WO2002077280A1 - Method of screening nucleic acid encoding signal transducer and kit and cells to be used in this method - Google Patents

Method of screening nucleic acid encoding signal transducer and kit and cells to be used in this method Download PDF

Info

Publication number
WO2002077280A1
WO2002077280A1 PCT/JP2001/008370 JP0108370W WO02077280A1 WO 2002077280 A1 WO2002077280 A1 WO 2002077280A1 JP 0108370 W JP0108370 W JP 0108370W WO 02077280 A1 WO02077280 A1 WO 02077280A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
factor
signal transduction
signal
cells
Prior art date
Application number
PCT/JP2001/008370
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Saito
Hisashi Arase
Original Assignee
Takashi Saito
Hisashi Arase
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takashi Saito, Hisashi Arase filed Critical Takashi Saito
Priority to JP2002575321A priority Critical patent/JPWO2002077280A1/en
Publication of WO2002077280A1 publication Critical patent/WO2002077280A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a method for screening a nucleic acid that can participate in signal transduction and a kit thereof.
  • the present invention also relates to cells that can be used in the above-described screening method or kit.
  • the present invention relates to a signal transduction factor screened by the screening method and the like of the present invention.
  • the immune response in ⁇ lymphocytes also takes place via signaling. That is, when the antigen binds to MHC (major histocompatibility gene) and the complex binds to the receptor on the surface of the T cell and recognizes the antigen, the intracellular component (CD3 molecule) that binds to the receptor ) Is phosphorylated, and phosphorylation of this CD3 molecule activates intracellular enzymes (kinases) and signaling factors that become adapters, thereby activating NFAT (transcription factors) and translocating into the nucleus. It has been clarified that it induces cytokine expression as activated NFAT together with the factor (AP-1) whose expression was induced.
  • MHC major histocompatibility gene
  • erythropoietin binds to the erythropoietin receptor on the cell surface
  • JAK that binds intracellularly to the erythropoietin receptor
  • This activation of JAK activates STAT
  • This STAT is translocated into the nucleus to promote gene transcription and induce cell proliferation.
  • signaling pathways that induce apoptosis via FAS, FADD, and CASPACE are also known.
  • This method has been developed to analyze the role of the signaling pathway in T cells, particularly the role of the CD3 chain of the T cell receptor.
  • a chimeric molecule is constructed in which the extracellular domain of CD8 is linked to the intracellular domain of the CD3 ⁇ chain. Then, this chimeric molecule is expressed in ⁇ cells separately from ⁇ cell receptor, and the chimeric molecule is artificially stimulated from outside the cell via CD8 with an anti-CD8 antibody, and a signal is transmitted inside the cell.
  • IL-2 production was analyzed using IL-2 production as an index.
  • screening is performed using the intermediate activity of signal transduction pathways such as phosphorylation activity divided by the final phenotype of the signal transduction pathway as an index.
  • signal transduction pathways such as phosphorylation activity divided by the final phenotype of the signal transduction pathway
  • the present invention has developed a screening system and the like that can rapidly and reliably screen nucleic acids involved in signal transmission using a chimeric molecule, and identified a novel signal transduction factor.
  • the primary purpose is to do so.
  • the principle of the signal transduction factor screening system of the present invention is that a test nucleic acid to be subjected to screening is expressed as an intracellular domain of a chimeric molecule, and the chimeric molecule is transduced by a signal introduced from a receptor of an extracellular domain into a cell. Signal inside This is determined by measuring the expression of the repo overnight gene.
  • the present invention provides a nucleic acid capable of regulating signal transduction using a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a transmembrane chimeric molecule comprising a test nucleic acid product as an intracellular domain.
  • This is a screening method, which includes the following steps (1) to (4).
  • the chimeric molecule is expressed in the cell into which the chimeric molecule expression vector has been introduced, and the receptor in the chimeric molecule is expressed in the extracellular domain, and the test nucleic acid product is expressed in the intracellular domain.
  • an extracellular signal factor is actuated in this state, a signal is transmitted to the intracellular domain via the receptor.
  • the test nucleic acid product is a factor involved in signal transduction, this signal is transmitted as an intracellular signal.
  • This signal induces the expression of the reporter gene retained in the cell, if necessary, through the adaptic factor in the cell. Therefore, it is possible to determine whether the test nucleic acid product functions as a signal transduction factor by detecting the final expression of the reporter gene.
  • an intracellular signal transduction factor which is induced when a signal is transmitted in a cell, binds to the upstream of the repo overnight gene to promote the expression of the repo overnight gene. It has a signal transduction factor binding site that can be used to enhance the signal transduction induction detection efficiency.
  • CD 8 was used for the reception In such a case, an anti-CD8 antibody can be used as the extracellular signal factor.
  • GFP gene as the repo overnight gene, it is possible to detect the induction of signal transduction using fluorescence as an index.
  • T cells can be used as the cells. Further, NFAT (nuclear factor of activated T cells) can be used for the signal transduction factor binding site.
  • the expression vector a retrovirus vector having a high transfection efficiency can be used.
  • the cell may have a plurality of types of reporter genes, and the plurality of types of reporter genes may be configured to be induced by different signal transduction factors in the cell. .
  • screening is performed using the signal transduction activity of a test nucleic acid product as an index, and therefore, compared to a conventional system using phosphorylation or the like as an index, the signal is more efficiently and reliably obtained. It is possible to screen for factors involved in transmission.
  • the present invention further provides the principle of the same screening method as the above as a kit. That is, the kit of the present invention comprises a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a chimeric molecule provided with a test nucleic acid product as an intracellular domain, the nucleic acid capable of participating in signal transduction.
  • This is a kit for screening for Escherichia coli, and includes the following components. (1) an expression vector for carrying the receptor gene and linking the receptor gene and a test nucleic acid to express the chimeric molecule; and (2) activating intracellular signal transduction. And (3) an extracellular signal factor for introducing an extracellular signal into the signal transduced protein expressed on the cell surface.
  • the present invention provides cells that can be used for the above screening. That is, a cell for monitoring the regulation of intracellular signal transduction, which holds a reporter gene whose expression changes when intracellular signal transduction is regulated, and has an intracellular upstream of the repo allele gene.
  • a signal transduction factor binding site capable of binding a signal transduction factor and changing the expression of the reporter gene is provided.
  • the present invention provides a signal transduction factor obtained by using the above-mentioned screening method or the above-mentioned screening kit, and a DNA encoding the same.
  • the signal transduction factor may be an amino acid sequence described in any one of SEQ ID NOs: 7, 12, and 14, or an amino acid having a deletion, insertion, or substitution in each of the amino acid sequences as long as it has a signal transduction activity. Consists of an array.
  • the DNA encoding the above signal transduction factor is the same as the nucleotide sequence described in any one of SEQ ID NOs: 6, 11, and 13 or the DNA described in any one of SEQ ID NOs: 6, 11, and 13. It consists of a base sequence that hybridizes under stringent conditions.
  • the present invention provides a cell comprising a signal transduction factor identified by the above-described screening method and the like, and for screening a factor associated with intracellular signal transduction by the factor.
  • This cell comprises (1) a receptor capable of introducing an extracellular signal into the cell as an extracellular domain and a transmembrane quinula molecule having a signal transduction factor as an intracellular domain; and (2) intracellular signaling is regulated.
  • an intracellular reporter gene whose expression changes when the amino acid sequence or the signal according to any one of SEQ ID NOs: 7, 12, and 14.
  • An amino acid sequence having a deletion, an insertion, or a substitution in each of the amino acid sequences within a range having a transduction activity is provided, and an upstream of the reporter gene is bound with an intracellular signal transduction factor to bind to the reporter gene.
  • Signaling factor binding sites are provided that can alter expression.
  • FIG. 1 is a diagram schematically showing the screening method of the first embodiment.
  • A shows the construction process of the chimeric molecule expression vector.
  • the figure shows the configuration of the chimeric molecule expression vector.
  • B shows the process of introducing and expressing the chimeric molecule in the monitor cell.
  • the figure schematically shows the state of the cell when the chimeric molecule is expressed in the monitor cell.
  • C shows a step of selecting a cell expressing the repo overnight gene
  • (D) shows a step of cloning a test nucleic acid from the selected cell.
  • FIG. 2 is a diagram schematically showing the construction of pNFAT-GFP.
  • FIG. 3 is a diagram schematically showing the construction of the pMX-CD8 vector.
  • FIG. 4 is a histogram diagram showing the results of fractionating GPT-positive cells by flow cytometry in Example 4.
  • A shows a histogram of flow cytometry before fractionation
  • B shows a histogram of flow cytometry after fractionation three times.
  • FIG. 5 is a diagram showing a FACS fractionation pattern when the signal transduction inducing activities of NFAM-1, 2, and 4 were confirmed.
  • the cell peak moved in the direction of higher fluorescence emission intensity, and in particular, strong fluorescence emission, that is, signal transduction induction was observed in NFAM-1.
  • FIG. 6 is a diagram showing NFAM-1 which strongly induced signal transduction in comparison with other known ITAM-containing signal transduction factors.
  • the present invention relates to a method for screening a nucleic acid encoding a signal transduction factor.
  • a chimeric molecule comprising a test nucleic acid product as an intracellular domain and a receptor molecule as an extracellular domain is expressed in a cell, and an extracellular signal factor acts on the receptor molecule.
  • the test nucleic acid of the chimeric molecule is involved in signal transmission, it becomes possible to receive a signal from the receptor. This signal is then transmitted intracellularly, ultimately inducing reporter gene expression. Therefore, it is possible to screen for a nucleic acid encoding a signal transduction factor using the final reporter gene expression as an index.
  • the screening method based on the above principle can be specifically carried out by a series of steps described below.
  • a chimeric molecule expression vector in which a cassette encoding a chimeric molecule is carried on an expression vector 10 is prepared.
  • This cassette has a reading frame between the receptor gene 14 and the test nucleic acid 16 across the transmembrane sequence 12 in order to express the receptor as an extracellular domain and the test nucleic acid as an intracellular domain.
  • a stop codon is inserted downstream of the test nucleic acid 16.
  • the expression vector 10 is not particularly limited as long as it is a vector that can be efficiently introduced into cells thereafter, and is not limited to a vector that can be introduced as a virus particle or a vector that can be introduced as a plasmid. Either may be used.
  • retrovirus vector adeno-associated virus vector, vaccinia virus vector, lentivirus vector, herpesvirus vector, alphavirus vector, EB Examples include virus vectors such as virus vectors, papilloma virus vectors, and foamy virus vectors, and non-viral vectors such as cationic ribosomes, ligand DNA complexes, and cancer.
  • Receptor gene 14 also means a gene that encodes a factor that can introduce an extracellular signal into a cell in addition to a gene that encodes a receptor, and is not limited to a gene that encodes a receptor.
  • the present receptor gene 14 includes, for example, CD8, CD25 (Letourneur F et al., Cell 69: 1143-57 (1992)) and CD 16 (Kolanus W et al. 74: 171-83 (1993), Romeo C et al., (3 ⁇ 4768: 889-97 (1992)) ⁇ CD2 (Yamasaki S et al., Mol. Cell. Biol 16: 151-60)
  • EGF-R Extracellular growth factor receptor
  • TNF tumor necrosis factor
  • Fas Fas
  • the gene may be a sequence portion encoding a region capable of receiving an extracellular signal and transmitting a signal to an intracellular domain.
  • the test nucleic acid 16 is a nucleic acid to be examined whether or not it encodes a signaling factor.
  • genomic DNA, cDNA or the like derived from various mammalian cells can be used.
  • a chimera molecule expression vector library may be constructed using, for example, an existing cDNA library and genomic library as shown in FIG. 1 (A). 2 Introduction of the chimeric molecule expression vector into cells carrying the repo overnight gene First, before carrying out this step, prepare cells carrying the repo overnight gene shown in Fig. 1 (B). This repo overnight gene 20 is constructed so that expression is induced by detecting that a signal has been transmitted into a cell.
  • a site where a signal transduction factor capable of inducing transcription binds upstream of the repo overnight gene 20 (hereinafter referred to as a “signal factor binding site”) ) can be provided.
  • the signal transduction factor that induces this transcription may be any signal transduction factor that can promote the transcription of the downstream repo overnight gene.
  • NFAT Hoey, T. et al., Immunity 2: 461- 472 (1995)
  • NF cB Phillips, E. et al. Genes Dev. 6: 775-87 (1992)
  • STAT EHana, M. et al., J. Biol. Chew.
  • the signal factor binding site is selected from those corresponding to the signal factor, for example, when NFAT is used as the signal transduction factor, the NFAT binding sequence is used as the signal transduction factor binding site. It is preferable that a binding sequence corresponding to each of the transfer factors is used.
  • a repo overnight gene whose expression can change the phenotype of a cell.
  • Kufuke GFP Green fluorescent protein
  • RFP Rea fluorescent protein
  • which emit fluorescence when a gene is expressed can be suitably used, and emits fluorescence when reacted as a substrate.
  • a reporter gene 5-galactosidase gene Prog. Neur. 63: 673-686 (2001)), lactamase gene Prog. Neur. 63: 673-686 (2001)) and the like can be used.
  • diphtheria toxin A chain gene is a reporter gene that is cytotoxic by its expression and can be detected by cell death. (mJuity 3: 239-250 (1995)). Also, as a reporter gene, Cell surface antigen genes whose expression can be detected using a specific antibody and a separator MACS (Magnetic ceU sorter), such as the CD8 gene (C3 ⁇ 4i2cer3 ⁇ 4s. 58: 14-19 (1998)), truncated rat CD2 (Immunol Lett. 71: 61-66 (2000)) N CD24 (Blood 94: 2271-2286 (2000)) can also be used.
  • MACS Magnetic ceU sorter
  • a gene encoding Cameleons that detects and fluoresces Ca 2+ (rc ⁇ . Neur. 63: 673-686 (2001)), encodes camgai'oos, which emits fluorescence due to structural changes Gene: Prog. Neur. 63: 673-686 (2001)), and a gene encoding pHluoiins that emits fluorescence by detecting a change in pH (3 ⁇ 43 ⁇ 4A3 ⁇ 4 £ / r. 63: 673-686 (2001)). It can be used as a gene overnight.
  • the reporter gene is not limited to one type, and a plurality of types may be retained in the cell.
  • it may be configured such that nucleic acids involved in different signal transduction pathways can be distinguished and screened.
  • the GFP gene is used for one repo overnight gene, and an NFAT binding sequence is arranged upstream thereof.
  • the other repo is using the RKP gene as the gene, and an NFATB binding sequence is located upstream of it.
  • factors involved in the signal transduction pathway involving NFAT can be identified using green fluorescence as an index, and factors involved in the signal transduction pathway involving NF ATB can be identified by red fluorescence. Can be identified using as an index.
  • the cell into which the reporter gene having the above-mentioned signal factor binding site is introduced is not particularly limited.
  • the cell is naturally provided with a receptor, etc., and a signal is transmitted into the cell via the receptor.
  • the cell is one that can be used. With such a cell, it was determined whether the introduction of the repo overnight gene described below, and whether the expression of the reporter gene could function as an indicator of signal transduction after the introduction of the sidanal from the receptor. Can be confirmed through expression of the reporter gene in the above.
  • this Examples of such cells include lymphoid cells, hematopoietic cells, and the like.
  • the method of introducing a reporter gene into the cells can be performed by any method that can introduce a nucleic acid into cells, such as electroporation, a lipofection method, or a calcium phosphate method.
  • retention of the introduced repo gene in a cell can be carried out outside the chromosome using a plasmid or the like, or can be carried out in the chromosome by integration. It is only necessary that the gene be kept stable.
  • selection of cells into which the reporter gene has been introduced can be performed by PCR, Southern blotting, stamp lotting, or when the reporter gene is expressed, using the presence or expression of the above-mentioned reporter gene as an index.
  • a marker gene such as a drug resistance gene may be introduced, and the marker gene may be selected as an index.
  • the phenotype when the reporter gene is expressed can be detected by introducing a signal from the above-described natural receptor to express the reporter gene. In other words, when a cell naturally has a receptor, a specific antibody or the like acts on the receptor, and an external stimulus (signal) is applied to transmit the signal into the cell. Let it.
  • the repo overnight gene is expressed by a signal in the cell. Therefore, cells into which the reporter gene has been introduced can be selected using the expression of the repo overnight gene as an index. In such a case, it is possible to select cells into which the repo overnight gene has been introduced, and at the same time, confirm that the repo overnight gene is expressed in response to intracellular signal transduction.
  • a chimeric molecule expression vector is introduced into the cells.
  • This method of introduction needs to be selected according to the expression vector used.
  • expression vectors such as retrovirus vectors
  • a commercially available packaging kit can be used to generate the virus particle according to a normal packaging protocol, and then introduce the virus particle by infecting the cell. it can.
  • the chimeric molecule expression vector must be introduced into cells by electroporation, lipofectin, lipid, calcium phosphate, etc. known to those skilled in the art. Can be.
  • the receptor 24 of the chimeric molecule 22 is expressed in the extracellular domain as shown in Fig. 1 (B), and the cDNA library is contained in the intracellular domain.
  • One or more test nucleic acid products 26 are expressed. Therefore, such cells can be purified by selecting using an antibody that specifically reacts with receptor 124 expressed as an extracellular domain.
  • the yo Ri specifically, to a solid phase bound antibodies specific for the receptions evening one in the chimeric molecule, and c can be captured by contacting a cell chimeric molecule of interest is expressed recovered It can also be obtained by using a secondary antibody against an antibody specific to the receptor bound to a solid phase (for example, beads).
  • cells expressing the receptor can be fluorescently stained with a fluorescent-labeled specific antibody, and the stained cells can be separated using a cell sorter (FACS or MACS).
  • the extracellular signaling factor may be any as long as it can introduce a signal into the cell from the receptor in the chimeric molecule.
  • an antibody specific to this receptor may be used. For example, for CD8, CD25s CD16 S CD2, etc., which can be used as a receptor, specific antibodies corresponding thereto can be used.
  • the corresponding ligand ⁇ specific antibody can be used as an extracellular signal factor.c
  • the extracellular signal may be added.
  • the extracellular signal factor may be immobilized on a plate for culturing cells in advance, and the cells may be cultured in the plate.
  • the signal is introduced into the receptor on the cell surface by causing the extracellular signal factor to act on the cell.
  • This signal is transmitted to the test nucleic acid product in the intracellular domain constituting the chimeric molecule together with the receptor. If the test nucleic acid product can transmit a signal from outside the cell into the cell, the signal introduced from the receptor is transmitted to an intracellular adapter factor or the like, and finally the reporter gene Expression is induced. Therefore, by detecting the expression of the reporter gene after the action of the extracellular signal factor from changes in the phenotype of the cell, etc., it is possible to determine whether or not the test nucleic acid product is a factor involved in signal transduction. it can.
  • the reporter gene when a gene encoding a protein that emits fluorescence, such as GP, is used as the reporter gene, the phenotype of fluorescence emission in the cells after the action of the extracellular signal factor is used as an index for flow cytometry.
  • the phenotype of fluorescence emission in the cells after the action of the extracellular signal factor is used as an index for flow cytometry.
  • cells that hold the test nucleic acid encoding the signal transduction factor can be screened. If there are few positive cells that emit fluorescence during screening and detection is difficult, a cell fraction that is considered to be a positive cell may be amplified by culturing, etc. The steps from the step of applying a stimulus to this step may be repeated again to amplify the target cells.
  • Cells screened by the above series of steps include factors involved in signal transduction as the intracellular domain of the chimeric molecule.
  • the signal obtained here Confirmation of the action of the transfer factor and confirmation of the strength of the signal transduction activity can be performed using the above-described series of screening methods. That is, the intracellular domain of the chimeric molecule expression vector is recovered from the screened cells and subcloned again into the vector used for constructing the chimeric molecule. The subcloned cells are introduced again into the cells carrying the repo overnight gene, the chimeric molecule is expressed, and a signal is introduced by externally stimulating the receptor. Based on the expression and intensity of the intracellular repo gene at that time, the action and relative intensity of the obtained signaling factor can also be measured.
  • sequence of the signal transduction factor can be determined by recovering the intracellular domain region from the expression vector of the chimeric molecule in the cell and performing cloning and sequence determination according to a standard method. Then, by comparing the sequence determined here with a conventional gene sequence involved in signal transduction, it can be determined whether the gene is a known gene or a new gene as a signal transduction factor.
  • the active site of the screened signaling factor can be identified by the following procedure.
  • a series of deletions is prepared in which the intracellular domain region in the chimeric molecule expression vector collected above is deleted stepwise using a method known to those skilled in the art or a commercially available kit. These are returned to the above-mentioned expression vector again to construct a chimeric molecule expression vector. Then, similarly to the above-described screening method, these are introduced and expressed in cells holding the above-mentioned reporter gene, and signal transduction is performed using the expression of the reporter gene when an external stimulus is applied as an index. It is determined whether the activity remains. Then, the region retained in the clone in which the activity remains can be identified as a sequence required for signal transduction.
  • the signal Since the screening is performed using the transduction activity as a direct index a signal transduction factor can be obtained with high efficiency. Further, the method of the present invention can be used not only for identification of a novel signal transduction factor, but also for confirmation of signal transduction activity, identification of an active site, and the like.
  • the present invention provides a screening kit based on the above-mentioned principle to more easily execute the above-mentioned screening method.
  • the screening kit includes (1) an expression vector for carrying the receptor gene and expressing the chimeric molecule by linking the receptor gene and the test nucleic acid; and (2) activating cell signaling. Including a cell carrying a repo allele gene whose expression is induced upon transformation into a cell, and 3 an extracellular signal factor for introducing an extracellular signal into the signal transducing protein expressed on the cell surface. Can be.
  • the cells and extracellular signal factors that hold these repo overnight genes can be prepared according to the above description of the screening method.
  • the expression vector can also be adjusted according to the above description of the method, but may be configured as follows to facilitate insertion and excision of a desired nucleic acid as a test nucleic acid.
  • the expression vector is provided with a receptor gene, a transmembrane region, and a stop codon in that order, and a desired nucleic acid as a test nucleic acid is inserted between the transmembrane region and the stop codon.
  • a multi-cleaning site can be provided to obtain
  • the transmembrane region is not always necessary in consideration of screening of a signal transduction factor having a transmembrane region.
  • the expression vector should be provided with a transmembrane region as described above so that such factors can also be screened. Is preferred.
  • the transmembrane region is the receptor used as the extracellular domain. Specific transmembrane domains such as EGF-R, PDGF-R, GH receptor, TNF, Fas, etc., growth factor receptors such as CD25, CD16, CD2, etc.
  • a transmembrane region different from the receptor molecule may be used as long as it can transmit a signal from the receptor molecule to the intracellular domain.
  • test nucleic acid cDNA derived from various cells or tissues may be used, and a sample obtained by fragmenting genomic DNA to a desired length may be used.
  • cDNAs and nucleic acids derived from the genome can be prepared from desired cells according to methods well known to those skilled in the art.
  • cDNAs or genomic DNAs derived from various organisms or tissues may be inserted in advance into the expression vector as test nucleic acids and provided as a chimeric molecule expression library or the like.
  • the kit can include necessary reagents, a medium for cell culture, and the like. Further, a protocol indicating the screening method according to the first embodiment and the like can be included.
  • kit described above may be packaged and provided with all the reagents and the like necessary for screening. However, if necessary, it may take a long time to prepare a repo kit. May be provided. By providing such cells in advance, the screening method can be easily carried out.
  • the novel signal transduction factors obtained by the above screening will be useful for elucidating the intracellular signal transduction pathway.
  • known methods for analyzing interactions such as the TWO-hybrid system developed in yeast, immunoprecipitation, etc.
  • To search for a substance that interacts with the signaling factor and The transmission pathway can be elucidated or identified.
  • the above TWO-Hybrid system can be carried out according to T. Durfee et al. Genes Dev. 7: 555 (1993) or using MATCHMAKER (clonetech) according to the attached protocol.
  • Cells that have been screened for the above-described signaling factor are useful for determining whether a substance that interacts with the signaling factor is an inhibitor or a promoter.
  • the cell is provided with a chimeric molecule having an extracellular domain, Recept, and an intracellular domain, a signaling factor linked thereto, and a reporter gene expressed by signal transduction in the cell. It is provided. Therefore, in order to analyze whether the substance is an inhibitor or an accelerator, a signal is introduced into the receptor in the presence of these candidate substances, and the signal transduction through the intracellular domain is performed as compared with the case where these substances are not present.
  • the expression level of the reporter gene is measured to determine whether the activity decreases or increases. If the signal transduction activity is higher than that in the absence of the candidate substance in the measurement result, the candidate substance can be determined to be a promoter for the signal transmission factor, and the signal transduction activity is higher than that in the absence of the candidate substance. Can be determined to be an inhibitor.
  • the DNA encoding the above-mentioned signal transduction factor can be used as a probe, a primer, or the like for screening a similar nucleic acid encoding a signal transduction factor in a homologous or heterologous organism. That is, a DNA encoding an intracellular domain is recovered from the screened cells, and the DNA is used as a probe and the like to select a nucleic acid that forms a hybrid, whereby a signal transduction factor can be isolated from a homologous organism or a heterologous organism. The encoded nucleic acid can be further screened.
  • a signal transduction factor examples include, but are not limited to, the polypeptides of SEQ ID NOs: 7, 12, and 14.
  • a polypeptide comprising an amino acid sequence having a deletion, insertion, or substitution in the amino acid sequence of SEQ ID NO: 7, 12, or 14 can be used as long as it has a signal transduction activity.
  • substitution, deletion, insertion and / or addition in the amino acid sequence, the number of amino acid mutations and mutation sites are not limited as long as the signal transduction activity is maintained.
  • nucleic acid encoding the signal transduction factor examples include the DNAs of SEQ ID NOs: 6, 11, and 13, and as described above, any of the SEQ ID NOs: 6, 11, and 13 DNA that hybridizes with the above DNA under stringent conditions can also be used.
  • the stringent hybridization conditions for isolating DNA can be appropriately selected by those skilled in the art.
  • the labeled probe is added, and the hybridization is performed by keeping the temperature at 42 ° C for a while.
  • the cleaning solution and temperature conditions for subsequent cleaning are lxSSC, 0.1% SDS, 37 ° C, more severe conditions are 0.5xSSC, 0.1% SDS, 42 ° C, and more severe conditions are 0.2xSSC, 0.1 % SDSs can be performed at 65 ° C.
  • pNFAT-luciferase (Clip stone et al., Nature 357: 695-697 (1992)) has a three-fold co-directional repeat of an NFAT-binding sequence (TAAAGAAAGGAGGAAAAACT: SEQ ID NO: 8) upstream of the luciferasee gene and an IL-2 promoter. The evening minimum unit (sequence number 9) is provided.
  • This plasmid is digested with an enzyme to cut out the NFAT-IL-2 promoter overnight, inserted into pBluescript, and further downstream of pEGFP-N1.
  • the plasmid was ligated with an EGFP fragment excised from (Clonetech) and a fragment containing a polyA signal to prepare pNFAT-GFP plasmid.
  • This plasmid was linearized with taI.
  • This linear pNFAT-GFP (30 ig) was converted to a T cell hybridoma cell line 2 B4 (Hedrick, S., et al. Oe7 / 30: 141-152 (1982)).
  • stimulation with the antibody, or roughness 0.1 M NaHCO 3 in 10 ⁇ G / ml H57.597 were prepared in concentrations antibody (0.3 ml) into each of the 6 well plate Ueru dimethacrylate
  • cells on the second day total number of cells 5 ⁇ 10 6
  • the cells were then FACStai 'plus emitted fluorescence by the antibody stimulation (Becton Dickinson Inc., California, USA) was measured using a selected group of cells fluorescing.
  • these cells were separated into single clones by limiting dilution.
  • the stimulation operation of the above antibody was performed using anti-T cell Recept was performed using an antibody other than the monoclonal antibody.
  • antibodies other than the anti-T cell receptor monoclonal antibody did not express GFP and did not emit fluorescence as a background.
  • a representative clone among the cloned clones was established as a 43-1 cell line, and this cell line was used in the subsequent Examples.
  • c mRNA which is the basis of DNA library construction, was prepared from NK cells.
  • NK cells were purified from spleens of 6- to 8-week-old C57BL / 6 mice. Lymphocytes are mixed with an anti-CD4 monoclonal antibody (GK1.5: Pharaiingen) or an anti-CD8 monoclonal antibody (53.6.7: Pharmingen), and then conjugated with anti-mouse IgG antibody and anti-rat IgG antibody. The bound magnetic beads (Poly Science, Inc.) were incubated to remove surface Ig + (sueface Ig + : sIg + ) B cells, CD4 + T cells and CD8 + T cells. The remaining cells are FITC-labeled anti-DX5 antibodies (5 ⁇ g / ml), which are monoclonal antibodies specific to the surface antigen DX5 possessed by NK cells
  • NK cells which are DX5 + cells, were purified by MACS (Miltenyi Biotec Inc.) using a Midi column. A portion of the purified NK cells was human recombinant IL-2 (available from Shionogi and Genzyme) with RPMI-1640 containing 10% FCS and 0.05 mM 2-mercaptophenol (10,000 U / ml) In the presence
  • the pMX-CD8 vector for introducing the above cDNA was constructed as shown in FIG.
  • an oligonucleotide e.g., gaattcTGAATCGTAGATACTGAgcggccgcc
  • a stop codon was introduced using SEQ ID NO: 10) (pMX-STOP).
  • a 5 'primer containing the start codon ATG of the CD8 gene (5, CCG GGA TCC ATG GCC TCA CCG TTG ACC CGC TTT 3': SEQ ID NO: 4) and an EcoRI site immediately after the transmembrane region (TM)
  • the CD8 plasmid (Nakauchi H et al. Proc. Natl Acad. Sci. USA. 82: 5126-30 (1985)
  • PCR was performed to amplify the CD8-TM fragment (SEQ ID NO: 3).
  • the obtained CD8-TM fragment was subcloned into the ⁇ 3 ⁇ 4 ⁇ site of pMX-STOP to construct a pMX-CD8 vector.
  • This PMX-CD8 vector was digested with EcoEI, and the cDNA synthesized above was ligated to this EcoKL site.
  • the cDNA ligated into the vector is transferred to ElectroMAX DH5 combinative cells (Gibco, BRL). More introduced. set of c DNA library was 6 X 1 0 6. The average size of these cDNA inserts was about 1 Kb.
  • E. coli is spread in SeaPrep agarose. Husd's DA Quiagen plasriud purification kit (purified using Quiagen).
  • the above-mentioned Phoenix-E cells (1 ⁇ 10 6 ) are dispensed into four wells of a 6-well plate (Falcon) for transduction using one library, and cultured using DMEM (5 ml) containing 10% FCS. did.
  • the cDNA library was transduced into Phoenix-E cells using Lipofectamine Plus (Gibco BRL) according to the attached protocol. The next day, the medium was changed using DMEM (5 ml) containing 10% FCS. Two days later, the culture supernatant was collected as a virus supernatant.
  • 43-1 cells (1 ⁇ 10 5 cells) suspended in 10% FCS—RPMI 1640 (100 ⁇ 1) were dispensed into a 24-well plate. The virus supernatant (100/1) was added thereto and incubated in the presence of DOTAP (Roche) (10 ig / ml). For a single infection, 5 ⁇ 10 7 cells of the 43-1 cell line were used. The infection efficiency at this time was measured using a control vector (pMx-GFP: Toshio Kitamura, Int. J, Hematol 67: 351-359 (1998)). Infection efficiency was approximately 20%.
  • CD8 + cells The following procedure was performed to select cells in which the library was transduced and CD8 was expressed on the cell surface (CD8 + cells). That is, all cells infected with the virus library were reacted with FITC-anti-CD8 monoclonal antibody (5 ⁇ g / ml, 500 zl) (Parmingen). Then, the cells were incubated with anti-PTTC monoclonal antibody-conjugated microbeads (20-fold dilution, 500 ⁇ 1). This Cells expressing CD8 on the cell surface (CD8 + cells) were purified by MACS using a Midi column.
  • Example 4 Screening of positive clones in which signal transduction was activated When a signal was introduced from outside the cell using an anti-CD8 monoclonal antibody, cells in which signal transduction was activated were screened.
  • FITC-anti-CD8 monoclonal antibody (53.6.7) diluted to 100 ug / ml with 0.1 M NaHCO 3 is injected into a 6-well plate and incubated at 4 ° C. And thereby immobilized. Plates coated with antibodies were washed three times with PBS. After washing, 5 ⁇ 10 5 cells of the ripelily-infected cells of Example 3 were dispensed into each well and stimulated with the antibody for 12 hours. Thereafter, GFP-positive cells were fractionated using FACStar plus (Becton Dickinson). The results of FACS are shown in FIG. 4 (A). Of these, the GFP + fraction indicated by the arrow L in FIG. 4 (A) was collected.
  • the recovered cells were contacted with the anti-CD8 monoclonal antibody as a second stimulation. Cells that became GF-positive by this second stimulation were similarly fractionated using FACStar plus . After a further 7 days, cells whose GFP activity decreased and became GFP negative were fractionated and collected. The next day, the plate was restimulated with the anti-CD8 monoclonal antibody immobilized on the plate, and cells that showed GFP-positive again were fractionated and collected using FACStar plus as described above. The results of this final FACS are shown in Fig. 4 (B). This series of amplification procedures enabled visual detection of GFP + cells even in the FACS fractionation pattern.
  • Example 4 DNA was collected from clones that expressed GPT by antibody stimulation using an anti-CD8 monoclonal antibody. The recovery was carried out using a standard method, the phenolic phenolic method (Molecular cionmg, Cold Spring Harbor Laboratory Press (1989)). In each of these clones, it is considered that the cDNA insert product is expressed in the cell together with the extracellular domain CD8 as a chimeric molecule. To confirm this insert sequence, the insert was amplified by PCR and recovered.
  • primers 5'-GGATTGGACTTCGCCTGTGA-3 '(SEQ ID NO: 1) and 5, -CCCTTTTTCTGGAGACTAAAT-3' having primers at both ends of the pMx-CD8 vector insert region and the (SEQ ID NO: 2) was used.
  • cDNA was directly amplified from the cells, and the amplified fragment was subcloned into a plasmid vector, pPCR script (Stratagene).
  • the insert of this subclone was sequenced using an automatic DNA sequencer (ABI-PRIZM310 or 377, Perkin Elmer).
  • the sequence sample was performed using the sequence kit of ABI, Appliedd Biosystems.
  • nucleic acids that activate signal transduction by the above sequencing were included.
  • Known nucleic acids detected here include CD3 £, ZAP70, Ig, Ig5, Syk, FcR, etc. as nucleic acids derived from the spleen cell cDNA library, and nucleic acids derived from the NK cell cDNA library. DAP12, FcR and ZAP70 were included. This indicates that the screening system can detect nucleic acids involved in signal transduction, such as molecules having an activation motif (ITAM), enzymes, and adabu yuichi molecule.
  • ITAM activation motif
  • NFAT Activated Molecule (NFAM) j each of which is called NFAM — :! ⁇ 4.
  • each sequence subcloned into the pPCR vector was digested with Eco! IL and separated from the vector.
  • the isolated fragment was ligated to pMx-CD8 vector Eco Rhino 1 and further subcloned.
  • the obtained subclones were transfected into Phoenix-E packaging cells in the same manner as in Example 3.
  • the culture supernatant of the packaging cells was infected to the 43-1 cell line in the same manner as in Example 3.
  • Example 4 the cells transduced in the same manner as in Example 4 were subjected to antibody stimulation with an anti-CD8 monoclonal antibody to determine whether or not GFP was expressed: using FACS.
  • FACS FACS-activated monoclonal antibody
  • peak shift was observed in the fraction having a higher fluorescence intensity as compared with the vector-only control due to the antibody stimulation (FIG. 5). This indicates that extracellular signals were transmitted into cells via NFAM-1, 2, or 4, and that these signals were transmitted as intracellular signals, which promoted NFAT-mediated GFP expression. .
  • NFAM-1 The sequences of NFAM-1, 2, and 4, for which the above activities were confirmed, were determined. The determined nucleic acid sequence and the encoded amino acid sequence are shown in the Sequence Listing. NFAM-1 is shown in SEQ ID Nos. 6 and 7, NFAM-2 is shown in SEQ ID Nos. 11 and 12, and NFAM-4 is shown in SEQ ID Nos. 13 and 14.
  • NFAM-1 was a transmembrane protein having 116 amino acids as an extracellular domain on one side and 83 amino acids on the other side with a transmembrane domain in between.
  • the intracellular region had an ITAM-like structure consisting of YxxLxxxxxxxYxxM.
  • test nucleic acid can be used not only for screening of a membrane-bound signal transduction factor but also for screening of an adapter factor that mediates signal transduction in cells.
  • any signal transmission factor capable of transmitting the single molecule from Receptor intracellularly and ultimately inducing the expression of Repo overnight gene can be selected. Therefore, it is possible to select not only a membrane-bound signal transduction factor but also an adapter factor that can mediate signal transduction. Therefore, it can contribute to the identification of many unclear signal transduction factors as well as the identification of novel signal transduction pathways. Screening of a substance that interacts with the signal transduction factor obtained here.
  • screening of a signal transduction factor in a homologous or heterologous organism can be performed. Further identification and identification of modulators that act on signaling factors to modulate their activity can also be performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A screening system which comprises expressing a test nucleic acid (16) to be screened as an intracellular domain (26) of a chimeric molecular (22), and evaluating, via the expression of a reporter gene (20), whether or not this chimeric molecule (22) can transduce a signal transferred from an extracellular domain receptor (24) as an intracellular signal mediated by the intracellular domain (26) consisting of the above-described test nucleic acid product.

Description

明細書 シグナル伝達因子をコードする核酸のスクリーニング方法およびその方法に用 いるキット並びに細胞 技術分野  Description Screening method for nucleic acid encoding a signal transduction factor, kit for use in the method, and cell
本発明はシグナル伝達に関与し得る核酸のスクリ一ニング方法およびそのキッ トに関する。 また本発明は前記スクリーニング方法またはキットに使用し得る細 胞に関する。 さらには、 本発明のスクリーニング方法等によりスクリーニングさ れたシグナル伝達因子に関する。 背景技術  The present invention relates to a method for screening a nucleic acid that can participate in signal transduction and a kit thereof. The present invention also relates to cells that can be used in the above-described screening method or kit. Furthermore, the present invention relates to a signal transduction factor screened by the screening method and the like of the present invention. Background art
近年の細胞内シグナル伝達の研究により、 生物の様々な活動、 例えば、 細胞の 増殖、 生物の発生や分化、 さらには外的因子やストレスからの防御機構などがシ グナル伝達経路により制御されていることが明らかにされつつある。  Recent research on intracellular signal transduction regulates various activities of organisms, such as cell proliferation, development and differentiation of organisms, and defense mechanisms against external factors and stress, through signal transduction pathways. It is being revealed.
例えば、 τ リンパ球における免疫応答もシグナル伝達を介して行われる。 すな わち抗原が MHC (主要組織適合遺伝子) と結合し、 その複合体が T細胞表面の レセプ夕一に結合し抗原認識が行われると、 レセプターと結合する細胞内の構成 因子 (CD3分子) がリン酸化され、 この CD3分子のリン酸化が細胞内酵素 (キ ナ一ゼ) やアダプタ一となるシグナル伝達因子を活性化することによって NFAT (転写因子) が活性化され核内に移行し、 発現誘導された因子 (AP-1) と共に活 性化型 NFATとしてサイ トカインの発現を誘導することが明らかになつている。 また血球系細胞では、 例えば、 エリスロポエチンが細胞表面のエリス口ポェチ ンレセプ夕一に結合すると、 このエリスロポエチンレセプ夕一と細胞内で結合し ている細胞内酵素 JAKが活性化される。この JAKの活性化は STATの活性化を 導き、 この STATが核内に移行して遺伝子の転写を促進させ細胞増殖が誘導され る。 またこの他にも FAS、 FADD, CASPACEを介してアポトーシスを誘導する シグナル伝達経路なども知られている。 For example, the immune response in τ lymphocytes also takes place via signaling. That is, when the antigen binds to MHC (major histocompatibility gene) and the complex binds to the receptor on the surface of the T cell and recognizes the antigen, the intracellular component (CD3 molecule) that binds to the receptor ) Is phosphorylated, and phosphorylation of this CD3 molecule activates intracellular enzymes (kinases) and signaling factors that become adapters, thereby activating NFAT (transcription factors) and translocating into the nucleus. It has been clarified that it induces cytokine expression as activated NFAT together with the factor (AP-1) whose expression was induced. In erythroid cells, for example, when erythropoietin binds to the erythropoietin receptor on the cell surface, the intracellular enzyme JAK that binds intracellularly to the erythropoietin receptor is activated. This activation of JAK activates STAT This STAT is translocated into the nucleus to promote gene transcription and induce cell proliferation. In addition, signaling pathways that induce apoptosis via FAS, FADD, and CASPACE are also known.
こうして明らかにされている種々のシグナル伝達経路は生理的条件において実 際に活性化、 制御されているものであり、 まだ多くのシグナル伝達経路およびそ れに関与する因子の解明が待たれている状況にある。 また、 既知のシグナル伝達 経路であっても、 この伝達を仲介するァダブ夕一因子が未だ知られていないこと も考えられる。  The various signaling pathways thus identified are actually activated and regulated under physiological conditions, and there is still a need to elucidate many signaling pathways and the factors involved in them. In the situation. It is also conceivable that, even with known signaling pathways, the adabu Yuichi factor that mediates this signaling is not yet known.
従来のシグナル伝達因子等の解明は何らかのリン酸化活性等を指標としてスク リ一二ングが行われ、 あるいはシグナル伝達経路が活性化された際に生じる表現 形 (例えば、 T細胞では IL-2産生) を指標としてスクリーニングが行われている c 一方、 比較的解明が進んでいるシグナル伝達経路では、 より詳細なシグナル伝 達の各経路あるいは関与する因子を解析するための系が開発されている。 その一 つとして、 Bryan A.ら ( Oe/764:891-901(1991), Methods Enzymol, 327:210-28, 2000) ) によるキメラ分子を用いた方法がある。 Conventional elucidation of signal transduction factors, etc. is screened using some kind of phosphorylation activity as an index, or the phenotype that occurs when the signal transduction pathway is activated (for example, IL-2 production in T cells) ) whereas c screening is performed as an index, the signal transduction pathway that is relatively elucidated progressed, a system for analyzing the factors that more detailed each path of signal transduction or involvement has been developed. One of them is a method using a chimeric molecule by Bryan A. et al. (Oe / 764: 891-901 (1991), Methods Enzymol, 327: 210-28, 2000)).
この方法は T細胞におけるシグナル伝達経路、 特に、 T細胞レセプ夕一の CD3 鎖のシグナル伝達経路における役割を解析するために開発されている。 この方 法では CD3 ζ鎖の細胞内ドメインに CD8の細胞外ドメインを連結させたキメラ 分子を構築する。 そして、 このキメラ分子を Τ細胞レセプ夕一とは別に Τ細胞で 発現させ、 抗 CD8抗体で人為的に細胞外から CD8を介してキメラ分子に刺激を 加え、細胞内でシグナルが伝達されるかを IL-2の産生を指標として解析した。こ の解析により、 CD3 ^鎖と CD8 の細胞外ドメインとのキメラ分子は T細胞レセ プ夕一と同様のシグナル伝達を活性化し得ることが示され、 CD3複合体の他の分 子 (ァ、 (5、 《Ξなど) とは独立して十分な活性化シグナルを伝達することが可能 であることが明らかにされている。 このようにキメラ分子を用いた解析系が既知のシグナル伝達経路の詳細な解析、 特に各シグナル伝達因子の役割などの解析に有効であることから、 種々のシグナ ル伝達経路の解析において、 こうしたキメラ分子が利用されている。 This method has been developed to analyze the role of the signaling pathway in T cells, particularly the role of the CD3 chain of the T cell receptor. In this method, a chimeric molecule is constructed in which the extracellular domain of CD8 is linked to the intracellular domain of the CD3ζ chain. Then, this chimeric molecule is expressed in Τ cells separately from Τ cell receptor, and the chimeric molecule is artificially stimulated from outside the cell via CD8 with an anti-CD8 antibody, and a signal is transmitted inside the cell. Was analyzed using IL-2 production as an index. This analysis indicates that a chimeric molecule of the CD3 ^ chain and the extracellular domain of CD8 can activate signaling similar to that of the T cell receptor, and that other molecules of the CD3 complex (a, It has been shown that independent activation signals can be transmitted independently of (5, <<, etc.). As described above, the analysis system using chimeric molecules is effective for detailed analysis of known signal transduction pathways, especially for the analysis of the role of each signal transduction factor. Molecules are used.
上述したキメラ分子を用いた解析系により、 シグナル伝達経路の詳細な解析が 進展しているが、 このような有効な系が新たなシグナル伝達因子を同定するため のスクリーニング系が求められている。  Detailed analysis of signal transduction pathways is progressing with the above-described analysis system using chimeric molecules, and a screening system for identifying a new signal transduction factor is required for such an effective system.
特に、 従来のスクリーニング系ではリン酸化活性などのシグナル伝達経路の中 間活性ゃシグナル伝達経路の最終の表現形などを指標としてスクリ一二ングが行 われている。 そして、 このスクリーニングにより得られた因子が真にシグナル伝 達経路に関与することを確認するためには、 その因子をノックァゥトした系や、 逆に高発現させた系などを構築してシグナル伝達経路への影響を確認する必要が あった。 また、 こうした時間を要し、 かつ煩雑な工程を経て解析を行ったとして も、 スクリ一ニングにより得られた因子が後にシグナル伝達経路に関与しないこ とが判明することも多々あった。  In particular, in conventional screening systems, screening is performed using the intermediate activity of signal transduction pathways such as phosphorylation activity divided by the final phenotype of the signal transduction pathway as an index. In order to confirm that the factor obtained by this screening is truly involved in the signal transduction pathway, it is necessary to construct a system in which the factor is knocked out or a system in which the factor is highly expressed, and construct a signal transduction pathway. It was necessary to confirm the impact on the environment. In addition, even if such a time-consuming and complicated analysis was carried out, it was often found that factors obtained by screening did not participate in signal transduction pathways later.
そこで、 本願発明は、 上記課題に鑑み、 キメラ分子を用いて迅速かつ確実にシ グナル伝達に関与する核酸をスクリ一ニングし得るスクリ一二ング系等を開発し、 新規なシグナル伝達因子を同定することを第一の目的とする。 さらに、 本発明は 上記スクリーニング系により同定された新規シグナル伝達因子を提供すること、 および該新規シグナル伝達因子を利用したシグナル伝達調節因子のスクリーニン グ用の細胞を提供することを目的とする。 発明の開示  In view of the above problems, the present invention has developed a screening system and the like that can rapidly and reliably screen nucleic acids involved in signal transmission using a chimeric molecule, and identified a novel signal transduction factor. The primary purpose is to do so. Furthermore, it is an object of the present invention to provide a novel signal transduction factor identified by the above-mentioned screening system, and to provide a cell for screening a signal transduction regulator using the novel signal transduction factor. Disclosure of the invention
本発明におけるシグナル伝達因子スクリーニング系の原理は、 スクリ一ニング に供される被験核酸をキメラ分子の細胞内ドメインとして発現させ、 このキメラ 分子が細胞外ドメインのレセプ夕一から導入されるシグナルを細胞内シグナルと して伝達し得るか否かを、 レポ一夕一遺伝子の発現を介して測定することにより 行う。 The principle of the signal transduction factor screening system of the present invention is that a test nucleic acid to be subjected to screening is expressed as an intracellular domain of a chimeric molecule, and the chimeric molecule is transduced by a signal introduced from a receptor of an extracellular domain into a cell. Signal inside This is determined by measuring the expression of the repo overnight gene.
すなわち、 本発明は、 細胞外ドメインとして細胞外シグナルを細胞内に導入し 得るレセプターおよび細胞内ドメインとして被験核酸産物とを備えた細胞膜貫通 型のキメラ分子を用いてシグナル伝達を調節し得る核酸をスクリーニングする方 法であって、 次の (1 ) 〜 (4 ) 工程が含まれる。 ( 1 )前記レセプ夕一遺伝子と 被験核酸とを連結させて発現ベクター内に担持させ、 前記キメラ分子を発現し得 るキメラ分子発現べクタ一を調製する工程と、 (2 )細胞内シグナル伝達が活性化 された際に発現が誘導されるレポ一夕一遺伝子を保持した細胞に前記キメラ分子 発現ベクターを導入する工程と、 ( 3 )前記キヌラ分子発現ベクターが導入された 細胞に細胞外シグナル因子を作用させる工程と、 (4 )前記細胞外シグナル因子を 作用させた後に前記レポーター遺伝子の発現量を測定する工程と、 が含まれる。 上記発明によれば、 キメラ分子発現ベクターが導入された細胞内でキメラ分子 が発現され、 このキメラ分子中のレセプ夕一は細胞外ドメインに、 被験核酸産物 は細胞内ドメインに発現される。 そして、 この状態で細胞外シグナル因子を作用 させるとレセプ夕一を介して細胞内ドメインにシグナルが伝達する。 ここで、 上 記被験核酸産物がシグナル伝達に関与する因子であればこのシグナルを細胞内シ グナルとして伝達される。 そして、 このシグナルは必要に応じて細胞内のァダプ 夕一因子などを介し、 細胞内に保持されているレポーター遺伝子の発現が誘導さ れる。 従って、 最終的なレポーター遺伝子の発現を検出することにより被験核酸 産物がシグナル伝達因子として機能するか否かを判定することが可能となる。 なお、 上記本発明において、 レポ一夕一遺伝子の上流に、 細胞内でシグナルが 伝達された際に誘導される細胞内シグナル伝達因子が結合して前記レポ一夕一遺 伝子の発現を促進させ得るシグナル伝達因子結合部位を備え、 シグナル伝達誘導 の検出効率を高めることができる。 上記レセプ夕一として CD 8を用い、 その場 合には前記細胞外シグナル因子として抗 CD 8抗体を用いることができる。 上記 レポ一夕一遺伝子として、 GFP遺伝子を用い、 蛍光発光を指標にシグナル伝達が 誘導されたことを検出することができる。前記細胞として T細胞を用いることが できる。 また、 前記シグナル伝達因子結合部位に NFAT ( nuclear factor of activated T cells) を用いることができる。 前記発現べクタ一として、 導入効率 が高いレトロウイルスベクタ一を用いることができる。 さらに、 前記細胞には、 複数種のレポ一夕一遺伝子を保持させ、 前記複数種のレポーター遺伝子は、 細胞 内での異なるシグナル伝達因子によりそれそれ発現が誘導されるように構成する こともできる。 That is, the present invention provides a nucleic acid capable of regulating signal transduction using a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a transmembrane chimeric molecule comprising a test nucleic acid product as an intracellular domain. This is a screening method, which includes the following steps (1) to (4). (1) preparing a chimeric molecule expression vector capable of expressing the chimeric molecule by linking the receptor gene and a test nucleic acid to be carried in an expression vector; (2) intracellular signaling A step of introducing the chimeric molecule expression vector into a cell holding a repo allele gene whose expression is induced when is activated, and (3) an extracellular signal to a cell into which the quinula molecule expression vector has been introduced. And (4) measuring the expression level of the reporter gene after applying the extracellular signal factor. According to the above invention, the chimeric molecule is expressed in the cell into which the chimeric molecule expression vector has been introduced, and the receptor in the chimeric molecule is expressed in the extracellular domain, and the test nucleic acid product is expressed in the intracellular domain. When an extracellular signal factor is actuated in this state, a signal is transmitted to the intracellular domain via the receptor. Here, if the test nucleic acid product is a factor involved in signal transduction, this signal is transmitted as an intracellular signal. This signal induces the expression of the reporter gene retained in the cell, if necessary, through the adaptic factor in the cell. Therefore, it is possible to determine whether the test nucleic acid product functions as a signal transduction factor by detecting the final expression of the reporter gene. In the present invention, an intracellular signal transduction factor, which is induced when a signal is transmitted in a cell, binds to the upstream of the repo overnight gene to promote the expression of the repo overnight gene. It has a signal transduction factor binding site that can be used to enhance the signal transduction induction detection efficiency. CD 8 was used for the reception In such a case, an anti-CD8 antibody can be used as the extracellular signal factor. Using the GFP gene as the repo overnight gene, it is possible to detect the induction of signal transduction using fluorescence as an index. T cells can be used as the cells. Further, NFAT (nuclear factor of activated T cells) can be used for the signal transduction factor binding site. As the expression vector, a retrovirus vector having a high transfection efficiency can be used. Furthermore, the cell may have a plurality of types of reporter genes, and the plurality of types of reporter genes may be configured to be induced by different signal transduction factors in the cell. .
このように本発明によれば、 被験核酸産物のシグナル伝達活性を指標にスクリ 一二ングを行うため、 従来のようなリン酸化などを指標とする従来の系に比べ、 高効率かつ確実にシグナル伝達に関与する因子をスクリーニングすることが可能 となる。  As described above, according to the present invention, screening is performed using the signal transduction activity of a test nucleic acid product as an index, and therefore, compared to a conventional system using phosphorylation or the like as an index, the signal is more efficiently and reliably obtained. It is possible to screen for factors involved in transmission.
本発明はさらに上記と同様のスクリーニング方法の原理をキッ卜化して提供す る。 すなわち、 本発明のキットは、 細胞外ドメインとして細胞外シグナルを細胞 内に導入し得るレセプ夕一および細胞内ドメインとして被験核酸産物を備えたキ メラ分子を用いて、 シグナル伝達に関与し得る核酸をスクリーニングするための キッ 卜であって、以下の構成が含まれる。 ( 1 )前記レセプ夕一遺伝子が担持され、 前記レセプ夕一遺伝子と被験核酸とを連結させて前記キメラ分子を発現させるた めの発現ベクターと、 (2 )細胞内シグナル伝達が活性化された際に発現が誘導さ れるレポ一夕一遺伝子を保持した細胞と、 (3 ) 前記細胞表面に発現されるシグ ナル導入蛋白質に細胞外シグナルを導入するための細胞外シグナル因子とが含ま れる。  The present invention further provides the principle of the same screening method as the above as a kit. That is, the kit of the present invention comprises a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a chimeric molecule provided with a test nucleic acid product as an intracellular domain, the nucleic acid capable of participating in signal transduction. This is a kit for screening for Escherichia coli, and includes the following components. (1) an expression vector for carrying the receptor gene and linking the receptor gene and a test nucleic acid to express the chimeric molecule; and (2) activating intracellular signal transduction. And (3) an extracellular signal factor for introducing an extracellular signal into the signal transduced protein expressed on the cell surface.
上記スクリーニング系をキット化することにより、 迅速にかつ簡便に上記スク リーニング系を実施することが可能となる。 これにより新規のシグナル伝達因子 の同定が促進され、 新たなシグナル伝達経路の解明が期待される。 By making the above-mentioned screening system into a kit, it becomes possible to carry out the above-mentioned screening system quickly and easily. This is a new signaling factor Identification is promoted, and elucidation of new signaling pathways is expected.
本発明は上記スクリーニングに利用し得る細胞を提供する。 すなわち、 細胞内 シグナル伝達の調節をモニタするための細胞であって、 細胞内シグナル伝達が調 節された際に発現が変化するレポーター遺伝子を保持し、 前記レポ一夕一遺伝子 の上流に細胞内シグナル伝達因子が結合し前記レポーター遺伝子の発現を変化さ せ得るシグナル伝達因子結合部位が備えられている。  The present invention provides cells that can be used for the above screening. That is, a cell for monitoring the regulation of intracellular signal transduction, which holds a reporter gene whose expression changes when intracellular signal transduction is regulated, and has an intracellular upstream of the repo allele gene. A signal transduction factor binding site capable of binding a signal transduction factor and changing the expression of the reporter gene is provided.
さらに、 本発明は、 上記スクリーニング方法または上記スクリーニングキット を用いて得られたシグナル伝達因子およびこれをコ一ドする DNAを提供する。 このシグナル伝達因子は、 配列番号 7、 1 2、 1 4のいずれかに記載されたアミ ノ酸配列、 またはシグナル伝達活性を有する範囲で前記各アミノ酸配列に欠失、 揷入、 置換を有するアミノ酸配列からなる。 また、 上記シグナル伝達因子をコ一 ドした DNAは、 配列番号 6、 1 1、 1 3のいずれかに記載の塩基配列、 または 配列番号 6、 1 1、 1 3のいずれかに記載の D N Aとストリンジェントな条件下 でハイブリダィズする塩基配列からなる。  Further, the present invention provides a signal transduction factor obtained by using the above-mentioned screening method or the above-mentioned screening kit, and a DNA encoding the same. The signal transduction factor may be an amino acid sequence described in any one of SEQ ID NOs: 7, 12, and 14, or an amino acid having a deletion, insertion, or substitution in each of the amino acid sequences as long as it has a signal transduction activity. Consists of an array. In addition, the DNA encoding the above signal transduction factor is the same as the nucleotide sequence described in any one of SEQ ID NOs: 6, 11, and 13 or the DNA described in any one of SEQ ID NOs: 6, 11, and 13. It consists of a base sequence that hybridizes under stringent conditions.
さらに、 本発明は上記スクリーニング方法等により同定されたシグナル伝達因 子を備え、 該因子による細胞内シグナル伝達に関連する因子をスクリーニングす るための細胞を提供する。本細胞は、 ( 1 )細胞外ドメインとして細胞外シグナル を細胞内に導入し得るレセプ夕一および細胞内ドメインとしてシグナル伝達因子 を有する細胞膜貫通キヌラ分子と、 ( 2 )細胞内シグナル伝達が調節された際に発 現が変化する細胞内レポーター遺伝子とを備え、 ここで、 前記細胞膜貫通キメラ 分子におけるシグナル伝達因子としては、 配列番号 7、 1 2、 1 4のいずれかに 記載のアミノ酸配列またはシグナル伝達活性を有する範囲で前記各アミノ酸配列 に欠失、 挿入、 置換を有するアミノ酸配列が備えられ、 また、 前記レポーター遺 伝子の上流には、 細胞内シグナル伝達因子が結合して前記レポーター遺伝子の発 現を変化させ得るシグナル伝達因子結合部位が備えられている。 上記細胞にさらに被験試料を作用させた際に、 前記シグナル伝達因子によるレ ポー夕一遺伝子の発現を上昇または低下させ得る物質を同定することにより、 前 記シグナル伝達因子が関与する伝達経路の阻害因子、 促進因子などのスクリー二 ングをすることも可能となる。 図面の簡単な説明 Furthermore, the present invention provides a cell comprising a signal transduction factor identified by the above-described screening method and the like, and for screening a factor associated with intracellular signal transduction by the factor. This cell comprises (1) a receptor capable of introducing an extracellular signal into the cell as an extracellular domain and a transmembrane quinula molecule having a signal transduction factor as an intracellular domain; and (2) intracellular signaling is regulated. And an intracellular reporter gene whose expression changes when the amino acid sequence or the signal according to any one of SEQ ID NOs: 7, 12, and 14. An amino acid sequence having a deletion, an insertion, or a substitution in each of the amino acid sequences within a range having a transduction activity is provided, and an upstream of the reporter gene is bound with an intracellular signal transduction factor to bind to the reporter gene. Signaling factor binding sites are provided that can alter expression. By further identifying the substance capable of increasing or decreasing the expression of the reporter gene by the signaling factor when the test sample is further applied to the cells, inhibition of the signaling pathway involving the signaling factor is identified. It is also possible to screen for factors and promoting factors. BRIEF DESCRIPTION OF THE FIGURES
図 1は第一の実施形態のスクリーニング方法を模式的に示す図である。 (A) はキメラ分子発現べク夕一構築工程であり、 図にはキメラ分子発現べクタ一の構 成を示す。 (B) はモニタ細胞内へのキメラ分子の導入、 発現工程であり、 図には キメラ分子をモニタ細胞内で発現させた際の細胞の状態を模式的に示す。 (C)は レポ一夕一遺伝子発現細胞の選択工程、 (D)は前記選択細胞からの被験核酸クロ 一二ング工程を示す。  FIG. 1 is a diagram schematically showing the screening method of the first embodiment. (A) shows the construction process of the chimeric molecule expression vector. The figure shows the configuration of the chimeric molecule expression vector. (B) shows the process of introducing and expressing the chimeric molecule in the monitor cell. The figure schematically shows the state of the cell when the chimeric molecule is expressed in the monitor cell. (C) shows a step of selecting a cell expressing the repo overnight gene, and (D) shows a step of cloning a test nucleic acid from the selected cell.
図 2は、 pNFAT-GFPの構築を模式的に示す図である。  FIG. 2 is a diagram schematically showing the construction of pNFAT-GFP.
図 3は、 pMX-CD8ベクターの構築を模式的に示す図である。  FIG. 3 is a diagram schematically showing the construction of the pMX-CD8 vector.
図 4は、実施例 4において GPT—陽性細胞をフ口一サイ トメ トリーにより分 画した結果を示すヒストグラムの図である。 (A)は分画前のフローサイ トメ トリ 一のヒストグラムを、 (B)は 3回分画後のフローサイ トメ トリ一のヒストグラム を示す。 ,  FIG. 4 is a histogram diagram showing the results of fractionating GPT-positive cells by flow cytometry in Example 4. (A) shows a histogram of flow cytometry before fractionation, and (B) shows a histogram of flow cytometry after fractionation three times. ,
図 5は、 NFAM-1、 2、 4のシグナル伝達誘導活性を確認した際の FACS分 画パターンを示す図である。 NFAM-1、 2、 4を有する細胞では蛍光発光強度が 高い方向に細胞ピークが移動し、 とりわけ、 NFAM-1において強い蛍光発光、 す なわちシグナル伝達誘導が観察された。  FIG. 5 is a diagram showing a FACS fractionation pattern when the signal transduction inducing activities of NFAM-1, 2, and 4 were confirmed. In the cells having NFAM-1, 2, and 4, the cell peak moved in the direction of higher fluorescence emission intensity, and in particular, strong fluorescence emission, that is, signal transduction induction was observed in NFAM-1.
図 6は、 シグナル伝達を強く誘導した NFAM-1を他の既知の ITAMを有する シグナル伝達因子と比較して示す図である。 発明を実施するための最良の形態 FIG. 6 is a diagram showing NFAM-1 which strongly induced signal transduction in comparison with other known ITAM-containing signal transduction factors. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面に基づき詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
( 1 ) シグナル伝達因子をコ一ドする核酸のスクリーニング方法  (1) A method for screening a nucleic acid encoding a signaling factor
本発明はシグナル伝達因子をコ一ドする核酸のスクリ一ニング方法に関する。 本実施形態のスクリーニング方法は、 細胞内ドメインとして被験核酸産物と細胞 外ドメインとしてレセプ夕一分子とを備えたキメラ分子を細胞において発現させ、 レセプ夕一分子に細胞外のシグナル因子を作用させる。 ここで、 キメラ分子の被 験核酸がシグナル伝達に関与するものである場合には、 レセプ夕一からシグナル を受取ることが可能となる。 そして、 このシグナルは細胞内で伝達され、 最終的 にレポーター遺伝子の発現を誘導する。 よって、 最終的なレポーター遺伝子の発 現を指標としてシグナル伝達因子をコードする核酸をスクリーニングすることが 可能となる。 上記原理に基づいたスクリーニング方法は、 具体的には、 以下に示 す一連の工程により実施することができる。  The present invention relates to a method for screening a nucleic acid encoding a signal transduction factor. In the screening method of the present embodiment, a chimeric molecule comprising a test nucleic acid product as an intracellular domain and a receptor molecule as an extracellular domain is expressed in a cell, and an extracellular signal factor acts on the receptor molecule. Here, when the test nucleic acid of the chimeric molecule is involved in signal transmission, it becomes possible to receive a signal from the receptor. This signal is then transmitted intracellularly, ultimately inducing reporter gene expression. Therefore, it is possible to screen for a nucleic acid encoding a signal transduction factor using the final reporter gene expression as an index. The screening method based on the above principle can be specifically carried out by a series of steps described below.
① キメラ分子発現ぺク夕一の調整 ① Chimera molecule expression
細胞においてキメラ分子を発現させるために、 図 1 ( A) に示すように、 キメ ラ分子をコードしたカセットを発現ベクター 1 0に担持させたキメラ分子発現べ クタ一を調製する。 このカセットは、 レセプ夕一を細胞外ドメインとして、 また 被験核酸を細胞内ドメインとして発現させるために、 膜貫通配列 1 2を挟んでレ セプ夕一遺伝子 1 4と被験核酸 1 6とを読み枠を合わせて連結させ、 さらに被験 核酸 1 6の下流にストヅプコドンを挿入することで構成される。  In order to express a chimeric molecule in cells, as shown in FIG. 1 (A), a chimeric molecule expression vector in which a cassette encoding a chimeric molecule is carried on an expression vector 10 is prepared. This cassette has a reading frame between the receptor gene 14 and the test nucleic acid 16 across the transmembrane sequence 12 in order to express the receptor as an extracellular domain and the test nucleic acid as an intracellular domain. And a stop codon is inserted downstream of the test nucleic acid 16.
ここで上記発現べクタ一 1 0は、 その後の細胞への導入を効率よく実施し得る ベクターであれば、 特に限定はなく、 ウィルス粒子として導入するベクター、 プ ラスミ ドとして導入し得るベクタ一のいずれでもよい。 例えば、 レトロウイルス ベクター、 アデノ関連ウィルスベクター、 ワクシニアウィルスベクター、 レンチ ウィルスベクター、 ヘルぺスウィルスベクター、 アルファウィルスベクター、 EB ウィルスベクター、 パピローマウィルスベクター、 フォーミーウィルスベクター などのウィルスベクターやカチォニックリボソーム、 リガンド DNA複合体、 ジ —ンガンなどの非ゥィルスベクターなどが挙げられる。 Here, the expression vector 10 is not particularly limited as long as it is a vector that can be efficiently introduced into cells thereafter, and is not limited to a vector that can be introduced as a virus particle or a vector that can be introduced as a plasmid. Either may be used. For example, retrovirus vector, adeno-associated virus vector, vaccinia virus vector, lentivirus vector, herpesvirus vector, alphavirus vector, EB Examples include virus vectors such as virus vectors, papilloma virus vectors, and foamy virus vectors, and non-viral vectors such as cationic ribosomes, ligand DNA complexes, and cancer.
また、 レセプ夕一遺伝子 1 4は、 受容体をコードした遺伝子以外にも細胞外シ グナルを細胞内に導入し得る因子をコードした遺伝子を意味し、 受容体をコ一ド した遺伝子に限定されない。従って、 本レセプター遺伝子 1 4としては、例えば、 図 1に示す T細胞の表面抗原である CD8、 CD25 (Letourneur F ら, Cell 69:1143-57 ( 1992) )、 CD 16 (Kolanus Wら, Cell 74:171-83 ( 1993)、 Romeo Cら,(¾ゾ768:889-97(1992))ヽ CD2 ( Yamasaki Sら, Mol. Cell. Biol 16:151-60 Receptor gene 14 also means a gene that encodes a factor that can introduce an extracellular signal into a cell in addition to a gene that encodes a receptor, and is not limited to a gene that encodes a receptor. . Accordingly, the present receptor gene 14 includes, for example, CD8, CD25 (Letourneur F et al., Cell 69: 1143-57 (1992)) and CD 16 (Kolanus W et al. 74: 171-83 (1993), Romeo C et al., (¾768: 889-97 (1992)) ヽ CD2 (Yamasaki S et al., Mol. Cell. Biol 16: 151-60)
( 1996)) などをコードした遺伝子を用いることができる。 また、 増殖因子レセ プ夕一な どの EGF-R ( Epidermal growth factor receptor ) , PDGF-R(1996)). Also, EGF-R (Epidermal growth factor receptor) such as growth factor receptor and PDGF-R
(Platelet-derived growth factor receptor) (Seedorf K.ら, J. Biol. Chem. 266:12424-31 ( 1991)、 Adam D.ら J. Biol Chem. 268:19882-8 ( 1993))、 GH(Platelet-derived growth factor receptor) (Seedorf K. et al., J. Biol. Chem. 266: 12424-31 (1991), Adam D. et al. J. Biol Chem. 268: 19882-8 (1993)), GH
(成長ホルモン) レセプ夕一 (Behncken SN.ら, J.Biol. Chem. 275:17000-7(Growth hormone) Yuichi Recept (Behncken SN. Et al., J. Biol. Chem. 275: 17000-7
(2000) )、 TNF (tumor necrosis factor) , Fas (B azzoni F.ら:) Proc.Natl. Acad. (2000)), TNF (tumor necrosis factor), Fas (Bazzoni F. et al.) Proc. Natl. Acad.
92:5376-80 ( 1995)、 Ishiwatai'i-Hayasaka H.ら, J. Im u oJ. 163:1258-64 92: 5376-80 (1995), Ishiwatai'i-Hayasaka H. et al., J. Im uo J. 163: 1258-64
( 1999)) などをコードした遺伝子なども用いることができる。 (1999)) can also be used.
また、 上記遺伝子は必ずしも全長を用いる必要はなく、 上記遺伝子のうち細胞 外のシグナルを受取り、 細胞内ドメインにシグナルを伝達し得る領域をコードし た配列部分だけであってもよい。  It is not necessary to use the full length of the gene, and the gene may be a sequence portion encoding a region capable of receiving an extracellular signal and transmitting a signal to an intracellular domain.
被験核酸 1 6は、 シグナル伝達因子をコードしているか否かを調べる対象とな る核酸である。 この被験核酸 1 6としては、 哺乳動物の種々の細胞由来のゲノム DNA、 c DNAなどを用いることができる。 また、 簡便には、 例えば、 図 1 (A) に示すような既存の c DNAライブラリー、 ゲノムライブラリーを用いて、 キメ ラ分子発現ベクターライブラリーを構築してもよい。 ② レポ一夕一遺伝子を保持した細胞へのキメラ分子発現べクタ一の導入 先ず、 本工程を実行する前に、 図 1 (B) に示すレポ一夕一遺伝子を保持した 細胞を調製する。 このレポ一夕一遺伝子 2 0は細胞内にシグナルが伝達されたこ とを検知して発現が誘導されるように構成される。 細胞内でシグナルが伝達され たことを検知可能とするために、 例えばレポ一夕一遺伝子 2 0の上流に転写を誘 導し得るシグナル伝達因子が結合する部位(以下、 「シグナル因子結合部位」とい う) を備えることができる。 この転写を誘導するシグナル伝達因子としては、 下 流のレポ一夕一遺伝子の転写を'促進し得るシグナル伝達因子であればよく、 例え ば、 NFAT (Hoey, T.ら, Immunity 2:461-472 ( 1995) NF cB (Phillips, E. ら Genes Dev. 6:775-87 ( 1992 ) )、 STAT ( EHana, M.ら, J. Biol. Chew. 274:6698-6703 ( 1999) ) などを用いることができる。 また、 上記シグナル因子結 合部位には、 上記シグナル因子に対応したものを選択する。 例えば、 シグナル伝 達因子として NFATを用いる場合には、 シグナル伝達因子結合部位として NFAT 結合配列を用いるように、 それそれの伝達因子に対応した結合配列が用いられる ことが好ましい。 The test nucleic acid 16 is a nucleic acid to be examined whether or not it encodes a signaling factor. As the test nucleic acid 16, genomic DNA, cDNA or the like derived from various mammalian cells can be used. For convenience, a chimera molecule expression vector library may be constructed using, for example, an existing cDNA library and genomic library as shown in FIG. 1 (A). ② Introduction of the chimeric molecule expression vector into cells carrying the repo overnight gene First, before carrying out this step, prepare cells carrying the repo overnight gene shown in Fig. 1 (B). This repo overnight gene 20 is constructed so that expression is induced by detecting that a signal has been transmitted into a cell. In order to be able to detect that a signal has been transmitted in a cell, for example, a site where a signal transduction factor capable of inducing transcription binds upstream of the repo overnight gene 20 (hereinafter referred to as a “signal factor binding site”) ) Can be provided. The signal transduction factor that induces this transcription may be any signal transduction factor that can promote the transcription of the downstream repo overnight gene. For example, NFAT (Hoey, T. et al., Immunity 2: 461- 472 (1995) NF cB (Phillips, E. et al. Genes Dev. 6: 775-87 (1992)), STAT (EHana, M. et al., J. Biol. Chew. 274: 6698-6703 (1999)), etc. The signal factor binding site is selected from those corresponding to the signal factor, for example, when NFAT is used as the signal transduction factor, the NFAT binding sequence is used as the signal transduction factor binding site. It is preferable that a binding sequence corresponding to each of the transfer factors is used.
また、 レポ一夕一遺伝子は、 その発現により細胞の表現形が変化し得るものを 選択することが好ましい。 例えば、 遺伝子が発現された際に蛍光を発光するよう な、 クフケ GFP (Green fluorescent protein )、 RFP (Rea fluorescent protein などを好適に用いることができる。 また、 基質として反応させることにより蛍光 を発光するレポーター遺伝子として、 5ガラクトシダーゼ遺伝子 Prog. Neur. 63:673-686 (2001))、 ラクタマ一ゼ遺伝子 Prog. Neur. 63:673-686 (2001)) などを用いることができる。 また、 その発現により細胞毒性を示し細胞の死滅に より発現を検出し得るレポーター遺伝子と.して、 チミジンキナーゼ遺伝子 Mol. Cell. Biol. 20:3266-3273 (2000) ) , ジフテリァ毒素 A鎖遺伝子 ( m讓 uity 3:239-250 (1995)) などを用いることができる。 また、 レポーター遺伝子として、 特異的抗体及び分離装置 MACS (Magnetic ceU sorter)を用いてその発現を検知 し得る細胞表面抗原遺伝子、例えば、 CD8遺伝子(C¾i2cer ¾s. 58:14-19 (1998))、 truncated ratCD2 (Immunol Lett. 71:61-66 (2000))N CD24 (Blood 94:2271- 2286 (2000)) なども用いることができる。 また、 この他にも Ca2+を検出して蛍 光する Cameleonsをコードする遺伝子 ( rc^. Neur. 63:673-686 (2001))、 構造 変化により蛍光を発光する camgai'oos をコードする遺伝子 Prog. Neur. 63:673-686 (2001))、 pHの変化を検出して蛍光を発する pHluoiinsをコードす る遺伝子 ( ¾¾ A¾£/r. 63:673-686 (2001)) などもレポ一夕一遺伝子として用い ることができる。 In addition, it is preferable to select a repo overnight gene whose expression can change the phenotype of a cell. For example, Kufuke GFP (Green fluorescent protein), RFP (Rea fluorescent protein), etc., which emit fluorescence when a gene is expressed, can be suitably used, and emits fluorescence when reacted as a substrate. As a reporter gene, 5-galactosidase gene Prog. Neur. 63: 673-686 (2001)), lactamase gene Prog. Neur. 63: 673-686 (2001)) and the like can be used. In addition, thymidine kinase gene Mol. Cell. Biol. 20: 3266-3273 (2000)), diphtheria toxin A chain gene is a reporter gene that is cytotoxic by its expression and can be detected by cell death. (mJuity 3: 239-250 (1995)). Also, as a reporter gene, Cell surface antigen genes whose expression can be detected using a specific antibody and a separator MACS (Magnetic ceU sorter), such as the CD8 gene (C¾i2cer¾s. 58: 14-19 (1998)), truncated rat CD2 (Immunol Lett. 71: 61-66 (2000)) N CD24 (Blood 94: 2271-2286 (2000)) can also be used. In addition, a gene encoding Cameleons that detects and fluoresces Ca 2+ (rc ^. Neur. 63: 673-686 (2001)), encodes camgai'oos, which emits fluorescence due to structural changes Gene: Prog. Neur. 63: 673-686 (2001)), and a gene encoding pHluoiins that emits fluorescence by detecting a change in pH (¾¾A¾ £ / r. 63: 673-686 (2001)). It can be used as a gene overnight.
また、 このレポーター遺伝子は一種類に限られず、 複数種を細胞に保持させて もよい。 この場合、 異なるシグナル伝達経路に関与する核酸を区別してスクリー ニングし得るように構成することもできる。 例えば、 一方のレポ一夕一遺伝子に GFP遺伝子を用い、 その上流には、 NFAT結合配列を配置する。他方のレポ一夕 —遺伝子に RKP遺伝子を用い、 その上流には NF AT B結合配列を配置する。 この ような構成を用いれば、 NFATが関与するシグナル伝達経路に関与する因子は緑 色の蛍光を指標に同定することができ、 NF ATBが関与するシグナル伝達経路に関 与する因子は赤色の蛍光を指標に同定することができる。 このように複数種のレ ポー夕一遺伝子、 シグナル伝達因子結合配列を用いることにより、 同時に複数種 のシグナル伝達因子のスクリーニングを行うことが可能となる。  Further, the reporter gene is not limited to one type, and a plurality of types may be retained in the cell. In this case, it may be configured such that nucleic acids involved in different signal transduction pathways can be distinguished and screened. For example, the GFP gene is used for one repo overnight gene, and an NFAT binding sequence is arranged upstream thereof. The other repo is using the RKP gene as the gene, and an NFATB binding sequence is located upstream of it. With such a configuration, factors involved in the signal transduction pathway involving NFAT can be identified using green fluorescence as an index, and factors involved in the signal transduction pathway involving NF ATB can be identified by red fluorescence. Can be identified using as an index. By using a plurality of reporter genes and signal transduction factor binding sequences in this way, it becomes possible to simultaneously screen a plurality of types of signal transduction factors.
—方、 上記シグナル因子結合部位を備えたレポーター遺伝子が導入される細胞 は、 特に限定はなく、 天然の状態でレセプ夕一などを備え、 そのレセプ夕一を介 してシグナルが細胞内に伝達され得る細胞であることが好ましい。 このような細 胞であれば、 後述するレポ一夕一遺伝子の導入、 更には該レポーター遺伝子の発 現がシグナル伝達誘導の指標として機能し得るかを、 該レセプ夕一からのシダナ ル導入後におけるレポーター遺伝子の発現を介して確認することができる。 この ような細胞の例としては、 リンパ球系の細胞、 造血系の細胞などが挙げられる。 上記細胞へのレポ一ター遺伝子の導入方法は、 例えば、 エレクトロボレ一ショ ン、 リポフエクシヨン法、 カルシウムリン酸法などの細胞へ核酸を導入し得るあ らゆる方法により実施することができる。 また、 導入されたレポ一夕一遺伝子の 細胞内での保持は、プラスミ ドなどにより染色体外に保持させる方法であっても、 また染色体内にィンテグレ一シヨンさせる方法であってもレポ一夕一遺伝子が安 定に保持されればよい。 On the other hand, the cell into which the reporter gene having the above-mentioned signal factor binding site is introduced is not particularly limited. The cell is naturally provided with a receptor, etc., and a signal is transmitted into the cell via the receptor. Preferably, the cell is one that can be used. With such a cell, it was determined whether the introduction of the repo overnight gene described below, and whether the expression of the reporter gene could function as an indicator of signal transduction after the introduction of the sidanal from the receptor. Can be confirmed through expression of the reporter gene in the above. this Examples of such cells include lymphoid cells, hematopoietic cells, and the like. The method of introducing a reporter gene into the cells can be performed by any method that can introduce a nucleic acid into cells, such as electroporation, a lipofection method, or a calcium phosphate method. In addition, retention of the introduced repo gene in a cell can be carried out outside the chromosome using a plasmid or the like, or can be carried out in the chromosome by integration. It is only necessary that the gene be kept stable.
また、 レポーター遺伝子が導入された細胞の選択は、 上記レポ一夕一遺伝子の 存在あるいは発現を指標として、 PCR、 サザンブロッテイング法、 ゥヱスタンプ ロッテイング法、 さらにはレポー夕一遺伝子が発現した際の表現型を検出する方 法などにより実施することができる他、 たとえば薬剤耐性遺伝子などのマーカー 遺伝子を導入し、 該マ一力一遺伝子を指標に選択してもよい。 なお、 レポーター 遺伝子が発現した際の表現型の検出は、 上述した天然のレセプターからシグナル を導入してレポ一夕一遺伝子を発現させることにより実施することができる。 す なわち、 細胞が天然にレセプ夕一を有している場合には、 そのレセプ夕一に特異 的な抗体などを作用させ、 外部刺激 (シグナル)を加えて、 細胞内にシグナルを伝 達させる。 ここでレポ一夕一遺伝子が導入されている細胞では、 その細胞内のシ グナルによりレポ一夕一遺伝子が発現される。 従って、 レポ一夕一遺伝子の発現 を指標としてレポーター遺伝子が導入された細胞を選択することができる。 この ような場合には、 レポ一夕一遺伝子が導入された細胞の選択と同時に、 レポ一夕 —遺伝子が細胞内シグナル伝達により応答して発現することを確認することがで きる。  In addition, selection of cells into which the reporter gene has been introduced can be performed by PCR, Southern blotting, stamp lotting, or when the reporter gene is expressed, using the presence or expression of the above-mentioned reporter gene as an index. In addition to the method of detecting a phenotype, a marker gene such as a drug resistance gene may be introduced, and the marker gene may be selected as an index. The phenotype when the reporter gene is expressed can be detected by introducing a signal from the above-described natural receptor to express the reporter gene. In other words, when a cell naturally has a receptor, a specific antibody or the like acts on the receptor, and an external stimulus (signal) is applied to transmit the signal into the cell. Let it. Here, in a cell into which the repo overnight gene has been introduced, the repo overnight gene is expressed by a signal in the cell. Therefore, cells into which the reporter gene has been introduced can be selected using the expression of the repo overnight gene as an index. In such a case, it is possible to select cells into which the repo overnight gene has been introduced, and at the same time, confirm that the repo overnight gene is expressed in response to intracellular signal transduction.
上記レポーター遺伝子を保持する細胞を得た後、 次にこの細胞にキメラ分子発 現ベクターが導入される。 この導入方法は、 用いた発現ベクターに従って選択す る必要がある。 例えば、 発現べクタ一として、 レトロウイルスベクタ一などのゥ ィルス粒子を形成するウィルスベクタ一を用いた場合には、 市販のパッケージン グキットゃ通常のパヅケ一ジングプロトコルに従ってウィルス粒子を生成して、 このウィルス粒子を上記細胞に感染させることにより導入することができる。 ま たウィルス粒子を生成しないべクタ一を用いた場合には、 当業者に公知のエレク トロポーレーシヨン、 リポフヱクチン法、 リピッド法、 カルシウムリン酸法など により細胞内にキメラ分子発現ベクターを導入することができる。 After obtaining cells having the reporter gene, a chimeric molecule expression vector is introduced into the cells. This method of introduction needs to be selected according to the expression vector used. For example, expression vectors such as retrovirus vectors In the case of using a virus vector that forms a virus particle, a commercially available packaging kit can be used to generate the virus particle according to a normal packaging protocol, and then introduce the virus particle by infecting the cell. it can. When a vector that does not generate virus particles is used, the chimeric molecule expression vector must be introduced into cells by electroporation, lipofectin, lipid, calcium phosphate, etc. known to those skilled in the art. Can be.
上記の通りキメラ分子発現べクタ一が導入された細胞では、 図 1 (B) に示す ようにキメラ分子 2 2のレセプター 2 4が細胞外ドメインに発現され、 細胞内ド メインには c DNAライブラリ一などの被験核酸産物 2 6が発現される。 従って、 このような細胞の精製は、 細胞外ドメインとして発現されているレセプ夕一 2 4 と特異的に反応する抗体を用いて選択することにより実施することができる。 よ り具体的には、 キメラ分子中のレセプ夕一に特異的な抗体を結合させた固相に、 目的のキメラ分子が発現している細胞を接触させて捕獲し回収することができる c さらに上記レセプターに特異的な抗体に対する二次抗体を固相 (例えば、 ビーズ など) に結合させたものを用いて得ることもできる。 また、 蛍光標識した特異抗 体でレセプターが発現している細胞を蛍光染色し、 染色された細胞をセルソー夕 一 (FACSや MACS) を用いて分離することもできる。 In cells into which the chimeric molecule expression vector has been introduced as described above, the receptor 24 of the chimeric molecule 22 is expressed in the extracellular domain as shown in Fig. 1 (B), and the cDNA library is contained in the intracellular domain. One or more test nucleic acid products 26 are expressed. Therefore, such cells can be purified by selecting using an antibody that specifically reacts with receptor 124 expressed as an extracellular domain. The yo Ri specifically, to a solid phase bound antibodies specific for the receptions evening one in the chimeric molecule, and c can be captured by contacting a cell chimeric molecule of interest is expressed recovered It can also be obtained by using a secondary antibody against an antibody specific to the receptor bound to a solid phase (for example, beads). Alternatively, cells expressing the receptor can be fluorescently stained with a fluorescent-labeled specific antibody, and the stained cells can be separated using a cell sorter (FACS or MACS).
③ 細胞外シグナル因子の作用 ③ Action of extracellular signal factor
キメラ分子発現べクタ一が導入された細胞に細胞外シグナル因子を作用させる この細胞外シグナル因子は、 キメラ分子内のレセプ夕一より細胞内にシグナルを 導入し得るものであればよく、レセプターに対する天然のリガンドを用いる他に、 このレセプ夕一に特異的な抗体などを用いてもよい。 例えば、 レセプ夕一として 使用し得るものとして上述した CD8、 CD25s CD16S CD2などに対しては、 そ れそれ対応する特異的な抗体を用いることができる。 また、 増殖因子レセプ夕一 などである EGF-R,PDGF-R、 GHレセプ夕一、 TNF, Fasを用いた場合には、 対 応するリガンドゃ特異的な抗体を細胞外シグナル因子として用いることができる c また、 上記細胞外シグナル因子を細胞で発現しているレセプ夕一に作用させる 場合には、 細胞培養液中に直接、 該細胞外シグナルを添加してもよく、 また、 細 胞を培養するためのプレートに細胞外シグナル因子を予め固定化し、 このプレー ト内で細胞を培養することによって実施してもよい。 Applying an extracellular signaling factor to cells into which the chimeric molecule expression vector has been introduced. The extracellular signaling factor may be any as long as it can introduce a signal into the cell from the receptor in the chimeric molecule. In addition to using a natural ligand, an antibody specific to this receptor may be used. For example, for CD8, CD25s CD16 S CD2, etc., which can be used as a receptor, specific antibodies corresponding thereto can be used. In addition, when EGF-R, PDGF-R, GH receptor, TNF, and Fas such as growth factor receptor were used, The corresponding ligand ゃ specific antibody can be used as an extracellular signal factor.c When the above extracellular signal factor is caused to act on receptors expressing in cells, The extracellular signal may be added. Alternatively, the extracellular signal factor may be immobilized on a plate for culturing cells in advance, and the cells may be cultured in the plate.
④ レポ一夕一遺伝子発現検出工程  工程 Repo overnight gene expression detection process
上記の通り、 細胞外シグナル因子を細胞に作用させることにより、 細胞表面の レセプ夕一にシグナルが導入される。 このシグナルは、 レセプ夕一とともにキメ ラ分子を構成している細胞内ドメインの被験核酸産物に伝えられる。 そして、 こ の被験核酸産物が細胞外からのシグナルを細胞内に伝達し得る場合には、 レセプ 夕一から導入されたシグナルが細胞内のアダプタ一因子等に伝達され、 最終的に レポーター遺伝子の発現が誘導される。 従って、 細胞外シグナル因子作用後のレ ポー夕一遺伝子の発現を細胞の表現型の変化などから検出することにより被験核 酸産物がシグナル伝達に関与する因子であるか否かを判定することができる。 例えば、 レポーター遺伝子として GP などの蛍光を発する蛋白質をコードし た遺伝子を用いた場合には、 細胞外シグナル因子を作用させた後の細胞における 蛍光発光という表現型を指標として、 フローサイ トメ トリーなどで分画すること によりシグナル伝達因子をコ一ドした被験核酸を保持した細胞をスクリ一二ング することができる。 また、 スクリーニングする際に蛍光を発する陽性細胞が少な く、 検出が困難である場合には、 陽性細胞と思われる細胞分画を培養等して増幅 させるか又はこの分画を上記細胞外シグナル因子で刺激を加える工程から本工程 までを再度繰り返して、 目的細胞を増幅させてもよい。  As described above, the signal is introduced into the receptor on the cell surface by causing the extracellular signal factor to act on the cell. This signal is transmitted to the test nucleic acid product in the intracellular domain constituting the chimeric molecule together with the receptor. If the test nucleic acid product can transmit a signal from outside the cell into the cell, the signal introduced from the receptor is transmitted to an intracellular adapter factor or the like, and finally the reporter gene Expression is induced. Therefore, by detecting the expression of the reporter gene after the action of the extracellular signal factor from changes in the phenotype of the cell, etc., it is possible to determine whether or not the test nucleic acid product is a factor involved in signal transduction. it can. For example, when a gene encoding a protein that emits fluorescence, such as GP, is used as the reporter gene, the phenotype of fluorescence emission in the cells after the action of the extracellular signal factor is used as an index for flow cytometry. By fractionating, cells that hold the test nucleic acid encoding the signal transduction factor can be screened. If there are few positive cells that emit fluorescence during screening and detection is difficult, a cell fraction that is considered to be a positive cell may be amplified by culturing, etc. The steps from the step of applying a stimulus to this step may be repeated again to amplify the target cells.
⑤ クローニング  ⑤ Cloning
上記一連の工程によりスクリーニングされた細胞には、 キメラ分子の細胞内ド メインとしてシグナル伝達に関与する因子が含まれる。 ここで得られたシグナル 伝達因子の作用の確認、 またシグナル伝達活性の強さの確認は、 上述した一連の スクリーニング方法を利用して行うことができる。 すなわち、 スクリーニングさ れた細胞からキメラ分子発現ベクターの細胞内ドメインを回収し、 再度、 キメラ 分子構築に用いたベクターにサブクローニングする。 サブクローニングされた細 胞を、 再び、 レポ一夕一遺伝子を保持した細胞に導入し、 キメラ分子を発現させ、 外部よりレセプ夕一に刺激を加えてシグナルを導入する。 その際の細胞内レポ一 夕一遺伝子の発現およびその強度により、 得られたシグナル伝達因子の作用およ び相対的な強度などを測定することもできる。 Cells screened by the above series of steps include factors involved in signal transduction as the intracellular domain of the chimeric molecule. The signal obtained here Confirmation of the action of the transfer factor and confirmation of the strength of the signal transduction activity can be performed using the above-described series of screening methods. That is, the intracellular domain of the chimeric molecule expression vector is recovered from the screened cells and subcloned again into the vector used for constructing the chimeric molecule. The subcloned cells are introduced again into the cells carrying the repo overnight gene, the chimeric molecule is expressed, and a signal is introduced by externally stimulating the receptor. Based on the expression and intensity of the intracellular repo gene at that time, the action and relative intensity of the obtained signaling factor can also be measured.
また、上記細胞中のキメラ分子発現ベクターから細胞内ドメイン領域を回収し、 定法に従って、 クローニング、 シークェンス決定を行うことにより、 シグナル伝 達因子の配列を決定することができる。 そして、 ここで決定されたシークェンス と従来のシグナル伝達に関与する遺伝子配列とを比較することにより、 シグナル 伝達因子として既知の遺伝子であるか新たな遺伝子であるかを判断することがで きる。  In addition, the sequence of the signal transduction factor can be determined by recovering the intracellular domain region from the expression vector of the chimeric molecule in the cell and performing cloning and sequence determination according to a standard method. Then, by comparing the sequence determined here with a conventional gene sequence involved in signal transduction, it can be determined whether the gene is a known gene or a new gene as a signal transduction factor.
またスクリ一ニングされたシグナル伝達因子の活性部位の同定は次の操作によ り実施することができる。 上記で回収されたキメラ分子発現べクタ一中の細胞内 ドメイン領域を当業者に公知の方法または市販のキットなどを用いて、 段階的に 欠失させたディ リ一シヨンシリーズを作成する。 これらを再度、 上記発現べクタ 一に戻しキメラ分子発現ベクターを構成する。 そして、 これらを上述のスクリ一 二ング方法と同様に上記レポー夕一遺伝子が保持されている細胞内に導入、 発現 させて、 外部刺激を加えた際のレポーター遺伝子の発現を指標として、 シグナル 伝達活性が残存しているか否かを測定する。 そして、 ここで活性が残存している クローンに保持しされている領域がシグナル伝達に必要な配列として同定するこ とができる。  The active site of the screened signaling factor can be identified by the following procedure. A series of deletions is prepared in which the intracellular domain region in the chimeric molecule expression vector collected above is deleted stepwise using a method known to those skilled in the art or a commercially available kit. These are returned to the above-mentioned expression vector again to construct a chimeric molecule expression vector. Then, similarly to the above-described screening method, these are introduced and expressed in cells holding the above-mentioned reporter gene, and signal transduction is performed using the expression of the reporter gene when an external stimulus is applied as an index. It is determined whether the activity remains. Then, the region retained in the clone in which the activity remains can be identified as a sequence required for signal transduction.
上述の通り、 本発明のスクリーニング方法によれば、 被験試料におけるシグナ ル伝達活性を直接指標としてスクリーニングが行われるため、 高効率でシグナル 伝達因子を得ることができる。 また、 本発明の方法は、 新規なシグナル伝達因子 の同定に使用し得るだけでなく、 シグナル伝達活性の確認、 活性部位の特定など にも利用することが可能となる。 As described above, according to the screening method of the present invention, the signal Since the screening is performed using the transduction activity as a direct index, a signal transduction factor can be obtained with high efficiency. Further, the method of the present invention can be used not only for identification of a novel signal transduction factor, but also for confirmation of signal transduction activity, identification of an active site, and the like.
( 2 ) シグナル伝達を調節し得る核酸をスクリーニングするためのキヅト 本発明は、 上記スクリ一二ング方法をより簡便に実行させるために上記原理に 基づいたスクリーニングキットを提供する。 このスクリーニングキットには、 ① レセプ夕一遺伝子が担持され前記レセプ夕一遺伝子と被験核酸とを連結させて前 記キメラ分子を発現させるための発現べクタ一と、 ② 細胞内シグナル伝達が活 性化された際に発現が誘導されるレポ一夕一遺伝子を保持した細胞と、 ③ 前記 細胞表面に発現されるシグナル導入蛋白質に細胞外シグナルを導入するための細 胞外シグナル因子とを含めることができる。  (2) Kit for Screening for Nucleic Acids That Can Control Signaling The present invention provides a screening kit based on the above-mentioned principle to more easily execute the above-mentioned screening method. The screening kit includes (1) an expression vector for carrying the receptor gene and expressing the chimeric molecule by linking the receptor gene and the test nucleic acid; and (2) activating cell signaling. Including a cell carrying a repo allele gene whose expression is induced upon transformation into a cell, and ③ an extracellular signal factor for introducing an extracellular signal into the signal transducing protein expressed on the cell surface. Can be.
これらレポ一夕一遺伝子を保持した細胞、 細胞外シグナル因子は上述したスク リーニング方法に関する記載に従って調製することができる。 また、 上記発現べ クタ一についても、 上述の方法に関する記載に従って調整することができるが、 被験核酸として所望の核酸の挿入、 切出しを容易にするために、 次の通り構成し てもよい。 発現べクタ一には、 レセプ夕一遺伝子、 膜貫通領域、 ストップコドン の順で連結して備えられ、 この膜貫通領域とストップコドンとの間には、 被験核 酸として所望の核酸を挿入し得るようにマルチクリーニングサイ トを設けること ができる。 また、 膜貫通領域は、 膜貫通領域を備えたシグナル伝達因子のスクリ 一二ングを考慮すると必ずしも必須ではないが、 本発明のスクリーニングでは、 膜結合型のシグナル伝達因子だけでなく、 細胞内でシグナル伝達を仲介するァダ プター因子をもスクリーニングすることを目的とするため、 このような因子をも スクリ一ニングし得るように、 上記の通り発現ぺク夕一に膜貫通領域を備えるこ とが好ましい。 なお、 膜貫通領域としては、 細胞外ドメインとして用いたレセプ ター分子、 例えば、 上述した T細胞の表面抗原である CD25、 CD 16, CD2など、 増殖因子レセプ夕一などの EGF-R、 PDGF-R, GHレセプター、 TNF、 Fasな どの固有の膜貫通領域を用いることができるほか、 レセプ夕一からのシグナルを 細胞内ドメインに伝達し得るものであれば、 レセプ夕一分子とは異種の膜貫通領 域を用いてもよい。 The cells and extracellular signal factors that hold these repo overnight genes can be prepared according to the above description of the screening method. The expression vector can also be adjusted according to the above description of the method, but may be configured as follows to facilitate insertion and excision of a desired nucleic acid as a test nucleic acid. The expression vector is provided with a receptor gene, a transmembrane region, and a stop codon in that order, and a desired nucleic acid as a test nucleic acid is inserted between the transmembrane region and the stop codon. A multi-cleaning site can be provided to obtain In addition, the transmembrane region is not always necessary in consideration of screening of a signal transduction factor having a transmembrane region. However, in the screening of the present invention, not only a transmembrane signal transduction factor but also intracellular Since the purpose is to screen for adapter factors that mediate signal transduction, the expression vector should be provided with a transmembrane region as described above so that such factors can also be screened. Is preferred. The transmembrane region is the receptor used as the extracellular domain. Specific transmembrane domains such as EGF-R, PDGF-R, GH receptor, TNF, Fas, etc., growth factor receptors such as CD25, CD16, CD2, etc. In addition, a transmembrane region different from the receptor molecule may be used as long as it can transmit a signal from the receptor molecule to the intracellular domain.
また、 被験核酸としては、 種々の細胞あるいは、 組織由来の cDNAなどを用い ることができる他、 ゲノム DNAを所望の長さに断片化した試料などを用いても よい。 これら cDNA、 ゲノム由来の核酸は、 所望の細胞より当業者に周知の方法 に従って調整することができる。 また、 発現ベクターに被験核酸として種々の生 物あるいは組織由来の c DNA、 ゲノム DNAを予め挿入し、 キメラ分子発現ライ ブラリーなどとして提供してもよい。  As the test nucleic acid, cDNA derived from various cells or tissues may be used, and a sample obtained by fragmenting genomic DNA to a desired length may be used. These cDNAs and nucleic acids derived from the genome can be prepared from desired cells according to methods well known to those skilled in the art. Alternatively, cDNAs or genomic DNAs derived from various organisms or tissues may be inserted in advance into the expression vector as test nucleic acids and provided as a chimeric molecule expression library or the like.
上記構成の他、 キットには必要な試薬や細胞培養用の培地などを含めることが できる。 また、 上記第一の実施形態に従ったスクリーニング方法を示したプロト コールなども含めることができる。  In addition to the above configuration, the kit can include necessary reagents, a medium for cell culture, and the like. Further, a protocol indicating the screening method according to the first embodiment and the like can be included.
また、 上述したキットとして、 スクリーニングに必要な試薬などをすぺてパヅ ケージングして提供してもよいが、 必要に応じて、 調整に時間を要するレポ一夕 —遺伝子を保持した細胞のみを提供してもよい。 このような細胞が予め調整され て提供されることにより、 上記スクリ一二ング方法を簡便に実施することが可能 となる。  In addition, the kit described above may be packaged and provided with all the reagents and the like necessary for screening. However, if necessary, it may take a long time to prepare a repo kit. May be provided. By providing such cells in advance, the screening method can be easily carried out.
( 3 ) シグナル伝達因子 .  (3) Signaling factors.
上記スクリーニングにより得られた新規なシグナル伝達因子は、 細胞内のシグ ナル伝達経路の解明に有用となる。 得られたシグナル伝達因子が、 どのような経 路に関与しているかを解析するために、公知の相互作用を解析する手法、例えば、 酵母で開発された TWO—ハイブリッドシステム、 免疫沈降法などを用いて、 該 シグナル伝達因子と相互作用する物質を検索し、 該シグナル伝達因子が関与する 伝達経路を解明もしくは同定することができる。 上記 TWO—ハイプリッドシス テムは、 T. Durfee et al. Genees Dev.7: 555 ( 1993)に従い、 あるいは MATCHMAKER (clonetech) を用い添付のプロトコ一ルに従って実施することができる。 The novel signal transduction factors obtained by the above screening will be useful for elucidating the intracellular signal transduction pathway. In order to analyze what kind of pathway the obtained signaling factor is involved in, known methods for analyzing interactions, such as the TWO-hybrid system developed in yeast, immunoprecipitation, etc. To search for a substance that interacts with the signaling factor, and The transmission pathway can be elucidated or identified. The above TWO-Hybrid system can be carried out according to T. Durfee et al. Genes Dev. 7: 555 (1993) or using MATCHMAKER (clonetech) according to the attached protocol.
また、上記のような相互作用の解析により、 シグナル伝達因子に対する阻害剤、 促進剤などを得ることもできる。 シグナル伝達因子と相互作用する物質が阻害 剤 ·促進剤であるかの判定に、 上記シグナル伝達因子が上記スクリーニングされ た細胞が有用となる。 この細胞には、 細胞外ドメインであるレセプ夕一とこれに 連結した細胞内ドメインであるシグナル伝達因子とを有するキメラ分子が備えら れ、 また、 細胞内にはシグナル伝達により発現するレポーター遺伝子が備えられ ている。 したがって、 阻害剤または促進剤であるかを解析するために、 これら候 補物質存在下で、 レセプターにシグナルを導入し、 これら物質が存在していない 場合に比して細胞内ドメインを介するシグナル伝達活性が減少するか、 上昇する かをレポーター遺伝子の発現量を測定する。 そして、 この測定結果において、 候 補物質非存在下に比べシグナル伝達活性が上昇した場合には、 候補物質がシグナ ル伝達因子に対する促進剤と判定でき、 候補物質非存在下に比べシグナル伝達活 性が減少した場合には阻害剤であると判定することができる。  In addition, by analyzing the interaction as described above, it is also possible to obtain inhibitors, promoters, and the like for signal transduction factors. Cells that have been screened for the above-described signaling factor are useful for determining whether a substance that interacts with the signaling factor is an inhibitor or a promoter. The cell is provided with a chimeric molecule having an extracellular domain, Recept, and an intracellular domain, a signaling factor linked thereto, and a reporter gene expressed by signal transduction in the cell. It is provided. Therefore, in order to analyze whether the substance is an inhibitor or an accelerator, a signal is introduced into the receptor in the presence of these candidate substances, and the signal transduction through the intracellular domain is performed as compared with the case where these substances are not present. The expression level of the reporter gene is measured to determine whether the activity decreases or increases. If the signal transduction activity is higher than that in the absence of the candidate substance in the measurement result, the candidate substance can be determined to be a promoter for the signal transmission factor, and the signal transduction activity is higher than that in the absence of the candidate substance. Can be determined to be an inhibitor.
また、 上記シグナル伝達因子をコードした DNAは、 同種生物または異種生物 におけるシグナル伝達因子をコードした類似の核酸をスクリ一ニングするための プローブ、 プライマ一などとして用いることができる。 すなわち、 上記スクリ一 ニングされた細胞より細胞内ドメインをコードする DNAを回収し、 その DNA をプローブ等としてハイプリッ ドを形成する核酸を選択することにより、 同種生 物、 異種生物よりシグナル伝達因子をコードした核酸をさらにスクリ一二ングす ることも可能となる。  In addition, the DNA encoding the above-mentioned signal transduction factor can be used as a probe, a primer, or the like for screening a similar nucleic acid encoding a signal transduction factor in a homologous or heterologous organism. That is, a DNA encoding an intracellular domain is recovered from the screened cells, and the DNA is used as a probe and the like to select a nucleic acid that forms a hybrid, whereby a signal transduction factor can be isolated from a homologous organism or a heterologous organism. The encoded nucleic acid can be further screened.
このようなシグナル伝達因子として、 具体的に用いることができるものとして は、 配列番号 7、 1 2、 14に記載のポリペプチドが挙げられるが、 これに限定さ れるものではなく、 シグナル伝達活性を有する範囲で前記配列番号 7、 1 2、 14 に記載のアミノ酸配列に欠失、 挿入、 置換を有するアミノ酸配列からなるポリべ プチドを用いることもできる。 なお、 アミノ酸配列における 「置換、 欠失、 挿入 および/または付加」 において、 アミノ酸の変異数や変異部位はシグナル伝達活 性が保持される限り制限はない。 これらポリペプチドは、 該シグナル伝達因子に 対する特異抗体の作成、 上記相互作用する物質の解析に有益となる。 Specific examples of such a signal transduction factor include, but are not limited to, the polypeptides of SEQ ID NOs: 7, 12, and 14. Instead, a polypeptide comprising an amino acid sequence having a deletion, insertion, or substitution in the amino acid sequence of SEQ ID NO: 7, 12, or 14 can be used as long as it has a signal transduction activity. In the “substitution, deletion, insertion and / or addition” in the amino acid sequence, the number of amino acid mutations and mutation sites are not limited as long as the signal transduction activity is maintained. These polypeptides are useful for preparing a specific antibody against the signal transducing factor and analyzing the interacting substance.
また、 シグナル伝達因子をコードした核酸としては、 例えば、 配列番号 6、 1 1、 1 3に記載の DNAが挙げられ、 また上述した通り、 配列番号 6、 1 1、 1 3のいずれかに記載の DNAとストリンジヱントな条件下でハイブリダィズする DNAも用いることができる。 なお、 DNAを単離するためのストリンジェントな ハイブリダィゼ一シヨン条件としては、 当業者であれば、 適宜選択することがで きる。一例を示せば、 25%ホルムアミ ド、 より厳しい条件では 50%ホルムアミ ド、 4X SSC, 50mM Hepes ρΗ7·0、 10 Xデンハルト溶液、 20〃g/ml変性サケ精子 DNA を含むハイブリダイゼーション溶液中、 42°Cで一晚プレハイプリダイゼ一 シヨンを行った後、 標識したプローブを添加し、 42°Cで一晚保温することにより ハイブリダイゼーシヨンを行う。その後の洗浄における洗浄液および温度条件'は、 lxSSC、 0.1% SDS, 37°Cで、 より厳しい条件としては、 0.5xSSC、 0.1% SDS, 42°Cで、 さらに厳しい条件としては、 0.2xSSC、 0.1% SDSs 65°Cで実施するこ とができる。但し、上記 SSC、 SDSおよび温度の条件の組み合わせは例示であり、 当業者であれば、 ハイブリダィゼーシヨンのストリンジヱンシーを決定する上記 若しくは他の要素 (例えば、 プローブ濃度、 プローブの長さ、 ハイブリダィゼ一 シヨン反応時間など) を適宜組み合わせることにより、 上記と同様のストリンジ エンシーを実現することが可能である。  Examples of the nucleic acid encoding the signal transduction factor include the DNAs of SEQ ID NOs: 6, 11, and 13, and as described above, any of the SEQ ID NOs: 6, 11, and 13 DNA that hybridizes with the above DNA under stringent conditions can also be used. The stringent hybridization conditions for isolating DNA can be appropriately selected by those skilled in the art. For example, in a hybridization solution containing 25% formamide, under more severe conditions 50% formamide, 4X SSC, 50mM Hepes ρΗ7.0, 10X Denhardt's solution, 20〃g / ml denatured salmon sperm DNA, 42 After performing the pre-hybridization at ° C, the labeled probe is added, and the hybridization is performed by keeping the temperature at 42 ° C for a while. The cleaning solution and temperature conditions for subsequent cleaning are lxSSC, 0.1% SDS, 37 ° C, more severe conditions are 0.5xSSC, 0.1% SDS, 42 ° C, and more severe conditions are 0.2xSSC, 0.1 % SDSs can be performed at 65 ° C. However, the combination of the above SSC, SDS and temperature conditions is an example, and those skilled in the art will recognize the above or other factors (eg, probe concentration, probe length) that determine the stringency of hybridization. By appropriately combining the hybridization reaction time and the like, it is possible to realize the same stringency as described above.
実施例  Example
[実施例 1 ] モニタ細胞として NFAT-GFP T細胞ハイプリ ドーマ株の調製 先ず細胞に導入するための pNFAT-GFPプラスミ ドの構築過程を図 2に示す。 pNFAT-luciferase ( Clip stone et al., Nature 357:695-697 (1992) ) には、 luciferasee遺伝子の上流に NFAT結合配列(TAAAGAAAGGAGGAAAAACT: 配列番号 8 )の 3回同方向繰返し配列と IL-2プロモー夕の最小単位 (配列番号 9 ) が備えられている。 このプラスミ ドを酵素で消化し NFAT-IL-2 プロモ一夕一力 セヅ トを切り出し、 pBluescript に揷入し、 さらにその下流に p EGFP-N1[Example 1] Preparation of NFAT-GFP T cell hybridoma strain as a monitor cell First, the construction process of pNFAT-GFP plasmid for introduction into cells is shown in FIG. pNFAT-luciferase (Clip stone et al., Nature 357: 695-697 (1992)) has a three-fold co-directional repeat of an NFAT-binding sequence (TAAAGAAAGGAGGAAAAACT: SEQ ID NO: 8) upstream of the luciferasee gene and an IL-2 promoter. The evening minimum unit (sequence number 9) is provided. This plasmid is digested with an enzyme to cut out the NFAT-IL-2 promoter overnight, inserted into pBluescript, and further downstream of pEGFP-N1.
(clonetech社) から切り出した EGFPフラグメント及びポリ Aシグナルを含む フラグメントと連結させて pNFAT-GFPプラスミ ドを作成した。 The plasmid was ligated with an EGFP fragment excised from (Clonetech) and a fragment containing a polyA signal to prepare pNFAT-GFP plasmid.
このプラスミ ドを ta Iで直鎖状とした。 この直鎖状の pNFAT-GFP (30 i g ) を T細胞ハイブリ ドーマ細胞株 2 B4 (Hedrick, S., et al. Oe7/30: 141-152 (1982)) This plasmid was linearized with taI. This linear pNFAT-GFP (30 ig) was converted to a T cell hybridoma cell line 2 B4 (Hedrick, S., et al. Oe7 / 30: 141-152 (1982)).
( 1 X107細胞) にエレクトロポ一レシヨンにより導入した。エレクトロポーレシ ヨンは Gene Pulserll (Biorad社製) を用い、 300V、 975 /Fの条件で OPTI- MEM (Gibco-BRL)を用いて行った。 (1 × 10 7 cells) by electroporation. The electroporation was performed using OPTI-MEM (Gibco-BRL) under the conditions of 300 V and 975 / F using Gene Pulserll (manufactured by Biorad).
次に、 抗 T細胞レセプ夕一モノクローナル抗体 H57.597 (Ralph Kubo, J. Immunol 142:2736-2742 (1989)、 Pharmingen社より入手可能) を用いて、 NFAT-GFPが導入された細胞をスクリーニングした。すなわち、 前記モノクロ一 ナル抗体による刺激を受けることによりシグナル伝達経路が活性化され、 NFAT- GFPカセットを保持した細胞は緑色の蛍光を発することとなる。従って、 上記モ ノク口一ナル抗体を用いて刺激を加えた後、 蛍光を発する.細胞をセルソー夕一 Next, cells transfected with NFAT-GFP were screened using the anti-T cell receptor Yuichi Monoclonal Antibody H57.597 (Ralph Kubo, J. Immunol 142: 2736-2742 (1989), available from Pharmingen). did. That is, the signal transduction pathway is activated by being stimulated by the monoclonal antibody, and the cell holding the NFAT-GFP cassette emits green fluorescence. Therefore, the cells emit fluorescence after stimulation with the above-mentioned monoclonal antibody.
(FACS)で選択することにより NFAT-GFPカセヅトを保持した細胞を得ること ができる。 By selecting with (FACS), cells retaining NFAT-GFP cassette can be obtained.
より具体的には、 上記抗体を用いた刺激は、 0.1M NaHC03中 10〃g/m lに 濃度に調製された H57.597抗体 (0.3m l ) を 6穴プレートの各ゥエルにあらか じめコ一ティングしておき、 そこに上記条件でエレクトロポレーシヨンを行った 後 2日目の細胞(総細胞数 5X106 ) を 5X105細胞づっ各ゥエルに分注し、 6時間 インキュベートすることにより行った。 その後、 この抗体刺激により蛍光を発し た細胞を FACStai'plus (Becton Dickinson社、 カルフォルニア州、 米国) を用い て測定し、 蛍光を発する細胞群を選択した。 More specifically, stimulation with the antibody, or roughness 0.1 M NaHCO 3 in 10〃G / ml H57.597 were prepared in concentrations antibody (0.3 ml) into each of the 6 well plate Ueru dimethacrylate After performing electroporation under the above conditions, cells on the second day (total number of cells 5 × 10 6 ) are dispensed into each well in 5 × 10 5 cells, and 6 hours Performed by incubating. The cells were then FACStai 'plus emitted fluorescence by the antibody stimulation (Becton Dickinson Inc., California, USA) was measured using a selected group of cells fluorescing.
上記モノクローナル抗体による刺激から FACSによる選択までの操作を更に 2 回繰り返すことにより、 最終的にスクリーニングされたほぼすベての細胞が T細 胞レセプ夕ーを介した刺激導入に対して GKPを発現した。  By repeating the above procedure from the monoclonal antibody stimulation to FACS selection two more times, almost all cells screened finally express GKP upon induction of stimulation through T cell receptor. did.
さらに、 これら細胞を限界希釈することにより単一のクローンに分離した。 こ れらクローンが抗 T細胞レセプ夕一モノク口一ナル抗体による TCRへの刺激付 与に対して特異的に GFP が発現することを確認するために、 上記抗体の刺激操 作を抗 T細胞レセプ夕一モノクローナル抗体以外の抗体を用いて行った。 その結 果、 抗 T細胞レセプ夕一モノクローナル抗体以外の抗体では GFPは発現せず、 バヅクグラゥンドとして蛍光を発しないことが確認された。 このうちクローニン グされたクロ一ンのうち代表的なものを、 43-1細胞株として樹立し、 この細胞株 をこれ以降の実施例に用いた。  Furthermore, these cells were separated into single clones by limiting dilution. In order to confirm that these clones express GFP specifically in response to the stimulation of TCR by the anti-T cell receptor monoclonal antibody, the stimulation operation of the above antibody was performed using anti-T cell Recept was performed using an antibody other than the monoclonal antibody. As a result, it was confirmed that antibodies other than the anti-T cell receptor monoclonal antibody did not express GFP and did not emit fluorescence as a background. Among them, a representative clone among the cloned clones was established as a 43-1 cell line, and this cell line was used in the subsequent Examples.
[実施例 2 ] cDNAラィブラリ一の構築 [Example 2] Construction of cDNA library
c DNAライブラリ一構築の基礎となる mRNAは NK細胞から調製した。 c mRNA, which is the basis of DNA library construction, was prepared from NK cells.
( 1 ) NK細胞の調製: NK細胞は 6〜 8週齢の C57BL/6マウスの脾臓から精 製された。 リンパ球は抗 CD4モノクローナル抗体(GK1.5 : Pharaiingen社) ま たは抗 CD8モノク口一ナル抗体 (53.6.7: Pharmingen社) と混合し、 ヒヅジ抗 マウス IgG抗体及びヒヅジ抗ラッ ト IgG抗体を結合させた磁気ビーズ (Poly Science, inc. ) とィンキュベートして表面 Ig+(sueface Ig+:sIg+)B細胞、 CD4+T細 胞及び CD8+T細胞を除去した。残りの細胞を NK細胞が有する表面抗原 DX5に 特異的なモノクローナル抗体である FITC 標識抗 DX5 抗体 (5〃g/ml)(1) Preparation of NK cells: NK cells were purified from spleens of 6- to 8-week-old C57BL / 6 mice. Lymphocytes are mixed with an anti-CD4 monoclonal antibody (GK1.5: Pharaiingen) or an anti-CD8 monoclonal antibody (53.6.7: Pharmingen), and then conjugated with anti-mouse IgG antibody and anti-rat IgG antibody. The bound magnetic beads (Poly Science, Inc.) were incubated to remove surface Ig + (sueface Ig + : sIg + ) B cells, CD4 + T cells and CD8 + T cells. The remaining cells are FITC-labeled anti-DX5 antibodies (5 µg / ml), which are monoclonal antibodies specific to the surface antigen DX5 possessed by NK cells
(Pharmingen社、 カリフォルニア州) と反応させ NK細胞を染色し、 続いて、 マイクロビーズー抗 FITC抗体(20倍希釈、 Miltenyi Biotec Inc.ドイツ) でイン キュペートした。 その後、 DX5+細胞である NK細胞を、 Midi カラムを用いた MACS (Miltenyi Biotec Inc. ) により精製した。 ここで精製された NK細胞の一 部は、 10%FCS及び 0.05mM 2-メルカプトェ夕ノ一ル含有 RPMI-1640でヒト組 換え IL-2 (シオノギおよび Genzymeから入手可能) (10,000U/m l ) 存在下で(Pharmingen, CA) to stain NK cells, followed by microbead-anti-FITC antibody (20-fold dilution, Miltenyi Biotec Inc. Germany) Cupped. Thereafter, NK cells, which are DX5 + cells, were purified by MACS (Miltenyi Biotec Inc.) using a Midi column. A portion of the purified NK cells was human recombinant IL-2 (available from Shionogi and Genzyme) with RPMI-1640 containing 10% FCS and 0.05 mM 2-mercaptophenol (10,000 U / ml) In the presence
7日間培養した。 Cultured for 7 days.
( 2 ) NK細胞から mRNAの精製と cDNAラィブラリ一の作製: 全脾臓細胞 又は IL-2に暴露された NK細胞のポリ A+RNAを mRNA精製キヅト(Amersham Pharmacia Biotech, 二ユージャ一ジ州) を用いて精製した。 精製された mRNA から c DNAへの合成はランダムプライマ一を用い、 Superscript Choice System (2) Purification of mRNA from NK cells and preparation of cDNA library: Poly A + RNA of whole spleen cells or NK cells exposed to IL-2 was purified using mRNA purification kit (Amersham Pharmacia Biotech, NJ). And purified. The synthesis of cDNA from purified mRNA uses random primers and the Superscript Choice System
(Gibco BRL, ML) に従って実施した。 (Gibco BRL, ML).
一方、 上記 c D N Aを導入するための pMX-CD8ベクターは、 図 3に示す通り 構築した。 図 3に示すように、 pMX ベクター (Onislii, M.ら Exp. Hematol. 24:324-9 ( 1996))の ΕοοΈΙ-Νο&サイ トの中に EcoBlと No&とを末端に有する オリゴヌクレオチド (gaattcTGAATCGTAGATACTGAgcggccgc:配列番号 1 0 ) を用いて stop codonを導入した (pMX-STOP)。 次に、 CD8遺伝子の開始コドン ATGを含む 5'プライマー (5, CCG GGA TCC ATG GCC TCA CCG TTG ACC CGC TTT 3':配列番号 4 ) と、 膜貫通領域 (TM) の直後に EcoRIサイ トをつけ た 3'プライマー (5, CCG GAATTC GAT GAG AGT GAT GAT CAAGGA 3':配 列番号 5 ) とを用いて、 CD8 plasmid (Nakauchi Hら Proc. Natl Acad. Sci. U SA. 82:5126-30 ( 1985))を錶型として PCRを行い、 CD8-TMフラグメント (配 列番号 3 ) を増幅した。 ここで得られた CD8-TMフラグメントを pMX-STOPの α¾Ιサイ 卜にサブクロ一ニングし、 pMX-CD8ベクターを構築した。 この PMX-CD8ベクターを EcoEIで消化し、 この EcoKLサイ トに上記におい て合成された c DNA を連結させた。 ベクターに連結させた c DNA は ElectroMAX DH5ひコンビテント細胞 (Gibco、 BRL)へェレクロトポレーシヨンに より導入した。 c DNAライブラリーの集合は 6 X 1 0 6であった。これら c DNA ィンサ一トの平均サイズは約 1 Kbであった。 大腸菌は SeaPrepァガロース中に りひろけフ。フス ド D A ¾ Quiagen plasriud purification ッ ト (Quiagenノ を用いて精製した。 On the other hand, the pMX-CD8 vector for introducing the above cDNA was constructed as shown in FIG. As shown in FIG. 3, an oligonucleotide (e.g., gaattcTGAATCGTAGATACTGAgcggccgcc) having EcoBl and No & at the end of the site of the pMX vector (Onislii, M. et al. Exp. Hematol. 24: 324-9 (1996)). A stop codon was introduced using SEQ ID NO: 10) (pMX-STOP). Next, a 5 'primer containing the start codon ATG of the CD8 gene (5, CCG GGA TCC ATG GCC TCA CCG TTG ACC CGC TTT 3': SEQ ID NO: 4) and an EcoRI site immediately after the transmembrane region (TM) Using the attached 3 'primer (5, CCG GAATTC GAT GAG AGT GAT GAT CAAGGA 3': SEQ ID NO: 5), the CD8 plasmid (Nakauchi H et al. Proc. Natl Acad. Sci. USA. 82: 5126-30 (1985)), and PCR was performed to amplify the CD8-TM fragment (SEQ ID NO: 3). The obtained CD8-TM fragment was subcloned into the α¾Ι site of pMX-STOP to construct a pMX-CD8 vector. This PMX-CD8 vector was digested with EcoEI, and the cDNA synthesized above was ligated to this EcoKL site. The cDNA ligated into the vector is transferred to ElectroMAX DH5 combinative cells (Gibco, BRL). More introduced. set of c DNA library was 6 X 1 0 6. The average size of these cDNA inserts was about 1 Kb. E. coli is spread in SeaPrep agarose. Husd's DA Quiagen plasriud purification kit (purified using Quiagen).
[実施例 3 ] レトロウイルスライブラリ一の調製およびその感染  [Example 3] Preparation of retrovirus library and its infection
レトロウイルスライブラリ一の調製は、 Phoenix-Eパヅケージング細胞 (Nolan, G.D and Shatzman A.R., Curr. Opin. Biotechnol. 9:447-450 (1998)) を用いて行 つた o  Preparation of the retrovirus library was performed using Phoenix-E packaging cells (Nolan, G.D and Shatzman A.R., Curr.Opin.Biotechnol. 9: 447-450 (1998)).
一回のライブラリ一による形質導入用として上記 Phoenix-E細胞( 1 X 106 )を 6穴プレート(Falcon)の 4つのゥェル中に分注し、 10%FCS含有 DMEM (5ml) を用いて培養した。 Lipofectamine Plus (Gibco BRL) を用い、 添付されたプロ トコ一ルに従って、 c DNAライブラリ一を Phoenix-E細胞に形質導入させた。 翌日、 10%FCS含有 DMEM (5ml) を用いて培地を交換した。 .その二日後、 培 養上清をウイルス上清液として回収した。 The above-mentioned Phoenix-E cells (1 × 10 6 ) are dispensed into four wells of a 6-well plate (Falcon) for transduction using one library, and cultured using DMEM (5 ml) containing 10% FCS. did. The cDNA library was transduced into Phoenix-E cells using Lipofectamine Plus (Gibco BRL) according to the attached protocol. The next day, the medium was changed using DMEM (5 ml) containing 10% FCS. Two days later, the culture supernatant was collected as a virus supernatant.
一方、 10%FCS— RPMI 1640 ( 100〃 1 ) 中に懸濁させた 43-1細胞 (1 X 105 細胞数) を 24穴プレートに分注した。 ここに DOTAP(Roche社製) ( l0 ig/ml) 存在下、 上記ウィルス上清 (100 /1) を添加してインキュベートした。 一回の感 染に 43-1細胞株を総数として 5 X 107使用した。 このときの感染効率はコント口 —ルのべクタ一 (pMx-GFP: Toshio Kitamura, Int. J, Hematol 67:351-359 (1998)) を用いて測定した。 感染効率はおよそ 2 0 %であった。 On the other hand, 43-1 cells (1 × 10 5 cells) suspended in 10% FCS—RPMI 1640 (100〃1) were dispensed into a 24-well plate. The virus supernatant (100/1) was added thereto and incubated in the presence of DOTAP (Roche) (10 ig / ml). For a single infection, 5 × 10 7 cells of the 43-1 cell line were used. The infection efficiency at this time was measured using a control vector (pMx-GFP: Toshio Kitamura, Int. J, Hematol 67: 351-359 (1998)). Infection efficiency was approximately 20%.
上記ライブラリーが形質導入され CD8 が細胞表面に発現されている細胞 (CD8+細胞) を選択するために、 次の操作を行った。 すなわち、 上記ウィルスラ イブラリーが感染したすべての細胞を FITC-抗 CD8 モノクローナル抗体 (5〃 g/ml、 500 zl) (P armingen) と反応させた。 その後、 抗 PTTCモノクローナル 抗体結合マイクロビーズ (20倍希釈、 500〃1) でインキュベートした。 これによ り CD8が細胞表面に発現されている細胞 (CD8+細胞) を Midiカラムを用いて MACSにより精製した。 The following procedure was performed to select cells in which the library was transduced and CD8 was expressed on the cell surface (CD8 + cells). That is, all cells infected with the virus library were reacted with FITC-anti-CD8 monoclonal antibody (5 μg / ml, 500 zl) (Parmingen). Then, the cells were incubated with anti-PTTC monoclonal antibody-conjugated microbeads (20-fold dilution, 500〃1). This Cells expressing CD8 on the cell surface (CD8 + cells) were purified by MACS using a Midi column.
[実施例 4 ] シグナル伝達が活性化された陽性クローンのスクリーニング 抗 CD8モノクローナル抗体を用いて細胞外からシグナル導入を行った際に、シ グナル伝達が活性化される細胞のスクリーニングを行った。  [Example 4] Screening of positive clones in which signal transduction was activated When a signal was introduced from outside the cell using an anti-CD8 monoclonal antibody, cells in which signal transduction was activated were screened.
具体的には、 0.1M NaHCO3を用いて 100ug/mlに希釈した FITC-抗 CD8モノ クロ一ナル抗体(53.6.7) を 6穴プレートに注入し、 4°Cでー晚インキュペートす ることにより固定化した。抗体でコ一ティングされたプレートを PBSで 3回洗浄 した。 洗浄後、 実施例 3のライプラリー感染細胞を各ゥエルに 5 X 105細胞数づ つ分注し、前記抗体で 1 2時間刺激した。 その後、 GFP—陽性細胞を FACStarplus (Becton Dickinson)を用いて分画した。 FACSの結果を図 4 (A) に示す。 このう ち図 4 (A) において矢印 Lで示す GFP+画分を回収した。 Specifically, FITC-anti-CD8 monoclonal antibody (53.6.7) diluted to 100 ug / ml with 0.1 M NaHCO 3 is injected into a 6-well plate and incubated at 4 ° C. And thereby immobilized. Plates coated with antibodies were washed three times with PBS. After washing, 5 × 10 5 cells of the ripelily-infected cells of Example 3 were dispensed into each well and stimulated with the antibody for 12 hours. Thereafter, GFP-positive cells were fractionated using FACStar plus (Becton Dickinson). The results of FACS are shown in FIG. 4 (A). Of these, the GFP + fraction indicated by the arrow L in FIG. 4 (A) was collected.
回収した GFP+画分における GKP陽性細胞を増幅するために、最初の抗体刺激 から 2日後、 回収した細胞を 2回目の刺激として抗 CD8 モノクローナル抗体と 接触させた。 この 2回目の刺激により GF 陽性となった細胞を同様に FACStarplusを用いて分画した。 さらに 7日間後に GFP活性が低下し GFP陰性 となった細胞を分画し回収した。 翌日、 プレートに固定化した抗 CD 8モノクロ —ナル抗体で再度刺激を加え、 再び GFP 陽性を示した細胞を上記と同様に FACStarplusを用いて分画回収した。 この最終の FACSの結果を図 4 (B) に示す, この一連の増幅操作により FACSの分画パターンにおいても GFP+細胞が視覚的 に検出可能となった。 To amplify GKP-positive cells in the recovered GFP + fraction, two days after the first antibody stimulation, the recovered cells were contacted with the anti-CD8 monoclonal antibody as a second stimulation. Cells that became GF-positive by this second stimulation were similarly fractionated using FACStar plus . After a further 7 days, cells whose GFP activity decreased and became GFP negative were fractionated and collected. The next day, the plate was restimulated with the anti-CD8 monoclonal antibody immobilized on the plate, and cells that showed GFP-positive again were fractionated and collected using FACStar plus as described above. The results of this final FACS are shown in Fig. 4 (B). This series of amplification procedures enabled visual detection of GFP + cells even in the FACS fractionation pattern.
最終的な抗体刺激後二日目に、 細胞を限界希釈しクローニングを行った。 ここ でクロ一ニングされた各ク口一ンを抗モノクローナル抗体 (ΙΟΟμ^ιηΙ, 50μ1/ゥェ ル) が固定化された 9 6穴プレートに添加し、 再度抗体刺激が加えられた。 抗体 刺激後、各クローンの GFP発現を FACScalibm' (Becton Dickinson)で分析した。 [実施例 5 ] シグナル伝達を活性化させる核酸の回収、 配列決定 Two days after the final antibody stimulation, cells were subjected to limiting dilution and cloning. Each of the clones cloned here was added to a 96-well plate on which an anti-monoclonal antibody (ΙΟΟμ ^ ιηΙ, 50μ1 / well) was immobilized, and the antibody was stimulated again. After antibody stimulation, the GFP expression of each clone was analyzed by FACScalibm '(Becton Dickinson). [Example 5] Recovery and sequencing of nucleic acid that activates signal transduction
実施例 4において抗 CD 8モノクローナル抗体を用いた抗体刺激により GPTを 発現したクローンから DNAを回収した。 回収方法は標準の方法であるフエノー ノレ Zクロ口ホノレム法 (Molecular cionmg, Cold Spring Harbor Laboratory Press (1989)) を用いて実施した。 これら各クローンにおいては、 キメラ分子として細 胞外ドメインである CD8とともに細胞内では cDNAィンサート産物が発現され ていると考えられる。 このインサート配列を確認するためにインサートを PCR により増幅し回収した。この PCRでは、 プライマ一として pMx-CD8ベクターの インサート領域の両端の配列とそれそれ相補する配列を有するプライマー 5'- GGATTGGACTTCGCCTGTGA-3' ( 配 列 番 号 1 ) 及 び 5,- CCCTTTTTCTGGAGACTAAAT-3' (配列番号 2 ) を用いた。  In Example 4, DNA was collected from clones that expressed GPT by antibody stimulation using an anti-CD8 monoclonal antibody. The recovery was carried out using a standard method, the phenolic phenolic method (Molecular cionmg, Cold Spring Harbor Laboratory Press (1989)). In each of these clones, it is considered that the cDNA insert product is expressed in the cell together with the extracellular domain CD8 as a chimeric molecule. To confirm this insert sequence, the insert was amplified by PCR and recovered. In this PCR, primers 5'-GGATTGGACTTCGCCTGTGA-3 '(SEQ ID NO: 1) and 5, -CCCTTTTTCTGGAGACTAAAT-3' having primers at both ends of the pMx-CD8 vector insert region and the (SEQ ID NO: 2) was used.
同じプライマ一を用いて細胞から直接 c DNAを増幅させ、 この増幅断片をプ ラスミ ドベクタ一 pPCR script (Stratagene)にサブクローンニングを行った。 こ のサブクローンのィンサートを自動 DNAシークェンサ (ABI-PRIZM310 or 377, Perkin Elmer)を用いて配列を決定した。 なおシークェンスサンプルは ABI, Appliedd Biosystems のシークェンスキヅトを用いて行った。  Using the same primers, cDNA was directly amplified from the cells, and the amplified fragment was subcloned into a plasmid vector, pPCR script (Stratagene). The insert of this subclone was sequenced using an automatic DNA sequencer (ABI-PRIZM310 or 377, Perkin Elmer). In addition, the sequence sample was performed using the sequence kit of ABI, Appliedd Biosystems.
上記配列決定によりシグナル伝達を活性化させる既知の核酸が含まれていた。 ここで検出された既知の核酸には、脾臓細胞 cDNAライブラリ一由来の核酸とし て CD3 £、 ZAP70、 Igひ、 Ig 5、 Syk、 FcRァなどが、 また NK細胞 cDNAライ ブラリー由来の核酸としては DAP12、 FcRァ、 ZAP70 などが含まれていた。 こ のことから本スクリーニング系により活性化モチーフ (ITAM) を有する分子、 酵素、 ァダブ夕一分子などのシグナル伝達に関与する核酸が検出できることが示 された。  Known nucleic acids that activate signal transduction by the above sequencing were included. Known nucleic acids detected here include CD3 £, ZAP70, Ig, Ig5, Syk, FcR, etc. as nucleic acids derived from the spleen cell cDNA library, and nucleic acids derived from the NK cell cDNA library. DAP12, FcR and ZAP70 were included. This indicates that the screening system can detect nucleic acids involved in signal transduction, such as molecules having an activation motif (ITAM), enzymes, and adabu yuichi molecule.
また既知の核酸と同時に、 脾臓細胞又は NK細胞の c DNAからシグナル伝達を 活性化させる新規な核酸配列が 4つ得られた。 なお、 ここで得られた核酸配列は NFATを活性化することから 「NFAT Activated Molecule (NFAM)j と総称し、 それそれ NFAM—:!〜 4と称した。 At the same time as the known nucleic acids, four novel nucleic acid sequences that activate signal transduction were obtained from the cDNA of spleen cells or NK cells. The nucleic acid sequence obtained here is Because it activates NFAT, it is collectively referred to as "NFAT Activated Molecule (NFAM) j, each of which is called NFAM — :! ~ 4.
[実施例 6 ] シグナル伝達活性化の確認  [Example 6] Confirmation of signal transduction activation
実施例 5においてスクリーニングされた NFAM-1〜4におけるシグナル伝達 の活性化を確認するために、 pPCRベクター中にサブクローニングされた各配列 を Eco!iL で消化してベクターから分離した。 分離された断片を pMx-CD8 べク 夕一の Eco サイ 1、に接続し、 さらにサブクローニングを行つた。 得られたサ ブクロ一ンを Phoenix-E パッケージング細胞に実施例 3と同様の方法で形質導 入した。このパッケージング細胞の培養上清を実施例 3と同様の方法で 43-1細胞 株に感染させた。  To confirm the activation of signal transduction in NFAM-1-4 screened in Example 5, each sequence subcloned into the pPCR vector was digested with Eco! IL and separated from the vector. The isolated fragment was ligated to pMx-CD8 vector Eco Rhino 1 and further subcloned. The obtained subclones were transfected into Phoenix-E packaging cells in the same manner as in Example 3. The culture supernatant of the packaging cells was infected to the 43-1 cell line in the same manner as in Example 3.
次に、実施例 4と同様の方法で形質導入された細胞を抗 CD8モノクローナル抗 体で抗体刺激を加え GFPが発現されるか: FACSを用いて解析した。 その結果、 NFAM-1, 2および 4がサブクリーニングされた細胞株では、 抗体刺激により、 ベクターのみの対照と比べて蛍光強度が高い分画にピークの移動が見られた (図 5 )。 このことから細胞外のシグナルが NFAM-1、 2 または 4を介して細胞内に 伝えられ、このシグナルが細胞内シグナルとして伝達されて NFATを介した GFP の発現が促進されたことが示された。  Next, the cells transduced in the same manner as in Example 4 were subjected to antibody stimulation with an anti-CD8 monoclonal antibody to determine whether or not GFP was expressed: using FACS. As a result, in the cell lines in which NFAM-1, 2, and 4 were subcleaned, peak shift was observed in the fraction having a higher fluorescence intensity as compared with the vector-only control due to the antibody stimulation (FIG. 5). This indicates that extracellular signals were transmitted into cells via NFAM-1, 2, or 4, and that these signals were transmitted as intracellular signals, which promoted NFAT-mediated GFP expression. .
上記活性が確認された NFAM-1、 2および 4の配列を決定した。 決定した核酸 配列およびコードされる推定アミノ酸配列を配列表に示す。 なお、 NFAM— 1 は 配列番号 6、 7に、 NFAM- 2は配列番号 11、 12 に、 および NFAM- 4は配列番 号 13、 14に示した。  The sequences of NFAM-1, 2, and 4, for which the above activities were confirmed, were determined. The determined nucleic acid sequence and the encoded amino acid sequence are shown in the Sequence Listing. NFAM-1 is shown in SEQ ID Nos. 6 and 7, NFAM-2 is shown in SEQ ID Nos. 11 and 12, and NFAM-4 is shown in SEQ ID Nos. 13 and 14.
また、 配列決定の結果、 NFAM-1は膜貫通領域を挟み一方に細胞外領域として 1 1 6アミノ酸を有し、 他方に細胞内領域として 8 3アミノ酸を有する細胞膜貫 通型の蛋白質であった (図 6 )。 また細胞内領域には YxxLxxxxxxxYxxMからな る ITAM様構造を有していた。 このように本スクリーニング方法によれば、 c DNA ライブラリ一などの大量 の被験核酸からシグナル伝達に関与する核酸をスクリーニングすることができる また、 このスクリーニング方法は被験核酸産物が直接シグナル伝達活性を有する かを指標として選択されるため、 確実にシグナル伝達に関与する核酸をスクリー ニングすることが可能となる。 As a result of sequencing, NFAM-1 was a transmembrane protein having 116 amino acids as an extracellular domain on one side and 83 amino acids on the other side with a transmembrane domain in between. (Figure 6). In addition, the intracellular region had an ITAM-like structure consisting of YxxLxxxxxxxYxxM. As described above, according to this screening method, nucleic acids involved in signal transduction can be screened from a large amount of test nucleic acids such as a cDNA library. Also, in this screening method, whether the test nucleic acid product has direct signal transduction activity Is selected as an index, so that nucleic acids involved in signal transduction can be reliably screened.
また、 本スクリーニング方法において被験核酸は必ずしも膜結合型のシグナル 伝達因子だけでなく、 細胞内においてシグナル伝達を介在するアダプター因子な どのスクリーニングにも利用することができる。 産業上の利用可能性  In the screening method, the test nucleic acid can be used not only for screening of a membrane-bound signal transduction factor but also for screening of an adapter factor that mediates signal transduction in cells. Industrial applicability
上記スクリーニング方法によれば、 新規なシグナル伝達因子を効率良く選択す ることが可能となる。 特に、 本発明のスクリーニングでは、 レセプ夕一からのシ ナグルを細胞内に伝達して、 最終的にレポ一夕一遺伝子の発現を誘導し得るシグ ナル伝達因子であれば選択することができる。 したがって、 膜結合型のシグナル 伝達因子に限らず、 シグナル伝達を仲介し得るアダプタ一因子などをも選択する ことができる。 そのため、 多くの解明がされていないシグナル伝達因子の同定さ らには新規なシグナル伝達経路の同定に寄与し得る。 また、 ここで得られたシグ ナル伝達因子を用い相互作用する物質のスクリーニングゃ該因子をコードした核 酸とハイブリツ ドを形成する DNAをスクリーニングすることにより、 同種生物 あるいは異種生物におけるシグナル伝達因子の更なる同定や、 シグナル伝達因子 に作用してその活性を調節し得る調節因子の同定をすることもできる。  According to the above-mentioned screening method, it is possible to efficiently select a novel signaling factor. In particular, in the screening of the present invention, any signal transmission factor capable of transmitting the single molecule from Receptor intracellularly and ultimately inducing the expression of Repo overnight gene can be selected. Therefore, it is possible to select not only a membrane-bound signal transduction factor but also an adapter factor that can mediate signal transduction. Therefore, it can contribute to the identification of many unclear signal transduction factors as well as the identification of novel signal transduction pathways. Screening of a substance that interacts with the signal transduction factor obtained here. By screening DNA that forms a hybrid with a nucleic acid encoding the factor, screening of a signal transduction factor in a homologous or heterologous organism can be performed. Further identification and identification of modulators that act on signaling factors to modulate their activity can also be performed.

Claims

請求の範囲  The scope of the claims
.1 . 細胞外ドメインとして細胞外シグナルを細胞内に導入し得るレセプタ一お よび細胞内ドメインとして被験核酸産物を備えたキメラ分子を用いて、 シグナル 伝達に関与する核酸をスクリ一二ングする方法であって、 .1. Method for screening nucleic acids involved in signal transduction using a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a chimeric molecule having a test nucleic acid product as an intracellular domain And
前記レセプターをコードした遺伝子と被験核酸とを連結させて発現べクター内 に担持させ、 前記キメラ分子を発現し得るキメラ分子発現ベクターを調製するェ 程と、  Preparing a chimeric molecule expression vector capable of expressing the chimeric molecule by linking the gene encoding the receptor and the test nucleic acid to be carried in an expression vector,
細胞内でシグナルが伝達された際に発現が誘導されるレポーター遺伝子を保持 した細胞に前記キメラ分子発現べクタ一を導入する工程と、  A step of introducing the chimeric molecule expression vector into a cell holding a reporter gene whose expression is induced when a signal is transmitted in the cell,
前記キメラ分子発現ベクターが導入された細胞に細胞外シグナル因子を作用さ せる工程と、  Allowing the extracellular signal factor to act on cells into which the chimeric molecule expression vector has been introduced,
前記細胞外シグナル因子を作用させた後に前記レポーター遺伝子の発現を検出 する工程とを含む、 スクリーニング方法。  Detecting the expression of the reporter gene after the action of the extracellular signal factor.
2. 前記レポータ一遺伝子の上流には、細胞内でシグナルが伝達された際に誘導 される細胞内シグナル伝達因子が結合して前記レポ一タ一遺伝子の発現を促進さ せ得るシグナル伝達因子結合部位が備えられている、 請求項 1記載のスタリー ング方法。  2. A signal transduction factor binding capable of promoting expression of the reporter gene by binding to an intracellular signal transduction factor induced when a signal is transmitted in a cell upstream of the reporter gene. The stirling method according to claim 1, further comprising a site.
3 . レセプターが CD 8であり、 前記細胞外シグナル因子が抗 CD 8抗体である、 請求填 1又は2記載のスクリ一二ング方法。 3. The screening method according to claim 1 or 2 , wherein the receptor is CD8, and the extracellular signal factor is an anti-CD8 antibody.
4 . レポーター遺伝子が GFP遺伝子である、 請求項 1〜3のいずれかに記載の スクリ一ユング方法。  4. The screening method according to any one of claims 1 to 3, wherein the reporter gene is a GFP gene.
5 . 前記細胞が T細胞である、 請求項 1〜4のいずれかに記載のスクリーニン グ方法。  5. The screening method according to any one of claims 1 to 4, wherein the cells are T cells.
6 . 前記シグナル伝達因子結合部位が NFAT (nuclear factor of activated T ceUs) である、 請求項 2〜5のいずれかに記載のスクリーニング方法。 6. The signaling factor binding site is NFAT (nuclear factor of activated T ceUs). The screening method according to any one of claims 2 to 5, wherein
7 . 前記発現ベクターがレトロウイルスベクターである、 請求項 1〜6のいずれ かに記載のスクリ一ニング方法。  7. The screening method according to any one of claims 1 to 6, wherein the expression vector is a retrovirus vector.
8 . 前記レポ一夕一遺伝子を保持した細胞には、 複数種のレポ一夕一遺伝子が保 持され、  8. In the cell holding the repo overnight gene, a plurality of types of repo overnight genes are held,
前記複数種のレポーター遺伝子は、 細胞内での異なるシグナル伝達によりそれ それ発現が誘導される、 請求項 1〜 7のいずれかに記載のスクリ一ニング方法。 9 . 細胞外ドメインとして細胞外シグナルを細胞内に導入し得るレセプ夕一お よび細胞内ドメインとして被験核酸産物を備えたキメラ分子を用いて、 シグナル 伝達に関与し得る核酸をスクリーニングするためのチヅ卜であって、  The screening method according to any one of claims 1 to 7, wherein expression of each of the plurality of reporter genes is induced by different signal transduction in a cell. 9. Using a receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a chimeric molecule having a test nucleic acid product as an intracellular domain, a probe for screening nucleic acids involved in signal transduction. And
前記レセプ夕ー遺伝子が担持され、 前記レセプ夕一遺伝子と被験核酸とを連結 させて前記キメラ分子を発現させるための発現べクタ一と、  An expression vector for carrying the receptor gene and linking the receptor gene and a test nucleic acid to express the chimeric molecule;
細胞内シグナル伝達が活性化された際に発現が誘導されるレポ一夕一遺伝子を 保持した細胞と、  A cell carrying a repo allele, whose expression is induced when intracellular signaling is activated,
前記細胞表面に発現されるシグナル導入蛋白質に細胞外シグナルを導入するた めの細胞外シグナル因子とを含む、 スクリーニングキット。  A screening kit, comprising: an extracellular signal factor for introducing an extracellular signal into the signal transducing protein expressed on the cell surface.
1 0. 前記レポーター遺伝子の上流には、 シグナル伝達が活性化された際に誘導 される細胞内シグナル伝達因子が結合して前記レポ一夕一遺伝子の発現を促進さ せ得るシグナル伝達因子結合部位が備えられている、 請求項 9記載のスクリ一二 ングキヅト。  10. A signal transduction factor binding site upstream of the reporter gene, to which an intracellular signal transduction factor induced upon activation of signal transduction binds to promote the expression of the reporter gene. The screening kit according to claim 9, further comprising:
1 1 . レセプ夕一が CD 8であり、 前記細胞外シグナル因子が抗 CD 8抗体であ る、 請求項 9又は 1 0記載のシグナル伝達調節核酸のスクリーニングキット。 11. The signal transduction regulatory nucleic acid screening kit according to claim 9 or 10, wherein the receptor is CD8 and the extracellular signal factor is an anti-CD8 antibody.
1 2 . レポーター遺伝子が GFP遺伝子である、 請求項 9〜1 1のいずれかに記 載のスクリーニングキヅト。 12. The screening kit according to any one of claims 9 to 11, wherein the reporter gene is a GFP gene.
1 3 . 前記細胞が T細胞である、 請求項 9 ~ 1 2のいずれかに記載のスクリ一二 ングキット。 13. The screen according to claim 9, wherein the cell is a T cell. Kit.
1 4 . 前記シグナル伝達因子結合部位が NFAT (nuclear factor of activated T cells) である、 請求項 1 0〜1 3のいずれかに記載のスクリーニングキヅト。 1 5: 前記発現べクタ一がレトロウイルスベクターである、 請求項 9〜 1 4のい ずれかに記載のスクリーニングキット。  14. The screening kit according to any one of claims 10 to 13, wherein the signal transduction factor binding site is NFAT (nuclear factor of activated T cells). 15: The screening kit according to any one of claims 9 to 14, wherein the expression vector is a retrovirus vector.
1 6 . 前記発現ベクターが、 前記シグナル導入遺伝子に種々の異なる被験遺伝 子が連結されたキメラ分子発現べク夕一ライブラリ一として提供される、 請求項 9〜 1 5のいずれかに記載のスクリーニングキット。  16. The screening according to any one of claims 9 to 15, wherein the expression vector is provided as a library of chimeric molecule expression vectors in which various different test genes are linked to the signal transgene. kit.
1 7 . 前記レポーター遺伝子を保持した細胞には、 複数種のレポーター遺伝子が 保持され、  17. The cell holding the reporter gene contains a plurality of reporter genes,
前記複数種のレポ一夕一遺伝子は、 細胞内での異なるシグナル伝達によりそれ それ発現が誘導される、 請求項 9〜1 6のいずれかに記載のスクリーニングキヅ h o  The screening key according to any one of claims 9 to 16, wherein the expression of the plurality of repo overnight genes is induced by different intracellular signal transduction.
1 8 . 細胞内シグナル伝達の調節をモニタするための細胞であって、 細胞内シグナル伝達が調節された際に発現が変化するレポーター遺伝子を保持 し、  18. A cell for monitoring the regulation of intracellular signaling, which has a reporter gene whose expression changes when the intracellular signaling is regulated,
前記レポーター遺伝子の上流には、 細胞内シグナル伝達因子が結合して前記レ ポーター遺伝子の発現を変化させ得るシグナル伝達因子結合部位が備えられてい る、 細胞。  A cell, comprising, upstream of the reporter gene, a signal transduction factor binding site capable of binding an intracellular signal transduction factor and changing the expression of the reporter gene.
1 9 . 前記シグナル伝達因子結合部位が NFAT (nuclear factor of activated T cells) である、 請求項 1 8記載の細胞。  19. The cell according to claim 18, wherein the signal transduction factor binding site is NFAT (nuclear factor of activated T cells).
2 0 . 前記レポーター遺伝子が GKP遺伝子である、 請求項 1 8又は 1 9記載 の細胞。  20. The cell according to claim 18 or 19, wherein the reporter gene is a GKP gene.
2 1 . 前記細胞が T細胞である、 請求項 1 8〜2 0のいずれかに記載の細胞。 2 2 . 請求項 1〜 8のいずれかに記載のスクリーニング方法または請求項 9〜 1 7のいずれかに記載のスクリーニングキヅトにより選択されたシグナル伝達因 子。 21. The cell according to any one of claims 18 to 20, wherein the cell is a T cell. 22. The screening method according to any one of claims 1 to 8 or claims 9 to 17. A signal transduction factor selected by the screening kit according to any one of 17.
2 3 . 配列番号 7、 1 2、 1 4のいずれかに記載されたアミノ酸配列、 または シグナル伝達活性を有する範囲で前記各アミノ酸配列に欠失、 挿入、 置換を有す るアミノ酸配列からなる、 請求項 2 2に記載のシグナル伝達因子。  23. consisting of the amino acid sequence described in any one of SEQ ID NOs: 7, 12, and 14, or an amino acid sequence having a deletion, insertion, or substitution in each of the amino acid sequences as long as it has a signal transduction activity. 23. The signaling factor according to claim 22.
2 4 . シグナル伝達因子をコードした: DNAであって、 24. Encoding a signaling factor: DNA,
配列番号 6、 1 1、 1 3のいずれかに記載の塩基配列、 または配列番号 6、 1 1、 1 3のいずれかに記載の D N Aとストリンジヱン卜な条件下でハイブリダィ ズする塩基配列からなる、 D N A。  A nucleotide sequence that hybridizes under stringent conditions with the nucleotide sequence of any of SEQ ID NOs: 6, 11 and 13 or the DNA of any of SEQ ID NOs: 6, 11 and 13; DNA.
2 5 . 細胞内シグナル伝達に関与する因子をスクリーニングするための細胞で あって、  25. A cell for screening for a factor involved in intracellular signaling,
細胞外ドメインとして細胞外シグナルを細胞内に導入し得るレセプ夕一および 細胞内ドメインとしてシグナル伝達因子を有する細胞膜貫通キメラ分子と、 細胞内シグナル伝達が調節された際に発現が変化する細胞内レポーター遺伝子 と、 を備え、  A receptor capable of introducing an extracellular signal into a cell as an extracellular domain and a transmembrane chimeric molecule having a signaling factor as an intracellular domain, and an intracellular reporter whose expression changes when intracellular signal transduction is regulated With genes and
前記シグナル伝達因子として、 配列番号 7、 1 2、 1 4のいずれかに記載のァ ミノ酸配列またはシグナル伝達活性を有する範囲で前記各アミノ酸配列に欠失、 挿入、 置換を有するアミノ酸配列が備えられ、  The signaling factor includes an amino acid sequence according to any one of SEQ ID NOs: 7, 12, and 14 or an amino acid sequence having a deletion, insertion, or substitution in each amino acid sequence as long as the amino acid sequence has a signaling activity. And
前記レポ一ター遺伝子の上流には、 細胞内シグナル伝達因子が結合して前記レ ポー夕一遺伝子の発現を変化させ得るシグナル伝達因子結合部位が備えられてい る、 細胞。  A cell, comprising, upstream of the reporter gene, a signaling factor binding site capable of binding an intracellular signaling factor and changing the expression of the reporter gene.
PCT/JP2001/008370 2001-03-26 2001-09-26 Method of screening nucleic acid encoding signal transducer and kit and cells to be used in this method WO2002077280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002575321A JPWO2002077280A1 (en) 2001-03-26 2001-09-26 Screening method for nucleic acid encoding signal transduction factor, kit and cell used in the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-88062 2001-03-26
JP2001088062 2001-03-26

Publications (1)

Publication Number Publication Date
WO2002077280A1 true WO2002077280A1 (en) 2002-10-03

Family

ID=18943206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008370 WO2002077280A1 (en) 2001-03-26 2001-09-26 Method of screening nucleic acid encoding signal transducer and kit and cells to be used in this method

Country Status (2)

Country Link
JP (1) JPWO2002077280A1 (en)
WO (1) WO2002077280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043807B2 (en) 2001-03-23 2011-10-25 Yeda Research And Development Co. Ltd. Methods and kits for determining a risk to develop cancer, for evaluating an effectiveness and dosage of cancer therapy and for correlating between an activity of a DNA repair enzyme and a cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hisashi ARASE et al., "NAFT activating molecule cloning system (NACS) no Kaihatsu ni yoru Shinki no ITAM wo motsu Bunshi NFAM-1no Cloning", Nippon Men-eki Gakkai Soukai Gakujutsu Shuukai Kiroku, 26 September, 2000, Vol. 30, page 333, 3-H-407-P/O *
Tadashi YOKOSUKA et al., "Retrovirus wo miochiita Hen-i Kesson Idenshi no Hatsukgen; Cloning System no Kakuritsu", Kouseishou Tokutei Shikkan Genpatsu-sei Men-eki Fuzen Shoukou-gun Chousa Kenkyu-han, Heisei 11 nendo Kenkyu Gyouseki Houkoku-sho, 31 March, 2000, pages 8 to 11 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043807B2 (en) 2001-03-23 2011-10-25 Yeda Research And Development Co. Ltd. Methods and kits for determining a risk to develop cancer, for evaluating an effectiveness and dosage of cancer therapy and for correlating between an activity of a DNA repair enzyme and a cancer

Also Published As

Publication number Publication date
JPWO2002077280A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
KR102301464B1 (en) Methods and compositions for reducing immunosupression by tumor cells
US11851679B2 (en) Method of assessing activity of recombinant antigen receptors
CN114026116A (en) RAS neoantigen specific binding proteins and uses thereof
KR20210088559A (en) Methods for Identification of Activating Antigen Receptor (aCAR)/Inhibiting Chimeric Antigen Receptor (iCAR) Pairs for Use in Cancer Therapy
KR20210029707A (en) Method for producing cells expressing recombinant receptors and related compositions
KR102659574B1 (en) Modular polypeptide libraries and methods of making and using the same
CA3163104A1 (en) Chimeric antigen receptors and uses thereof
KR20200006046A (en) Cleaved NKG2D chimeric receptor and its use in natural killer cell immunotherapy
KR20220098379A (en) Antigen-binding protein targeting covalent neoantigens
KR20180012762A (en) cell
CN111247168A (en) Complex chimeric antigen receptors (cCAR) targeting multiple antigens and methods of their composition and use
EP3942025A1 (en) Car-t cell therapies with enhanced efficacy
JP2022185055A (en) Reagents for expanding cells expressing recombinant receptors
CN116234558A (en) Engineered T cells conditionally expressing recombinant receptors, related polynucleotides and methods
JP2022530139A (en) Allogeneic CAR-T cells, their preparation and application
TW201720926A (en) Transposon system, kit comprising the same, and uses thereof
Berchtold et al. Cloning and characterization of the promoter region of the human CD83 gene
CN114514247A (en) CAR-CD123 vectors and uses thereof
CN114007640A (en) Cells expressing chimeric receptors from modified CD247 loci, related polynucleotides and methods
CN113195526A (en) Targeting mutant MYD88 in adoptive T cell therapyL265PSpecific T cell receptors for protein epitopes
CN110809627A (en) Optimized lentiviral vectors for XLA gene therapy
WO2002077280A1 (en) Method of screening nucleic acid encoding signal transducer and kit and cells to be used in this method
RU2230751C2 (en) Peptide mpi without signal sequence, dna encoding thereof, vector, method for assay capacity for secretion of testing peptide, method for isolating cdna
EP4293040A1 (en) Cell line for engineering cytokine receptors
US8361711B2 (en) Tools and methods useful in characterising the immunotoxic activity of xenobiotic substances

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

WWE Wipo information: entry into national phase

Ref document number: 2002575321

Country of ref document: JP