WO2002073007A2 - Power producing device - Google Patents

Power producing device Download PDF

Info

Publication number
WO2002073007A2
WO2002073007A2 PCT/JP2001/001991 JP0101991W WO02073007A2 WO 2002073007 A2 WO2002073007 A2 WO 2002073007A2 JP 0101991 W JP0101991 W JP 0101991W WO 02073007 A2 WO02073007 A2 WO 02073007A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
heat source
heat
temperature
gas
Prior art date
Application number
PCT/JP2001/001991
Other languages
French (fr)
Japanese (ja)
Inventor
Youji Shimizu
Akihiko Shimizu
Midori Shimizu
Original Assignee
May Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/798,646 priority Critical patent/US20020162330A1/en
Application filed by May Institute Inc. filed Critical May Institute Inc.
Priority to PCT/JP2001/001991 priority patent/WO2002073007A2/en
Publication of WO2002073007A2 publication Critical patent/WO2002073007A2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a heat cycle in a power production device such as a power plant or an engine.
  • the temperature of the heat source must be sufficiently higher than the temperature of the cooling source, and fuel is required to achieve that high temperature.
  • fuel is required to achieve that high temperature.
  • the present invention has been made in order to solve the above-mentioned problems, and has devised a cruise cycle power production device having no heat source and only a heat source. Since the present invention does not have a cooling source, there is no limit on the temperature of the heat source, power can be obtained from a heat source at ambient temperature that is naturally supplied by solar heat, and no fuel is required.
  • a cruise cycle power production device having no heat source and only a heat source. Since the present invention does not have a cooling source, there is no limit on the temperature of the heat source, power can be obtained from a heat source at ambient temperature that is naturally supplied by solar heat, and no fuel is required.
  • FIG. 11 is a system diagram of a power calculation device according to a representative embodiment of the present invention.
  • the components in the figure are as follows. 1: Heat source (solar heat), 2: Turbine, 3: Gas-liquid separator, 4: Pump, 5: Compressor, 6: Gas-liquid mixer, 7: Generator, 8: Rotary shaft Best practice for carrying out the invention
  • 4 Pump
  • 5 Compressor
  • 6 Gas-liquid mixer
  • 7 Generator
  • 8 Rotary shaft Best practice for carrying out the invention
  • FIG. 11 shows and illustrates a system diagram thereof.
  • the working fluid that has passed through the heat source 1 that maintains the temperature by the heat from the sun enters the turbine 2, where the heat energy is converted into power and rotates the turbine shaft.
  • a generator 7 and a compressor 5 are connected to a turbine shaft by a rotating shaft 8. Turbine power drives the compressor and produces generator output.
  • the liquid phase is pressurized by a pump 4 and the gas phase is pressurized by a compressor 5.
  • the liquid phase and the gas phase are mixed by the gas-liquid mixer 6 and return to the heat source 1. In this way, a closed cycle of the working fluid is formed.
  • Turbine inlet pressure 38 (bar), temperature 170 (k)
  • Turbine outlet pressure 0.5 (bar), temperature 108 (k)
  • the working fluid is condensed at the turbine outlet by about 25%, and the gas phase is reduced to 75% of the total flow, so the power consumption of the compressor is smaller than the turbine shaft power, and the generator output is produced.

Description

明細書  Specification
動力産出装置 技術分野 Power production equipment Technical field
本発明は発電所やエンジン等の動力産出装置における熱サイクルに関する。 背景技術  The present invention relates to a heat cycle in a power production device such as a power plant or an engine. Background art
発電所等で用いられるクローズサイクルでは熱源と冷却源を必要とする熱サ イタルが用いられる (文献:西脇仁一編、熱機関、東京大学出版会、 1965年 1 月 P70)。  In the closed cycle used in power plants and the like, a heat site that requires a heat source and a cooling source is used (Literature: Jinichi Nishiwaki, Heat Engine, University of Tokyo Press, January 1965, p. 70).
熱源の温度は冷却源の温度より十分に高くする必要があり、その高温を得る ため燃料が必要になる。しかし、燃焼ガスによる環境汚染の問題や将来的な燃 料不足の問題がある。 発明の開示  The temperature of the heat source must be sufficiently higher than the temperature of the cooling source, and fuel is required to achieve that high temperature. However, there is a problem of environmental pollution by combustion gas and a problem of fuel shortage in the future. Disclosure of the invention
本発明は上述の課題を解決するためになされたものであって、冷却源を持た ず、単に熱源のみを持つクルーズサイクルによる動力産出装置を考案した。 本発明は冷却源を持たないから、熱源の温度の制限が無くなり、太陽熱によ り自然に供給される大気温度の熱源から動力が得られ、燃料は不要になる。 図の簡単な説明  The present invention has been made in order to solve the above-mentioned problems, and has devised a cruise cycle power production device having no heat source and only a heat source. Since the present invention does not have a cooling source, there is no limit on the temperature of the heat source, power can be obtained from a heat source at ambient temperature that is naturally supplied by solar heat, and no fuel is required. Brief description of figures
図一 1は、本発明の代表的な実施例に関する動力算出装置の系統図をしめ す。同図中の構成要素は次ぎの通りである。 1 :熱源(太陽熱)、 2 :タービン、 3 :気液分離器、 4 :ポンプ、 5 :圧縮機、 6 :気液混合器、 7 :発電機、 8 :回転軸 発明を実施するための最良の形態  FIG. 11 is a system diagram of a power calculation device according to a representative embodiment of the present invention. The components in the figure are as follows. 1: Heat source (solar heat), 2: Turbine, 3: Gas-liquid separator, 4: Pump, 5: Compressor, 6: Gas-liquid mixer, 7: Generator, 8: Rotary shaft Best practice for carrying out the invention Form
本発明をより詳細に説明するために、図一 1にその系統図を示し説明する。 太陽からの熱により温度を保つ熱源 1を通過した作動流体はタービン 2に入り、 熱エネルギーが動力に変換され、タービン軸を回転させる。 タービン軸には発電機 7と圧縮機 5が回転軸 8で連結されている。タービン動 力は圧縮機を駆動し、また発電機出力を生じる。 In order to explain the present invention in more detail, FIG. 11 shows and illustrates a system diagram thereof. The working fluid that has passed through the heat source 1 that maintains the temperature by the heat from the sun enters the turbine 2, where the heat energy is converted into power and rotates the turbine shaft. A generator 7 and a compressor 5 are connected to a turbine shaft by a rotating shaft 8. Turbine power drives the compressor and produces generator output.
作動流体はタービン出口で約 10%〜40%が凝縮し、気液分離器 3で気相と 液相に分離される。  About 10% to 40% of the working fluid is condensed at the turbine outlet, and is separated into a gas phase and a liquid phase by the gas-liquid separator 3.
液相はポンプ 4により加圧され、気相は圧縮機 5により加圧される。液相と気 相は気液混合器 6で混合されて熱源 1に戻る。このようにして作動流体のクロー ズサイクルが形成される。  The liquid phase is pressurized by a pump 4 and the gas phase is pressurized by a compressor 5. The liquid phase and the gas phase are mixed by the gas-liquid mixer 6 and return to the heat source 1. In this way, a closed cycle of the working fluid is formed.
具体的な試算例を以下に示す。  A specific example of a trial calculation is shown below.
作動流体 : 一酸化窒素 (NO)  Working fluid: Nitric oxide (NO)
タービン入口 : 圧力 38(bar)、温度 170(k)  Turbine inlet: pressure 38 (bar), temperature 170 (k)
液相重量率 0%  Liquid phase weight ratio 0%
タービン出口 : 圧力 0. 5(bar)、温度 108(k)  Turbine outlet: pressure 0.5 (bar), temperature 108 (k)
液相重量率 25%  Liquid phase weight ratio 25%
発電機出力 : タービン軸動力の約 7%  Generator output: About 7% of turbine shaft power
上の計算結果では、作動流体はタービン出口で約 25%凝縮し、気相は流 れ全体の 75 %に減少するから圧縮機の消費動力がタービン軸動力より小さく なるため発電機出力が産出される。 産業上の利用可能性  According to the above calculation result, the working fluid is condensed at the turbine outlet by about 25%, and the gas phase is reduced to 75% of the total flow, so the power consumption of the compressor is smaller than the turbine shaft power, and the generator output is produced. You. Industrial applicability
作動流体として、気液飽和温度が大気温度より低いガス種を用いることにより、 大気温度を熱源として動力を産出することが可能となる。  By using a gas species whose gas-liquid saturation temperature is lower than the atmospheric temperature as the working fluid, it becomes possible to generate power using the atmospheric temperature as a heat source.
太陽熱により自然に供給される大気温度の熱源を用いて動力が得られるから 燃料は不要となる。  No power is required because power is obtained using an ambient temperature heat source that is naturally supplied by solar heat.
太陽熱を動力に変換する以外には自然への影響は生じず環境を汚染しな いクリーンエネルギーが得られる。  Other than converting solar heat into power, there is no effect on nature and clean energy that does not pollute the environment can be obtained.

Claims

請求の範囲 The scope of the claims
1. 冷却源を持たず、単に熱源のみを持つクローズサイクルによる動力産出装 1. Power production and installation by closed cycle with only heat source without cooling source
PCT/JP2001/001991 2001-03-01 2001-03-13 Power producing device WO2002073007A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/798,646 US20020162330A1 (en) 2001-03-01 2001-03-01 Power generating system
PCT/JP2001/001991 WO2002073007A2 (en) 2001-03-01 2001-03-13 Power producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/798,646 US20020162330A1 (en) 2001-03-01 2001-03-01 Power generating system
PCT/JP2001/001991 WO2002073007A2 (en) 2001-03-01 2001-03-13 Power producing device

Publications (1)

Publication Number Publication Date
WO2002073007A2 true WO2002073007A2 (en) 2002-09-19

Family

ID=26345048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001991 WO2002073007A2 (en) 2001-03-01 2001-03-13 Power producing device

Country Status (2)

Country Link
US (1) US20020162330A1 (en)
WO (1) WO2002073007A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151055A3 (en) * 2011-05-02 2013-01-03 Harris Corporation Hybrid imbedded combined cycle
US9038389B2 (en) 2012-06-26 2015-05-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US9297387B2 (en) 2013-04-09 2016-03-29 Harris Corporation System and method of controlling wrapping flow in a fluid working apparatus
US9303533B2 (en) 2013-12-23 2016-04-05 Harris Corporation Mixing assembly and method for combining at least two working fluids
US9303514B2 (en) 2013-04-09 2016-04-05 Harris Corporation System and method of utilizing a housing to control wrapping flow in a fluid working apparatus
US9574563B2 (en) 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010920B2 (en) * 2002-12-26 2006-03-14 Terran Technologies, Inc. Low temperature heat engine
US6964168B1 (en) * 2003-07-09 2005-11-15 Tas Ltd. Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same
WO2006028444A1 (en) * 2004-09-02 2006-03-16 Terran Technologies, Inc. Low temperature heat engine
US7827791B2 (en) * 2005-10-05 2010-11-09 Tas, Ltd. Advanced power recovery and energy conversion systems and methods of using same
US7287381B1 (en) * 2005-10-05 2007-10-30 Modular Energy Solutions, Ltd. Power recovery and energy conversion systems and methods of using same
AU2010268769B2 (en) * 2009-06-30 2017-01-12 Sunrise Csp Pty Limited Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
US10393094B2 (en) * 2011-12-28 2019-08-27 Sunrise Csp Pty Limited Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
US20150000260A1 (en) * 2013-06-26 2015-01-01 Walter F. Burrows Environmentally friendly power generation process
CH709010A1 (en) * 2013-12-20 2015-06-30 Josef Mächler Thermal power plant with heat recovery.
GB2547927B (en) 2016-03-03 2018-05-23 Rolls Royce Plc Supercritical fluid heat engine
NO20180312A1 (en) * 2018-02-28 2019-08-29 Entromission As Method for extracting mechanical energy from thermal energy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151055A3 (en) * 2011-05-02 2013-01-03 Harris Corporation Hybrid imbedded combined cycle
US8991181B2 (en) 2011-05-02 2015-03-31 Harris Corporation Hybrid imbedded combined cycle
US9038389B2 (en) 2012-06-26 2015-05-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US9297387B2 (en) 2013-04-09 2016-03-29 Harris Corporation System and method of controlling wrapping flow in a fluid working apparatus
US9303514B2 (en) 2013-04-09 2016-04-05 Harris Corporation System and method of utilizing a housing to control wrapping flow in a fluid working apparatus
US9574563B2 (en) 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus
US9303533B2 (en) 2013-12-23 2016-04-05 Harris Corporation Mixing assembly and method for combining at least two working fluids

Also Published As

Publication number Publication date
US20020162330A1 (en) 2002-11-07

Similar Documents

Publication Publication Date Title
WO2002073007A2 (en) Power producing device
Poullikkas An overview of current and future sustainable gas turbine technologies
Ibrahim et al. Effect of compression ratio on performance of combined cycle gas turbine
US20050275225A1 (en) Wind power system for energy production
US20110088399A1 (en) Combined Cycle Power Plant Including A Refrigeration Cycle
EP1245805A3 (en) Supercharged gas turbine
US20130292951A1 (en) Systems for generating energy
Kabeyi et al. Performance analysis of an open cycle gas turbine power plant in grid electricity generation
Chmielniak et al. Technical and economic analysis of the gas turbine air bottoming cycle
JP2007107490A (en) External combustion engine and structure thereof
RU129998U1 (en) COMBINED STEAM-GAS-TURBINE INSTALLATION ON HYDROTHERMAL ALUMINUM PRODUCTS
US20190048747A1 (en) Waste heat recovery cascade cycle and method
Kakaras et al. Combined cycle power plant with integrated low temperature heat (LOTHECO)
CN102168585B (en) Process for generating electricity by air
JPS61201831A (en) Power generation method
CN1553047A (en) Dead steam recovering apparatus of steam turbine
JP2002242693A (en) Power generating device
CN201925027U (en) System using chemical purge gas for power generation
Chmielniak et al. A thermodynamic and economic comparative analysis of combined gas-steam and gas turbine air bottoming cycle
JP2002242700A (en) Ultra-turbine
CN2197461Y (en) Shell counter-impacting turbine
Qin et al. Key parameters and influence analysis of Marine S-CO 2 Brayton cycle power generation system under off-design conditions
Athari et al. Assessment of wet compression integrated with air-film blade cooling in gas turbine power plants
IL107530A (en) Method of and apparatus for augmenting power produced by gas turbines
Ghazikhani et al. Influence of steam injection on thermal efficiency and operating temperature of GE-F5 gas turbines applying VODOLEY system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642