WO2002075138A1 - Procede pour chauffer un catalyseur situe en aval dans le sens d'ecoulement dans un systeme d'echappement d'un moteur a combustion - Google Patents

Procede pour chauffer un catalyseur situe en aval dans le sens d'ecoulement dans un systeme d'echappement d'un moteur a combustion Download PDF

Info

Publication number
WO2002075138A1
WO2002075138A1 PCT/EP2002/002262 EP0202262W WO02075138A1 WO 2002075138 A1 WO2002075138 A1 WO 2002075138A1 EP 0202262 W EP0202262 W EP 0202262W WO 02075138 A1 WO02075138 A1 WO 02075138A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
adsorber
heating
downstream
features
Prior art date
Application number
PCT/EP2002/002262
Other languages
German (de)
English (en)
Inventor
Bodo Odendall
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2002075138A1 publication Critical patent/WO2002075138A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for heating a downstream catalyst in an exhaust system of an internal combustion engine with a plurality of catalysts arranged one behind the other in the exhaust flow direction.
  • the invention has for its object to heat up a downstream catalyst with little effort, without overheating the upstream catalyst.
  • the object is achieved by the method according to the features of claim 1, according to which the heating of the downstream catalyst is carried out by shifting the exothermic reaction from an upstream catalyst to a downstream catalyst.
  • the downstream catalyst is specifically heated. Energy losses due to the introduction of thermal energy through heat transfer and heat conduction from the outside and the associated risks of overheating other components - in particular upstream catalysts - are avoided. Since the heating only takes place by shifting the exothermic reaction from the upstream catalytic converter to the downstream catalytic converter, only reactions are used that already take place in the usual exhaust gas purification.
  • the downstream catalyst can be heated in a very simple manner without additional reactions and without additional means for limiting the temperature of other components. The process enables very low energy consumption and therefore low-consumption engines.
  • the method according to the features of claim 2 is preferred, in which the displacement can be achieved in a simple manner in a controlled manner by means of a ⁇ control with alternating rich-lean-operating cycle of the internal combustion engine and thus the heating of the downstream catalyst.
  • the exhaust emissions can be controlled and kept at a low level.
  • the method according to the features of claim 3 is particularly advantageous, since in this way the reduction of the pollutants HC and CO carried out in the upstream catalytic converter for exhaust gas purification in normal operation of the exhaust gas purification is shifted very easily into the downstream catalytic converter, as a result of which the downstream catalytic converter is heated up.
  • the pollutants can be broken down unchanged.
  • is preferably regulated in such a way that for ⁇ in cyclic fat operation during heating applies: 0.7> ⁇ ⁇ 0.8, preferably 0.74 ⁇ ⁇ ⁇ 0.76.
  • the method according to the features of claim 5 enables a very sensitive control of the rich-lean operating cycle and thus both the heating and the exhaust gas composition.
  • the methods according to the features of claims 6 and 7 are preferred, by means of which the exhaust gas limit values are reliably maintained and nevertheless a simple and reliable temperature increase can be achieved.
  • the method according to the features of claim 8 makes it possible to heat the NOx adsorber to desulfurization temperature to initiate the desulfurization without overheating the three-way catalyst.
  • Figure 1 shows the schematic structure of an exhaust system of a direct injection gasoline engine
  • FIG. 2a, b show two diagrams to show the heating behavior of the exhaust system of FIG. 1 without the inventive shift of the exothermic reaction into the downstream catalytic converter, wherein Figure 2a shows the temperature distribution at a speed of 200 km / h and
  • Figure 2b shows the temperature distribution at a speed of 120 km / h
  • FIG. 3 illustration to explain the functional principle of the ⁇ -
  • FIG. 4 shows a diagram to show the temperature distribution in the case of a ⁇ variation according to the invention for heating at a speed of 120 km / h;
  • FIG. 5 qualitative representation of the temperature and the measurable HC
  • FIG. 6 shows the change in the 0 2 storage content of the catalytic converter arranged upstream and downstream over time.
  • an exhaust system is shown using the example of a direct-injection Otto engine.
  • the exhaust gases are derived in a known manner from the internal combustion engine 1 via exhaust pipes 2, a three-way catalytic converter 3, an exhaust pipe 4, a NO x adsorber 6 and an exhaust pipe 7.
  • the exhaust pipe 4 is guided between the three-way catalytic converter 3 and the NO x adsorber 6 through an exhaust gas cooler 5 of a known type and upstream of the NO x adsorber 6 for detecting the inlet temperature of the exhaust gas in the NO den adsorber 6 Temperature sensor 10 arranged.
  • the three-way catalyst 3 is in a known manner with an upper temperature limit of 950 ° C., the NO x adsorber 6 with an upper one Temperature limit of 750 ° C designed.
  • the working range of the NCy adsorber 6 is between 250 ° C and 450 ° C in a known manner.
  • the exhaust gas cooler 5 is designed in a known manner so that it lowers the temperature of the exhaust gas to 750 ° C. even at the maximum speed of the vehicle.
  • the length of the three-way catalytic converter 3 in FIG. 1 was divided into three sections of equal length.
  • the position at the beginning of the catalyst is with A, the position after one third of the length with B, the position after two thirds ⁇ with C and the position at the end of l-
  • the exhaust gas cooler 5 is divided into three sections of equal length according to its length l 2 , E the input of the exhaust gas cooler 5, F the position after a third l 2 , G the position after two thirds l 2 and H the position at the end of the exhaust gas cooler 5 indicates.
  • the NO x adsorber was 6 of its length l 3 after divided into three sections of equal length, where J is the position at the beginning of the NO x - adsorber 6, K l is the position after a third 3, L is the position of two-thirds l 3 and M indicates the position at the outlet of the NO x adsorber 6.
  • the temperature profile over time shown in FIGS. 2a, 2b, 4 and 6 can be determined, for example, with the aid of the calorific value entry.
  • the ⁇ signal before the three-way catalytic converter 3 and after the NO x adsorber 6 is used to determine the calorific value entry in the NO x adsorber 6 more precisely.
  • the calorific value entry into the NO x adsorber 6 results from the broadband signal of the lambda probe 8 upstream of the three-way catalytic converter 3 and the time between the fat breakthrough of the lambda probe 9 downstream of the three-way catalytic converter 3 and the fat Breakthrough of the lambda probe 11 after the NO x adsorber 6 lies.
  • a maximum time until shortly before the breakthrough for the fat phase is stored in a map above the exhaust gas mass.
  • the temperature in the NO x adsorber 6 is calculated with the calorific value entry in the NO x adsorber 6 and with the temperatures in front of the NO x adsorber 6 measured with the temperature sensor 10.
  • the time until the fat breakthrough can be compared with the times stored in the map.
  • FIGS. 2a and 2b show the temperature profile TA, TB, TC, TD, TF, TK, TL, TM in positions A, B, C, D, F, K, L, M as well as is liable for the exhaust gas pollutants CO, CH and NO x the time course of the measured CO values at the input of the three-way catalytic converter 3, measured by the broadband lambda sensor 8, and the time course of the measured CO values after the NO x adsorber 6, measured by the lambda probe 11, when trying to achieve a temperature increase without further measures in order to initiate desulfation.
  • FIG. 2a at full load at a speed of 200 km / h, it can be seen that the combustion energy introduced by the internal combustion engine into the three-way catalytic converter 3 near the engine generates temperatures which, based on the inlet temperature TA in the three-way catalytic converter 3, generate temperatures Level A with a constant 900 ° C in the positions downstream in the exhaust gas conveying direction at the beginning of this pure engine heating are still below this temperature, the temperatures TB, TC and TD in the three-way catalytic converter 3 after a short time due to the exothermic reactions in the three Route catalytic converter 3 increase to values between 900 ° C and 950 ° C.
  • the temperatures TK in position K, TL in position L and TM in position M of the NO x adsorber 6 are also raised and reached from the optimal working range of the NO x adsorber 6 from 250 ° C. to 450 ° C. Values up to 750 ° C, so that desulfurization in the direct upper temperature limit range is possible in this case of full load.
  • Figure 2b shows the same exhaust system with the same engine, but in partial load operation at a speed of 120 km / h.
  • the temperatures TA, TB, TC, TD in levels A, B, C, D of the three-way catalytic converter 3 only assume values up to 750 ° C. due to the significantly lower inlet temperature TA the temperatures TK, TL, TM in the positions K, L, M of the NO x adsorber 6 adjust to temperature values below 550 ° C. Desulphurization in the partial load range does not take place.
  • FIGS. 3 to 6 schematically show the heating according to the invention to the desulphation temperature of an exhaust system shown in FIG. 1.
  • the engine is cyclically richly greased for heating up after heating up, for example 5,000 or 10,000 km, after which desulfurization is desired or operated lean.
  • the time period for heating should be minimized as far as possible. For example, it is between 20 seconds and 2 minutes depending on the load and starting temperature of the NO x adsorber 6.
  • the engine is operated with ⁇ , for which the following applies: 0.8 ⁇ ⁇ ⁇ 0, 7 preferably 0.76 ⁇ ⁇ ⁇ 0.74, for example 0.75.
  • ⁇ t m of the lean operation with 3 ⁇ ⁇ ⁇ 1.1, as much 0 2 as possible is introduced into the three-way catalytic converter 3 and into the NO x adsorber 6.
  • the times in which the engine is to be operated rich or lean are stored in a map over the gas inlet temperature, the engine air mass and the ⁇ values for the rich or lean operation.
  • a cyclic loading and unloading of the oxygen store takes place in the three-way catalytic converter 3 and in the NO x adsorber 6 in accordance with the ⁇ variation, the three-way catalytic converter 3 being loaded at the beginning of the lean period Phase ( ⁇ > 1) begins and the discharge of the three-way catalyst 3 begins at the beginning of the rich phase.
  • the loading and unloading of the NO x adsorber 6 is out of phase with the cycle of the three-way catalytic converter 3.
  • FIG. 4 shows the temperature profile in the three-way catalytic converter 3 and in the NO ⁇ adsorber 6 as well as the CO emissions before (CO IN) and after (CO OFF) the exhaust system in partial load operation at a speed of 120 km / h.
  • the temperatures TB to be assigned to these positions increase.
  • the exothermic combustion in the NO x adsorber 6 thus leads, after a short time, to a rise in temperature, including the temperatures TK, TL, TM, in a range above 650 ° C. due to the exothermic combustion using the stored oxygen in the three-way catalytic converter 3 and in the NO x adsorber 6.
  • a rise in temperature including the temperatures TK, TL, TM
  • the exothermic combustion components of CO and HC are shifted from the three-way catalyst 3 into the NO x adsorber 6 during the heating.
  • the oxygen stores of the three-way catalytic converter 3 and the NO x adsorber 6 are filled with 0 2 .
  • the oxygen stores of the three-way catalytic converter 3 and the NO x adsorber 6 are charged, starting from position B via the position C and the position D of the three-way catalytic converter 3 via the positions K, L, M of the NO x adsorber 6 from FIG.
  • the oxygen stores are emptied in the same order. Cases are conceivable in which a complete emptying of the oxygen store of the NO ⁇ adsorber 6 leads to high tailpipe emissions and at the same time the rear part of the NO x adsorber 6 could be overheated.
  • the oxygen reservoir of the NO x adsorber 6 is therefore not completely emptied - insofar as this danger exists - but, for example, only 30 percent.
  • the three-way catalytic converter 3 is heated to temperatures between approximately 750 ° C. and 890 ° C. in this load case, and the NO x adsorber 6 to temperatures between 650 ° C. and 700 ° C. so that desulfation can be carried out safely. Desulfation takes place in a known manner, not shown in detail. In individual cases, it is possible that the first desulfation effects will already start during the heating process.
  • the CO content increases slightly at the end of a fat phase behind the NO x adsorber 6.
  • This sign of the fat breakthrough by the NO x adsorber 6 is determined by the lambda probe 11 behind the NO x adsorber 6 and the lean phase is initiated directly when the predetermined threshold value is reached.
  • a breakdown of the lean phase by the NO x adsorber 6 is also detected by the lambda probe 9. When a predetermined threshold value is reached, the fat phase is initiated directly.
  • FIG. 5 shows the qualitative temperature profile and exhaust gas emission profile using CH as an example over the length of the exhaust system when the desulfation temperature in the NO x adsorber 6 is reached.
  • the method according to the invention can also be used in other engines with similar exhaust gas problems, in which there is a requirement for heating to initiate detoxification.
  • the method can also be used in an exhaust system of diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

La présente invention concerne un procédé pour chauffer un catalyseur situé en aval dans le sens d'écoulement dans un système d'échappement d'un moteur à combustion comprenant plusieurs catalyseurs placés les uns derrière les autres dans le sens d'écoulement des gaz d'échappement. Selon ce procédé, le catalyseur (6) situé en aval dans le sens d'écoulement est chauffé par transfert de la réaction exothermique provenant d'un catalyseur (3) situé en amont dans le sens d'écoulement dans le catalyseur (6) situé en aval.
PCT/EP2002/002262 2001-03-20 2002-03-02 Procede pour chauffer un catalyseur situe en aval dans le sens d'ecoulement dans un systeme d'echappement d'un moteur a combustion WO2002075138A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10113382A DE10113382A1 (de) 2001-03-20 2001-03-20 Verfahren zum Aufheizen eines in Strömungsrichtung nachgeordneten Katalysators bei einem Abgasanlagensystem eines Verbrennungsmotors
DE10113382.0 2001-03-20

Publications (1)

Publication Number Publication Date
WO2002075138A1 true WO2002075138A1 (fr) 2002-09-26

Family

ID=7678152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002262 WO2002075138A1 (fr) 2001-03-20 2002-03-02 Procede pour chauffer un catalyseur situe en aval dans le sens d'ecoulement dans un systeme d'echappement d'un moteur a combustion

Country Status (2)

Country Link
DE (1) DE10113382A1 (fr)
WO (1) WO2002075138A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405999A2 (fr) * 2002-10-05 2004-04-07 Robert Bosch Gmbh Procédé pour le fonctionnement d'un moteur à combustion interne et ledit moteur à combustion interne
EP1515028A2 (fr) * 2003-09-11 2005-03-16 Audi Ag Procédé pour le chauffage d'un catalyseur et/où d'un filtre à particules d'un système d'échappement et un catalyseur, notamment un catalyseur d'accumulation d'oxydes d'azote
WO2005064141A1 (fr) * 2003-11-25 2005-07-14 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur de vehicule
FR2872204A1 (fr) * 2004-06-23 2005-12-30 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur
DE102004055231B3 (de) * 2004-11-16 2006-07-20 Siemens Ag Verfahren und Vorrichtung zur Lambda-Regelung bei einer Brennkraftmaschine
US7493755B2 (en) 2004-06-23 2009-02-24 Peugeot Citroen Automobiles Sa System for assisting the regeneration of depollution means for a motor vehicle engine
US7694511B2 (en) 2004-06-23 2010-04-13 Peugeot Citroen Automobiles Sa System for controlling depollution means regeneration
EP1766214B1 (fr) * 2004-06-23 2011-03-16 Peugeot Citroën Automobiles S.A. Systeme d'aide a la regeneration de moyens de depollution pour vehicule automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6766641B1 (en) * 2003-03-27 2004-07-27 Ford Global Technologies, Llc Temperature control via computing device
DE102006025050B4 (de) * 2006-05-27 2014-04-03 Fev Gmbh Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungsanlage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046868A1 (fr) * 1997-04-11 1998-10-22 Ford Global Technologies, Inc. Rechauffement d'un piege d'accumulation de gaz
EP0899430A2 (fr) * 1997-08-29 1999-03-03 Ford Global Technologies, Inc. Méthode et dispositif d'élimination de sulfate d'un piège à oxydes d'azote
DE19827195A1 (de) 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
DE19851843A1 (de) * 1998-11-10 2000-05-11 Siemens Ag Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE19960828A1 (de) 1998-12-17 2000-06-29 Avl List Gmbh Verfahren zur Schwefelregeneration eines NO¶x¶-Speicherkatalysators
DE19922962A1 (de) 1999-05-19 2000-11-23 Daimler Chrysler Ag Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage
DE19923481A1 (de) * 1999-05-21 2000-11-23 Volkswagen Ag Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046868A1 (fr) * 1997-04-11 1998-10-22 Ford Global Technologies, Inc. Rechauffement d'un piege d'accumulation de gaz
EP0899430A2 (fr) * 1997-08-29 1999-03-03 Ford Global Technologies, Inc. Méthode et dispositif d'élimination de sulfate d'un piège à oxydes d'azote
DE19827195A1 (de) 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
DE19851843A1 (de) * 1998-11-10 2000-05-11 Siemens Ag Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE19960828A1 (de) 1998-12-17 2000-06-29 Avl List Gmbh Verfahren zur Schwefelregeneration eines NO¶x¶-Speicherkatalysators
DE19922962A1 (de) 1999-05-19 2000-11-23 Daimler Chrysler Ag Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage
DE19923481A1 (de) * 1999-05-21 2000-11-23 Volkswagen Ag Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405999A2 (fr) * 2002-10-05 2004-04-07 Robert Bosch Gmbh Procédé pour le fonctionnement d'un moteur à combustion interne et ledit moteur à combustion interne
EP1405999A3 (fr) * 2002-10-05 2006-06-07 Robert Bosch Gmbh Procédé pour le fonctionnement d'un moteur à combustion interne et ledit moteur à combustion interne
EP1515028A2 (fr) * 2003-09-11 2005-03-16 Audi Ag Procédé pour le chauffage d'un catalyseur et/où d'un filtre à particules d'un système d'échappement et un catalyseur, notamment un catalyseur d'accumulation d'oxydes d'azote
EP1515028A3 (fr) * 2003-09-11 2005-09-14 Audi Ag Procédé pour le chauffage d'un catalyseur et/où d'un filtre à particules d'un système d'échappement et un catalyseur, notamment un catalyseur d'accumulation d'oxydes d'azote
WO2005064141A1 (fr) * 2003-11-25 2005-07-14 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur de vehicule
US7946110B2 (en) 2003-11-25 2011-05-24 Peugeot Citroen Automobiles Sa System for assisting the regeneration of depollution means included in a motor vehicle exhaust line
FR2872204A1 (fr) * 2004-06-23 2005-12-30 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur
WO2006005865A1 (fr) * 2004-06-23 2006-01-19 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur
US7493755B2 (en) 2004-06-23 2009-02-24 Peugeot Citroen Automobiles Sa System for assisting the regeneration of depollution means for a motor vehicle engine
US7694511B2 (en) 2004-06-23 2010-04-13 Peugeot Citroen Automobiles Sa System for controlling depollution means regeneration
EP1766214B1 (fr) * 2004-06-23 2011-03-16 Peugeot Citroën Automobiles S.A. Systeme d'aide a la regeneration de moyens de depollution pour vehicule automobile
DE102004055231B3 (de) * 2004-11-16 2006-07-20 Siemens Ag Verfahren und Vorrichtung zur Lambda-Regelung bei einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE10113382A1 (de) 2002-10-10

Similar Documents

Publication Publication Date Title
EP1336037B1 (fr) Procede et dispositif pour reguler un systeme de traitement subsequent de gaz d'echappement
EP3921520B1 (fr) Système de post-traitement de gaz d'échappement et procédé pour le post-traitement de gaz d'échappement d'un moteur à combustion interne
DE102017118215A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP1394373B1 (fr) Procédé de chauffage d'un filtre à suie dans un système de gaz d'échappement d'un moteur à combustion interne - notamment d'un moteur diesel- avec au moins un catalyseur suivi d'un filtre à suies
DE102018100240A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102019101576A1 (de) Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102016014854A1 (de) Verfahren zur Abgasnachbehandlung
DE102010002586A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors
EP3572634A1 (fr) Procédé et dispositif de traitement des gaz d'échappement d'un moteur à combustion interne
DE102017100892A1 (de) Regeneration eines Partikelfilters oder Vier-Wege-Katalysators in einer Abgasanlage eines Verbrennungsmotors
WO2002075138A1 (fr) Procede pour chauffer un catalyseur situe en aval dans le sens d'ecoulement dans un systeme d'echappement d'un moteur a combustion
EP3584418B1 (fr) Système de post-traitement des gaz d'échappement et procédé de régénération d'un filtre à particules
EP3608519A1 (fr) Procédé et dispositif de traitement d'échappement d'un moteur à combustion
DE102017208671B4 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Abgasnachbehandlungssystem
DE10016219A1 (de) Verfahren und Vorrichtung zur Steuerung einer Heizmaßnahme in einer Abgasreinigungsanlage von Brennkraftmaschinen
EP1370758B1 (fr) Procede permettant de commander l'operation de chauffage d'un systeme catalytique
DE102013221595A1 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen einer Brennkraftmaschine
DE102021113252A1 (de) Verfahren zur Steuerung eines Verbrennungsmotors mit Abgasnachbehandlungssystem
DE10115962B4 (de) Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
EP1180590B1 (fr) Méthode de formation de mélange pour moteur à combustion interne avec un catalyseur dans la ligne d'échappement
DE102017210880A1 (de) Verfahren zum Aufheizen eines Katalysators in einer Abgasanlage eines Verbrennungsmotors sowie Abgasnachbehandlungssystem
EP1444425B1 (fr) Procede de regulation de la quantite d'air secondaire
EP1167710B1 (fr) Procédé et dispositif pour augmenter la température d'un catalyseur
DE102018122843A1 (de) Verfahren zur Regeneration eines Partikelfilters
DE19957185A1 (de) Verfahren und Vorrichtung zur Steuerung einer Aufheizphase zumindest eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Katalysators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP