WO2002075904A1 - Method and apparatus for detecting vacuum position in vacuum motor - Google Patents

Method and apparatus for detecting vacuum position in vacuum motor Download PDF

Info

Publication number
WO2002075904A1
WO2002075904A1 PCT/JP2001/008077 JP0108077W WO02075904A1 WO 2002075904 A1 WO2002075904 A1 WO 2002075904A1 JP 0108077 W JP0108077 W JP 0108077W WO 02075904 A1 WO02075904 A1 WO 02075904A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
slit
rotor
detector
motor
Prior art date
Application number
PCT/JP2001/008077
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Arinaga
Koji Suzuki
Masamichi Inenaga
Tadataka Noguchi
Takayuki Nakamura
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO2002075904A1 publication Critical patent/WO2002075904A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a vacuum position detecting method and a vacuum position detecting device in a vacuum motor for detecting the position and speed of a servomotor used in a vacuum such as a semiconductor manufacturing apparatus.
  • FIG. 11 is a cross-sectional view of a vacuum position detector showing a configuration of a conventional example.
  • a magnetic sensor body 1 1 1 is attached to an attachment hole 1 1 20 a formed in a part of a motor case 1 1 2 0 having a motor stay 1 1 2 through an O-ring 1 18.
  • One is tightly fixed.
  • the outer periphery of the end portion 111a of the mouth 111, which is the movable portion of the motor, is provided with a magnetic gear 111 serving as a detector made of a magnetic material.
  • the magnetic sensor body 111 is located to face the toothed wheel 111a of the magnetic gear 111.
  • the magnetic sensor body is configured as shown in FIG. 12, and has a cup shape of the magnetic sensor body 11 1 11 and an inner end of a cover 1 1 1 1 B having a flange 1 1 1 1 A.
  • Step 1 1 1 1 B b is provided with a printed circuit board 1 11 lb having a well-known magnetic sensor 1 1 1 1 a on the front side.
  • On the back side a bias magnet 1 1 1 1 c is provided.
  • the inside of the cover 1 1 1 1 B is filled with a resin filler material 1 1 1 1 e, and the printed circuit board 1 1 1 1 b is stepped by the resin filler material 1 1 1 1 e. Is held in. Therefore, the inner end 1 1 1 lB b of the magnetic sensor 1 1 1 1 is located inside the motor case 1 1 2 0, and the magnetic sensor 1 1 1 2 End 1 1 1 1 B b is located on the atmosphere side.
  • an object of the present invention is to solve the above-mentioned problems by disposing a magnetic sensor and a slit disk in a vacuum, thereby increasing the degree of freedom in motor design without reducing reliability.
  • a position detection method By using a position detection method and easily forming a plurality of slit tracks on a flat surface using a flat slit disk, and using these to detect the absolute angle within one rotation of the mouth, it is lightweight and thin. It is an object of the present invention to provide a vacuum position detecting device in a vacuum mode that can detect an absolute angle of a vacuum.
  • a vacuum position detecting method in a vacuum motor comprises a motor case having a stay rotatably rotatable via a bearing in a motor case, a detector rotor provided in the mouth, and the detector described above.
  • the detector port may include a flat slit disk in which a plurality of slits are formed on a plane in a magnetic steel plate, and a slit disk for fixing the slit disk.
  • a magnetic sensor head in which a MR element and a permanent magnet are sealed in resin in a sensor case is provided on the stay side so as to face the slit disk, and the magnetic sensor head is The presence or absence of the slit formed on the slit disk surface is detected in a vacuum.
  • the method of detecting a vacuum position in a vacuum motor comprises: a motor case having a stay; a rotatable rotatable via a bearing; a detector rotor provided in the rotatable; In the method of detecting the position by disposing the detector rotor on the vacuum side, the detector rotor has a slit whose number of slits per rotation is 2 N , 2 N ⁇ 1 (where N is a natural number) in the magnetic steel plate.
  • It consists of a flat slit disk in which a plurality of slit tracks including a track are formed on a plane and a slit disk base for fixing the slit disk.On the side of the stay, an MR element and a permanent magnet are placed in the sensor case. A magnetic sensor head encapsulated in resin is arranged opposite the slit disk, and the absolute position per rotation of the motor rotor is detected from the slit track in a vacuum. To.
  • the vacuum position detecting device in the vacuum motor has a motor case having a stay and a rotatable rotatable via a bearing in a mooring case, and a detector rotatable on the rotor.
  • the detector rotor is a flat slit disk in which a plurality of slits are formed in a plane on a magnetic steel plate and fixed thereto.
  • a magnetic sensor head in which an MR element and a permanent magnet are sealed in resin in a sensor case is provided corresponding to the slit disk. The disk is configured to be located in a vacuum so as to face the slit disk.
  • the vacuum position detecting device in the vacuum motor comprises: a motor case having a stay and a rotatable rotatable via a bearing; a detector rotor provided on the rotatable;
  • the detector port is provided on a magnetic steel plate at a number of slits per rotation of 2N , 2N ⁇ 1 (N, Is a natural number) consisting of a flat slit disk in which a plurality of slit tracks including a slit track are formed on a plane, and a slit disk base for fixing the slit track.
  • An MR element and a permanent magnet are provided on the stay side.
  • a magnetic sensor head sealed with resin is placed in the sensor case so as to face the slit disk, and the absolute position per rotation of the motor rotor can be detected in vacuum from this slit track. It is characterized by having been configured to be able to.
  • the present invention uses an austenitic stainless steel as a sensor case material of the magnetic sensor head, uses a fluororesin as a coating material of the sensor cable protruding from the magnetic sensor head, A permanent magnet is encapsulated in the sensor case with epoxy resin, the MR element and the permanent magnet are encapsulated in the sensor case with alumina-filled epoxy resin, and are fixed around the magnetic sensor head.
  • Providing a fixed collar, making a round hole or a long hole for screwing in the fixing collar, using a silicon steel plate as a magnetic material of the slit disk, or a non-magnetic metal as a material of the slit disk base Can be used.
  • FIG. 1 is a side sectional view showing an embodiment 1 of the present invention.
  • FIG. 2 is a sectional side view of the magnetic sensor head according to the first embodiment of the present invention.
  • FIG. 3 is a side sectional view of a magnetic sensor head according to a fourth embodiment of the present invention.
  • FIG. 4 is a diagram showing a head output signal waveform of the magnetic sensor according to the embodiment of the present invention.
  • FIG. 5 is a connection diagram of an MR element which is a component of the magnetic sensor head according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing the types of austenitic stainless steel used in the present invention.
  • FIG. 7 is a magnetic sensor head diagram showing an embodiment 5 of the present invention.
  • FIG. 1 is a side sectional view showing an embodiment 1 of the present invention.
  • FIG. 2 is a sectional side view of the magnetic sensor head according to the first embodiment of the present invention.
  • FIG. 3 is a side sectional view of a magnetic sensor head according to
  • FIG. 8 is a perspective view showing a configuration for detecting an absolute angle according to the eighth embodiment of the present invention.
  • FIG. 9 is a block diagram of the signal processing circuit 9.
  • FIG. 10 is a diagram for explaining an output form in the signal processing circuit 9.
  • FIG. 11 is a side sectional view of a conventional example.
  • FIG. 12 is a sectional view of a conventional magnetic sensor side.
  • FIG. 1 is a side sectional view showing a first embodiment of the present invention.
  • the vacuum position detecting device includes a magnetic sensor head 2 fixed to a stay 1 having a motor coil 11 and a slit sensor fixed to a rotor 3 having a rotatable magnet 10 with screws 9 or the like.
  • a flat slit disk 5 adhered to the disk base 4 with an adhesive or the like is arranged so as to face each other in a vacuum. Since the mouth 3 is attached to the stay 1 via a bearing 6, the slit disk 5 has a mechanism capable of rotating together with the rotor 3 with respect to the magnetic sensor head 2. . Since the slit disk 5 can form a plurality of slit holes on a plane by etching a magnetic steel plate or the like, the slit disk 5 can be made extremely thin, and the external dimensions of the slit can be freely designed.
  • FIG. 2 is a sectional view showing the configuration of the magnetic sensor head 2.
  • the MR element 2b and the permanent magnet 2c are arranged in the non-magnetic sensor case 2a as shown in Fig. 2, and the MR element output line 2 e and the MR element power supply line 2 f are connected to the sensor cable 7 with solder or the like while avoiding the permanent magnet 2 c.
  • the connector 8 is a connector for outputting an output signal of the magnetic sensor head 2 arranged in a vacuum to the atmosphere side, and is connected to the sensor cable 7 on the vacuum side.
  • the output signal of the magnetic sensor head 2 is shown in FIG. Due to the reluctance change depending on the presence or absence of the slit hole, a pseudo sine wave with a period corresponding to the slit pitch A-phase and a B-phase signal different in 90 ° phase are output.
  • the sensor cable 7, the MR element output line 2e, and the MR element power supply line 2f are connected as shown in FIG. 5, and the A-phase and B-phase pseudo sine wave signals are converted into AZD signals by a signal processing circuit. Performs conversion and multiplication processing, and outputs the a-phase and b-phase pulse signals shown in Fig. 4 (b).
  • the magnetic sensor head, the slit disk, and the slit disk base can be arranged in a vacuum, so that the degree of freedom in motor design can be increased.
  • an austenitic stainless steel that emits little gas and has no magnetism is used as a material of the sensor case 2a of the magnetic sensor head 2.
  • Austenitic stainless steel has a steel type name as shown in Fig. 6.
  • Austenitic stainless steel has no magnetism and has higher strength than aluminum materials, so it is the best magnetic sensor case.
  • SUS303 by using SUS303, the shape of the sensor case 2a can be formed relatively freely.
  • SUS304 or SUS316 has a small amount of gas generation, gas generation is suppressed by using these materials, and gas generation characteristics are improved.
  • a sensor cable 7a in which the sensor cable 7 is coated with a fluorine resin is connected to the MR element output line 2e and the MR element power supply line 2f.
  • the use of an epoxy resin as the material of the resin 2d suppresses outgassing and achieves an improvement in outgassing characteristics.
  • the epoxy resin is an alumina-filled epoxy resin, since the resin contains alumina, when the resin is hardened, its deformation is smaller than that of a normal resin, so that the MR element, the permanent magnet, and the MR element The stress applied to the output line and the MR element power supply line is relaxed, and the MR element and the permanent magnet are not displaced, and the MR element output line and the MR element power supply line are not broken, so that the reliability can be improved.
  • a fixing collar 2 g is provided on the outer periphery of the sensor case 2 a of the magnetic sensor head 2.
  • the fixing collar 2 g By providing the fixing collar 2 g, the distance between the magnetic sensor head 2 and the slit disk 5 can be kept constant, and the positioning of the magnetic sensor head 2 can be facilitated. it can.
  • a method for fixing the sensor head in this case there is a method in which a fixing snap is provided in the sensor case and the sensor head is fixed overnight.
  • a screw can be passed through the round hole in the fixing collar 2 h of the magnetic sensor head 2. It can be easily and firmly fixed to the stay, and it is strong against vibration and the like, and the reliability can be improved.
  • the mounting angle of the magnetic sensor head 2 in the rotation direction can be adjusted, and the magnetic sensor head can be adjusted. Since the amplitude and phase of the output signal can be adjusted, the detection accuracy of the magnetic sensor head 2 can be improved.
  • the shape of the fixing collar 2 g, the fixing collar 2 h having a round hole, and the fixing collar 2 j having a long hole may not be a disk shape, and may be a shape as shown in FIG. 7 (d). It is clear that this is fine.
  • Example 6 In this embodiment, a silicon steel plate is used as the material of the slit disk 5. If a magnetic steel plate is used as the material of the slit disk 5, a signal can be obtained, but depending on the material, problems such as a decrease in detection accuracy due to unstable magnetic characteristics and a decrease in noise resistance due to a decrease in output signal amplitude occur. . By using a silicon steel sheet as the material of the slit disk 5, it is possible to avoid problems such as a decrease in accuracy due to unstable magnetic characteristics and a decrease in noise resistance due to a decrease in output signal amplitude, and the detection accuracy and reliability are improved. Performance can be improved.
  • a non-magnetic metal is used as the material of the slit disk base 5.
  • a plurality of slit tracks including a slit track having the number of slits per rotation of 2N and 2N soil 1 are formed on a plane on the slit disk 5, and the motor of the slit is used by the slit tracks.
  • the absolute angle per rotation of the rotor 3 is detected in a vacuum.
  • Fig. 8 shows a specific configuration example.
  • two slit tracks of an A slit track 51 and a B slit track 52 having different numbers of pulses during one rotation are formed on the slit disk 5 by a method such as etching.
  • the head 2 has an MR element 2 b-1 for the A slit track and an MR element 2 b-2 for the B slit track.
  • the slit disk 5 and the magnetic sensor head 2 face each other. It is arranged.
  • Reference numeral 9 denotes a signal processing circuit which takes in the pseudo sine wave signal of the magnetic sensor head 2 and outputs an absolute angle signal.
  • a pseudo sine wave A phase with a period corresponding to the slit pitch and a B phase signal having a 90 ° phase difference are output as shown in Fig. 4 (a) due to the reluctance change due to the presence or absence of the slit hole. Further, the A-phase and B-phase signals are converted by the signal processing circuit 9 into absolute angle signals during one rotation.
  • the B slit track detecting MR element 2b_2 receives a change of magnetic flux of 127 cycles in one rotation of the slit disk 5, and has 127 cycles of A phase and B phase having different 90 ° phases. Output a signal.
  • These output signals are amplified by an amplifier 91 and input to a phase modulation circuit A 92a and a phase modulation circuit B 92b, respectively.
  • the clock signal CK output from the oscillator 97 is input, and the carrier signal 96 having a constant period generated by the carrier signal generation circuit 95 is phase-modulated by the A-phase and B-phase signals.
  • phase change from 0 ° to 360 ° is repeated 128 times in one revolution of the slit disk, and it is converted into 01 ′ signal which is repeated 127 times and 02 ′ which is repeated 127 times.
  • the 01 ′ and ⁇ 2 ′ signals are binarized signals and have rising edge times with phase information.
  • a phase change of 0 ° to 360 ° is provided once for one rotation of the slit disk, which is a phase difference between the 0 1 ′ signal and the 02 ′ signal.
  • a signal is output.
  • the 01-02 signal is a phase difference signal obtained by counting the rising edge of the 01 ′ and 02 ′ signals with the clock signal CK and digitizing the counted signal.
  • the interval between the rising edge of the carrier signal 96 and the rising edge of the 01 ′ signal is counted by the clock signal CK. Accordingly, if the period of the carrier signal 96 is I times the period of the clock signal CK (I is a natural number), a digitized phase signal 1 with a division number I can be obtained.
  • the absolute value signal generation circuit 98 By specifying the number of repetitions of the 01 signal by the ⁇ ⁇ 2 signal by the absolute value signal generation circuit 98, it is possible to obtain the absolute angle signal 99 of 128 X division number I pulses per rotation.
  • the present invention can be used in the field of manufacturing and providing a vacuum position detecting method and a vacuum position detecting device in a vacuum motor used in a vacuum such as a semiconductor manufacturing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Brushless Motors (AREA)

Abstract

A vacuum position detecting method in vacuum motor in which the degree of freedom can be increased in the design of motor without sacrifice in reliability, and a thin lightweight vacuum position detector which can detect the absolute angle. In a method for detecting a position by providing a rotor (3) rotatable through a bearing (6) in a motor case having a stator (1) with a detector rotor disposed on the vacuum side, the detector rotor comprises a planar slit disc (5) made by making a plurality of slits in the plane of a magnetic steel plate and a slit disc base for securing it, a magnetic sensor head (2) comprising an MR magnet and a permanent magnet resin sealed in a sensor case is disposed on the stator (1) side oppositely to the slit disc (5), and the magnetic sensor head (2) detects presence of the slit made in the surface of the slit disc (5).

Description

真空モータにおける真空位置検出方法および真空位置検出装置  Vacuum position detection method and vacuum position detection device for vacuum motor
[技術分野]  [Technical field]
本発明は、半導体製造装置等の真空内で使用するサーポモー夕の位置および速度 を検出する真空モータにおける真空位置検出方法および真空位置検出装置に関す る。  The present invention relates to a vacuum position detecting method and a vacuum position detecting device in a vacuum motor for detecting the position and speed of a servomotor used in a vacuum such as a semiconductor manufacturing apparatus.
[背景技術]  [Background technology]
真空モータが特開平 1 1— 3 5 6 0 2 5号公報に開示されている。図 1 1は従来 例の構成を示す真空位置検出器の横断面図である。 図 1 1において、 モータステー 夕 1 1 2を有するモー夕ケース 1 1 2 0の一部に形成された取り付け孔 1 1 2 0 aには Oリング 1 1 8を介して磁気センサ体 1 1 1 1が密合して固定されている。 前記モータの可動部である口一夕 1 1 1の端部 1 1 1 aの外周は磁性材料より検 出器ロー夕となる磁性歯車 1 1 1 2が設けられている。 この磁性歯車 1 1 1 2の歯 車 1 1 1 2 aに対向して前記磁気センサ体 1 1 1 1が位置している。  A vacuum motor is disclosed in Japanese Patent Application Laid-Open No. Hei 11-356650. FIG. 11 is a cross-sectional view of a vacuum position detector showing a configuration of a conventional example. In FIG. 11, a magnetic sensor body 1 1 1 is attached to an attachment hole 1 1 20 a formed in a part of a motor case 1 1 2 0 having a motor stay 1 1 2 through an O-ring 1 18. One is tightly fixed. The outer periphery of the end portion 111a of the mouth 111, which is the movable portion of the motor, is provided with a magnetic gear 111 serving as a detector made of a magnetic material. The magnetic sensor body 111 is located to face the toothed wheel 111a of the magnetic gear 111.
前記磁気センサ体は図 1 2で示されるように構成されており、 この磁気センサ体 1 1 1 1のカップ型をなすと共に鍔部 1 1 1 1 Aを有するカバ 1 1 1 1 Bの内端 1 1 1 1 B a側の段部 1 1 1 1 B bには表側に周知の磁気センサ 1 1 1 1 aを有 するプリント基板 1 1 1 l bが設けられ、 このプリント基板 1 1 1 l bの裏側には バイアスマグネット 1 1 1 1 cが設けられている。前記カバ 1 1 1 1 Bの内側には 樹脂充填材 1 1 1 1 eが充填され、 この樹脂充填材 1 1 1 1 eによってプリント基 板 1 1 1 1 bが段部 1 1 1 1 B bに保持されている。従って、 前記磁気センサ 1 1 1 1の内端 1 1 1 l B bがモータケース 1 1 2 0の内側に位置し、モータケース 1 1 2 0の延長部である隔壁 1 1 3によって磁気センサ外端 1 1 1 1 B bが大気側 に位置している。  The magnetic sensor body is configured as shown in FIG. 12, and has a cup shape of the magnetic sensor body 11 1 11 and an inner end of a cover 1 1 1 1 B having a flange 1 1 1 1 A. 1 1 1 1 lb Step 1 1 1 1 B b is provided with a printed circuit board 1 11 lb having a well-known magnetic sensor 1 1 1 1 a on the front side. On the back side, a bias magnet 1 1 1 1 c is provided. The inside of the cover 1 1 1 1 B is filled with a resin filler material 1 1 1 1 e, and the printed circuit board 1 1 1 1 b is stepped by the resin filler material 1 1 1 1 e. Is held in. Therefore, the inner end 1 1 1 lB b of the magnetic sensor 1 1 1 1 is located inside the motor case 1 1 2 0, and the magnetic sensor 1 1 1 2 End 1 1 1 1 B b is located on the atmosphere side.
しかしながらこの従来例では、  However, in this conventional example,
( 1 ) 磁気センサ外端を大気側に配置しなくてはならないため、 モー夕構造設計に 自由度が少なくなるという問題点があつた。  (1) Since the outer end of the magnetic sensor must be located on the atmosphere side, there is a problem that the degree of freedom in designing the motor structure is reduced.
( 2 ) ロー夕の端部の外周に磁性歯車が設けられているので、 ロータ 1回転内の絶 対角度を検出するためのバイナリーコード方式やバーニヤ方式等複数のスリット トラック列を形成すると外形が大きくなり、 またロー夕イナ一シャが大きくなると いう問題があった。 (2) Since magnetic gears are provided on the outer periphery of the end of the rotor, multiple slits such as a binary code method and a vernier method are used to detect the absolute angle within one rotation of the rotor. When the track row is formed, there is a problem that the outer shape becomes large and the inertia of the row becomes large.
[発明の開示]  [Disclosure of the Invention]
そこで、 本発明の目的は、 上述した問題点を解決するために、 磁気センサ、 スリ ットディスクを真空内に配置することによって、信頼性を落とさずにモータ設計の 自由度を増大させる真空モータにおける真空位置検出方法、及び平板状のスリツト ディスクを用いて複数のスリットトラックを平面上に容易に形成し、 これらを使つ て口一夕 1回転内の絶対角度を検出することによって、 軽量で、 薄型の絶対角度を 検出できる真空モー夕における真空位置検出装置を提供することにある。  Accordingly, an object of the present invention is to solve the above-mentioned problems by disposing a magnetic sensor and a slit disk in a vacuum, thereby increasing the degree of freedom in motor design without reducing reliability. By using a position detection method and easily forming a plurality of slit tracks on a flat surface using a flat slit disk, and using these to detect the absolute angle within one rotation of the mouth, it is lightweight and thin. It is an object of the present invention to provide a vacuum position detecting device in a vacuum mode that can detect an absolute angle of a vacuum.
本発明の真空モー夕における真空位置検出方法は、ステ一夕を有するモータケ一 スに軸受を介してロー夕を回転自在に有し、 前記口一夕に検出器ロータを設け、 前 記検出器ロー夕を真空側に配置して位置を検出する方法において、前記検出器口一 夕は、磁性鋼板に複数のスリットを平面上に形成した平板状のスリットディスクと これを固定するためのスリットディスクベースよりなり、 前記ステ一夕側には MR 素子、永久磁石をセンサケース内に樹脂で封入した磁気センサへッドが前記スリッ 卜ディスクに対向して設けられ、前記磁気センサへッドが前記スリットディスク面 上に形成された前記スリッ卜の有無を真空中で検出することを特徴とする。  A vacuum position detecting method in a vacuum motor according to the present invention comprises a motor case having a stay rotatably rotatable via a bearing in a motor case, a detector rotor provided in the mouth, and the detector described above. In the method for detecting a position by arranging a rotatable device on a vacuum side, the detector port may include a flat slit disk in which a plurality of slits are formed on a plane in a magnetic steel plate, and a slit disk for fixing the slit disk. A magnetic sensor head in which a MR element and a permanent magnet are sealed in resin in a sensor case is provided on the stay side so as to face the slit disk, and the magnetic sensor head is The presence or absence of the slit formed on the slit disk surface is detected in a vacuum.
また、 本発明の真空モー夕における真空位置検出方法は、 ステ一夕を有するモー 夕ケースに軸受を介してロー夕を回転自在に有し、前記ロー夕に検出器ロータを設 け、 前記検出器ロータを真空側に配置して位置を検出する方法において、 前記検出 器ロー夕は、 磁性鋼板に 1回転あたりのスリット数が 2 N、 2 N ± 1 (ただし、 Nは 自然数)であるスリットトラックを含む複数のスリットトラックを平面上に形成し た平板状のスリットディスクとこれを固定するためのスリットディスクベースよ りなり、 前記ステ一夕側には M R素子、 永久磁石をセンサケース内に樹脂で封入し た磁気センサへッドが前記スリツトディスクに対向して配置され、 このスリツトト ラックよりモータロー夕の 1回転あたりの絶対位置を真空中で検出することを特 徴とする。 Further, the method of detecting a vacuum position in a vacuum motor according to the present invention comprises: a motor case having a stay; a rotatable rotatable via a bearing; a detector rotor provided in the rotatable; In the method of detecting the position by disposing the detector rotor on the vacuum side, the detector rotor has a slit whose number of slits per rotation is 2 N , 2 N ± 1 (where N is a natural number) in the magnetic steel plate. It consists of a flat slit disk in which a plurality of slit tracks including a track are formed on a plane and a slit disk base for fixing the slit disk.On the side of the stay, an MR element and a permanent magnet are placed in the sensor case. A magnetic sensor head encapsulated in resin is arranged opposite the slit disk, and the absolute position per rotation of the motor rotor is detected from the slit track in a vacuum. To.
さらに、 本発明の真空モータにおける真空位置検出装置は、 ステ一夕を有するモ 一夕ケースに軸受を介してロー夕を回転自在に有し、前記ロータに検出器ロー夕を 設け、前記検出器口一夕を真空側に位置するよう配置した真空位置検出器において、 前記検出器ロータは、磁性鋼板に複数のスリットを平面上に形成した平板状のスリ ットディスクとこれを固定するためのスリットディスクベースよりなり、前記ステ 一夕側には M R素子、永久磁石をセンサケース内に樹脂で封入した磁気センサへッ ドが前記スリットディスクに対応して設けられ、前記磁気センサへッドが真空内で スリットディスクに対向して位置するよう構成したことを特徴とする。 Further, the vacuum position detecting device in the vacuum motor according to the present invention has a motor case having a stay and a rotatable rotatable via a bearing in a mooring case, and a detector rotatable on the rotor. In a vacuum position detector provided so that the detector port is located on the vacuum side, the detector rotor is a flat slit disk in which a plurality of slits are formed in a plane on a magnetic steel plate and fixed thereto. A magnetic sensor head in which an MR element and a permanent magnet are sealed in resin in a sensor case is provided corresponding to the slit disk. The disk is configured to be located in a vacuum so as to face the slit disk.
また、 本発明の真空モータにおける真空位置検出装置は、 ステ一夕を有するモー 夕ケースに軸受を介してロー夕を回転自在に有し、前記ロー夕に検出器ロータを設 け、前記検出器ロー夕を真空側に配置して位置を検出する真空位置検出装置におい て、前記検出器口一夕は、磁性鋼板に 1回転あたりのスリット数カ 2 N、 2 N ± 1 (た だし、 Nは自然数) であるスリットトラックを含む複数のスリットトラックを平面 上に形成した平板状のスリットディスクとこれを固定するためのスリットデイス クベースよりなり、 前記ステ一夕側には MR素子、 永久磁石をセンサケース内に樹 脂で封入した磁気センサへッドが前記スリツトディスクに対向して配置され、 この スリットトラックよりモータロータの 1回転あたりの絶対位置を真空中で検出で きるように構成したことを特徴とする。 Further, the vacuum position detecting device in the vacuum motor according to the present invention comprises: a motor case having a stay and a rotatable rotatable via a bearing; a detector rotor provided on the rotatable; In a vacuum position detecting device for detecting a position by locating a rotatable plate on a vacuum side, the detector port is provided on a magnetic steel plate at a number of slits per rotation of 2N , 2N ± 1 (N, Is a natural number) consisting of a flat slit disk in which a plurality of slit tracks including a slit track are formed on a plane, and a slit disk base for fixing the slit track. An MR element and a permanent magnet are provided on the stay side. A magnetic sensor head sealed with resin is placed in the sensor case so as to face the slit disk, and the absolute position per rotation of the motor rotor can be detected in vacuum from this slit track. It is characterized by having been configured to be able to.
本発明は、前記磁気センサへッドのセンサケース材質としてオーステナイト系ス テンレス鋼を用い、前記磁気センサへッドから出ている前記センサケーブルの被覆 材質としてフッ素樹脂を用い、前記 M R素子と前記永久磁石をエポキシ樹脂で前記 センサケース内に封入すること、前記 M R素子と前記永久磁石をアルミナ充填ェポ キシ榭脂で前記センサケース内に封入すること、前記磁気センサへッドの外周に固 定用つばを設けること、前記固定用つばにネジ止め用丸穴または長穴を開けること、 前記スリットディスクの磁性材料としてケィ素鋼板を用いること、 あるいは前記ス リットディスクベースの材料として非磁性金属を用いることができる。  The present invention uses an austenitic stainless steel as a sensor case material of the magnetic sensor head, uses a fluororesin as a coating material of the sensor cable protruding from the magnetic sensor head, A permanent magnet is encapsulated in the sensor case with epoxy resin, the MR element and the permanent magnet are encapsulated in the sensor case with alumina-filled epoxy resin, and are fixed around the magnetic sensor head. Providing a fixed collar, making a round hole or a long hole for screwing in the fixing collar, using a silicon steel plate as a magnetic material of the slit disk, or a non-magnetic metal as a material of the slit disk base Can be used.
以上説明したように本発明によれば、  According to the present invention as described above,
( 1 ) 磁気センサ、 スリットディスクの発ガスを抑え、 耐腐食性を持たせて真空内 に配置することができるので、信頼性を落とさずにモータ設計の自由度を増大させ ることができる。 ( 2 ) 真空ロボット等に適用した場合、 ロータ 1回転内の絶対角度が検出できるた め、 電源投入時および何らかの原因で停止しても原点復帰等が必要なく、 生産性を 向上することができる。 (1) Since the gas emitted from the magnetic sensor and the slit disk can be suppressed and can be placed in a vacuum with corrosion resistance, the degree of freedom in motor design can be increased without reducing reliability. (2) When applied to a vacuum robot, etc., since the absolute angle within one rotation of the rotor can be detected, it is not necessary to return to the home position, etc., even when the power is turned on or when the rotor is stopped for any reason, thus improving productivity. .
[図面の簡単な説明]  [Brief description of drawings]
図 1は本発明の実施例 1の形態を示す側断面図である。図 2は本発明の実施例 1 の磁気センサへッド側断面図である。図 3は本発明の実施例 4の磁気センサへッド 側断面図である。図 4は本発明の実施例の磁気センサへッド出力信号波形を示す図 である。図 5は本発明の実施例の磁気センサへッド構成部品である M R素子の接続 図である。図 6は本発明で使用するオーステナイト系ステンレス鋼の種類を示す図 である。 図 7は本発明の実施例 5の形態を示す磁気センサヘッド図である。 図 8は 本発明の実施例 8の絶対角度を検出する構成を示した斜示図である。図 9は信号処 理回路 9のプロック図である。図 1 0は信号処理回路 9での出力形態を説明するた めの図である。 図 1 1は従来例の側断面図である。 図 1 2は従来例の磁気センサ側 断面図である。  FIG. 1 is a side sectional view showing an embodiment 1 of the present invention. FIG. 2 is a sectional side view of the magnetic sensor head according to the first embodiment of the present invention. FIG. 3 is a side sectional view of a magnetic sensor head according to a fourth embodiment of the present invention. FIG. 4 is a diagram showing a head output signal waveform of the magnetic sensor according to the embodiment of the present invention. FIG. 5 is a connection diagram of an MR element which is a component of the magnetic sensor head according to the embodiment of the present invention. FIG. 6 is a diagram showing the types of austenitic stainless steel used in the present invention. FIG. 7 is a magnetic sensor head diagram showing an embodiment 5 of the present invention. FIG. 8 is a perspective view showing a configuration for detecting an absolute angle according to the eighth embodiment of the present invention. FIG. 9 is a block diagram of the signal processing circuit 9. FIG. 10 is a diagram for explaining an output form in the signal processing circuit 9. FIG. 11 is a side sectional view of a conventional example. FIG. 12 is a sectional view of a conventional magnetic sensor side.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
以下、 本発明の実施例を図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1 Example 1
図 1は、 本発明の第 1の実施例を示す側断面図である。 図 1において、 真空位置 検出装置は、モータコイル 1 1を有するステ一夕 1に固定された磁気センサへッド 2と、 ロー夕マグネット 1 0を有するロータ 3にネジ 9等で固定されたスリットデ イスクベース 4に接着剤等で貼り付けられた平板状のスリットディスク 5が真空 中で対向するように配置されている。前記口一夕 3は前記ステ一夕 1と軸受 6を介 して取り付けられているので、前記スリットディスク 5は前記磁気センサへッド 2 に対して前記ロータ 3とともに回転できる機構となっている。 前記スリットディ スク 5は、磁性鋼板をエッチング等で複数のスリット穴を平面上に形成することが できるので、 非常に薄くすることができ、 また、 スリット外形寸法を自由に設計で さる。  FIG. 1 is a side sectional view showing a first embodiment of the present invention. In FIG. 1, the vacuum position detecting device includes a magnetic sensor head 2 fixed to a stay 1 having a motor coil 11 and a slit sensor fixed to a rotor 3 having a rotatable magnet 10 with screws 9 or the like. A flat slit disk 5 adhered to the disk base 4 with an adhesive or the like is arranged so as to face each other in a vacuum. Since the mouth 3 is attached to the stay 1 via a bearing 6, the slit disk 5 has a mechanism capable of rotating together with the rotor 3 with respect to the magnetic sensor head 2. . Since the slit disk 5 can form a plurality of slit holes on a plane by etching a magnetic steel plate or the like, the slit disk 5 can be made extremely thin, and the external dimensions of the slit can be freely designed.
図 2は、 前記磁気センサヘッド 2の構成を示す断面図である。 非磁性のセンサケ ース 2 a内に M R素子 2 b、 永久磁石 2 cを図 2のように配置し、 M R素子出力線 2 eおよび M R素子電源線 2 f は、永久磁石 2 cを避けて前記センサケーブル 7に ハンダ等で接続されている。 FIG. 2 is a sectional view showing the configuration of the magnetic sensor head 2. As shown in FIG. The MR element 2b and the permanent magnet 2c are arranged in the non-magnetic sensor case 2a as shown in Fig. 2, and the MR element output line 2 e and the MR element power supply line 2 f are connected to the sensor cable 7 with solder or the like while avoiding the permanent magnet 2 c.
前記センサケース 2 a内に前記 M R素子 2 b、 永久磁石 2 c、 M R素子出力線、 2 e、 M R素子電源線 2 f、 センサケーブル 7端を樹脂 2 dで封入することによつ て、 真空内に配置できる。 コネクタ 8は、 真空内に配置されている前記磁気センサ へッド 2の出力信号を大気側に出力するためのコネクタであり、真空側で前記セン サケーブル 7と接続している。  By enclosing the MR element 2b, the permanent magnet 2c, the MR element output line, 2e, the MR element power supply line 2f, and the sensor cable 7 end with the resin 2d in the sensor case 2a, Can be placed in a vacuum. The connector 8 is a connector for outputting an output signal of the magnetic sensor head 2 arranged in a vacuum to the atmosphere side, and is connected to the sensor cable 7 on the vacuum side.
前記磁気センサヘッド 2の出力信号を図 4 ( a ) に示す。 スリット穴の有無によ るリラクタンス変化によりスリットピツチに相当する周期の疑似正弦波 A相と 90° 位相の異なる B相信号が出力される。前記センサケーブル 7と前記 M R素子出力線 2 eおよび前記 M R素子電源線 2 f は、 図 5に示すように接続されており、 この A 相、 B相疑似正弦波信号を信号処理回路にて AZD変換および通倍処理等を行い、 図 4 ( b ) に示す a相、 b相パルス信号を出力する。  The output signal of the magnetic sensor head 2 is shown in FIG. Due to the reluctance change depending on the presence or absence of the slit hole, a pseudo sine wave with a period corresponding to the slit pitch A-phase and a B-phase signal different in 90 ° phase are output. The sensor cable 7, the MR element output line 2e, and the MR element power supply line 2f are connected as shown in FIG. 5, and the A-phase and B-phase pseudo sine wave signals are converted into AZD signals by a signal processing circuit. Performs conversion and multiplication processing, and outputs the a-phase and b-phase pulse signals shown in Fig. 4 (b).
上記手段および構成により、磁気センサへッドとスリットディスクおよびスリッ トディスクベースを真空中内に配置できるので、モータ設計の自由度を増大させる ことができる。  With the above-described means and configuration, the magnetic sensor head, the slit disk, and the slit disk base can be arranged in a vacuum, so that the degree of freedom in motor design can be increased.
実施例 2 Example 2
本実施例は、前記磁気センサへッド 2のセンサケース 2 aの材料として発ガスが 少なく、 磁性のないオーステナイト系ステンレス鋼を用いることである。 オーステ ナイト系ステンレス鋼は、 図 6に示すような鋼種名がある。 オーステナイト系ステ ンレス鋼は、 磁性がなく、 アルミ材等と比較して高強度であるので、 磁気センサケ —スとして最適である。 特に、 S U S 3 0 3を使用することによって、 センサケー ス 2 aの形状を比較的自由に形成することができる。 また、 S U S 3 0 4または、 S U S 3 1 6は発ガスが少ないためこれらを使用することにより発ガスを低く抑 え、 発ガス特性の向上を達成している。  In the present embodiment, an austenitic stainless steel that emits little gas and has no magnetism is used as a material of the sensor case 2a of the magnetic sensor head 2. Austenitic stainless steel has a steel type name as shown in Fig. 6. Austenitic stainless steel has no magnetism and has higher strength than aluminum materials, so it is the best magnetic sensor case. In particular, by using SUS303, the shape of the sensor case 2a can be formed relatively freely. In addition, since SUS304 or SUS316 has a small amount of gas generation, gas generation is suppressed by using these materials, and gas generation characteristics are improved.
実施例 3 Example 3
本実施例は、図 3に示すように前記センサケーブル 7にフッ素樹脂被覆を施した センサケーブル 7 aを前記 M R素子出力線 2 eおよび前記 M R素子電源線 2 f に 接続し、 樹脂 2 dで封入することによって、 発ガスを低く抑え、 発ガス特性の向上 を達成している。 In this embodiment, as shown in FIG. 3, a sensor cable 7a in which the sensor cable 7 is coated with a fluorine resin is connected to the MR element output line 2e and the MR element power supply line 2f. By connecting and enclosing with 2 d of resin, gas generation is kept low and gas generation characteristics are improved.
実施例 4 Example 4
本実施例は、 前記樹脂 2 dの材質としてエポキシ樹脂を用いることによって、 発 ガスを低く抑え、 発ガス特性の向上を達成している。 さらに、 前記エポキシ樹脂を アルミナ充填エポキシ樹脂とすれば、 樹脂にアルミナが含まれていることから、 榭 脂硬化の際、 通常の樹脂よりも変形が小さいため、 前記 M R素子、 永久磁石、 M R 素子出力線、 M R素子電源線に加わる応力を緩和し、 前記 M R素子、 永久磁石の位 置ずれ、 前記 M R素子出力線、 M R素子電源線の断線がなく、 信頼性を向上させる ことができる。  In this embodiment, the use of an epoxy resin as the material of the resin 2d suppresses outgassing and achieves an improvement in outgassing characteristics. Further, if the epoxy resin is an alumina-filled epoxy resin, since the resin contains alumina, when the resin is hardened, its deformation is smaller than that of a normal resin, so that the MR element, the permanent magnet, and the MR element The stress applied to the output line and the MR element power supply line is relaxed, and the MR element and the permanent magnet are not displaced, and the MR element output line and the MR element power supply line are not broken, so that the reliability can be improved.
実施例 5 Example 5
本実施例は、 図 7 ( a ) に示すように前記磁気センサヘッド 2のセンサケース 2 aの外周に固定用つば 2 gを設けることである。 この前記固定用つば 2 gを設ける ことによって、前記磁気センサへッド 2と前記スリットディスク 5との間隔を一定 に保つことができ、前記磁気センサへッド 2の位置決めを容易にすることができる。 なお、 この場合のセンサヘッド固定方法の一例として、 センサケースに固定用スナ ップを設け、 モー夕ステ一夕に固定する方法がある。  In this embodiment, as shown in FIG. 7A, a fixing collar 2 g is provided on the outer periphery of the sensor case 2 a of the magnetic sensor head 2. By providing the fixing collar 2 g, the distance between the magnetic sensor head 2 and the slit disk 5 can be kept constant, and the positioning of the magnetic sensor head 2 can be facilitated. it can. As an example of a method for fixing the sensor head in this case, there is a method in which a fixing snap is provided in the sensor case and the sensor head is fixed overnight.
さらに、 図 7 ( b ) に示すようなネジ止め用丸穴のあいた固定用つば 2 hを設ける ことによって、前記磁気センサへッド 2の固定用つば 2 hにある丸穴にネジを通し て前記ステ一夕 1に容易にしっかりと固定することができ、振動等に強く信頼性を 向上させることができる。 Further, by providing a fixing collar 2 h having a round hole for screwing as shown in FIG. 7 (b), a screw can be passed through the round hole in the fixing collar 2 h of the magnetic sensor head 2. It can be easily and firmly fixed to the stay, and it is strong against vibration and the like, and the reliability can be improved.
また、図 7 ( c )に示すように長穴のあいた固定用つば 2 jを設けることによって、 前記磁気センサへッド 2の回転方向の取り付け角度を調整をすることができ、磁気 センサヘッドの出力信号の振幅、 位相を調節することができるので、 前記磁気セン サへッド 2の検出精度を向上させることができる。 Further, by providing a fixing collar 2j having a long hole as shown in FIG. 7 (c), the mounting angle of the magnetic sensor head 2 in the rotation direction can be adjusted, and the magnetic sensor head can be adjusted. Since the amplitude and phase of the output signal can be adjusted, the detection accuracy of the magnetic sensor head 2 can be improved.
なお、 前記固定用つば 2 g、 丸穴のあいた固定用つば 2 h、 長穴のあいた固定用 つば 2 jの形状は円板状でなくてもよく、 図 7 ( d ) に示すような形状でもよいこ とは明らかである。  Note that the shape of the fixing collar 2 g, the fixing collar 2 h having a round hole, and the fixing collar 2 j having a long hole may not be a disk shape, and may be a shape as shown in FIG. 7 (d). It is clear that this is fine.
実施例 6 本実施例は、前記スリットディスク 5の材料としてケィ素鋼板を用いることであ る。 前記スリットディスク 5の材料として磁性鋼板を用いれば信号は得られるが、 材質によっては、 不安定な磁気的特性による検出精度低下、 および出力信号振幅減 少による耐ノイズ性低下等の問題が発生する。ケィ素鋼板を前記スリツトディスク 5の材料として用いることによって、 不安定な磁気的特性による精度低下、 および 出力信号振幅減少による耐ノイズ性低下等の問題を回避することができ、検出精度 および信頼性を向上させることができる。 Example 6 In this embodiment, a silicon steel plate is used as the material of the slit disk 5. If a magnetic steel plate is used as the material of the slit disk 5, a signal can be obtained, but depending on the material, problems such as a decrease in detection accuracy due to unstable magnetic characteristics and a decrease in noise resistance due to a decrease in output signal amplitude occur. . By using a silicon steel sheet as the material of the slit disk 5, it is possible to avoid problems such as a decrease in accuracy due to unstable magnetic characteristics and a decrease in noise resistance due to a decrease in output signal amplitude, and the detection accuracy and reliability are improved. Performance can be improved.
実施例 7 Example 7
本実施例は、 前記スリットディスクベース 5の材料として、 非磁性金属を用いる ことである。 非磁性金属を用いることによって、 前記スリットディスク 5のスリッ ト有無によるリラクタンス変化に影響を与えることがないので、安定した出力信号 を得ることができ信頼性を向上させることができる。  In this embodiment, a non-magnetic metal is used as the material of the slit disk base 5. By using a non-magnetic metal, there is no effect on the reluctance change due to the presence or absence of the slit disk 5 slit, so that a stable output signal can be obtained and the reliability can be improved.
実施例 8 Example 8
本実施例は、 前記スリットディスク 5に 1回転あたりのスリット数が 2 N、 2 N 土 1であるスリツト卜ラックを含む複数のスリツトトラックを平面上に形成し、 こ のスリットトラックよりモータの前記ロータ 3の 1回転あたりの絶対角度を真空 中で検出するものである。  In the present embodiment, a plurality of slit tracks including a slit track having the number of slits per rotation of 2N and 2N soil 1 are formed on a plane on the slit disk 5, and the motor of the slit is used by the slit tracks. The absolute angle per rotation of the rotor 3 is detected in a vacuum.
具体的な構成例を図 8に示す。 図 8において、 前記スリットディスク 5には、 1 回転中のパルス数のそれぞれ異なる Aスリツトトラック 5 1、 Bスリットトラック 5 2の 2つのスリッ卜卜ラックがエッチング等の手法により形成され、磁気センサ へッド 2には、 Aスリットトラック用 M R素子 2 b— 1、 Bスリットトラック用 M R素子 2 b— 2が配置されており、前記スリットディスク 5と前記磁気センサへッ ド 2は、 対向して配置されている。 9は前記磁気センサヘッド 2の疑似正弦波信号 を取り入れて絶対角度信号を出力する信号処理回路である。スリットディスク 5が 回転するとスリット穴の有無によるリラクタンス変化により図 4 ( a ) に示すよう なスリットピッチに相当する周期の疑似正弦波 A相と 90°位相の異なる B相信号が 出力される。 さらにこの A相、 B相信号を前記信号処理回路 9によって、 1回転中 の絶対角度信号に変換する。 1例として Aスリツトトラックには 1回転に N=7の 2N= 27= 1 28のスリツ トが形成され、 Bスリットトラックには Aスリットトラックより 1スリツト少ない 1回転に 2 N— 1 =27— 1= 1 27のスリツ卜が形成されている場合についての 絶対角度信号を検出する方法を図 9の信号処理回路 9のプロック図で説明する。 図 9において、 Aスリツトトラック用 MR素子 2 b— 1は、 前記スリツトデイス ク 5の 1回転に 1 28周期の磁束の変化を受け、 1 28周期の図 4 (a) に示すよ うな 90°位相の異なる A相、 B相の信号を出力する。 同様に前記 Bスリットトラ ック検出用 MR素子 2 b_ 2は、前記スリツトディスク 5の 1回転に 127周期の 磁束の変化を受け、 1 27周期の 90°位相の異なる A相、 B相の信号を出力する。 これら出力信号は増幅器 91で増幅され、 それぞれ位相変調回路 A 92 aおよび 位相変調回路 B 92 bに入力される。 前記位相変調回路 92 aおよび 92 bでは、 発信器 97から出力されるクロック信号 CKを入力して搬送波信号生成回路 95 で生成された一定周期の搬送波信号 96を A相、 B相信号で位相変調し、 スリット ディスク 1回転に 0°〜360°の位相変化を 128回くり返す 0 1 ' 信号と、 12 7回くり返される 02' に変換される。 前記 01 ' 、 Θ 2 ' 信号は、 2値化された 信号で、 立ち上がりエッジ時間が位相情報を持つ信号である。 位相差検出回路 94 では、 図 10に示すような 0 1 ' 信号と 02 ' 信号の位相差であるスリットデイス ク 1回転に 1回の 0°〜360°の位相変化をもたらす 0 1 - Θ 2信号が出力される。 前記 0 1— 02信号は、 前記 0 1 ' と 02 ' 信号の立ち上がりエッジ間を前記クロ ック信号 C Kでカウントし、デジタル化した位相差信号である。避倍回路 93では、 前記搬送波信号 96と前記 0 1 '信号の立ち上がりエッジ間をクロック信号 CKで カウントする。 これによつて、 前記搬送波信号 96の周期をクロック信号 CKの周 期の I倍 ( Iは自然数) とすると、 分割数 Iのデジタル化した位相信号 1を得る ことができる。 絶対値信号生成回路 98により、 θ ί— θ 2信号で 0 1信号の繰り 返し番数を特定することによって、 1回転に 128 X分割数 Iパルスの絶対角度信 号 99を得ることができる。 Fig. 8 shows a specific configuration example. In FIG. 8, two slit tracks of an A slit track 51 and a B slit track 52 having different numbers of pulses during one rotation are formed on the slit disk 5 by a method such as etching. The head 2 has an MR element 2 b-1 for the A slit track and an MR element 2 b-2 for the B slit track. The slit disk 5 and the magnetic sensor head 2 face each other. It is arranged. Reference numeral 9 denotes a signal processing circuit which takes in the pseudo sine wave signal of the magnetic sensor head 2 and outputs an absolute angle signal. When the slit disk 5 is rotated, a pseudo sine wave A phase with a period corresponding to the slit pitch and a B phase signal having a 90 ° phase difference are output as shown in Fig. 4 (a) due to the reluctance change due to the presence or absence of the slit hole. Further, the A-phase and B-phase signals are converted by the signal processing circuit 9 into absolute angle signals during one rotation. Suritsu DOO 2 N = 2 7 = 1 28 of N = 7 per revolution to the A scan Ritsuto track is formed as an example, 2 per revolution 1 slit smaller than A slit track the B slit tracks N - 1 = 2 7 - describing 1 = 1 27 If Suritsu Bok is formed a method for detecting the absolute angle signal for the at proc diagram of the signal processing circuit 9 in FIG. In FIG. 9, the MR element 2b-1 for the A-slit track receives a change in magnetic flux of 128 cycles in one rotation of the slit disk 5, and has a 90 ° rotation as shown in FIG. Outputs A-phase and B-phase signals with different phases. Similarly, the B slit track detecting MR element 2b_2 receives a change of magnetic flux of 127 cycles in one rotation of the slit disk 5, and has 127 cycles of A phase and B phase having different 90 ° phases. Output a signal. These output signals are amplified by an amplifier 91 and input to a phase modulation circuit A 92a and a phase modulation circuit B 92b, respectively. In the phase modulation circuits 92a and 92b, the clock signal CK output from the oscillator 97 is input, and the carrier signal 96 having a constant period generated by the carrier signal generation circuit 95 is phase-modulated by the A-phase and B-phase signals. Then, the phase change from 0 ° to 360 ° is repeated 128 times in one revolution of the slit disk, and it is converted into 01 ′ signal which is repeated 127 times and 02 ′ which is repeated 127 times. The 01 ′ and Θ2 ′ signals are binarized signals and have rising edge times with phase information. In the phase difference detection circuit 94, as shown in FIG. 10, a phase change of 0 ° to 360 ° is provided once for one rotation of the slit disk, which is a phase difference between the 0 1 ′ signal and the 02 ′ signal. A signal is output. The 01-02 signal is a phase difference signal obtained by counting the rising edge of the 01 ′ and 02 ′ signals with the clock signal CK and digitizing the counted signal. In the multiplier circuit 93, the interval between the rising edge of the carrier signal 96 and the rising edge of the 01 ′ signal is counted by the clock signal CK. Accordingly, if the period of the carrier signal 96 is I times the period of the clock signal CK (I is a natural number), a digitized phase signal 1 with a division number I can be obtained. By specifying the number of repetitions of the 01 signal by the θ θ−θ2 signal by the absolute value signal generation circuit 98, it is possible to obtain the absolute angle signal 99 of 128 X division number I pulses per rotation.
本構成にすることによって、真空中で高分解能な絶対位置信号を得ることができ る。 また、 本実施例のように 2つのスリットトラックだけでなく複数のスリットト ラックで補完することによって繰り返し番数の特定を容易にすることができ、信頼 性を向上することができる。 With this configuration, a high-resolution absolute position signal can be obtained in a vacuum. In addition, not only two slit tracks but also a plurality of slit tracks as in this embodiment. By complementing with a rack, the number of repetitions can be easily specified and reliability can be improved.
なお、 前記実施例では口一タリエンコーダ、 リニアエンコーダの両方に適用でき ることは明らかである。  It is clear that the above embodiment can be applied to both a single encoder and a linear encoder.
[産業上の利用可能性]  [Industrial applicability]
本発明は、半導体製造装置等の真空内で使用する真空モータにおける真空位置検出方 法および真空位置検出装置を製造、 提供する分野に利用することができる。  INDUSTRIAL APPLICABILITY The present invention can be used in the field of manufacturing and providing a vacuum position detecting method and a vacuum position detecting device in a vacuum motor used in a vacuum such as a semiconductor manufacturing apparatus.

Claims

請求の範囲 The scope of the claims
1 . ステ一夕を有するモータケースに軸受を介してロー夕を回転自在に有し、 前 記ロータに検出器ロータを設け、前記検出器口一夕を真空側に配置して位置を検出 する方法において、  1. A motor case having a stay is rotatably provided with a rotor via a bearing, a detector rotor is provided on the rotor, and the detector port is located on the vacuum side to detect a position. In the method,
前記検出器ロータは、磁性鋼板に複数のスリットを平面上に形成した平板状のス リットディスクとこれを固定するためのスリットディスクベースよりなり、前記ス テ一夕側には M R素子、永久磁石をセンサケ一ス内に樹脂で封入した磁気センサへ ッドが前記スリットディスクに対向して設けられ、前記磁気センサへッドが前記ス リットディスク面上に形成された前記スリットの有無を真空中で検出することを 特徴とする真空モー夕における真空位置検出方法。  The detector rotor is composed of a flat slit disk in which a plurality of slits are formed on a magnetic steel plate on a plane, and a slit disk base for fixing the slit disk. A magnetic sensor head enclosing resin in a sensor case is provided so as to face the slit disk, and the presence or absence of the slit formed on the slit disk surface is determined in a vacuum by the magnetic sensor head. A method for detecting a vacuum position in a vacuum mode, characterized in that the position is detected by a vacuum.
2 . ステ一夕を有するモ一夕ケースに軸受を介してロー夕を回転自在に有し、 前 記ロータに検出器ロータを設け、前記検出器ロータを真空側に配置して位置を検出 する方法において、  2. A rotatable case is rotatably provided via a bearing in a motor case having a stay, a detector rotor is provided on the rotor, and the detector rotor is arranged on the vacuum side to detect a position. In the method,
前記検出器ロー夕は、 磁性鋼板に 1回転あたりのスリット数が 2 N、 2 N ± 1 (た だし、 Nは自然数) であるスリットトラックを含む複数のスリットトラックを平面 上に形成した平板状のスリットディスクとこれを固定するためのスリットデイス クベースよりなり、 前記ステ一夕側には M R素子、 永久磁石をセンサケース内に樹 脂で封入した磁気センサへッドが前記スリツトディスクに対向して配置され、 この スリットトラックよりモータロータの 1回転あたりの絶対位置を真空中で検出す ることを特徴とする真空モータにおける真空位置検出方法。 The detector is a flat plate formed by forming a plurality of slit tracks on a magnetic steel sheet, including a plurality of slit tracks having a number of slits per rotation of 2 N and 2 N ± 1 (where N is a natural number). A magnetic sensor head in which a MR element and a permanent magnet are sealed in resin in a sensor case faces the slit disk. And detecting the absolute position per rotation of the motor rotor from the slit track in a vacuum in a vacuum motor.
3 . ステ一夕を有するモータケースに軸受を介して口一夕を回転自在に有し、 前 記口一夕に検出器口一夕を設け、前記検出器ロータを真空側に位置するよう配置し た真空位置検出装置において、  3. A motor case having a stay is rotatably provided with a port through a bearing through a bearing, and a detector port is provided at the port described above, and the detector rotor is arranged on the vacuum side. In the vacuum position detection device
前記検出器ロー夕は、磁性鋼板に複数のスリットを平面上に形成した平板状のス リットディスクとこれを固定するためのスリットディスクベースよりなり、前記ス テ一夕側には M R素子、 永久磁石、 前記 M R素子の信号出力および電源端子に接続 するセンサケーブル端をセンサケース内に樹脂で封入した磁気センサへッドが前 記スリットディスクに対応して設けられ、前記磁気センサへッドが真空内でスリッ トディスクに対向して位置するよう構成したことを特徵とする真空モー夕におけ る真空位置検出装置。 The detector is composed of a flat slit disk in which a plurality of slits are formed on a magnetic steel plate on a plane, and a slit disk base for fixing the slit disk. A magnetic sensor head in which a magnet and a sensor cable end connected to a signal output and a power supply terminal of the MR element are sealed in a sensor case with resin is provided corresponding to the slit disk, and the magnetic sensor head is provided. Slip in vacuum A vacuum position detecting device in a vacuum motor, characterized in that it is configured to be located opposite to a disk.
4 . 前記磁気センサへッドのセンサケース材質としてオーステナイト系ステンレ ス鋼を用いたことを特徴とする請求項 3記載の真空モー夕における真空位置検出'  4. The vacuum position detection in vacuum mode according to claim 3, wherein austenitic stainless steel is used as a sensor case material of the magnetic sensor head.
5 . 前記磁気センサへッドから出ている前記センサケーブルの被覆材質としてフ ッ素樹脂を用いたことを特徴とする請求項 3記載の真空位置検出装置。 5. The vacuum position detecting device according to claim 3, wherein a fluorine resin is used as a coating material of the sensor cable protruding from the magnetic sensor head.
6 . 前記 M R素子と前記永久磁石をエポキシ樹脂で前記センサケース内に封入し たことを特徴とする請求項 3記載の真空モー夕における真空位置検出装置。  6. The vacuum position detecting device in a vacuum motor according to claim 3, wherein the MR element and the permanent magnet are sealed in the sensor case with epoxy resin.
7 . 前記 MR素子と前記永久磁石をアルミナ充填エポキシ樹脂で前記センサケー ス内に封入したことを特徴とする請求項 3記載の真空モー夕における真空位置検  7. The vacuum position detection in a vacuum motor according to claim 3, wherein the MR element and the permanent magnet are sealed in the sensor case with epoxy resin filled with alumina.
8 . 前記磁気センサへッドの外周に固定用つばを設けたことを特徴とする請求項 請求項 3記載の真空モー夕における真空位置検出装置。 8. The vacuum position detecting device in a vacuum motor according to claim 3, wherein a fixing collar is provided on an outer periphery of the magnetic sensor head.
9 . 前記固定用つばにネジ止め用丸穴または長穴を開けたことを特徴とする請求 項 3記載の真空モー夕における真空位置検出装置。  9. The vacuum position detecting device in a vacuum motor according to claim 3, wherein a round hole or a long hole for screwing is formed in the fixing collar.
1 0 . 前記スリットディスクの磁性鋼板材料としてゲイ素鋼板を用いたことを特 徴とする請求項 3記載の真空モー夕における真空位置検出装置。  10. The vacuum position detecting device in a vacuum motor according to claim 3, wherein a gay element steel plate is used as a magnetic steel plate material of the slit disk.
1 1 . 前記スリットディスクベースの材料として非磁性金属を用いたことを特徴 とする請求項 3記載の真空モー夕における真空位置検出装置。  11. The vacuum position detecting apparatus according to claim 3, wherein a non-magnetic metal is used as a material of the slit disk base.
1 2 . ステ一夕を有するモー夕ケースに軸受を介してロータを回転自在に有し、 前記ロー夕に検出器ロータを設け、前記検出器ロータを真空側に配置して位置を検 出する真空位置検出装置において、  1 2. A rotor case is rotatable via a bearing in a motor case having a stay and a detector, a detector rotor is provided in the rotor, and the detector rotor is arranged on the vacuum side to detect a position. In the vacuum position detector,
前記検出器ロー夕は、 磁性鋼板に 1回転あたりのスリット数が 2 N、 2 N ± 1 (た だし、 Nは自然数) であるスリットトラックを含む複数のスリットトラックを平面 上に形成した平板状のスリットディスクとこれを固定するためのスリットデイス クベースよりなり、 前記ステ一夕側には M R素子、 永久磁石をセンサケース内に榭 脂で封入した磁気センサへッドが前記スリットディスクに対向して配置され、 この スリットトラックよりモータロー夕の 1回転あたりの絶対位置を真空中で検出で きるように構成したことを特徴とする真空モー夕における真空位置検出装置。 The detector is a flat plate formed by forming a plurality of slit tracks on a magnetic steel sheet, including a plurality of slit tracks having a number of slits per rotation of 2 N and 2 N ± 1 (where N is a natural number). A magnetic sensor head in which a MR element and a permanent magnet are sealed in resin in a sensor case is opposed to the slit disk. Placed in this A vacuum position detecting device in a vacuum motor, wherein an absolute position per one rotation of a motor rotor is detected in a vacuum from a slit track.
PCT/JP2001/008077 2001-03-16 2001-09-17 Method and apparatus for detecting vacuum position in vacuum motor WO2002075904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001076518A JP3812807B2 (en) 2001-03-16 2001-03-16 Vacuum position detector for vacuum motor
JP2001-76518 2001-03-16

Publications (1)

Publication Number Publication Date
WO2002075904A1 true WO2002075904A1 (en) 2002-09-26

Family

ID=18933434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008077 WO2002075904A1 (en) 2001-03-16 2001-09-17 Method and apparatus for detecting vacuum position in vacuum motor

Country Status (2)

Country Link
JP (1) JP3812807B2 (en)
WO (1) WO2002075904A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185826A (en) * 2012-03-05 2013-09-19 Asahi Kasei Electronics Co Ltd Magnetic encoder
EP2995424B1 (en) * 2014-09-11 2018-12-12 Wezag GmbH Werkzeugfabrik Pliers
JP6951691B2 (en) 2019-11-14 2021-10-20 株式会社安川電機 Vacuum robots, vacuum motors, vacuum motor encoders,

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB232098A (en) * 1924-08-25 1925-04-16 Walter Partridge Locking device for motor-cars, motor-cycles and cycles for prevention of theft
JPS4860211A (en) * 1971-11-30 1973-08-23
JPS63159218U (en) * 1987-04-08 1988-10-18
JPH0247518U (en) * 1988-09-26 1990-03-30
JPH0464770U (en) * 1990-10-17 1992-06-03
JPH0863927A (en) * 1994-08-22 1996-03-08 Mitsubishi Chem Corp Disk cartridge
JPH11356025A (en) * 1998-06-08 1999-12-24 Tamagawa Seiki Co Ltd Vacuum motor structure
JP2000067668A (en) * 1998-08-24 2000-03-03 Sumitomo Wiring Syst Ltd Wiring jig for manufacturing wire harness
JP2000183279A (en) * 1998-10-05 2000-06-30 Fuji Electric Co Ltd Package for semiconductor element and manufacture thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB232098A (en) * 1924-08-25 1925-04-16 Walter Partridge Locking device for motor-cars, motor-cycles and cycles for prevention of theft
JPS4860211A (en) * 1971-11-30 1973-08-23
JPS63159218U (en) * 1987-04-08 1988-10-18
JPH0247518U (en) * 1988-09-26 1990-03-30
JPH0464770U (en) * 1990-10-17 1992-06-03
JPH0863927A (en) * 1994-08-22 1996-03-08 Mitsubishi Chem Corp Disk cartridge
JPH11356025A (en) * 1998-06-08 1999-12-24 Tamagawa Seiki Co Ltd Vacuum motor structure
JP2000067668A (en) * 1998-08-24 2000-03-03 Sumitomo Wiring Syst Ltd Wiring jig for manufacturing wire harness
JP2000183279A (en) * 1998-10-05 2000-06-30 Fuji Electric Co Ltd Package for semiconductor element and manufacture thereof

Also Published As

Publication number Publication date
JP2002281725A (en) 2002-09-27
JP3812807B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US6433536B1 (en) Apparatus for measuring the position of a movable member
US7579799B2 (en) System and method for determining angular position and controlling rotor orientation
JP5840374B2 (en) Absolute encoder device and motor
US6744385B2 (en) Magnetic micro-encoder and micro motor
JP4470577B2 (en) Rotation angle detector
US4093897A (en) Electric motor
WO1999013296A1 (en) Magnetic encoder
US20050212511A1 (en) Variable-reluctance resolver and rotational angle sensor using same
JPWO2007055135A1 (en) Magnetic encoder device
WO2004081490A1 (en) Rotation angle-detecting device
JP2001201362A (en) Rotation detecting device
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
WO2002075904A1 (en) Method and apparatus for detecting vacuum position in vacuum motor
JP2000065596A (en) Magnetic encoder
US4864300A (en) Rotating high-resolution shaft encoder utilizing capacitive sensing
US6326908B1 (en) Precision position encoder using coarse position indicator
JP4925389B2 (en) Encoder
JP3512537B2 (en) Rotation speed detector
EP1016852B1 (en) Apparatus for measuring the position of a movable member
JP2007113931A (en) Magnetic encoder
FR3118804A1 (en) Non-contact position sensor comprising a permanent magnet.
JPH11118517A (en) Sensor for body of rotation
JPS6358264A (en) Rotating direction detector
JP2012088276A (en) Rotation detector
US6928883B2 (en) Magnetic field coupler for fluid meter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase