WO2002072833A1 - Cloning of the cdna that codes for cup s 1, the major allergen of cupressus sempervirens - Google Patents

Cloning of the cdna that codes for cup s 1, the major allergen of cupressus sempervirens Download PDF

Info

Publication number
WO2002072833A1
WO2002072833A1 PCT/ES2002/000106 ES0200106W WO02072833A1 WO 2002072833 A1 WO2002072833 A1 WO 2002072833A1 ES 0200106 W ES0200106 W ES 0200106W WO 02072833 A1 WO02072833 A1 WO 02072833A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
seq
recombinant
polypeptides
molecules
Prior art date
Application number
PCT/ES2002/000106
Other languages
Spanish (es)
French (fr)
Inventor
Rosalia RODRÍGUEZ GARCÍA
Maria Teresa VILLALBA DÍAZ
Rafael Monsalve Clemente
Eva Batanero Cremades
Original Assignee
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense De Madrid filed Critical Universidad Complutense De Madrid
Publication of WO2002072833A1 publication Critical patent/WO2002072833A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention provides recombinant DNA molecules (SEQ ID NO: 1, 2, 3, 4, and 5) encoding polypeptides that present at least one allergenic epitope of those present in the major Cupressus sempervirens allergen, Cup s 1.
  • the invention also refers to the nucleotide sequences obtained by mutagenesis of the sequences SEQ ID NO: 1, 2, 3, 4, and 5, which encode both complete proteins and fragments that include one or more epitopes of the molecule.
  • Type I allergy is a disease that affects more than 20% of the population in industrialized countries. This condition is caused by allergens, present in both organisms and biological products -food, mites, insect poisons, pollens, fungi, mammalian epithelia-, as well as in synthetic materials. In most allergenic biological sources, allergens are proteins of molecular masses between 5 and 70 kDa. Symptoms that stem from allergy, such as rhinitis, conjunctivitis, or asthma, are caused by the release of cellular mediators, such as histamine, from basophils and mast cells, cells of the immune system.
  • IgE crosslinking is caused by the binding of the corresponding allergen, or a fragment of its own, through an IgE epitope (contained in said allergen, or in its fragment).
  • the therapy currently being used to treat allergy involves hyposensitization of the patient by parental administration or oral doses of the allergen itself, or related allergoids.
  • an allergenic extract obtained using minimal manipulation from the natural biological source is administered, which implies a very complex mixture of proteins and other substances, in which the allergen -or allergens- can represent a minimum part of the total product used.
  • the protocols used for the diagnosis of allergy cases and their subsequent immunotherapy involve the use of allergenic extracts that are frequently not characterized, nor even standardized with respect to the most important allergens they may contain. Often, its administration does not provide a complete diagnosis, especially when the patient's hypersensitivity refers to allergens present in low concentration in said extracts. On the other hand, the immunotherapy carried out with these preparations is frequently ineffective and sometimes causes undesirable side effects that can be more serious than the allergic condition itself that is intended to be resolved.
  • An alternative to the use of these extracts is the preparation of mixtures of the most significant allergens, obtained by isolation from their natural source. However, this route presents two important barriers.
  • Cupresaceal pollinosis has increased significantly in recent years, both in Spain [Subiza J. et al. (1995) J. Allergy Clin. Immunol. 96, 15-23] as in other Mediterranean countries [Mari A. et al. (1996) J. Allergy Clin. Immunol. 98, 21-31].
  • several works have appeared that describe the detection of allergenic components in pollens of various species of the Pináceas group, which includes the Cupressaceae and Taxodiaceae family.
  • Cupressaceae and Taxodiaceae family In the case of cupresceae, several groups have highlighted the difficulty in standardizing the extracts of these pollens [Mari A. et al. (1996) J. Allergy Clin. Immunol.
  • Juniperus pollen counts are insignificant, but those of C.ar ⁇ zonica and C.sempervirens are increasingly higher and of great importance from a clinical point of view, and they have been described to have a very high cross-reactivity, identifying its main allergens as two glycoproteins of molecular mass 43 and 36 kDa. In species more taxonomically distant and not present in Spain, their main allergens have been studied and characterized, in some detail.
  • the present invention comprises determining the DNA sequence coding for the major cypress pollen allergen.
  • molecules of Recombinant DNA encoding polypeptides that exhibit the antigenicity of Cup s 1, a cypress pollen allergen, as well as for polypeptides that contain at least one Cup s 1 epitope in their structure are used.
  • the invention relates to DNA polynucleotide sequences that hybridize under restrictive conditions with those of this allergen -which implies an identity level of at least 60% among its nucleotide sequences-, or are derived from them by code degeneration genetic or mutagenesis.
  • the procedure object of the invention allows obtaining the recombinant Cupressus sempervirens allergen, Cup s 1, correctly folded and in adequate quantities for subsequent studies. Insertion of DNA into expression vectors and host cells is carried out in such a way as to contain a nucleotide sequence as described in ID SEQ NO: 1 to ID SEQ NO: 5, encoding Cup s 1, or modified sequences of these or fragments derived from them.
  • the methods of preparing these polypeptides involve their recombinant production from the polynucleotide molecules mentioned above, in a culture system of prokaryotic or eukaryotic cells that contain the described expression vectors as a vehicle for DNA molecules.
  • Cup s 1 -an allergen of cupresacea pollen of great clinical importance- are available, in addition to antigenic fragments of this allergen with its own B and T epitopes, which will serve to be incorporated in the "in vivo” and “in vitro” tests to be carried out for the faithful diagnosis of hypersensitivity to this pollen, and to other pollens related phylogenetically with it. They may also be used in allergen preparations that are used to carry out the corresponding immunotherapy for the treatment of cupresacea pollen allergy.
  • Protein extracts obtained from pollen are currently used for the diagnosis and therapy of pollen allergy to cupres. This it implies a low reproducibility and a high content of contaminating molecules, of protein and non-protein origin, which can cause adverse side effects in treated patients. Having homogeneous molecules obtained by recombinant DNA techniques, in unlimited quantities, perfectly quantifiable and standardized, will considerably reduce all the aforementioned drawbacks. This technology will make these molecules available, as well as peptides or modified forms thereof that contain at least one of the allergenic epitopes.
  • FIGURE 1 Oligonucleotides designed for the PCR amplifications that have resulted in obtaining the complete Cup s 1 sequence.
  • the nucleotide sequence of each one is shown, its sense of reading considering it “sense” when it is in the sense of reading in which the translation is given, and “antisense” in the opposite sense.
  • the amino acid sequence corresponding to Cup s 1 that is encoded in said oligonucleotide is also presented.
  • Those nucleotides that include an ad hoc designed restriction site, as explained in the text, are underlined.
  • step (1) The cloning method followed, except in step (1), was performed using the "SMART-RACE cDNA amplification kit" system from Clontech.
  • Figure 1 shows the oligonucleotides that have been necessary to carry out these amplifications and which are mentioned below, while Figure 2 shows the cloning process.
  • the procedure followed was as follows:
  • RNA isolation This was achieved by modifying the method described by
  • the pollen used is obtained commercially, through the ALK-Abelló company. First, 3.5g of frozen pollen is ground in a mortar with liquid nitrogen. It is then homogenized in Polytron in a 1: 1 mixture of homogenization buffer and phenol / chloroform / isoamyl alcohol in 24: 24: 1 ratio (FCI). A ratio of pollen to total volume of 12% (w / v) was used.
  • the homogenization buffer contains 150mM NaCI, 50mM Tris-HCI pH 8.0, 5mM EDTA, 5% SDS, and 2-mercaptoethanol is added to 100mM just prior to use.
  • the homogenate is centrifuged 15 minutes at 4 ° C, 2900xg, the aqueous phase is recovered and it is re-extracted twice against the same FCI mixture and once more against chloroform.
  • the RNA is then precipitated successively from the aqueous phase: once by adding 3M sodium acetate pH 5.2 to a final concentration of 0.3M followed by 2.5 volumes of ethanol; it is left at -20 ° C for 8 hours and then it is centrifuged at 10000xg, 10 minutes at 4 ° C.
  • the second precipitation is carried out on the material settled in the previous stage, after allowing the ethanol to evaporate, and redissolving it in distilled water, by adding a volume of 4M lithium chloride (LiCI), leaving it for 2 hours in a bath of ice and spinning at 10000xg for 20 minutes.
  • the settled material (specifically RNA) is redissolved and precipitated twice more using sodium acetate / ethanol before it can be used in the next step.
  • the last precipitation is not carried out until the moment of using the RNA, keeping the samples at -80 ° C in the corresponding volumes of water and ethanol. About 80 ⁇ g of total RNA are obtained from the 3.5g of initial pollen.
  • the PCR method proposed by the "SMART-RACE” manual had to be modified (a temperature of 55 ° C was used in the hybridization stage of the previously denatured sequences, and 30 cycles of amplification were performed).
  • the amplified 1.3 kb band was purified from a low melting point agarose gel and DNA was preferably extracted by the GENECLEAN II method (from BIO101).
  • Said band was preferably cloned into the pSTBIue-1 vector (using the method described by the "Perfectly Blunt” kit from Invitrogen) and sequenced, obtaining data from the 3 'region of the specific sequence coding for Cup s 1, thus as from non-coding sequence regions, down to the poly-A tail corresponding to the messenger RNA.
  • sequence data several specific oligonucleotides were designed, which are made in this case degenerate, to try to obtain isoforms of the molecule, if any. The reason for this strategy is based on the high degree of polymorphism that generally exists among plant allergens.
  • the GSP1 and nGSP1 oligonucleotides were designed ( Figure 1), corresponding, respectively, to the 3' end of the Cup s 1 coding sequence (amino acids 359 to 367 thereof) plus the translation termination codon, and to an inner Cup s 1 region (corresponding to amino acids 349 to 356) but also located in the 3 'region of this coding sequence.
  • nGSP1 better met the requirements suggested by the SMART-RACE method for amplification of the 5 'end, and it was with this that Cup s 1-specific amplification was achieved.
  • the band obtained was cloned into vector pCR2.1 (from TOPO-TA Cloning method from Invitrogen), where its sequences are checked, especially those that contain the coding region of Cup s 1 at its 5 'end, including the signal peptide.
  • vector pCR2.1 from TOPO-TA Cloning method from Invitrogen
  • FUGSP2 a specific oligonucleotide of this region, FUGSP2 ( Figure 1).
  • PCR reactions were carried out " long distance "(from the English word Long Distance PCR of the SMART-RACE amplification method) through which amplified bands of the expected size (1.1 kb) were obtained. These were preferably cloned into the pCR2.1 vector with the same method used previously, to proceed with their sequencing.
  • B_CS1 and D_CS1 were designed ( Figure 1). Both possess restriction sites necessary to subclone these fragments in certain expression vectors, such as pPICZ ⁇ A from Invitrogen.
  • Primer B_CS1 encodes the 5 'end of Cup s 1 without its signal peptide so that, once inserted into the vector, it would be in phase with a signal peptide that can be processed by P. pastoris.
  • Primer D_CS1 allows an amplification of the 3 'end of Cup s 1 without its usual stop codon so that, when inserted into the expression vector, it would be read with a polypeptide fragment ending in a group of six histidines (a "tag" of histidines), followed by a new stop codon.
  • This latter oligonucleotide can facilitate purification of the recombinant protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention relates to the cloning of the recombinant DNA that codes for the cypress pollen (Cupressus sempervirens) Cup s 1 allergen, said allergens having a very similar structure to other Cupressaceae pollen allergens. The invention also relates to the polypeptides which result from the expression of said DNA and which can be used in the diagnosis and treatment of allergies.

Description

TÍTULOTITLE
Clonación del cDNA que codifica para Cup s 1, alérgeno mayoritario de Cυpressus sempervirens.Cloning of the cDNA that encodes Cup s 1, the major allergen of Cυpressus sempervirens.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención proporciona moléculas de DNA recombinante (SEQ ID NO: 1, 2, 3, 4 y 5) que codifican polipéptidos que presentan al menos un epítopo alergénico de los presentes en el alérgeno mayoritario de Cupressus sempervirens, Cup s 1. La invención también hace referencia a las secuencias nucleotídicas obtenidas por mutagénesis de las secuencias SEQ ID NO: 1, 2, 3, 4, y 5, que codifican tanto a las proteínas completas como a fragmentos que incluyen uno o más epítopos de la molécula.The present invention provides recombinant DNA molecules (SEQ ID NO: 1, 2, 3, 4, and 5) encoding polypeptides that present at least one allergenic epitope of those present in the major Cupressus sempervirens allergen, Cup s 1. The invention it also refers to the nucleotide sequences obtained by mutagenesis of the sequences SEQ ID NO: 1, 2, 3, 4, and 5, which encode both complete proteins and fragments that include one or more epitopes of the molecule.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓNSTATE OF THE ART PRIOR TO THE INVENTION
La alergia tipo I es una enfermedad que afecta a más del 20% de la población de los países industrializados. Esta afección es ocasionada por los alérgenos, presentes tanto en organismos y productos biológicos -alimentos, acaras, venenos de insectos, pólenes, hongos, epitelios de mamíferos-, como en materiales de síntesis. En la mayor parte de las fuentes biológicas alergénicas, los alérgenos son proteínas de masas moleculares comprendidas entre 5 y 70 kDa. Los síntomas que se derivan de la alergia, tales como rinitis, conjuntivitis, o asma, son provocados por la liberación de mediadores celulares, como la histamina, desde basófilos y mastocitos, células del sistema inmune. Dicha liberación viene inducida por el entrecruzamiento de anticuerpos IgEs unidos a los receptores de alta afinidad FcεRI, los cuales se encuentran a su vez anclados a basófilos y mastocitos. El entrecruzamiento de las IgE es provocado por la unión del correspondiente alérgeno, o un fragmento suyo, a través de un epítopo IgE (contenido en dicho alérgeno, o en su fragmento). La terapia que actualmente se viene utilizando para tratar la alergia implica la hiposensibilización del paciente mediante la administración por vía parental u oral de dosis adecuadas del propio alérgeno, o alergoides relacionados. En la práctica totalidad de los casos se administra un extracto alergénico obtenido, mediante una mínima manipulación, de la fuente biológica natural, lo que implica una mezcla muy compleja de proteínas y otras sustancias, en la cual, el alérgeno -o alérgenos- puede representar una parte mínima del producto total utilizado.Type I allergy is a disease that affects more than 20% of the population in industrialized countries. This condition is caused by allergens, present in both organisms and biological products -food, mites, insect poisons, pollens, fungi, mammalian epithelia-, as well as in synthetic materials. In most allergenic biological sources, allergens are proteins of molecular masses between 5 and 70 kDa. Symptoms that stem from allergy, such as rhinitis, conjunctivitis, or asthma, are caused by the release of cellular mediators, such as histamine, from basophils and mast cells, cells of the immune system. Said release is induced by the cross-linking of IgEs antibodies bound to the high affinity FcεRI receptors, which are in turn anchored to basophils and mast cells. IgE crosslinking is caused by the binding of the corresponding allergen, or a fragment of its own, through an IgE epitope (contained in said allergen, or in its fragment). The therapy currently being used to treat allergy involves hyposensitization of the patient by parental administration or oral doses of the allergen itself, or related allergoids. In practically all cases, an allergenic extract obtained using minimal manipulation from the natural biological source is administered, which implies a very complex mixture of proteins and other substances, in which the allergen -or allergens- can represent a minimum part of the total product used.
En efecto, en la actualidad, los protocolos utilizados para la diagnosis de casos de alergia y su posterior inmunoterapia implican el uso de extractos alergénicos que frecuentemente no están caracterizados, ni siquiera estandarizados respecto a los alérgenos más importantes que pueden contener. A menudo, su administración no proporciona una diagnosis completa, sobre todo cuando la hipersensibilidad del paciente se refiere a alérgenos presentes en baja concentración en dichos extractos. Por otro lado, la inmunoterapia realizada con estas preparaciones es frecuentemente ineficaz y origina en ocasiones efectos secundarios indeseables que pueden llegar a ser más graves que la propia afección alérgica que se pretende resolver. Una alternativa a la utilización de estos extractos es la preparación de mezclas de los alérgenos más significativos, obtenidos por aislamiento de su fuente natural. Sin embargo, esta vía presenta dos importantes barreras. Por un lado, implica un buen conocimiento de los componentes alergénicos del material que provoca la alergia, al menos de todos sus alérgenos principales, y este dato, frecuentemente, no está disponible. Por otro lado, el proceso de aislamiento de los alérgenos conocidos, a partir del material biológico, es a menudo difícil y no proporciona las cantidades necesarias o la calidad requerida para un posterior empleo, debido fundamentalmente a los bajos niveles en los cuales se encuentra y a la gran variabilidad de la composición de estas fuentes. Todos estos problemas se acentúan cuando el material alergénico es el polen de una especie vegetal. La gran cantidad de pigmentos, carbohidratos, lípidos y componentes insolubles hacen muy difícil su manipulación. Ni que decir tiene que su disponibilidad es, además, muy reducida y de alto coste económico, debido a la dificultad de su recolección. Por todo lo expuesto, se hace necesario el diseño de procedimientos para la producción de alérgenos a utilizar en los protocolos de diagnosis e inmunoterapia de la alergia. La producción de DNA recombinante se prevé como la forma más reproducible y eficaz de obtención de polipéptidos alergénicos bien definidos, no sólo para uso clínico, sino incluso para investigación.Indeed, at present, the protocols used for the diagnosis of allergy cases and their subsequent immunotherapy involve the use of allergenic extracts that are frequently not characterized, nor even standardized with respect to the most important allergens they may contain. Often, its administration does not provide a complete diagnosis, especially when the patient's hypersensitivity refers to allergens present in low concentration in said extracts. On the other hand, the immunotherapy carried out with these preparations is frequently ineffective and sometimes causes undesirable side effects that can be more serious than the allergic condition itself that is intended to be resolved. An alternative to the use of these extracts is the preparation of mixtures of the most significant allergens, obtained by isolation from their natural source. However, this route presents two important barriers. On the one hand, it implies a good knowledge of the allergenic components of the material that causes the allergy, at least of all its main allergens, and this data is frequently not available. On the other hand, the process of isolating known allergens from biological material is often difficult and does not provide the necessary quantities or the quality required for subsequent use, mainly due to the low levels at which it is already found. the great variability of the composition of these sources. All these problems are accentuated when the allergenic material is the pollen of a plant species. The large amount of pigments, carbohydrates, lipids and insoluble components make their handling very difficult. It goes without saying that its availability is also very low and of high economic cost, due to the difficulty of its collection. For all the above, the design of procedures for the production of allergens to be used in allergy diagnosis and immunotherapy protocols. Recombinant DNA production is envisioned as the most reproducible and effective way of obtaining well-defined allergenic polypeptides, not only for clinical use, but even for research.
La polinosis a cupresáceas ha aumentado en los últimos años de forma significativa, tanto en España [Subiza J. et al. (1995) J. Allergy Clin. Immunol. 96, 15-23] como en otros países mediterráneos [Mari A. et al. (1996) J. Allergy Clin. Immunol. 98, 21-31]. De hecho, en los últimos años han aparecido varios trabajos que describen la detección de componentes alergénicos en los pólenes de diversas especies del grupo de las Pináceas, que incluye a la familia Cupressaceae y Taxodiaceae. En el caso de las cupresáceas, varios grupos han puesto de manifiesto la dificultad en la estandarización de los extractos de estos pólenes [Mari A. et al. (1996) J. Allergy Clin. Immunol. 98, 21-31; Ford S.A. et al (1991) Int. Arch. Allergy Api. Immunol. 95, 178-183] debido a que se extrae poca cantidad de proteína, y que ésta está a su vez contaminada con componentes de tipo hidrocarbonado y pigmentos difíciles de eliminar. En algunos extractos han sido identificados por Western Blot los alérgenos de Cupressus sempervirens (ciprés común, el más frecuente en Francia) [Ford S.A. et al (1991) Int. Arch. Allergy Appl. Immunol. 95, 178-183], de C.arizonica [Di Felice G. et al. (1994) J Allergy Clin Immunol. 94, 547-555] y de otra especie de la familia de las cupresáceas, Juniperus oxicedrus [lacovacci P. et al. (1998) J. Allergy Clin. Immunol. 101, 755-761]. En España, los recuentos de pólenes de Juniperus son insignificantes, pero los de C.arízonica y C.sempervirens son cada vez más elevados y con una gran importancia desde el punto de vista clínico, y se ha descrito que presentan una elevadísima reactividad cruzada, identificándose sus alérgenos principales como dos glicoproteínas de masa molecular 43 y 36 kDa. En especies más alejadas taxonómicamente y que no se encuentran presentes en España sí se han estudiado y se han caracterizado, con cierto detalle, sus alérgenos principales. Este es el caso del cedro de Japón (Cryptomería japónica), perteneciente a la familia Taxodiaceae, cuyo polen es la causa mas importante de polinosis en Japón, afectando al 90% de los individuos atópicos, y cuyos alérgenos principales, Cry j 1 y Cry j 2, han sido caracterizados y clonados [Soné T. et al. (1994) Biochem. Biophys. Res. Commun. 199, 619-625; Namba M. et al. (1994) FEBS Letts. 353, 124-128]. Además, se ha descrito que estos alérgenos presentan reactividad cruzada con los pólenes de Cupressus spp [Panzani R. et al. (1986) Ann. Allergy 57, 26-30]. De estos alérgenos se tienen datos de su estructura antigénica, habiéndose definido al menos cinco determinantes antigénicos distintos y la unión de IgEs a algunos de estos epítopos [Sakaguchi M. et al. (1997) Immunology 91, 161-166].Cupresaceal pollinosis has increased significantly in recent years, both in Spain [Subiza J. et al. (1995) J. Allergy Clin. Immunol. 96, 15-23] as in other Mediterranean countries [Mari A. et al. (1996) J. Allergy Clin. Immunol. 98, 21-31]. In fact, in recent years, several works have appeared that describe the detection of allergenic components in pollens of various species of the Pináceas group, which includes the Cupressaceae and Taxodiaceae family. In the case of cupresceae, several groups have highlighted the difficulty in standardizing the extracts of these pollens [Mari A. et al. (1996) J. Allergy Clin. Immunol. 98, 21-31; Ford SA et al (1991) Int. Arch. Allergy Api. Immunol. 95, 178-183] due to the fact that a small amount of protein is extracted, and that it is itself contaminated with hydrocarbon-type components and pigments that are difficult to remove. Cupressus sempervirens (common cypress, the most frequent in France) have been identified by Western Blot in some extracts [Ford SA et al (1991) Int. Arch. Allergy Appl. Immunol. 95, 178-183], of C. arizonica [Di Felice G. et al. (1994) J Allergy Clin Immunol. 94, 547-555] and another species from the cupresceae family, Juniperus oxicedrus [lacovacci P. et al. (1998) J. Allergy Clin. Immunol. 101, 755-761]. In Spain, Juniperus pollen counts are insignificant, but those of C.arízonica and C.sempervirens are increasingly higher and of great importance from a clinical point of view, and they have been described to have a very high cross-reactivity, identifying its main allergens as two glycoproteins of molecular mass 43 and 36 kDa. In species more taxonomically distant and not present in Spain, their main allergens have been studied and characterized, in some detail. This is the case of the Japanese cedar (Cryptomería japónica), belonging to the Taxodiaceae family, whose pollen is the most important cause of pollinosis in Japan, affecting 90% of atopic individuals, and whose main allergens, Cry j 1 and Cry j 2, have been characterized and cloned [Soné T. et al. (1994) Biochem. Biophys. Res. Commun. 199, 619-625; Namba M. et al. (1994) FEBS Letts. 353, 124-128]. Furthermore, these allergens have been reported to be cross-reactive with Cupressus spp pollens [Panzani R. et al. (1986) Ann. Allergy 57, 26-30]. Data on their antigenic structure are available for these allergens, having defined at least five different antigenic determinants and the binding of IgEs to some of these epitopes [Sakaguchi M. et al. (1997) Immunology 91, 161-166].
Recientemente, han sido caracterizados los alérgenos polínicos principales de especies pertenecientes a la familia Cupressaceae, como es el caso del ciprés de Japón (Chamaecyparís obtusa) [Suzuki M. et al. (1996) Mol. Immunol. 33, 451-460; Mori T. et al. (1999) Biochem. Biophys. Res. Commun. 263, 166-171], del cedro de montaña (Juniperus ashei), que es causa de polinosis en el estado de Texas, U.S. A [Midoro-Horiuti T. et al (1999) J. Allergy Clin. Immunol. 104, 608-612 y 613-617] y de Cupressus arízonica [Aceituno E. et al (2000) Clin. Exp. Allergy 30, 1750-8]. En el primer caso se han purificado y clonado dos alérgenos mayoritarios, Cha o 1 y Cha o 2, mientras que en los dos últimos casos se han aislado y caracterizado los alérgenos mayoritarios, Jun a 1 y Cup a 1, respectivamente, habiéndose conseguido la expresión en E.coli de una forma recombinante, aunque no ha podido obtenerse la proteína recombinanté purificada.Recently, the main pollen allergens of species belonging to the Cupressaceae family have been characterized, such as the case of the Japanese cypress (Chamaecyparís obtusa) [Suzuki M. et al. (1996) Mol. Immunol. 33, 451-460; Mori T. et al. (1999) Biochem. Biophys. Res. Commun. 263, 166-171], of mountain cedar (Juniperus ashei), which is a cause of pollinosis in the state of Texas, USA. A [Midoro-Horiuti T. et al (1999) J. Allergy Clin. Immunol. 104, 608-612 and 613-617] and of Cupressus arízonica [Aceituno E. et al (2000) Clin. Exp. Allergy 30, 1750-8]. In the first case, two major allergens, Cha or 1 and Cha or 2, have been purified and cloned, while in the last two cases, the major allergens, Jun at 1 and Cup at 1, respectively, have been isolated and characterized, achieving expression in E.coli in a recombinant form, although the purified recombinant protein could not be obtained.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Clonación del cDNA que codifica para Cup s 1 , alérgeno mayoritario de Cupressus sempervirens.Cloning of the cDNA that codes for Cup s 1, the major allergen of Cupressus sempervirens.
La presente invención comprende la determinación de la secuencia de DNA que codifica para el alérgeno mayoritario del polen de ciprés. Por medio del procedimiento, objeto de la invención, se obtienen moléculas de DNA recombinante que codifican polipéptidos que exhiben la antigenicidad de Cup s 1, un alérgeno de polen de ciprés, así como para polipéptidos que contengan al menos un epítopo de Cup s 1 en su estructura. La invención se refiere a secuencias polinucleotídicas de DNA que hibriden en condiciones restrictivas con las de este alérgeno -lo que implica un nivel de identidad de al menos un 60% entre sus secuencias de nucleótidos-, o bien sean derivadas de ellas por degeneración del código genético o mutagénesis.The present invention comprises determining the DNA sequence coding for the major cypress pollen allergen. By means of the process, object of the invention, molecules of Recombinant DNA encoding polypeptides that exhibit the antigenicity of Cup s 1, a cypress pollen allergen, as well as for polypeptides that contain at least one Cup s 1 epitope in their structure. The invention relates to DNA polynucleotide sequences that hybridize under restrictive conditions with those of this allergen -which implies an identity level of at least 60% among its nucleotide sequences-, or are derived from them by code degeneration genetic or mutagenesis.
El procedimiento objeto de la invención permite la obtención del alérgeno recombinante de Cupressus sempervirens, Cup s 1 , correctamente plegado y en cantidades adecuadas para estudios posteriores. Se lleva a cabo la inserción del DNA en vectores de expresión y células huésped de tal manera que contengan una secuencia de nucleótidos como las descritas en ID SEQ NO: 1 a ID SEQ NO: 5, codificantes de Cup s 1, o secuencias modificadas de éstas o fragmentos derivados de las mismas. Los métodos de preparación de estos polipéptidos implican su producción recombinante a partir de las moléculas polinucleotídicas arriba mencionadas, en un sistema de cultivo de células procariotas o eucariotas que contienen como vehículo de moléculas de DNA, los vectores de expresión descritos.The procedure object of the invention allows obtaining the recombinant Cupressus sempervirens allergen, Cup s 1, correctly folded and in adequate quantities for subsequent studies. Insertion of DNA into expression vectors and host cells is carried out in such a way as to contain a nucleotide sequence as described in ID SEQ NO: 1 to ID SEQ NO: 5, encoding Cup s 1, or modified sequences of these or fragments derived from them. The methods of preparing these polypeptides involve their recombinant production from the polynucleotide molecules mentioned above, in a culture system of prokaryotic or eukaryotic cells that contain the described expression vectors as a vehicle for DNA molecules.
Por tanto, con el procedimiento objeto de la invención, se dispone de Cup s 1 recombinante -un alérgeno del polen de cupresáceas de suma importancia clínica-, además de fragmentos antigénicos de este alérgeno con epítopos B y T propios, que servirán para ser incorporados en las pruebas "in vivo" e "in vitro" a realizar para la fiel diagnosis de la hipersensibiiidad a este polen, y a otros pólenes relacionados filogenéticamente con él. También podrán ser empleados en las preparaciones de alérgenos que se utilicen para llevar a cabo la inmunoterapia correspondiente para el tratamiento de la alergia al polen de cupresáceas.Therefore, with the procedure object of the invention, recombinant Cup s 1 -an allergen of cupresacea pollen of great clinical importance- are available, in addition to antigenic fragments of this allergen with its own B and T epitopes, which will serve to be incorporated in the "in vivo" and "in vitro" tests to be carried out for the faithful diagnosis of hypersensitivity to this pollen, and to other pollens related phylogenetically with it. They may also be used in allergen preparations that are used to carry out the corresponding immunotherapy for the treatment of cupresacea pollen allergy.
AplicacionesApplications
Para el diagnóstico y la terapia de la alergia al polen de cupresáceas se utilizan actualmente extractos proteicos obtenidos a partir del polen. Esto implica una escasa reproducibilidad y un alto contenido en moléculas contaminantes, de origen proteico y no proteico, que pueden originar efectos secundarios adversos en los pacientes tratados. El disponer de moléculas homogéneas obtenidas por las técnicas del DNA recombinante, en cantidades ilimitadas, perfectamente cuantificables y estandarizadas, rebajará considerablemente todos los inconvenientes citados. Esta tecnología permitirá disponer de esas moléculas y además de péptidos o formas modificadas de las mismas que contengan al menos uno de los epítopos alergénicos. El uso de Cup s 1 recombinante en diagnóstico, in vivo mediante pruebas cutáneas o in vitro mediante técnicas de inmunodetección (ELISA, RAST), permitirá precisar qué alérgenos son los responsables de la sintomatología clínica de un individuo y reducir así el número de moléculas necesarias para su inmunoterapia. Se originará, por tanto, una inmunoterapia personalizada.Protein extracts obtained from pollen are currently used for the diagnosis and therapy of pollen allergy to cupres. This it implies a low reproducibility and a high content of contaminating molecules, of protein and non-protein origin, which can cause adverse side effects in treated patients. Having homogeneous molecules obtained by recombinant DNA techniques, in unlimited quantities, perfectly quantifiable and standardized, will considerably reduce all the aforementioned drawbacks. This technology will make these molecules available, as well as peptides or modified forms thereof that contain at least one of the allergenic epitopes. The use of recombinant Cup s 1 in diagnosis, in vivo by means of skin tests or in vitro by means of immunodetection techniques (ELISA, RAST), will make it possible to determine which allergens are responsible for the clinical symptoms of an individual and thus reduce the number of molecules required for your immunotherapy. Therefore, personalized immunotherapy will originate.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
La memoria presenta unas figuras que con carácter ilustrativo representan lo siguiente:The report presents figures that illustratively represent the following:
FIGURA 1. Oligonucleótidos diseñados para las amplificaciones por PCR que han dado como resultado la obtención de la secuencia completa de Cup s 1. Se muestra la secuencia nucleotídica de cada uno, su sentido de lectura considerándolo "sense" cuando está en el sentido de lectura en el que se da la traducción, y "antisense" en el sentido contrario. También se presenta la secuencia de aminoácidos correspondiente a Cup s 1 que está codificada en dicho oligonucleótido. Se subrayan aquellos nucleótidos que incluyen un sitio de restricción diseñado ad hoc, como se explica en el texto. FIGURA 2. Esquema del proceso de clonación de Cup s 1. Se presentan las etapas descritas en el texto y se muestran los oligonucleótidos utilizados en cada caso, según nomenclatura de la Figura 1.FIGURE 1. Oligonucleotides designed for the PCR amplifications that have resulted in obtaining the complete Cup s 1 sequence. The nucleotide sequence of each one is shown, its sense of reading considering it "sense" when it is in the sense of reading in which the translation is given, and "antisense" in the opposite sense. The amino acid sequence corresponding to Cup s 1 that is encoded in said oligonucleotide is also presented. Those nucleotides that include an ad hoc designed restriction site, as explained in the text, are underlined. FIGURE 2. Scheme of the Cup s cloning process 1. The steps described in the text are presented and the oligonucleotides used in each case are shown, according to the nomenclature of Figure 1.
MODO DE REALIZACIÓN DE LA INVENCIÓNMETHOD OF CARRYING OUT THE INVENTION
Para la clonación de la secuencia completa de Cup s 1 , se siguieron las siguientes etapas: (1) Aislamiento del RNA total del polen de Cupressus sempervirens. (2) Amplificación a partir del RNA mensajero de la región 3' de la molécula de cDNA codificante de Cup s 1, utilizando oligonucleótidos específicos del extremo amino terminal de la molécula natural madura. Clonación del producto obtenido y determinación de su secuencia, sobre todo de la secuencia del C-terminal de la molécula de Cup s 1, para diseñar oligonucleótidos específicos de dicho extremo. (3) Amplificación por PCR de la región codificante correspondiente al extremo 5' de Cup s 1 (incluyendo el péptido señal), clonación del producto obtenido y determinación de la secuencia en esta región, lo que permite el diseño de oligonucleótidos específicos de la misma. (4) Amplificación por PCR del cDNA que codifica para la molécula completa de Cup s 1, utilizando oligonucleótidos diseñados según los datos obtenidos en los pasos previos. 5) Clonación y determinación de la secuencia completa de dicho cDNA.For the cloning of the complete Cup s 1 sequence, the following steps were followed: (1) Isolation of total RNA from Cupressus sempervirens pollen. (2) Amplification from the messenger RNA of the 3 'region of the Cup s 1 coding cDNA molecule, using specific oligonucleotides from the amino terminal end of the mature natural molecule. Cloning of the obtained product and determination of its sequence, especially the C-terminal sequence of the Cup s 1 molecule, to design specific oligonucleotides of said end. (3) PCR amplification of the coding region corresponding to the 5 'end of Cup s 1 (including the signal peptide), cloning of the obtained product and determination of the sequence in this region, allowing the design of specific oligonucleotides of the same . (4) PCR amplification of the cDNA encoding the complete Cup s 1 molecule, using oligonucleotides designed according to the data obtained in the previous steps. 5) Cloning and determination of the complete sequence of said cDNA.
El método de clonación seguido, excepto en la etapa (1), fue realizado utilizando el sistema "SMART-RACE cDNA amplification kit" de Clontech. En la Figura 1 se recogen los oligonucleótidos que han sido necesarios para llevar a cabo estas amplificaciones y que se mencionan a continuación, mientras que en la Figura 2 se esquematiza el proceso de clonación. De forma detallada, el procedimiento seguido fue el siguiente:The cloning method followed, except in step (1), was performed using the "SMART-RACE cDNA amplification kit" system from Clontech. Figure 1 shows the oligonucleotides that have been necessary to carry out these amplifications and which are mentioned below, while Figure 2 shows the cloning process. In detail, the procedure followed was as follows:
Aislamiento del RNA Se consiguió mediante una modificación del método descrito porRNA isolation This was achieved by modifying the method described by
Breiteneder [Breiteneder et al. (1988) Int. Archs. Allergy Applied Immunol. 87, 19-24]. El polen utilizado se obtiene de forma comercial, a través de la empresa ALK-Abelló. En primer lugar, se trituran en mortero 3.5g de polen congelado con nitrógeno líquido. A continuación se homogeneiza en Polytron en una mezcla 1:1 de tampón de homogeneización y fenol/cloroformo/alcohol isoamílico en relación 24:24:1 (FCI). Se utilizó una relación del polen con respecto al volumen total del 12% (p/v). El tampón de homogeneización contiene 150mM NaCI, 50mM Tris-HCI pH 8.0, 5mM EDTA, 5% SDS, y se añade 2-mercaptoetanol hasta 100mM justo antes de usarlo. El homogeneizado se centrifuga 15 minutos a 4°C, 2900xg, se recupera la fase acuosa y se vuelve a extraer dos veces frente a la misma mezcla FCI y una vez más frente a cloroformo. A continuación se precipita sucesivas veces el RNA a partir de la fase acuosa: una vez añadiendo acetato sódico 3M pH 5.2 hasta una concentración final de 0.3M seguida por 2.5 volúmenes de etanol; se deja a -20°C durante 8 horas y luego se centrifuga a 10000xg, 10 minutos a 4°C. La segunda precipitación se lleva a cabo sobre el material sedimentado en la etapa anterior, tras dejar evaporar el etanol, y redisolviéndolo en agua destilada, mediante la adición de un volumen de 4M de cloruro de litio (LiCI), dejándolo 2 horas en baño de hielo y centrifugando a 10000xg durante 20 minutos. El material sedimentado (específicamente RNA) se redisuelve y se precipita dos veces más utilizando acetato sódico/etanol antes de poder ser utilizado en la siguiente etapa. De hecho, la última precipitación no se lleva a cabo hasta el momento de utilizar el RNA, guardando las muestras a -80°C en los volúmenes correspondientes de agua y etanol. Se obtienen unos 80μg de RNA total a partir de los 3.5g de polen inicial.Breiteneder [Breiteneder et al. (1988) Int. Archs. Allergy Applied Immunol. 87, 19-24]. The pollen used is obtained commercially, through the ALK-Abelló company. First, 3.5g of frozen pollen is ground in a mortar with liquid nitrogen. It is then homogenized in Polytron in a 1: 1 mixture of homogenization buffer and phenol / chloroform / isoamyl alcohol in 24: 24: 1 ratio (FCI). A ratio of pollen to total volume of 12% (w / v) was used. The homogenization buffer contains 150mM NaCI, 50mM Tris-HCI pH 8.0, 5mM EDTA, 5% SDS, and 2-mercaptoethanol is added to 100mM just prior to use. The homogenate is centrifuged 15 minutes at 4 ° C, 2900xg, the aqueous phase is recovered and it is re-extracted twice against the same FCI mixture and once more against chloroform. The RNA is then precipitated successively from the aqueous phase: once by adding 3M sodium acetate pH 5.2 to a final concentration of 0.3M followed by 2.5 volumes of ethanol; it is left at -20 ° C for 8 hours and then it is centrifuged at 10000xg, 10 minutes at 4 ° C. The second precipitation is carried out on the material settled in the previous stage, after allowing the ethanol to evaporate, and redissolving it in distilled water, by adding a volume of 4M lithium chloride (LiCI), leaving it for 2 hours in a bath of ice and spinning at 10000xg for 20 minutes. The settled material (specifically RNA) is redissolved and precipitated twice more using sodium acetate / ethanol before it can be used in the next step. In fact, the last precipitation is not carried out until the moment of using the RNA, keeping the samples at -80 ° C in the corresponding volumes of water and ethanol. About 80μg of total RNA are obtained from the 3.5g of initial pollen.
Amplificaciones por PCR v clonación de la secuencia completa de Cup s 1PCR amplifications and cloning of the complete Cup s 1 sequence
Como se indicó anteriormente se utilizó el sistema de amplificación comercial "SMART-RACE" con diferentes oligonucleótidos específicos. Tras una primera etapa de síntesis de la primera hebra (partiendo de 2μg de RNA total), se llevó a cabo una amplificación por PCR utilizando un oligonucleótido degenerado llamado CUP1 (Figura 1), correspondiente al N- terminal de la proteína Cup s 1 madura, conjuntamente con la mezcla de oligonucleótidos "UPM" del método SMART RACE (Figura 1). Para que pudiera obtenerse la amplificación específica de secuencias de Cup s 1 hubo de modificarse el método de PCR propuesto por el manual del "SMART- RACE" (se utilizó una temperatura de 55°C en la etapa de hibridación de ías secuencias previamente desnaturalizadas, y se realizaron 30 ciclos de amplificación). La banda amplificada, de 1.3 kb, se purificó a partir de un gel de agarosa de bajo punto de fusión y se extrajo el DNA preferentemente mediante el método GENECLEAN II (de BIO101). Dicha banda se clonó preferentemente en el vector pSTBIue-1 (utilizando el método descrito por el kit "Perfectly Blunt" de Invitrogen) y se secuenció, obteniéndose los datos de la región 3' de la secuencia específica que codifica para Cup s 1, así como de regiones de secuencia no codificantes, hasta la cola de poli-A correspondiente al RNA mensajero. Con estos datos de secuencia se diseñaron varios oligonucleótidos específicos que se hacen en este caso degenerados para intentar obtener ¡soformas de la molécula, en el caso de que las hubiera. La razón de esta estrategia está basada en el elevado grado de polimorfismo que existe en general entre los alérgenos de plantas. Por tanto, para una amplificación de la región 5' codificante y no codificante de Cup s 1, se diseñaron los oligonucleótidos GSP1 y nGSP1 (Figura 1), correspondiendo, respectivamente, al extremo 3' de la secuencia codificante de Cup s 1 (aminoácidos 359 a 367 de la misma) más el codon de terminación de la traducción, y a una región más interna de Cup s 1 (correspondiente a los aminoácidos 349 a 356) pero también localizada en la región 3' de esta secuencia codificante. De hecho nGSP1 cumplía mejor los requisitos sugeridos por el método SMART-RACE para la amplificación del extremo 5', y fue con el que se consiguió una amplificación específica de Cup s 1. La banda obtenida se clonó en el vector pCR2.1 (del método TOPO-TA Cloning de Invitrogen), donde se comprueban sus secuencias, sobre todo las que contienen la región codificante de Cup s 1 en su extremo 5', incluyendo el péptido señal. A continuación se diseñó un oligonucleótido específico de esta región, FUGSP2 (Figura 1). Utilizando este oligonucleótido y el FUGPS1 , correspondiente al extremo 3' codificante de Cup s 1 incluyendo el triplete de terminación de la traducción y conteniendo un sitio de restricción para posteriores subclonajes del cDNA de Cup s 1, se llevaron a cabo reacciones de PCR "de larga distancia" (del vocablo inglés Long Distance PCR del método de amplificación SMART-RACE) mediante las cuales se obtuvieron bandas amplificadas del tamaño esperado (1.1 kb). Estas se clonaron preferentemente en el vector pCR2.1 con el mismo método utilizado con anterioridad, para proceder a su secuenciación. Se secuenciaron hasta cinco clones con la secuencia completa que codifica para Cup s 1 (secuencias que se presentan a continuación como SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 y SEQ ID NO: 5), con ligeras diferencias unos de otros, que se achacan a la existencia de isoformas codificadas por diferentes genes de la familia que codifica para Cup s 1. Las proteínas codificadas correspondientes se muestran en los apartados SEQ ID NO: 6 a SEQ ID NO: 10. Para llevar a cabo la secuenciación de estos DNAs de una forma completa e inequívoca, se diseñaron oligonucleótidos específicos (S_429 y A_506 en la Figura 1) de regiones internas de la secuencia codificante para esta molécula de forma que pudieran leerse todas las secuencias con al menos dos determinaciones experimentales diferentes. Además, y con objeto de proceder a posteriores experimentos de expresión del cDNA que codifica para Cup s 1 en la levadura Pichia pastoris o en otros microorganismos, se diseñaron oligonucleótidos específicos llamados B_CS1 y D_CS1 (Figura 1). Ambos, poseen sitios de restricción necesarios para subclonar dichos fragmentos en ciertos vectores de expresión, como el pPICZαA de Invitrogen. El cebador B_CS1 codifica el extremo 5' de Cup s 1 sin su péptido señal de manera que, una vez insertado en el vector, quedaría en fase con un péptido señal que puede ser procesado por P. pastoris. El cebador D_CS1, permite una amplificación del extremo 3' de Cup s 1 sin su codón de terminación habitual de forma que, al insertarlo en el vector de expresión, quedaría en fase de lectura con un fragmento polipeptídico que termina en un grupo de seis histidinas (un "tag" de histidinas), seguidas de un nuevo codón de terminación. Este último oligonucleótido puede facilitar la purificación de la proteína recombinante. As previously indicated, the commercial "SMART-RACE" amplification system with different specific oligonucleotides was used. After a first stage of synthesis of the first strand (starting from 2μg of total RNA), a PCR amplification was carried out using a degenerate oligonucleotide called CUP1 (Figure 1), corresponding to N- terminal of the mature Cup s 1 protein, together with the "UPM" oligonucleotide mixture of the SMART RACE method (Figure 1). In order to obtain specific amplification of Cup s 1 sequences, the PCR method proposed by the "SMART-RACE" manual had to be modified (a temperature of 55 ° C was used in the hybridization stage of the previously denatured sequences, and 30 cycles of amplification were performed). The amplified 1.3 kb band was purified from a low melting point agarose gel and DNA was preferably extracted by the GENECLEAN II method (from BIO101). Said band was preferably cloned into the pSTBIue-1 vector (using the method described by the "Perfectly Blunt" kit from Invitrogen) and sequenced, obtaining data from the 3 'region of the specific sequence coding for Cup s 1, thus as from non-coding sequence regions, down to the poly-A tail corresponding to the messenger RNA. With these sequence data, several specific oligonucleotides were designed, which are made in this case degenerate, to try to obtain isoforms of the molecule, if any. The reason for this strategy is based on the high degree of polymorphism that generally exists among plant allergens. Therefore, for an amplification of the 5 'coding and non-coding region of Cup s 1, the GSP1 and nGSP1 oligonucleotides were designed (Figure 1), corresponding, respectively, to the 3' end of the Cup s 1 coding sequence (amino acids 359 to 367 thereof) plus the translation termination codon, and to an inner Cup s 1 region (corresponding to amino acids 349 to 356) but also located in the 3 'region of this coding sequence. In fact, nGSP1 better met the requirements suggested by the SMART-RACE method for amplification of the 5 'end, and it was with this that Cup s 1-specific amplification was achieved. The band obtained was cloned into vector pCR2.1 (from TOPO-TA Cloning method from Invitrogen), where its sequences are checked, especially those that contain the coding region of Cup s 1 at its 5 'end, including the signal peptide. Next, a specific oligonucleotide of this region, FUGSP2 (Figure 1). Using this oligonucleotide and FUGPS1, corresponding to the coding 3 'end of Cup s 1 including the translation termination triplet and containing a restriction site for subsequent subcloning of the Cup s 1 cDNA, PCR reactions were carried out " long distance "(from the English word Long Distance PCR of the SMART-RACE amplification method) through which amplified bands of the expected size (1.1 kb) were obtained. These were preferably cloned into the pCR2.1 vector with the same method used previously, to proceed with their sequencing. Up to five clones were sequenced with the complete sequence coding for Cup s 1 (sequences listed below as SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO : 5), with slight differences from each other, which are attributed to the existence of isoforms encoded by different genes of the family that codes for Cup s 1. The corresponding encoded proteins are shown in sections SEQ ID NO: 6 to SEQ ID NO: 10. To carry out the sequencing of these DNAs completely and unequivocally, specific oligonucleotides (S_429 and A_506 in Figure 1) of internal regions of the coding sequence for this molecule were designed so that all the sequences with at least two different experimental determinations. In addition, and in order to carry out subsequent experiments to express the cDNA encoding Cup s 1 in the yeast Pichia pastoris or in other microorganisms, specific oligonucleotides called B_CS1 and D_CS1 were designed (Figure 1). Both possess restriction sites necessary to subclone these fragments in certain expression vectors, such as pPICZαA from Invitrogen. Primer B_CS1 encodes the 5 'end of Cup s 1 without its signal peptide so that, once inserted into the vector, it would be in phase with a signal peptide that can be processed by P. pastoris. Primer D_CS1, allows an amplification of the 3 'end of Cup s 1 without its usual stop codon so that, when inserted into the expression vector, it would be read with a polypeptide fragment ending in a group of six histidines (a "tag" of histidines), followed by a new stop codon. This latter oligonucleotide can facilitate purification of the recombinant protein.

Claims

REIVINDICACIONES
1. Moléculas de DNA recombinante caracterizadas por SEQ ID NO: 1,2,3,4 y1. Recombinant DNA molecules characterized by SEQ ID NO: 1,2,3,4 and
5, que codifican polipéptidos con actividad alergénica que posean, al menos, un epítopo alergénico común con el alérgeno principal de Cupressus sempervirens.5, which encode polypeptides with allergenic activity that possess at least one common allergenic epitope with the main Cupressus sempervirens allergen.
2. Moléculas de DNA recombinante, o modificaciones de las mismas, según reivindicación 1, que codifican polipéptidos con, al menos, un epítopo de Cup s 1 en su estructura, unido a un polipéptido adicional, o modificado química o enzimáticamente.2. Recombinant DNA molecules, or modifications thereof, according to claim 1, encoding polypeptides with at least one Cup s 1 epitope in their structure, linked to an additional polypeptide, or chemically or enzymatically modified.
3. Moléculas de DNA recombinante caracterizadas por presentar, al menos, un 60% de identidad con las descritas en SEQ ID NO: 1,SEQ ID NO: 2,SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, conteniendo una secuencia de nucleótidos que codifica un polipéptido con actividad alergénica idéntica o reducida (hipoalergénica) con respecto a Cup s .3. Recombinant DNA molecules characterized by presenting at least 60% identity with those described in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, containing a nucleotide sequence encoding a polypeptide with identical or reduced allergenic (hypoallergenic) activity with respect to Cup s.
4. Polipéptidos recombinantes del alérgeno Cup s 1 de Cupressus sempervirens, o fragmentos de dichos polipéptidos, según reivindicación 1, caracterizados por las secuencias traducidas y presentadas en SEQ ID NO:4. Recombinant polypeptides from Cupressus sempervirens Cup s 1 allergen, or fragments of said polypeptides, according to claim 1, characterized by the translated sequences and presented in SEQ ID NO:
6, 7, 8, 9 y 10, que presentan la antigenicidad de, al menos, un epítopo de Cup s l.6, 7, 8, 9 and 10, which show the antigenicity of at least one epitope of Cup s l.
5. Polipéptidos o fragmentos de dichos polipéptidos de polen de Cupressus sempervirens con, al menos, un epítopo de Cup s 1 según reivindicaciones anteriores, que se produzcan recombinantes unidos a un polipéptido adicional.5. Polypeptides or fragments of said Cupressus sempervirens pollen polypeptides with at least one Cup s 1 epitope according to previous claims, producing recombinants linked to an additional polypeptide.
6. Polipéptidos de polen de Cupressus sempervirens, según reivindicaciones anteriores, que estén modificados química o enzimáticamente. 6. Pollen polypeptides of Cupressus sempervirens, according to previous claims, that are chemically or enzymatically modified.
7. Un vector de expresión eucariota que contenga cualquiera de las secuencias de nucleótidos caracterizadas por SEQ ID NO: 1 ,2,3,4 ó 5, según reivindicaciones 1 ,2 y 3, y que permita su producción recombinante, siendo este vector de expresión preferentemente pPICZalpha.7. A eukaryotic expression vector that contains any of the nucleotide sequences characterized by SEQ ID NO: 1, 2,3,4 or 5, according to claims 1, 2 and 3, and that allows their recombinant production, this vector being expression preferably pPICZalpha.
8. Un organismo hospedador eucariota, transformado con la construcción formada por un vector de expresión según reivindicación 7 y las secuencias de DNA caracterizadas por SEQ NO: 1,2,3,4 y 5 de las reivindicaciones 1 , 2 y 3, que sirvan para producir los polipéptidos recombinantes codificados por esas secuencias.8. A eukaryotic host organism, transformed with the construct formed by an expression vector according to claim 7 and the DNA sequences characterized by SEQ NO: 1,2,3,4 and 5 of claims 1, 2 and 3, which serve to produce the recombinant polypeptides encoded by those sequences.
9. Utilización de las moléculas descritas en las reivindicaciones 1,2,3,4,5 y 6, y producidas según reivindicaciones 7 y 8, en el diagnóstico "in vitro" de la alergia.9. Use of the molecules described in claims 1,2,3,4,5 and 6, and produced according to claims 7 and 8, in the "in vitro" diagnosis of allergy.
10. Aplicación de las moléculas recombinantes de las reivindicaciones 1,2,3,4,5 y 6, y producidas según reivindicaciones 7 y 8, para el diseño de vacunas destinadas a la inmunoterapia de la alergia.10. Application of the recombinant molecules of claims 1,2,3,4,5 and 6, and produced according to claims 7 and 8, for the design of vaccines for allergy immunotherapy.
11. Aplicación de las moléculas recombinantes de las reivindicaciones 4-6 para producir péptidos que contengan al menos un epítopo T capaces de actuar como vacunas.11. Application of the recombinant molecules of claims 4-6 to produce peptides containing at least one T epitope capable of acting as vaccines.
12. Aplicación de las moléculas recombinantes de las reivindicaciones 4-6 para la producción de isoformas recombinantes hipoalergénicas que tengan disminuida o anulada su unión a IgE para el tratamiento de alergias. 12. Application of the recombinant molecules of claims 4-6 for the production of hypoallergenic recombinant isoforms that have decreased or nullified binding to IgE for the treatment of allergies.
PCT/ES2002/000106 2001-03-09 2002-03-08 Cloning of the cdna that codes for cup s 1, the major allergen of cupressus sempervirens WO2002072833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200100554A ES2180415B2 (en) 2001-03-09 2001-03-09 CLONING OF THE CDNA CODING FOR CUP S 1, MAJOR ALLERGY OF CUPRESSUS SEMPERVIRENS.
ESP0100554 2001-03-09

Publications (1)

Publication Number Publication Date
WO2002072833A1 true WO2002072833A1 (en) 2002-09-19

Family

ID=8497028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000106 WO2002072833A1 (en) 2001-03-09 2002-03-08 Cloning of the cdna that codes for cup s 1, the major allergen of cupressus sempervirens

Country Status (2)

Country Link
ES (1) ES2180415B2 (en)
WO (1) WO2002072833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543725A1 (en) * 2011-07-08 2013-01-09 Biomay Ag Polysaccharide lyases

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001560A1 (en) * 1991-07-12 1994-01-20 Immulogic Pharmaceutical Corporation Allergenic proteins and peptides from japanese cedar pollen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001560A1 (en) * 1991-07-12 1994-01-20 Immulogic Pharmaceutical Corporation Allergenic proteins and peptides from japanese cedar pollen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACEITUNO E. ET AL.: "Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1", CLINICAL AND EXPERIMENTAL ALLERGY, vol. 30, 2000, pages 1750 - 1758 *
MIDORO-HORIUTI T. ET AL.: "Molecular cloning of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1", J. ALLERGY CLIN. IMMUNOL., vol. 104, no. 3, 1999, pages 613 - 617 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543725A1 (en) * 2011-07-08 2013-01-09 Biomay Ag Polysaccharide lyases
WO2013007706A1 (en) 2011-07-08 2013-01-17 Biomay Ag Polysaccharide lyases

Also Published As

Publication number Publication date
ES2180415B2 (en) 2004-05-16
ES2180415A1 (en) 2003-02-01

Similar Documents

Publication Publication Date Title
AU2014276484B2 (en) Contiguous overlapping peptides for treatment of house dust mites allergy
CA2634955C (en) Hypoallergenic variants of the major allergen from betula verrucosa pollen
JPH05502589A (en) Birch pollen allergen P14 for diagnosis and treatment of allergic diseases
ES2354820T3 (en) FUSION PROTEINS THAT INCLUDE MODIFIED ALLERGENS OF THE NS-LTPS FAMILY, USE OF THE SAME AND PHARMACEUTICAL COMPOSITIONS THAT UNDERSTAND THEM.
ES2180415B2 (en) CLONING OF THE CDNA CODING FOR CUP S 1, MAJOR ALLERGY OF CUPRESSUS SEMPERVIRENS.
ES2239162T3 (en) NS-LTP ANTIGEN VARIANTS OF JUDAICA PARIETARY, USES OF THE SAME AND COMPOSITIONS THAT CONTAIN THEM.
AU2003277906B2 (en) Hypoallergenic allergy vaccines based on the timothy grass pollen allergen Phl p 7
ES2209563B1 (en) PRODUCTION IN THE LEVADURAPIPCHIA PASTORIS AND POMIFICATION SYSTEM OF THE OLEA EUROPEAN OLEA RECOMBINING ALLERGEN FOR USE IN DIAGNOSIS AND ALLERGY TREATMENT.
ES2340767T3 (en) ALLERGENS OF DOMESTIC POWDER ACAROS.
ES2318077T3 (en) HYPOALLERGENIC POLYPEPTIDES BASED ON FISH PARVALBUMINA.
WO2002070716A1 (en) Allergen ole e 9 from olea europaea, recombinant dna coding for said allergen, the production and use thereof
AU768681B2 (en) Recombinant major allergen of the pollen of Artemisia vulgaris (mugwort)
ES2255340B2 (en) PRODUCTION, SYSTEM OF INSULATION AND PURIFICATION OF ALLERGEN OLE E 10.
ES2291648T3 (en) ALLERGEN OF THE POLEM OF THE ARTEMISA.
EP2794644B1 (en) Hypoallergenic variants of phl p 5, the major allergen from phleum pratense
ES2293749B1 (en) FRAE 1 ALLERGEN RECOMBINANT VARIANTE OF THE "FRAXINUS EXCELSIOR" FRENCH POLLEN, PICHIA PASTORIS YEAST PRODUCTION AND APPLICATIONS.
ES2280905T3 (en) NATURAL RUBBER ALLERGEN PROTEIN.
ES2352775B1 (en) DNA CODIFYING THE MOSTAZA YELLOW ALERGE (SINAPIS ALBA) WITHOUT 3, AND ITS APPLICATIONS.
WO2003080837A1 (en) Production of recombinant che a 1 allergen from chenopodium album and system of isolating and purifying same
ES2396540T3 (en) Cloning and sequencing of Dac g5 allergen and Dactylis glomerata pollen, its preparation and use
ES2384231T3 (en) Hybrid proteins of main allergens of Parietaria judaica and their uses
US20040071717A1 (en) Recombinant DNA encoding the major allergen of plantago lanceolata pollen, Pla I 1, and applications thereof
WO1998027111A1 (en) Vaccine for the reversible immunocastration of mammals
WO1998059051A1 (en) Recombinant dna which codes for epitopes of the major allergen of olea europaea ole e 1 useful for the diagnosis and treatment of allergies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP