obtained from a reporter group when a probe DNA is digested by the action of exonuclease and a nucleotide labeled with either a reporter group or a quenching group is released. It is also characterized by detecting a nucleic acid sequence or detecting a gene mutation.
  • the mechanism by which this signal can be obtained is as follows. That is, in the method for detecting a nucleic acid sequence, quenching is performed by hybridizing the probe DNA with the target DNA in a complementary manner and then digesting the probe from the 5 or 3 ′ end by the action of exonuclease.
  • Signal is released by releasing the nucleotide labeled with the quenching group and the Z or reporter group, thereby increasing the distance between the reporter group and the quenching group and weakening the quenching group. It refers to the mechanism that produces it.
  • the probe DNA is present as a single strand, so it is not digested by the double-strand-specific exonuclease, or is minimally digested. As a result, the signal generation does not occur, and the signal generation is significantly lower than when the target DNA is present.
  • a probe DNA is hybridized with a target DNA to form a heteroduplex, and a base mutation, insertion, or deletion is present in the target DNA. Therefore, a protein having exonuclease activity recognizes a mismatch, bubble, or loop structure generated in the heteroduplex, and a probe is formed only when the mismatch, bubble, or loop structure is present. Digestion of DNA from its ends releases nucleotides labeled with a quenching group or reporter group, resulting in a greater distance between the reporter group and the quenching group, resulting in attenuation by the quenching group. A weak signal causes a signal to be generated. In the absence of mismatches, bubbles, or loop structures, is the digestion by exonucleases minimal, or even minimal, resulting in no signal generation? Signal generation is significantly lower than when a mismatch, bubble or loop structure is present.
  • the exonuclease used in the nucleic acid sequence detection method can release a nucleotide labeled with a quenching group or a reporter group in a probe DNA from a polynucleotide chain.
  • Any 5 'exonuclease may be used, but examples thereof include 5'exonuclease; Escherichia coli exonuclease III as exonuclease and 3, exonuclease. it can.
  • the protein having exonuclease activity used in the method for detecting a gene mutation recognizes a mismatch, bubble or loop structure in a heteroduplex, and has a mismatch, bubble or loop structure.
  • Hybridization of the target DNA and the labeled binding probe DNA in the present invention is carried out after the target DNA is denatured into a single strand by denaturation. If the target DNA is single-stranded, there is no need for denaturation and hybridization with the probe DNA can be performed as it is, but hybridization due to the higher-order structure of the single-stranded target DNA is possible. In order to eliminate the possibility of inhibition of the enzyme, it is preferable to carry out a denaturation operation.
  • the modification method in the present invention may be in accordance with a commonly used method, and examples thereof include a method by thermal denaturation and a method by chemical modification.
  • the method by thermal denaturation is usually performed by heating to 90 ° C or more.
  • denaturation is performed by heating at 94-97 ° C for about 5 minutes.
  • the method by chemical denaturation is performed by the action of a denaturant such as urea or formaldehyde, or by increasing the pH.
  • the pH can be increased by using 0.4 to 1. Omol / L NaOH. From the viewpoint of operability and the like, a method based on heat denaturation is preferably used.
  • the hybridization may be performed according to a commonly used method, but the conditions differ depending on the length of the probe or denatured double-stranded target DNA, base sequence, and Tm (melting temperature). Generally, a pH of 6.4 to 9.0 and a pH of 10 to 1000 mmol / L Hybridization is performed at room temperature to 70 ° C in the presence of stream ions.
  • fluorescence detection conditions include, for example, 5'-end of probe DNA with Dabcyl modification and Fluorescein modification in the chain, 3 ' ⁇ 5, degraded from 3' end by the action of exonuclease
  • the emitted fluorescence is detected using a fluorimeter under the conditions of a maximum excitation wavelength of 49.4 nm and a maximum fluorescence wavelength of 51.8 nm.
  • the signal generated by the degradation of the probe DNA by exonuclease for example, the fluorescence signal in the case of FRET, increases with the degradation reaction of the probe DNA, and the signal can be monitored during the reaction.
  • the signal generated by the degradation of the probe DNA by exonuclease increases with the degradation reaction of the probe DNA, and the signal can be monitored during the reaction.
  • reproducibility and quantitativeness can be improved and the measurement time can be shortened.
  • DNA extracted from a biological sample can be used, but the amount is often insufficient for analysis.
  • the nucleic acid extracted from the biological sample can be amplified by PCR or the like, and the amplified DNA product can be used for the gene mutation analysis according to the present invention. .
  • the probe DNA can be prepared by, for example, a chemical method using a general DNA synthesizer.
  • PCR primer As the target DNA, a double-stranded DNA whose human K-ras region was amplified by PCR was used.
  • the sequence of the PCR primer is as follows.
  • Nucleotide sequence 1 5'-GAGAGGCCTGCTGAAAATG
  • Nucleotide sequence 2 5 '-CCTCTATTGTTGGATCATATTC
  • a model system for detecting nucleic acid sequences was constructed using exonuclease III, which is a 3 'exonuclease, and a probe labeled with Dabcyl at the 5' end and Fluorescein in the chain.
  • exonuclease III which is a 3 'exonuclease
  • a probe labeled with Dabcyl at the 5' end and Fluorescein in the chain As the target DNA, a PCR product obtained by amplifying a partial sequence of the human K-ras gene was used. Oligonucleotide having the base sequence shown below as the probe DNA Leotide was chemically synthesized and used. Dabcyl is labeled at the 5 'end of the probe DNA and fluorescein is labeled in the strand. "Z" in the sequence represents Fluorescein-dT.
  • Nucleotide sequence 3 5 '-GCTCCAACZACCACAAGTTTATATTCAGTC
  • the optimal amount of enzyme, probe DNA amount, NaCl concentration, reaction temperature, and hybridization conditions were examined. Based on the results, the operation method of this method was as follows. Determined. That is,
  • the range of the amount of DNA that can be quantified by the method of the present invention was verified. As shown in FIG. 1, a good calibration curve was drawn until the PCR product amount was 300 fmol, indicating that the quantification range of the present method was wide.
  • the mean value of the relative fluorescence intensity (RFU) and twice the standard deviation (2SD) of each four simultaneous measurements is the minimum target DNA amount that does not fall below the value obtained by adding 2SD to the average RFU value at the target DNA force S0 fraol.
  • the minimum detection sensitivity of this method was 1.45 fmol, indicating that it was extremely sensitive (Fig. 2).
  • nucleic acid sequence can be performed by a simple operation, so that automation is also easy. Further, the signal can be measured while the reaction is in progress, and the analysis result can be obtained quickly.
  • exonuclease used in the present invention any exonuclease can be used as long as it can release a nucleotide having a modified reporter group or signal group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a method whereby a specific nucleic acid sequence can be conveniently and quickly detected in a homogeneous system. A signal-generating label and a pair of labels provided in such a manner as to weaken the generation of the signal are attached respectively to the 5'-terminus of a probe DNA and the inside of its strand, the 3'-terminus and the inside of the strand, or both to the inside of the strand. Then the thus labeled probe is hybridized with a target nucleic acid and treated with exonuclease to thereby digest the probe DNA from the 5'- or 3'-terminus. Thus a nucleotide labeled with a reporter group or a quencher group within the strand and/or a nucleotide labeled with a substance capable of effectively weakening the signal of the signal generator are released from the probe DNA. Thereby, the effect of weakening the signal from the reporter group by the quencher group is lost or lowered and a detectable signal is generated, which enables the detection and quantification of a nucleic acid having a specific sequence.

Description

明細書  Specification
遺伝子検出方法 技術分野 Gene detection method Technical field
本発明は臨床化学、 薬物化学、 生化学、 食品化学の分野におけ る、主と して遺伝子解析方法に関するものであ り 、ゲノム遺伝子、 ウィルス又は細菌等の遺伝子の検出、 定量、 並びに遺伝子変異の 検出に用いられる。 背景技術  The present invention relates to a method for analyzing genes mainly in the fields of clinical chemistry, drug chemistry, biochemistry, and food chemistry, and includes methods for detecting, quantifying, and mutating genomic genes, viruses, bacteria, and other genes. Used for detection of Background art
標的核酸に対して相補的な配列を含むプローブ核酸を用いた 分析方法と して、 古く からサザンプロ ッ トハイプリ ダイゼ一ショ ン法ゃノーザンプロ ッ トハイプリ ダイゼーショ ン法が広く 、 一般 的に用いられてきたが、 操作が煩雑であ り 、 長時間を要し、 放射 性物質を取り扱わねばならなかった。  As an analysis method using a probe nucleic acid containing a sequence complementary to a target nucleic acid, the southern blot hybridization method and the northern blot hybridization method have been widely used for a long time. However, the operation was complicated, took a long time, and had to deal with radioactive materials.
その後、 サザンブロ ッ トハイブリ ダィゼーシヨ ン法やノーザン プロ ッ トハイプリ ダイゼーショ ン法に代わる種々 の分析法が開 ¾されて!/ヽる。 Cycling Probe Technology (BioTechniques 20, 240-248, 1996)では、 反応温度は一定であり 、 一方が他方の蛍光 を効果的に消光する よ う に 2種の蛍光性物質で適切に標識され たプローブを切断したと きに発する蛍光を検出するこ とで、 核酸 配列の検出を簡便且つ迅速に均一系にて行う こ とが可能である t し力 し、 この方法では、 DNA-RNA- DNA のキメ ラプローブを用いる ため、 プローブの製造費は高価となる。 Later, various analytical methods were developed to replace the Southern blot hybridization method and the Northern plot hybridization method! / Puru. In the Cycling Probe Technology (BioTechniques 20, 240-248, 1996), the reaction temperature is constant, and one probe is appropriately labeled with two fluorescent substances so that one can effectively quench the fluorescence of the other. in the detection child fluorescence emitted in can cut and, and t and force it is possible and this to perform detecting at easily and swiftly homogeneous nucleic acid sequence, in this method, DNA-RNA-texture DNA Since the probe is used, the manufacturing cost of the probe is high.
また、 均一系の解析法と して Hybridization Protection Assay 法 (Clinical Chemistry 35, 1588-1594, 1984)力 S報告されて ヽ る。 この方法は、 アタ リ ジ-ゥムエステルを標識した D N Aプロ ープを標的核酸にハイブリ ダィズさせた後、 加水分解処理を行う と、 ハイブリ ダィズしたァク リ ジ -ゥムエステルは二本鎖の核酸 に揷入されるため加水分解を受けず、 ハイブリ ダイズしていない プローブのァク リ ジニゥムエステルのみが加水分解されて、 化学 発光性が失われるこ と を利用 している。 しかし、 加水分解の操作 は煩雑であり 、 時間も要する。 In addition, the Hybridization Protection Assay was used as a homogeneous analysis method. Law (Clinical Chemistry 35, 1588-1594, 1984) Force S Reported. In this method, after a DNA nucleic acid labeled with an ata-dimeric ester is hybridized to a target nucleic acid and subjected to a hydrolysis treatment, the hybridized acryl-dimethyl ester is converted into a double-stranded nucleic acid. Therefore, it utilizes the fact that only the acridinium ester of the unhybridized probe is hydrolyzed and loses chemiluminescence. However, the hydrolysis operation is complicated and time-consuming.
その他には、 二本鎖 D N Aを特異的に消化する λェキソヌク レ ァーゼ (BioTechniques 13, 888-892, 1992) ゃェキソヌク レア ーゼ III (特開平 6-327499) を用いたサイク リ ングアツセィ法が 開発されている。 この方法は、 オリ ゴヌク レオチ ドプローブが相 補的な配列とハイプリ ダイズして形成された二本鎖 D N Aにェ キソヌク レアーゼを作用させ、 消化に伴って短く なったプローブ が標的核酸から解離する と、 新たなプローブがハイプリ ダイズし この行程が繰り 返される こ と によってサイ ク リ ング反応が成立 する。 このプローブの分解産物を検出するこ とによ り 、 標的核酸 の有無を判定する こ とができる。 この方法は、 操作法が簡便であ り 、 反応温度が一定であるため、 特別の温度制御装置を要しない などの点で有用性がある。 しかし、 この分解産物の検出方法と し ては、 放射性物質を利用 した煩雑な方法が示されているだけであ り、 実用性の面で問題点が残されている。 発明の開示  In addition, a cyclase-assay method using λ-exonuclease (BioTechniques 13, 888-892, 1992), which specifically digests double-stranded DNA, and exonuclease III (JP-A-6-327499) was developed. Have been. In this method, an exonuclease acts on double-stranded DNA formed by hybridization of an oligonucleotide probe with a complementary sequence, and when the probe shortened due to digestion dissociates from the target nucleic acid, A new probe is hybridized and this process is repeated to establish a cycling reaction. The presence or absence of the target nucleic acid can be determined by detecting the degradation product of this probe. This method is useful in that the operation method is simple and the reaction temperature is constant, so that no special temperature control device is required. However, as a method for detecting this degradation product, only a complicated method using a radioactive substance is shown, and there is a problem in practicality. Disclosure of the invention
本発明は、 ェキソヌク レアーゼを用いた核酸検出法に関して、 実用的で簡便な均一測定法を提供するこ とを目的と している。 本発明者らは鋭意研究を重ねた結果、 シグナル発生標識物質お よび当該シグナルの発生を有効に減弱させる よ う に配置した一 対の標識物質を、 捕捉プローブに各結合させたものを標的核酸に ハイプリ ダイゼーショ ンさせ、 ある種のェキソヌク レアーゼの作 用で該シグナル発生標識物質を結合したヌク レオチ ドおよび/ またはシグナル発生物質のシグナルを有効に減弱させる機能を 有する物質を標識したヌク レオチ ドが該プローブから遊離する こ とによ り シグナルが得られう る こ とを見出し、 この機構を用い て、 均一系による核酸配列の有無の判定並びに定量が可能な測定 技術を完成させるに至った。 An object of the present invention is to provide a practical and simple homogeneous measurement method for a nucleic acid detection method using exonuclease. The present inventors have conducted intensive studies and found that a signal-producing label substance and a pair of label substances arranged so as to effectively attenuate the generation of the signal are each bound to a capture probe to obtain a target nucleic acid. To a nucleotide that has a function of effectively attenuating the signal of the signal-labeling substance and / or the signal of the signal-generating substance by the action of a certain exonuclease. The inventors have found that a signal can be obtained by releasing from the probe, and have completed a measurement technique capable of judging the presence / absence of a nucleic acid sequence and quantification using a homogeneous system using this mechanism.
すなわち本発明は、  That is, the present invention
1 . シグナル発生標識物質および当該シグナルの発生を有効に減 弱させる よ う に配置した一対の標識物質を有するオリ ゴヌ タ レ ォチ ドプローブを使用 して核酸配列を検出するための均一測定 系であって、 標的核酸とプローブ D N Aとのハイブリ ダィゼーシ ョ ンの後、 5 '→ 3 ,ェキソヌク レアーゼまたは 3 '→ 5,ェキソヌ ク レアーゼの作用によ り プローブ D N Aを 5 'または 3 '末端よ り 消化せしめ、 プローブ D N A内に挿入したシグナル発生物質標 識ヌク レオチ ドおよび/またはシグナル発生物質のシグナルを 有効に減弱させる機能を有する物質を標識したヌ ク レオチ ドを 遊離する こ と によってシグナルを得る こ と を特徴とする核酸配 列の検出方法、  1. A homogeneous measurement system for detecting a nucleic acid sequence using an oligonucleotide probe having a signal-generating label substance and a pair of label substances arranged to effectively attenuate the generation of the signal. After the hybridization between the target nucleic acid and the probe DNA, the probe DNA is moved from the 5 ′ or 3 ′ end by the action of 5 ′ → 3, exonuclease or 3 ′ → 5, exonuclease. A signal is obtained by digesting and releasing a signal-generating substance-labeled nucleotide inserted into the probe DNA and / or a nucleotide labeled with a substance having a function of effectively attenuating the signal of the signal-generating substance. A method for detecting a nucleic acid sequence,
2 . 5,→ 3,ェキソヌク レアーゼカ S えェキソヌク レアーゼである こ とを特徴とする前項 1 に記載の核酸配列検出方法、  2.5, → 3, the method for detecting a nucleic acid sequence according to 1 above, which is characterized by being an exonuclease S
3 . 3 '→ 5,ェキソヌク レア一ゼがェキソヌク レアーゼ I I I であ る こ とを特徴とする前項 1 に記載の核酸配列検出方法、 4 . 前項 1〜 3 のいずれか 1 に記載の核酸配列検出方法に使用す る測定試薬またはキッ ト、 からなる。 図面の簡単な説明 3.3 '→ 5, the method for detecting a nucleic acid sequence according to item 1 above, wherein the exonuclease is exonuclease III; 4. It comprises a measuring reagent or a kit used in the nucleic acid sequence detection method according to any one of the above items 1 to 3. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 定量可能な D N A量の範囲を示した説明図である (実施例 3 )。  FIG. 1 is an explanatory diagram showing a range of a quantifiable amount of DNA (Example 3).
第 2図は、 最低検出感度を示した説明図である (実施例 3 )。 発明を実施するための最良の形態  FIG. 2 is an explanatory diagram showing the minimum detection sensitivity (Example 3). BEST MODE FOR CARRYING OUT THE INVENTION
本発明は標的核酸 (以下 「ターゲッ ト D N A」 という。) を検 出するための方法及ぴ遺伝子変異検出方法であって、 シグナル発 生標識物質および当該シグナルの発生を有効に減弱させる よ う に配置した一対の標識物質を、 捕捉プローブ (以下 「プローブ D N A」 とレヽ う。) に各結合させたものをターゲッ ト D N Aにハイ ブリ ダィゼーシ ヨ ンさせ、 ェキソヌク レアーゼの作用によって、 該シグナル発生標識物質を結合したヌク レオチ ドが該プローブ D N Aから遊離する こ と によ り シグナルが得られる機構を用い て簡便に標的遺伝子の有無の判定、 定量、 及び遺伝子変異を検出 する方法を見出 したものである。  The present invention relates to a method for detecting a target nucleic acid (hereinafter, referred to as “target DNA”) and a method for detecting a gene mutation, which are intended to effectively attenuate the generation of a signal and a signal. Each of the paired labeling substances, which has been bound to a capture probe (hereinafter referred to as “probe DNA”), is hybridized to target DNA, and the signal-generating labeling substance is acted upon by the action of exonuclease. A method for easily determining the presence or absence of a target gene, quantifying it, and detecting a gene mutation using a mechanism whereby a signal is obtained by releasing a nucleotide bound to the probe DNA from the probe DNA. is there.
本発明におけるシグナル発生標識物質および該シグナルの発 生を有効に減弱させる よ う に配置した一対の標識物質の組合せ は、 このよ う な機能を有する組合せであれば良く 、 さ らにプロ一 ブ D N Aと標的核酸と のハイプリ ダイゼーショ ンを実質的に妨 害しないものであれば特に限定されないが、 好ま しく は光学的に 検出されるシグナルに対応する ものが取り 扱いやすく 好適であ る。 さ らに、 光学的に検出されるシグナルとは蛍光性であっても 良いし、蛍光性でなく ても良く 、特に限定されない。具体的には、 例 え ば プ ロ ー ブ D N A の 標 識 物 質 は Fluorescein と Tetramethylrhodamine, FAM と TAMRA、 EDANS と DABCYL、 FITC と DABCYL、Fluorescein と DABCYL、Fluorescein と Cy3、FITC と Cy3、 Fluorescein と QSY 7dyeが挙げられるが、 これらに限定されるも のではない。 The combination of the signal-generating label substance and the pair of label substances arranged so as to effectively attenuate the generation of the signal in the present invention may be any combination having such a function. There is no particular limitation as long as it does not substantially hinder the hybridization of the DNA and the target nucleic acid. Preferably, those corresponding to optically detected signals are easy to handle and suitable. Furthermore, even if the optically detected signal is fluorescent, It does not need to be fluorescent and may not be particularly limited. Specifically, for example, the probe substances of probe DNA are Fluorescein and Tetramethylrhodamine, FAM and TAMRA, EDANS and DABCYL, FITC and DABCYL, Fluorescein and DABCYL, Fluorescein and Cy3, FITC and Cy3, Fluorescein and QSY. 7dye, but is not limited to these.
本シグナル発生標識物質 (以下これを 「レポーター基」 と もい う。) は、 当該シグナルの発生を有効に減弱させる機能を有する 標識物質 (以下これを 「タエンチング基」 と もい う。) と一対に して使用されるものである。 すなわち、 レポーター基は、 クェン チング基との距離が +分短いとき、 レポーター基が発生するシグ ナルを有効に減弱させる機能を有する。 そのよ う な機能を有する 標識物質の組合せであれば特に限定されないが、 例えば蛍光性物 質の場合、 レポーター基の蛍光波長と クェンチング基の吸収波長 が共通のスぺク ト ラムを有する場合にこのよ う な一対の標識物 質と しての機能を有する といえる。  This signal generation labeling substance (hereinafter, also referred to as “reporter group”) is paired with a labeling substance having a function of effectively attenuating the generation of the signal (hereinafter, this is also referred to as “taenching group”). Is used. That is, the reporter group has a function of effectively attenuating the signal generated by the reporter group when the distance from the quenching group is shorter by + minutes. There is no particular limitation on the combination of labeling substances having such a function.For example, in the case of a fluorescent substance, when the fluorescence wavelength of the reporter group and the absorption wavelength of the quenching group have a common spectrum. It can be said that it has a function as such a pair of labeling substances.
このよ う な一対の標識物質を用いる手法は、 一般的に蛍光共鳴 エネルギー転移 ( F R E T ) と して公知であ る (特許公表 2000 - 509278)。  Such a method using a pair of labeling substances is generally known as fluorescence resonance energy transfer (FRET) (Patent Publication 2000-509278).
本発明は一対のクェンチング基と レポーター基を有するプロ ーブ D N Aが使用されるが、 該標識プローブ D N Aは、 ェキソヌ ク レアーゼの消化を受けていない場合にはシグナルが検出され ないか、 またはェキソヌク レアーゼの作用によってレポーター基 またはクェンチング基が遊離した場合に比べて有意に低いシグ ナルしか発生しないよ う に一対の標識物質が配置されている こ と を要する。 そのよ う な例と して、 プローブ D N Aの 5 '末端ま たは 3,末端にクェンチング基および鎖内にレポーター基、 5,末 端または 3 '末端にレポ一ター基おょぴ鎖内にクェンチング基、 鎖内にレポーター基及ぴクェンチング基、 プローブ D N Aのそれ ぞれの末端にレポーター基及びクェンチング基を有する ものが 例示される。 クェンチング基と レポーター基の距離は、 レポータ 一基のシグナル発生を有効に減弱させるこ とができればよいが、 好ま しく は 2 0塩基以内、 よ り好ま しく は 1 0塩基以内が望ま し い。 In the present invention, a probe DNA having a pair of quenching groups and a reporter group is used, but if the labeled probe DNA has not been digested with exonuclease, no signal is detected or exonuclease is not detected. The pair of labeling substances must be arranged so that only a significantly lower signal is generated as compared with the case where the reporter group or the quenching group is released by the action of the above. One such example is the 5 'end of the probe DNA. Or 3, a quenching group at the end and a reporter group in the chain; 5, a terminal group at the terminal or 3 'end; a quenching group in the chain; a reporter group and a quenching group in the chain; Those having a reporter group and a quenching group at each end are exemplified. The distance between the quenching group and the reporter group only needs to be able to effectively attenuate the signal generation of one reporter group, but is preferably within 20 bases, more preferably within 10 bases.
本発明は、 プローブ D N Aがェキソヌク レアーゼの作用によつ て消化され、 且つレポーター基またはクェンチング基のいずれか が標識されたヌク レオチ ドが遊離した場合にレポーター基から シグナルが得られる機構を用いて核酸配列の検出または遺伝子 変異の検出をするこ と も特徴とする。 こ のシグナルが得られる機 構とは、 次のとおり である。 すなわち、 核酸配列の検出法におい ては、 プローブ D N Aをターゲッ ト D N Aと相補的にハイブリ ダ ィゼーシヨ ンさせた後、 ェキソヌク レアーゼの作用によって 5, または 3 '末端から該プローブを消化する こ と よってクェンチン グ基および Zまたはレポ一ター基が標識されたヌ ク レオチ ドが 遊離し、その結果、 レポーター基と クェンチング基の距離が離れ、 クェンチ ング基による減弱が弱く なる こ と によ り シグナルを発 生させる機構をいう。 ターゲッ ト D N Aが存在しない場合には、 プローブ D N Aは一本鎖と して存在するため、 二本鎖特異的なェ キソヌク レアーゼによる消化を受けないか、 または、 消化を受け ても最小限であ り 、 その結果、 シグナルの発生が起こ らない力 、 ターゲッ ト D N Aが存在する と き と比べてシグナルの発生は有 意に低く なる。 また、 遺伝子変異の検出法においては、 プローブ D N Aをター ゲッ ト D N A とハイ ブリ ダイ ズさせてヘテロデュプレ ッ ク ス を 形成させ、 ターゲッ ト D N A内に塩基の変異、 揷入または欠失が 存在するために該ヘテロデュプレ ッ ク ス に生じたミ スマ ッチ、 バ ブルまたはループ構造をェキソヌ ク レアーゼ活性を有する蛋 白 が認識し、 ミ スマ ッチ、 バブルまたはループ構造が存在する場合 にのみプローブ D N Aを末端から消化する こ と に よってク ェン チング基または レポーター基が標識されたヌ ク レオチ ドが遊離 され、 その結果、 レポーター基と クェンチング基の距離が離れ、 ク ェンチング基によ る減弱が弱 く なる こ と によ り シグナルを発 生させる。 ミ スマッチ、 バブルまたはループ構造が存在しない場 合には、 ェキソヌク レアーゼによ る消化を受けないか、 または、 消化を受けても最小限であ り 、 その結果、 シグナルの発生が起こ らないか、 ミ スマ ッチ、 バブルまたはループ構造が存在する と き と比べてシグナルの発生は有意に低く なる。 The present invention uses a mechanism in which a signal is obtained from a reporter group when a probe DNA is digested by the action of exonuclease and a nucleotide labeled with either a reporter group or a quenching group is released. It is also characterized by detecting a nucleic acid sequence or detecting a gene mutation. The mechanism by which this signal can be obtained is as follows. That is, in the method for detecting a nucleic acid sequence, quenching is performed by hybridizing the probe DNA with the target DNA in a complementary manner and then digesting the probe from the 5 or 3 ′ end by the action of exonuclease. Signal is released by releasing the nucleotide labeled with the quenching group and the Z or reporter group, thereby increasing the distance between the reporter group and the quenching group and weakening the quenching group. It refers to the mechanism that produces it. When the target DNA is not present, the probe DNA is present as a single strand, so it is not digested by the double-strand-specific exonuclease, or is minimally digested. As a result, the signal generation does not occur, and the signal generation is significantly lower than when the target DNA is present. In addition, in a method for detecting a gene mutation, a probe DNA is hybridized with a target DNA to form a heteroduplex, and a base mutation, insertion, or deletion is present in the target DNA. Therefore, a protein having exonuclease activity recognizes a mismatch, bubble, or loop structure generated in the heteroduplex, and a probe is formed only when the mismatch, bubble, or loop structure is present. Digestion of DNA from its ends releases nucleotides labeled with a quenching group or reporter group, resulting in a greater distance between the reporter group and the quenching group, resulting in attenuation by the quenching group. A weak signal causes a signal to be generated. In the absence of mismatches, bubbles, or loop structures, is the digestion by exonucleases minimal, or even minimal, resulting in no signal generation? Signal generation is significantly lower than when a mismatch, bubble or loop structure is present.
核酸配列の検出法において使用 されるェキソヌ ク レアーゼ と しては、 プローブ D N A中のクェンチング基またはレポーター基 が標識されたヌ ク レオチ ドをポ リ ヌ ク レオチ ド鎖から遊離する こ と のでき る も のであれば良 く 、 特に限定されないが、 5 'ェキ ソヌ ク レアーゼ と して ; ェキ ソヌ ク レアーゼ、 3 , ェキ ソヌ ク レ ァーゼと して大腸菌ェキソヌク レアーゼ I I Iを例示する こ と がで き る。 また、 遺伝子変異の検出法において使用 されるェキソヌ ク レアーゼ活性を有する蛋白 と しては、 ヘテロデュプレ ッ ク ス中の ミ スマッチ、 バブルまたはループ構造を認識し、 ミ スマッチ、 バ ブルまたはループ構造が存在する場合にのみプロ ーブ D N Aを 末端から消化し、 プローブ D N A中のクェンチング基またはレポ 一ター基が標識されたヌク レオチ ドを遊離する こ と のでき る も のであれば良く 、 特に限定されないが、 ヒ トの W R N遺伝子にコ ー ドされる蛋白 (Nucleic Acids Research 28, 3260-3268, 2000) を例示するこ とができる。 The exonuclease used in the nucleic acid sequence detection method can release a nucleotide labeled with a quenching group or a reporter group in a probe DNA from a polynucleotide chain. Any 5 'exonuclease may be used, but examples thereof include 5'exonuclease; Escherichia coli exonuclease III as exonuclease and 3, exonuclease. it can. In addition, the protein having exonuclease activity used in the method for detecting a gene mutation recognizes a mismatch, bubble or loop structure in a heteroduplex, and has a mismatch, bubble or loop structure. Digest the probe DNA from the ends only if present, and use the quenching groups or repo in the probe DNA. Any protein capable of releasing a labeled nucleotide can be used, and is not particularly limited.A protein encoded by the human WRN gene (Nucleic Acids Research 28, 3260-3268 , 2000).
さ らに、 本発明の実施条件について詳細に説明するが、 これら は例示的にしめすものであ り 、 限定されるものではない。  Furthermore, the conditions for carrying out the present invention will be described in detail, but these are merely examples and the present invention is not limited thereto.
本発明におけるターゲッ ト D N Aと該標識結合プローブ D N Aのハイブリ ダィゼーシヨ ンは、 該ターゲッ ト D N Aを変性によ り一本鎖と したのち行われる。 該ターゲッ ト D N Aがー本鎖であ れば変性の必要はなく そのままプローブ D N A とハイ ブリ ダイ ゼーシヨ ンさせるこ と も可能であるが、 該一本鎖ターゲッ ト D N Aの高次構造によるハイブリ ダイゼーシ ョ ンの阻害の可能性を 排除するためには変性操作を行う のが好ま しい。  Hybridization of the target DNA and the labeled binding probe DNA in the present invention is carried out after the target DNA is denatured into a single strand by denaturation. If the target DNA is single-stranded, there is no need for denaturation and hybridization with the probe DNA can be performed as it is, but hybridization due to the higher-order structure of the single-stranded target DNA is possible. In order to eliminate the possibility of inhibition of the enzyme, it is preferable to carry out a denaturation operation.
本発明における変性の方法は通常行われる方法に従えば良い が、 例えば熱変性によるものと化学的変性によるものが例示され る。 具体的な方法と して、 熱変性による方法は、 通常 9 0 °C以上 に加熱するこ とによ り行われる。 好ま しく は、 9 4 °C〜 9 7 °Cで 約 5分間加熱するこ とによ り変性が行われる。 化学的変性による 方法は尿素、 ホルムアルデヒ ド等の変性剤の作用によ り 、 または pH を上昇させるこ とによ り行われる。 pHは 0.4〜 1. Omol/L NaOH を用いるこ とによ り 上昇させるこ とができる。 操作性などの点か らから熱変性による方法が好適に用いられる。  The modification method in the present invention may be in accordance with a commonly used method, and examples thereof include a method by thermal denaturation and a method by chemical modification. As a specific method, the method by thermal denaturation is usually performed by heating to 90 ° C or more. Preferably, denaturation is performed by heating at 94-97 ° C for about 5 minutes. The method by chemical denaturation is performed by the action of a denaturant such as urea or formaldehyde, or by increasing the pH. The pH can be increased by using 0.4 to 1. Omol / L NaOH. From the viewpoint of operability and the like, a method based on heat denaturation is preferably used.
また、 ハイブリ ダイゼーショ ンの方法は通常行われる方法に従 えば良いが、 その条件はプローブ又は変性二本鎖ターゲッ ト D N Aの鎖長、 塩基配列、 T m (融解温度 (melting temperature) によ り異なる。 一般的には pH6.4〜9.0で、 10 〜 1000mmol/Lのナ ト リ ゥムイオン存在下にて室温〜 7 0 °Cの温度下でハイブリ ダ ィゼーショ ンが行われる。 The hybridization may be performed according to a commonly used method, but the conditions differ depending on the length of the probe or denatured double-stranded target DNA, base sequence, and Tm (melting temperature). Generally, a pH of 6.4 to 9.0 and a pH of 10 to 1000 mmol / L Hybridization is performed at room temperature to 70 ° C in the presence of stream ions.
F R E Tの場合の蛍光の検出条件と して、 例えばプローブ D N Aの 5,末端に Dabcyl修飾、 鎖内に Fluorescein修飾の場合、 3 '→ 5,ェキソヌク レアーゼの作用によ り、 3 '末端よ り分解され るに伴って発せられる蛍光は最大励起波長 4 9 4 n m、 最大蛍 光波長 5 1 8 n mの条件でフルォロ メ ーターを用いて検出され る。  In the case of FRET, fluorescence detection conditions include, for example, 5'-end of probe DNA with Dabcyl modification and Fluorescein modification in the chain, 3 '→ 5, degraded from 3' end by the action of exonuclease The emitted fluorescence is detected using a fluorimeter under the conditions of a maximum excitation wavelength of 49.4 nm and a maximum fluorescence wavelength of 51.8 nm.
ェキソヌク レアーゼによるプローブ D N Aの分解によって生 じるシグナル、 例えば、 F R E Tの場合の蛍光シグナルは、 プロ ーブ D N Aの分解反応に応じて増加し、 反応の進行中にシグナル をモニタ一する こ とが可能であり 、 適切な反応時間を選択するこ とによ り 、 再現性並びに定量性の向上及び測定時間の短縮が図れ る。  The signal generated by the degradation of the probe DNA by exonuclease, for example, the fluorescence signal in the case of FRET, increases with the degradation reaction of the probe DNA, and the signal can be monitored during the reaction. However, by selecting an appropriate reaction time, reproducibility and quantitativeness can be improved and the measurement time can be shortened.
検体と しては、 生物試料から抽出された D N Aを用いるこ とが できるが、 解析に用いるには量が不充分なこ とが多い。 そのよ う な場合には、 生物試料から抽出された核酸を P C R法などによつ て増幅するこ とができ、 増幅された D N A産物を本発明による遺 伝子変異解析に用いるこ とができる。  As the specimen, DNA extracted from a biological sample can be used, but the amount is often insufficient for analysis. In such a case, the nucleic acid extracted from the biological sample can be amplified by PCR or the like, and the amplified DNA product can be used for the gene mutation analysis according to the present invention. .
プローブ D N Aの作製は、 例えば一般の D N A合成装置を用い て化学的な方法を用いて合成可能である。  The probe DNA can be prepared by, for example, a chemical method using a general DNA synthesizer.
(実施例) . (Example) .
以下、 本発明を実施例によ り具体的に説明するが、 本発明は以 下の実施例に限定されるものではない。 (実施例 1 ) Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples. (Example 1)
( 1 ) ターゲッ ト D N Aの調製  (1) Preparation of target DNA
ターゲッ ト D N Aにはヒ ト K- ras領域を P C Rにて増幅した二 本鎖 D N Aを用いた。 P C Rプライマーの配列は以下の通り であ る。  As the target DNA, a double-stranded DNA whose human K-ras region was amplified by PCR was used. The sequence of the PCR primer is as follows.
塩基配列 1 : 5 ' - GAGAGGCCTGCTGAAAATG Nucleotide sequence 1: 5'-GAGAGGCCTGCTGAAAATG
塩基配列 2 : 5 ' - CCTCTATTGTTGGATCATATTC Nucleotide sequence 2: 5 '-CCTCTATTGTTGGATCATATTC
各プライマー lOpraol, 各 d N T P 200 μ mol/L, 1.25U (D Ex Taq (宝酒造)、 1 X Ex Taq buffer (宝酒造)、 約 lOOng のヒ トゲノ ミ ック D N Aを含む反応液 50 Lを調製し、 94°C /30秒、 55°C /30 秒、 72°C /20秒の反応を 35サイクル行い、 P C Rによる遺伝子増 幅を実施した。 P C R反応液の一部を 2 %ァガロースゲルにて電 気泳動したと ころ、 単一のバン ドが確認され、 予想される増幅産 物のサイズである 128bp と一致する移動度を示した。 P C R産物 は精製を行 う こ と な く 、 PicoGreen dsDNA Quantitation Kit (Molecular Pr ob e s )で定量した。 Pi coGreen は dsDNA を特異的に 染色する蛍光性色素であ り 、 プライマー D N Aの存在下で P C R 産物の定量が可能である。 (実施例 2 )  Prepare a 50 L reaction mixture containing lOpraol for each primer, 200 μmol / L for each dNTP, 1.25 U (D Ex Taq (Takara Shuzo), 1X Ex Taq buffer (Takara Shuzo), and about 100 ng of human genomic DNA. The gene was amplified by PCR by performing 35 cycles of the reaction at 94 ° C / 30 seconds, 55 ° C / 30 seconds, and 72 ° C / 20 seconds. Upon electrophoresis, a single band was identified, showing a mobility consistent with the expected amplification product size of 128 bp .. The PCR product was not purified and PicoGreen dsDNA Quantitation was performed. Quantification with Kit (Molecular Pres) Pi coGreen is a fluorescent dye that specifically stains dsDNA, and enables quantification of PCR products in the presence of primer DNA (Example 2).
( 1 ) プローブ D N A  (1) Probe D N A
3 'ェキソヌク レアーゼであるェキソヌク レアーゼ III及び 5 ' 末端に Dabcyl、鎖内に Fluorescein を標識したプローブを用いた 核酸配列検出のモデル系を構築した。 ターゲッ ト D N Aと してヒ ト K- ras 遺伝子の一部の配列を増幅した P C R産物を使用 した。 プローブ D N Aと して、 以下に示す塩基配列を有するオリ ゴヌク レオチ ドを化学合成して用いた。 このプローブ D N Aの 5 '末端 には Dabcyl が、 鎖内に fluorescein が標識されている。 配列中 の" Z"は Fluorescein - dT を表す。 A model system for detecting nucleic acid sequences was constructed using exonuclease III, which is a 3 'exonuclease, and a probe labeled with Dabcyl at the 5' end and Fluorescein in the chain. As the target DNA, a PCR product obtained by amplifying a partial sequence of the human K-ras gene was used. Oligonucleotide having the base sequence shown below as the probe DNA Leotide was chemically synthesized and used. Dabcyl is labeled at the 5 'end of the probe DNA and fluorescein is labeled in the strand. "Z" in the sequence represents Fluorescein-dT.
塩基配列 3 : 5 ' - GCTCCAACZACCACAAGTTTATATTCAGTC Nucleotide sequence 3: 5 '-GCTCCAACZACCACAAGTTTATATTCAGTC
( 2 ) 反応条件  (2) Reaction conditions
本発明による核酸配列検出法において、 最適な酵素量、 プロ一 ブ D N A量、 NaCl濃度、 反応温度、 ハイブリ ダィゼーシ ョ ン条件 を検討し、 その結果よ り 、 本法の操作法を以下のよ う に定めた。 すなわち、  In the nucleic acid sequence detection method according to the present invention, the optimal amount of enzyme, probe DNA amount, NaCl concentration, reaction temperature, and hybridization conditions were examined. Based on the results, the operation method of this method was as follows. Determined. That is,
10 M probe D N A 0.5 μ L  10 M probe D N A 0.5 μL
10 X Exonuclease III buffer (宝酒造) 2 μ I  10 X Exonuclease III buffer (Takara Shuzo) 2 μI
1M NaCl 0. 75 μ L target D N A 1 μ I  1M NaCl 0.75 μL target D N A 1 μ I
dW 5.75 μ L を Low Profile Multiplate 96 (MJ Research Inc. ) のゥエル内 に調製し、サーマルサイク ラーを用いて 95°Cにて 5分加温するこ とによって二本鎖ターゲッ ト D N Aを変成させ、次いで 37°Cまで 冷却し、 37°Cで 1分間保温するこ とによってプローブ D N Aとタ ーゲッ ト D N Aをハイブリ ダィズさせ、 1.35U// L のェキソヌク レアーゼ III (宝酒造) 10 L を添加し、 37°Cにて 30分ィ ンキュ ペー ト した。 その後、 70°Cにて 15 分加温するこ と によってェキ ソヌク レアーゼ IIIを失活させ、蛍光プレー ト リ一ダー CytoFluor Series 4000 (PerSeptive Biosystems) にて励起波長 485nm、 蛍 光波長 530nm で蛍光を測定した。 最終的な反応液の組成は 50mM Tris-HCl (pH8.0)、 50mM MgC12、 37.5mM NaCl lOm メノレカプト エタ ノーノレ、 375nM プローブ D N A、 0.675U/ μ L ェキソヌク レ ァーゼ III となる。 (実施例 3 ) Prepare 5.75 μl of dW in a well of Low Profile Multiplate 96 (MJ Research Inc.) and denature double-stranded target DNA by heating at 95 ° C for 5 minutes using a thermal cycler. Then, cool to 37 ° C and incubate for 1 minute at 37 ° C to hybridize the probe DNA and target DNA, and add 10 L of 1.35 U // L exonuclease III (Takara Shuzo), Incubation was performed at 37 ° C for 30 minutes. Then, the enzyme was heated at 70 ° C for 15 minutes to inactivate exonuclease III, and the fluorescence was read using a fluorescence plate reader CytoFluor Series 4000 (PerSeptive Biosystems) at an excitation wavelength of 485 nm and a fluorescence wavelength of 530 nm. Was measured. The final composition of the reaction mixture was 50 mM Tris-HCl (pH 8.0), 50 mM MgC12, 37.5 mM NaCl lOm Menolecapto ethanol, 375 nM probe DNA, 0.675 U / μL exonucleotide. Case III. (Example 3)
( 1 ) 定量範囲 '  (1) Quantification range ''
本発明の方法によ り 定量可能な D N A量の範囲について検証 した。 図 1 に示した通り 、 P C R産物量が 300fmol のときまで良 好な検量線が描かれ、 本法の定量範囲の広いこ とが示された。  The range of the amount of DNA that can be quantified by the method of the present invention was verified. As shown in FIG. 1, a good calibration curve was drawn until the PCR product amount was 300 fmol, indicating that the quantification range of the present method was wide.
( 2 ) 最低検出感度  (2) Minimum detection sensitivity
0、 0.73、 1.45、 2.9、 5.8fmol の P C R産物をターゲッ ト D N A と して、 各々 4回同時測定したと きの相対蛍光強度 ( RFU) の 平均値と標準偏差の 2倍の値 (2SD) を求め、 RFU の平均値から 2SD を減じた値が、 ターゲッ ト D N A力 S 0 fraol のときの RFUの平 均値に 2SDを加えた値を下回らない最少のターゲッ ト D N A量を 最低検出感度と定義した。 この定義による と、 本法の最低検出感 度は 1.45fmol であり 、 非常に高感度であるこ とが示された (図 2 )。 産業上の利用可能性  Using the PCR products of 0, 0.73, 1.45, 2.9, and 5.8 fmol as the target DNA, the mean value of the relative fluorescence intensity (RFU) and twice the standard deviation (2SD) of each four simultaneous measurements The value obtained by subtracting 2SD from the average RFU value is the minimum target DNA amount that does not fall below the value obtained by adding 2SD to the average RFU value at the target DNA force S0 fraol. Defined. According to this definition, the minimum detection sensitivity of this method was 1.45 fmol, indicating that it was extremely sensitive (Fig. 2). Industrial applicability
本発明によれば、 簡便な操作にて核酸配列の特異的な検出及び 定量が可能であるので、 自動化も容易である。 また、 シグナルの 測定は、 反応の進行中に行う こ と も可能であり 、 迅速に解析結果 が得られる。 本発明で使用されるェキソヌク レアーゼは、 レポ一 ター基またはシグナル基が修飾されたヌク レオチ ドを遊離させ る こ とが可能であれば、 いかなる ものも利用可能である。  According to the present invention, specific detection and quantification of a nucleic acid sequence can be performed by a simple operation, so that automation is also easy. Further, the signal can be measured while the reaction is in progress, and the analysis result can be obtained quickly. As the exonuclease used in the present invention, any exonuclease can be used as long as it can release a nucleotide having a modified reporter group or signal group.

Claims

請求の範囲 The scope of the claims
1 . シグナル発生標識物質および当該シグナルの発生を有効に減 弱させる よ う に配置した一対の標識物質を有するオリ ゴヌ ク レ ォチ ドプローブを使用 して核酸配列を検出するための均一測定 系であって、 標的核酸とプローブ D N Aとのハイブリ ダィゼーシ ョ ンの後、 5,→ 3 'ェキソヌク レアーゼまたは 3,→ 5 'ェキソヌ ク レア ーゼの作用によ り プローブ D N Aを 5 'または 3,末端よ り 消化せしめ、 プローブ D N A内に挿入したシグナル発生物質標 識ヌク レオチ ドおよび/またはシグナル発生物質のシグナルを 有効に減弱させる機能を有する物質を標識したヌ ク レオチ ドを 遊離する こ と によ ってシグナルを得る こ と を特徴とする核酸配 列の検出方法。  1. A homogeneous measurement system for detecting a nucleic acid sequence using an oligonucleotide probe having a signal-generating label substance and a pair of label substances arranged to effectively attenuate the generation of the signal. After hybridization of the target nucleic acid and the probe DNA, the probe DNA is converted to the 5 ′ or 3 ′ terminal by the action of 5, → 3 ′ exonuclease or 3, → 5 ′ exonuclease. By further digesting and releasing the signal-generating substance-labeled nucleotide inserted into the probe DNA and / or the nucleotide labeled with a substance having a function of effectively attenuating the signal of the signal-generating substance. A method for detecting a nucleic acid sequence, characterized in that a signal is obtained by the following method.
2 . 5 '→ 3,ェキソヌク レアーゼが; Lェキソヌク レアーゼである こ とを特徴とする請求の範囲 1 に記載の核酸配列検出方法。 2. The method for detecting a nucleic acid sequence according to claim 1, wherein 2.5 ′ → 3, exonuclease is L exonuclease.
3 . 3,→ 5,ェキソヌク レアーゼがェキソヌク レアーゼ III であ るこ と を特徴とする請求の範囲 1 に記載の核酸配列検出方法。 3.3. The method for detecting a nucleic acid sequence according to claim 1, wherein the exonuclease is exonuclease III.
4.請求の範囲 1〜 3 のいずれか 1 に記載の核酸配列検出方法に 使用する測定試薬またはキッ ト。 ' 4. A measuring reagent or kit for use in the method for detecting a nucleic acid sequence according to any one of claims 1 to 3. '
PCT/JP2002/002893 2001-03-27 2002-03-26 Method of detecting gene WO2002077282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002575322A JPWO2002077282A1 (en) 2001-03-27 2002-03-26 Gene detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001090134 2001-03-27
JP2001-90134 2001-03-27

Publications (1)

Publication Number Publication Date
WO2002077282A1 true WO2002077282A1 (en) 2002-10-03

Family

ID=18944961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002893 WO2002077282A1 (en) 2001-03-27 2002-03-26 Method of detecting gene

Country Status (2)

Country Link
JP (1) JPWO2002077282A1 (en)
WO (1) WO2002077282A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052143A (en) * 2003-08-01 2005-03-03 F Hoffmann La Roche Ag New detection format for hot start real time polymerase chain reaction
JP2013538063A (en) * 2010-09-20 2013-10-10 シージーン アイエヌシー Target nucleic acid sequence detection in solid phase using single-labeled immobilized probe and exonucleolytic activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327499A (en) * 1993-05-21 1994-11-29 Eiken Chem Co Ltd Method for detecting base sequence
WO1996015270A1 (en) * 1994-11-16 1996-05-23 Perkin-Elmer Corporation Self-quenching fluorescence probe and method
WO1997041256A2 (en) * 1996-04-26 1997-11-06 Abbott Laboratories Method and reagent for detecting multiple nucleic acid sequences in a test sample
WO2001061034A1 (en) * 2000-02-16 2001-08-23 Jussi Nurmi A homogenous method for detection of a polynucleotide, with e.g. cleavable lanthanide chelate label

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327499A (en) * 1993-05-21 1994-11-29 Eiken Chem Co Ltd Method for detecting base sequence
WO1996015270A1 (en) * 1994-11-16 1996-05-23 Perkin-Elmer Corporation Self-quenching fluorescence probe and method
WO1997041256A2 (en) * 1996-04-26 1997-11-06 Abbott Laboratories Method and reagent for detecting multiple nucleic acid sequences in a test sample
WO2001061034A1 (en) * 2000-02-16 2001-08-23 Jussi Nurmi A homogenous method for detection of a polynucleotide, with e.g. cleavable lanthanide chelate label

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COPLEY C.G. ET AL.: "Exonuclease cycling assay: an amplified assay for the detection of specific DNA sequences", BIOTECHNIQUES, vol. 13, no. 6, 1992, pages 888 - 892, XP002060879 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052143A (en) * 2003-08-01 2005-03-03 F Hoffmann La Roche Ag New detection format for hot start real time polymerase chain reaction
US20090181401A1 (en) * 2003-08-01 2009-07-16 Dieter Heindl Detection format for hot start real time polymerase chain reaction
JP2013538063A (en) * 2010-09-20 2013-10-10 シージーン アイエヌシー Target nucleic acid sequence detection in solid phase using single-labeled immobilized probe and exonucleolytic activity

Also Published As

Publication number Publication date
JPWO2002077282A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
CN107488710B (en) Application of Cas protein, and detection method and kit of target nucleic acid molecule
US6030115A (en) Method of measuring melting temperature of nucleic acid
Rodríguez-Lázaro et al. Real-time PCR in food science: introduction
US7462709B2 (en) Method for the determination of a nucleic acid using a control
JP5213297B2 (en) Single label oligonucleotide probe
US7090975B2 (en) Pyrophosphorolysis and incorporation of nucleotide method for nucleic acid detection
US20210189468A1 (en) Dual quenching assay for multiplex detection of target nucleic acids
JP4190562B2 (en) Gene sequence inspection
HU226518B1 (en) Method for detection of target nucleic acids using pcr
US7101671B2 (en) Method and equipment to monitor nucleic acid hybridization on a DNA chip using four-dimensional parameters
WO2021017955A1 (en) Multiplex ligation-dependent probe microarray detection
JP2011530301A (en) Proofreading primer extension
JP2012513191A (en) Method for detecting a target nucleic acid in a sample
CA2462505A1 (en) Asymmetric pcr with nuclease-free polymerase or nuclease-resistant molecular beacons
US20130280706A1 (en) Compositions and Methods for Quantifying a Nucleic Acid Sequence in a Sample
US20030165898A1 (en) Method for concurrent amplification and real time detection of polymorphic nucleic acid sequences
EP1567665B1 (en) Method for lowering both sequence variations and increase of base lines effects in a diagnostic hybridisation assay, assay for performing such a method and probe for use in the assay
WO2023203206A1 (en) Multiplexable crispr-cas9-based virus detection method
Kong et al. A modified molecular beacon combining the properties of TaqMan probe
WO2002077282A1 (en) Method of detecting gene
Saunders Real-time PCR
US20140051086A1 (en) Isothermal Amplification of Nucleic Acid
US6841346B1 (en) Methods for detecting bacteriophage MS2
Holden et al. Quantitative real-time PCR: fluorescent probe options and issues
JP2011509091A (en) Isothermal detection method and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002575322

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase