WO2002072101A1 - A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts - Google Patents

A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts Download PDF

Info

Publication number
WO2002072101A1
WO2002072101A1 PCT/US2002/006834 US0206834W WO02072101A1 WO 2002072101 A1 WO2002072101 A1 WO 2002072101A1 US 0206834 W US0206834 W US 0206834W WO 02072101 A1 WO02072101 A1 WO 02072101A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pharmaceutically acceptable
crf
effective amount
therapeutically effective
Prior art date
Application number
PCT/US2002/006834
Other languages
French (fr)
Inventor
Paul J. Gilligan
Original Assignee
Bristol-Myers Squibb Pharma Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Pharma Company filed Critical Bristol-Myers Squibb Pharma Company
Publication of WO2002072101A1 publication Critical patent/WO2002072101A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • This invention relates to a treatment of psychiatric disorders and neurological diseases including major depression, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psycho-pathological disturbances and stress, by administration of 1 - ( 2 - (R) -
  • Corticotropin releasing factor (herein referred to as CRF) , a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) - derived peptide secretion from the anterior pituitary gland [J. Rivier et al . , Proc . Na t . Acad . Sci . (USA)
  • POMC proopiomelanocortin
  • CRF CRF plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, Physiological Reviews 69:1 (1989); J.E. Morley, Life Sci . 41:527 (1987)].
  • CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders.
  • a role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp . Practice 23:59 (1988)].
  • CSF cerebrospinal fluid
  • CRF has a role in the etiology of anxiety-related disorders.
  • CRF produces anxiogenic effects in animals and interactions between benzodiazepine / non-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al . , Life Sci . 31:363 (1982); C.W. Berridge and A.J. Dunn Regul . Peptides 16:83 (1986)].
  • the benzodiazepine receptor antagonist (Rol5-1788) , which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dose-dependent manner while the benzodiazepine inverse agonist (FG7142) enhanced the actions of CRF [K.T. Britton et al . , Psychopharmacology 94:306 (1988) ] .
  • the mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the suppression of the CRF hypersecretion that is observed in these disorders .
  • CRF cardiovascular or heart-related diseases as well as gastrointestinal disorders arising from stress such as hypertension, tachycardia and congestive heart failure, stroke, irritable bowel syndrome post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress
  • stress such as hypertension, tachycardia and congestive heart failure, stroke, irritable bowel syndrome post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress
  • CRF chronic myeloma
  • treatable disorders include, for example and without limitation: affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia, hypertension, tachycardia and congestive heart failure, stroke, osteoporosis, premature birth, psychosocial dwarfism, stress-induced fever, ulcer, diarrhea, post- operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress [for reviews see J.R. McCarthy, S.C. Heinrichs and D.
  • bipolar disorders cyclothymia; fatigue syndrome; stress-induced headache; cancer, human immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic
  • ADH insulin hormone
  • obesity infertility
  • head traumas spinal cord trauma
  • ischemic neuronal damage e.g. , cerebral ischemia such as cerebral hippocampal ischemia
  • excitotoxic neuronal damage epilepsy
  • cardiovascular and hear related disorders including hypertension, tachycardia and congestive heart failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g.
  • the present invention provides a novel compound which binds to corticotropin releasing factor receptors, thereby altering the anxiogenic effects of CRF secretion.
  • the compound of the present invention is useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a
  • the present invention provides a novel compound of Formula (I) (described below) which is useful as an antagonist of the corticotropin releasing factor.
  • the compound of the present invention exhibits activity as a corticotropin releasing factor antagonist and appears to suppress CRF hypersecretion.
  • invention also includes pharmaceutical compositions containing such a compound of Formula (I), and
  • the compound provided by this invention (and especially the labelled compound of this invention) is also useful as a standard and reagent in determining the ability of a potential pharmaceutical to bind to the CRF receptor.
  • the present invention comprises a compound of Formula (I) :
  • the present invention also comprises a method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart- related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound of Formula (I) :
  • non-toxic acids include inorganic and organic acids of basic residues such as amines, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric acid, p-toluenesulfonic and the like; and alkali or organic salts of acidic residues such as carboxylic acids, for example, alkali and alkaline earth metal salts derived from the following bases: sodium hydride, sodium hydroxide, potassium hydroxide, calcium
  • compositions of the compounds of the invention can be prepared by reacting the free acid or base forms of the compound with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.
  • “Pharmaceutically acceptable prodrugs” as used herein means any covalently bonded carriers which release the active parent drug of Formula (I) in vivo when such prodrug is administered to a mammalian subject.
  • Prodrugs of the compounds of Formula (I) are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.
  • the term “prodrug” means compounds that are rapidly transformed in vivo to yield the parent compound of formula (I) , for example by hydrolysis in blood.
  • Functional groups which may be rapidly transformed, by metabolic cleavage, in vivo form a class of groups reactive with the carboxyl group of the compounds of this invention. They include, but are not limited to such groups as alkanoyl (such as acetyl, propionyl, butyryl, and the like) , unsubstituted and substituted aroyl (such as benzoyl and substituted benzoyl) , alkoxycarbonyl (such as ethoxycarbonyl) , trialkylsilyl (such as trimethyl- and triethysilyl) , monoesters formed with dicarboxylic acids (such as succinyl) , and the like.
  • alkanoyl such as acetyl, propionyl, butyryl, and the like
  • unsubstituted and substituted aroyl such as benzoyl and substituted benzoyl
  • alkoxycarbonyl such as ethoxycarbonyl
  • the compounds bearing such groups act as pro-drugs.
  • the compounds bearing the metabolically cleavable groups have the advantage that they may exhibit improved bioavailability as a result of enhanced solubility and/or rate of absorption conferred upon the parent compound by virtue of the presence of the metabolically cleavable group.
  • prodrugs A thorough discussion of prodrugs is provided in the following: Design of Prodrugs, H. Bundgaard, ed. , Elsevier, 1985; Methods in Enzymology, K.
  • Prodrugs are considered to be any covalently bonded carriers which release the active parent drug of Formula (I) in vivo when such prodrug is administered to a mammalian subject.
  • Prodrugs of the compounds of Formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds .
  • Prodrugs include compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively.
  • prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of Formula (I), and the like.
  • the term “substantially free of its (+) stereoisomer” means that the compound is made up of a significantly greater proportion of its (-) stereoisomer than of its optical antipode (i.e., its (+) stereoisomer).
  • the term “substantially free of its (+) stereoisomer” means that the compound is made up of at least about 90% by weight of its (-) stereoisomer and about 10% by weight or less of its (+) stereoisomer.
  • the term "substantially free of its (+) stereoisomer” means that the compound is made up of at least about 95% by weight of its (-) stereoisomer and about 5% by weight or less of its (+) stereoisomer. In an even more preferred embodiment, the term “substantially free of its (+) stereoisomer” means that the compound is made up of at least about 99% by weight of its (-) stereoisomer and about 1% or less of its (+) stereoisomer. In another preferred embodiment, the term “substantially free of its (+) stereoisomer” means that the compound is made up of nearly 100% by weight of its (-) stereoisomer. The above percentages are based on the total amount of the combined stereoisomers of the compound.
  • therapeutically effective amount of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety or depression in a host.
  • the present invention includes all stereoisomeric forms of the compounds of the formula I. Centers of asymmetry that are present in the compounds of formula I can all independently of one another have S configuration or R configuration.
  • the prefixes d and 1 or (+ ) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory.
  • a compound prefixed with ( + ) or d is dextrorotatory.
  • the invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios.
  • enantiomers are a subject of the invention in enantiomerically pure form, both as levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios.
  • the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios.
  • the preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis.
  • a derivatization can be carried out before a separation of stereoisomers.
  • the separation of a mixture of stereoisomers can be carried out at the stage of the compounds of the formula I or at the stage of an intermediate during the synthesis.
  • the present invention also includes all tautomeric forms of the compounds of formula (I) .
  • a compound of Formula (I) may be prepared from using the procedures outlined in Scheme 1.
  • a compound of Formula (II) is reacted with brominating agents (e.g. N-bromosuccinimide / 2,2'- azobisisobutyronitrile (AIBN) or N-bromophthalimide / 2 , 2 ' -azobisisobutyronitrile (AIBN)) in the presence of an inert solvent (e.g. halocarbons (1 to 6 carbons, 1 to 6 halogens (preferably chlorine) ) at reaction
  • brominating agents e.g. N-bromosuccinimide / 2,2'- azobisisobutyronitrile (AIBN) or N-bromophthalimide / 2 , 2 ' -azobisisobutyronitrile (AIBN)
  • an inert solvent e.g. halocarbons (1 to 6 carbons, 1 to 6 halogens (preferably chlorine)
  • temperatures ranging from 50°C to 200°C (preferably 50°C
  • a compound of Formula (III) is reacted with cyanide compounds (e.g. sodium cyanide, potassium cyanide) in the presence of an inert solvent (e.g. N,N-
  • dialkylformamides preferably dimethylformamide
  • N,N- dialkylacetamides preferably dimethylacetamide
  • cyclic amides preferably N-methylpyrrolidin-2-one
  • dialkylsulfoxides preferably dimethylsulfoxide
  • Bases may include, but are not limited to, alkali metals, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal carbonates, alkali metal hydroxides, alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine) .
  • alkali metals preferably sodium hydride
  • alkali metal alkoxides (1 to 6 carbons) preferably sodium methoxide or sodium ethoxide
  • alkaline earth metal hydrides alkali metal dialkylamides (preferably lithium
  • Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , water, dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1, 4-dioxane) , N,N-dialkylformamides (preferably dimethylformamide) , N,N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) .
  • alkyl alcohols 1 to 8 carbons, preferably methanol or ethanol
  • lower alkanenitriles (1 to 6 carbons, preferably acetonitrile
  • water dialkyl ethers
  • temperatures range from 0°C to 100°C.
  • temperatures ranging from 0°C to 200°C, preferably 70°C
  • Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol) , lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N,N-dialkylformamides (preferably dimethylformamide) , N,N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) .
  • a compound of Formula (VI) may be treated with
  • Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid) , haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid) , alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid) , hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used.
  • Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) .
  • alkyl alcohols 1 to 8 carbons, preferably methanol or ethanol
  • lower alkanenitriles (1 to 6 carbons, preferably acetonitrile
  • dialkyl ethers
  • temperatures range from 0°C to 100°C.
  • a compound of Formula (VII) may be treated with a halogenating agent in the presence or absence of a base in the presence or absence of an inert solvent at
  • Halogenating agents include, but are not limited to, SOC12, POCI3, PCI3, PCI5, POBr3, PBr3 or PBrs .
  • Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine) .
  • alkali metal hydrides preferably sodium hydride
  • alkali metal alkoxides (1 to 6 carbons) preferably sodium methoxide or sodium ethoxide
  • alkaline earth metal hydrides alkali metal dialkylamides (preferably lithium di-isopropylamide)
  • Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1, 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N- methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) , aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloroethane) .
  • dialkyl ethers preferably diethyl ether
  • cyclic ethers preferably tetrahydrofuran or 1, 4-dioxan
  • Preferred reaction temperatures range from 80°C to
  • a compound of Formula (VIII) may be reacted with a compound of Formula CH 3 (CH 3 CH 2 ) CHNH 2 in the presence or absence of a base in the presence or absence of an inert
  • Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal carbonates, alkali metal bicarbonates , alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine) .
  • alkali metal hydrides preferably sodium hydride
  • alkali metal alkoxides (1 to 6 carbons) preferably sodium methoxide or sodium ethoxide
  • alkaline earth metal hydrides alkali metal dialkylamides (preferably lithium di-is
  • Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) , aromatic hydrocarbons (preferably benzene or toluene) or aloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane) .
  • Preferred reaction temperatures range
  • MS mass spectra
  • HRMS high resolution mass spectra
  • CI chemi- ionization
  • ESI electrospray
  • GC gas chromatography
  • Reagents were purchased from commercial sources and, where necessary, purified prior to use according to the general procedures outlined by D. Perrin and W.L.F.
  • Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G.
  • assays are carried out at 37° C for 10 min in 200 ml of buffer containing 100 mM Tris-HCl (pH 7.4 at 37° C) , 10 mM MgCl2, 0.4 mM EGTA, 0.1% BSA, 1 mM isobutylmethylxanthine (IBMX) , 250 units/ml phosphocreatine kinase, 5 mM creatine phosphate, 100 mM guanosine 5 ' -triphosphate, 100 nM oCRF, antagonist peptides (concentration range 10 ⁇ 9 to 10 ⁇ 6 ) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein) . Reactions are initiated by the addition of
  • the in vivo activity of a compound of the present invention can be assessed using any one of the biological assays available and accepted within the art. Illustrative of these tests include the Acoustic Startle Assay, the Stair Climbing Test, and the Chronic Administration Assay. These and other models useful for the testing of compounds of the present invention have been outlined in C.W. Berridge and A.J. Dunn Brain Research Reviews 15:71 (1990).
  • a compound may be tested in any species of rodent or small mammal.
  • a compound of this invention has utility in the treatment of imbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.
  • a compound of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal.
  • the compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or in combination of therapeutic agents. It can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
  • the dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the particular agent, and its mode and route of administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect.
  • a compound of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.
  • Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit.
  • the active ingredient will ordinarily be present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.
  • the active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups, and/or suspensions.
  • the compounds of this invention can also be administered parenterally in sterile liquid dose formulations.
  • Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time. Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.
  • a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time. Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the
  • Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance.
  • water, pharmaceutically acceptable oils, saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol are suitable carriers for parenteral solutions.
  • Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, butter substances.
  • Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents.
  • citric acid and its salts, and EDTA are also used.
  • parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol .
  • preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol .
  • Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences", A. Osol, a standard reference in the field.
  • a large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate .
  • Soft Gelatin Capsules 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate .
  • a mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried. Tablets
  • the compounds of this invention may also be used as reagents or standards in the biochemical study of neurological function, dysfunction, and disease.

Abstract

Corticotropin releasing factor (CRF) antagonists of Formula (I) and its use in treating anxiety, depression, and other psychiatric, neurological disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress.

Description

A CORTICOTROPIN RELEASING FACTOR RECEPTOR LIGAND, ITS ENANTIOMER AND PHARMACEUTICALLY ACCEPTABLE SALTS Field of the Invention
This invention relates to a treatment of psychiatric disorders and neurological diseases including major depression, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psycho-pathological disturbances and stress, by administration of 1 - ( 2 - (R) -
Butyla ino) -2, 5-dimethyl-3- (2-methyl-4-methoxyphenyl) -
[1 , 5-a]pyrazolopyrimidine, its enantiomer or pharmaceutically acceptable salts thereof, as a corticotropin releasing factor receptor ligand. Background of the Invention
Corticotropin releasing factor (herein referred to as CRF) , a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) - derived peptide secretion from the anterior pituitary gland [J. Rivier et al . , Proc . Na t . Acad . Sci . (USA)
80:4851 (1983); W. Vale et al . , Science 213:1394
(1981) ] . In addition to its endocrine role at the pituitary gland, immunohistochemical localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al . , Rec . Prog. Horm . Res . 39:245 (1983); G.F. Koob, Persp . Behav. Med. 2:39 (1985); E.B. De Souza et al., J. Neurosci . 5:3189 (1985)]. There is also evidence that CRF plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, Physiological Reviews 69:1 (1989); J.E. Morley, Life Sci . 41:527 (1987)].
Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp . Practice 23:59 (1988)].
In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebrospinal fluid (CSF) of drug-free individuals [C.B. Ne eroff et al . , Science 226:1342 (1984); CM. Banki et al., Am. J. Psychiatry 144:873 (1987); R.D. France et al., Biol . Psychiatry 28:86 (1988); M. Arato et al . , Biol Psychiatry 25:355 (1989)]. Furthermore, the density of CRF receptors is significantly decreased in the frontal cortex of suicide victims, consistent with a hypersecretion of CRF [C.B. Nemeroff et al . , Arch . Gen . Psychiatry 45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. administered) observed in depressed patients [P.W. Gold et al., Am J. Psychiatry 141:619 (1984); F. Holsboer et al . , Psychoneuro endocrinology 9:147 (1984); P.W. Gold et al., New Eng . J. Med. 314:1129 (1986)]. Preclinical studies in rats and non-human primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the symptoms seen in human depression [R.M. Sapolsky, Arch . Gen . Psychiatry 46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants can alter CRF levels and thus modulate the numbers of CRF receptors in brain [Grigoriadis et al . , Neuropsychopharmacology 2:53 (1989) ] .
It has also been postulated that CRF has a role in the etiology of anxiety-related disorders. CRF produces anxiogenic effects in animals and interactions between benzodiazepine / non-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al . , Life Sci . 31:363 (1982); C.W. Berridge and A.J. Dunn Regul . Peptides 16:83 (1986)]. Preliminary studies using the putative CRF receptor antagonist a-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces "anxiolytic-like" effects that are qualitatively similar to the benzodiazepines [C.W. Berridge and A.J. Dunn Horm . Behav. 21:393 (1987), Brain Research Reviews 15:71 (1990)].
Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF and benzodiazepine anxiolytics, providing further evidence for the involvement of CRF in these disorders . Chlordiazepoxide attenuates the "anxiogenic" effects of CRF in both the conflict test [K.T. Britton et al . , Psychopharmacology 86:170 (1985); K.T. Britton et al . , Psychopharmacology 94:306 (1988)] and in the acoustic startle test [N.R. Swerdlow et al . , Psychopharmacology 88:147 (1986)] in rats. The benzodiazepine receptor antagonist (Rol5-1788) , which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dose-dependent manner while the benzodiazepine inverse agonist (FG7142) enhanced the actions of CRF [K.T. Britton et al . , Psychopharmacology 94:306 (1988) ] . The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the suppression of the CRF hypersecretion that is observed in these disorders . Of particular interest is that preliminary studies examining the effects of a CRF receptor antagonist (a -helical CRF9-41) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces "anxiolytic-like" effects qualitatively similar to the benzodiazepines [for review see G.F. Koob and K.T. Britton, In: Corticotropin- Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds . , CRC Press p221 (1990) ] . It has been further postulated that CRF has a role in cardiovascular or heart-related diseases as well as gastrointestinal disorders arising from stress such as hypertension, tachycardia and congestive heart failure, stroke, irritable bowel syndrome post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress [for reviews see E.D. DeSouza, C.B. Nemeroff, Editors; Corticotropin- Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds . , CRC Press p221 (1990) and C. Maillot, M. Million, J.Y. Wei, A. Gauthier, Y. Tache, Gastroenterology, 119, 1569-1579 (2000) ] .
Over-expression or under -expression of CRF has been proposed as an underlying cause for several medical disorders. Such treatable disorders include, for example and without limitation: affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia, hypertension, tachycardia and congestive heart failure, stroke, osteoporosis, premature birth, psychosocial dwarfism, stress-induced fever, ulcer, diarrhea, post- operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress [for reviews see J.R. McCarthy, S.C. Heinrichs and D.E.
Grigoriadis, Cuur . Pharm. Res., 5, 289-315 (1999); P.J. Gilligan, D.W. Robertson and R. Zaczek, J. Medicinal
Chem., 43, 1641-1660 (2000), G. P. Chrousos, Int. J.
Obesity, 24, Suppl . 2, S50-S55 (2000); E. Webster, D.J.
Torpy, I.J. Elenkov, G.P. Chrousos, Ann. N.Y. Acad.
Sci., 840, 21-32 (1998); D.J. Newport and C.B. Nemeroff, Curr. Opin. Neurobiology, 10, 211-218 (2000); G.
Mastorakos and I. Ilias, Ann. N.Y. Acad. Sci., 900, 95-
106 (2000); M.J. Owens and C.B. Nemeroff, Expert Opin.
Invest. Drugs, 8, 1849-1858 (1999); G. F. Koob, Ann.
N.Y. Acad. Sci., 909, 170-185 (2000)]. The following publications each describe CRF antagonist compounds; however, none disclose the compounds provided herein: WO95/10506; WO99/51608;
W097/35539; WO99/01439; WO97/44308; W097/35846;
WO98/03510; W099/11643; PCT/US99/18707 ; WO99/01454; and, WO00/01675.
Summary of the Invention
In accordance with one aspect, the present
invention provides a novel compound, pharmaceutical compositions and methods which may be used in the
treatment of affective disorder, anxiety, depression, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression,
Alzheimer's disease, gastrointestinal disease, anorexia nervosa or other feeding disorder, drug or alcohol withdrawal symptoms, drug addiction, inflammatory disorder, fertility problems, disorders, the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, or a disorder selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis , pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic, phobias, obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, and postpartum depression; dysthemia;
bipolar disorders; cyclothymia; fatigue syndrome; stress-induced headache; cancer, human immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic
colon, diarrhea, and post operative ilius and colonic hypersensitivity associated by psychopathological
disturbances or stress; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiarrhetic
hormone (ADH) ; obesity; infertility; head traumas; spinal cord trauma; ischemic neuronal damage (e.g. , cerebral ischemia such as cerebral hippocampal ischemia) ; excitotoxic neuronal damage; epilepsy; cardiovascular and hear related disorders including hypertension, tachycardia and congestive heart failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g. , stress induced fevers, porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, and dysfunctions induced by confinement in chickens, sheering stress in sheep or human-animal interaction related stress in dogs) ; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral
sclerosis; chemical dependencies and addictions
(e.g. , dependencies on alcohol, cocaine, heroin, benzodiazepines, or other drugs); drug and alcohol withdrawal symptoms; osteoporosis; psychosocial dwarfism and hypoglycemia in a mammal.
The present invention provides a novel compound which binds to corticotropin releasing factor receptors, thereby altering the anxiogenic effects of CRF secretion. The compound of the present invention is useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a
mammal .
According to another aspect, the present invention provides a novel compound of Formula (I) (described below) which is useful as an antagonist of the corticotropin releasing factor. The compound of the present invention exhibits activity as a corticotropin releasing factor antagonist and appears to suppress CRF hypersecretion. The present
invention also includes pharmaceutical compositions containing such a compound of Formula (I), and
methods of using such a compound for the suppression of CRF hypersecretion, and/or for the treatment of
anxiogenic disorders.
According to yet another aspect of the invention, the compound provided by this invention (and especially the labelled compound of this invention) is also useful as a standard and reagent in determining the ability of a potential pharmaceutical to bind to the CRF receptor.
Detailed Description of the Invention The present invention comprises a compound of Formula (I) :
Figure imgf000012_0001
and stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof.
The present invention also comprises a method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart- related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound of Formula (I) :
Figure imgf000013_0001
(I) and stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof.
As used herein, the term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic acids, including inorganic acids and organic acids. Suitable non-toxic acids include inorganic and organic acids of basic residues such as amines, for example, acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric acid, p-toluenesulfonic and the like; and alkali or organic salts of acidic residues such as carboxylic acids, for example, alkali and alkaline earth metal salts derived from the following bases: sodium hydride, sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminum hydroxide, lithium hydroxide, magnesium hydroxide, zinc hydroxide, ammonia, trimethylammonia, triethylammonia, ethylenediamine, n-methyl-glucamine, lysine, arginine, ornithine, choline, N,N'- dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, n-benzylphenethylamine, diethylamine, piperazine, tris (hydroxymethyl) - aminomethane, tetramethylammonium hydroxide , and the like. Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of the compound with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.
"Pharmaceutically acceptable prodrugs" as used herein means any covalently bonded carriers which release the active parent drug of Formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of Formula (I) are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term "prodrug" means compounds that are rapidly transformed in vivo to yield the parent compound of formula (I) , for example by hydrolysis in blood. Functional groups which may be rapidly transformed, by metabolic cleavage, in vivo form a class of groups reactive with the carboxyl group of the compounds of this invention. They include, but are not limited to such groups as alkanoyl (such as acetyl, propionyl, butyryl, and the like) , unsubstituted and substituted aroyl (such as benzoyl and substituted benzoyl) , alkoxycarbonyl (such as ethoxycarbonyl) , trialkylsilyl (such as trimethyl- and triethysilyl) , monoesters formed with dicarboxylic acids (such as succinyl) , and the like. Because of the ease with which the metabolically cleavable groups of the compounds useful according to this invention are cleaved in vivo, the compounds bearing such groups act as pro-drugs. The compounds bearing the metabolically cleavable groups have the advantage that they may exhibit improved bioavailability as a result of enhanced solubility and/or rate of absorption conferred upon the parent compound by virtue of the presence of the metabolically cleavable group. A thorough discussion of prodrugs is provided in the following: Design of Prodrugs, H. Bundgaard, ed. , Elsevier, 1985; Methods in Enzymology, K. Widder et al, Ed., Academic Press, 42, p.309-396, 1985; A Textbook of Drug Design and Development, Krogsgaard-Larsen and H. Bundgaard, ed. , Chapter 5; "Design and Applications of Prodrugs" p.113-191, 1991; Advanced Drug Delivery Reviews, H. Bundgard, 8, p.1-38, 1992; Journal of Pharmaceutical Sciences, 77, p. 285, 1988; Chem. Pharm. Bull., N. Nakeya et al, 32, p. 692, 1984; Pro-drugs as Novel Delivery Systems, T. Higuchi and V. Stella, Vol. 14 of the A.C.S. Symposium Series, and Bioreversible Carriers in Drug Design, Edward B. Roche, ed. , American Pharmaceutical Association and Pergamon Press, 1987, which are incorporated herein by reference .
"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug of Formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of Formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds . Prodrugs include compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of Formula (I), and the like. As used herein to describe a compound, the term "substantially free of its (+) stereoisomer" means that the compound is made up of a significantly greater proportion of its (-) stereoisomer than of its optical antipode (i.e., its (+) stereoisomer). In a preferred embodiment of the invention, the term "substantially free of its (+) stereoisomer" means that the compound is made up of at least about 90% by weight of its (-) stereoisomer and about 10% by weight or less of its (+) stereoisomer.
In a more preferred embodiment of the invention, the term "substantially free of its (+) stereoisomer" means that the compound is made up of at least about 95% by weight of its (-) stereoisomer and about 5% by weight or less of its (+) stereoisomer. In an even more preferred embodiment, the term "substantially free of its (+) stereoisomer" means that the compound is made up of at least about 99% by weight of its (-) stereoisomer and about 1% or less of its (+) stereoisomer. In another preferred embodiment, the term "substantially free of its (+) stereoisomer" means that the compound is made up of nearly 100% by weight of its (-) stereoisomer. The above percentages are based on the total amount of the combined stereoisomers of the compound.
The term " therapeutically effective amount" of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety or depression in a host.
Synthesis
Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center (s). The prefixes d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory . A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these compounds, called stereoisomers, are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture .
The present invention includes all stereoisomeric forms of the compounds of the formula I. Centers of asymmetry that are present in the compounds of formula I can all independently of one another have S configuration or R configuration. The prefixes d and 1 or (+ ) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory. A compound prefixed with ( + ) or d is dextrorotatory. The invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios. Thus, enantiomers are a subject of the invention in enantiomerically pure form, both as levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios. In the case of a cis/trans isomerism the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios. The preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis. Optionally a derivatization can be carried out before a separation of stereoisomers. The separation of a mixture of stereoisomers can be carried out at the stage of the compounds of the formula I or at the stage of an intermediate during the synthesis. The present invention also includes all tautomeric forms of the compounds of formula (I) .
A compound of Formula (I) may be prepared from using the procedures outlined in Scheme 1.
A compound of Formula (II) is reacted with brominating agents (e.g. N-bromosuccinimide / 2,2'- azobisisobutyronitrile (AIBN) or N-bromophthalimide / 2 , 2 ' -azobisisobutyronitrile (AIBN)) in the presence of an inert solvent (e.g. halocarbons (1 to 6 carbons, 1 to 6 halogens (preferably chlorine) ) at reaction
temperatures ranging from 50°C to 200°C (preferably 50°C
to 120°C) to afford a compound of Formula (III) .
A compound of Formula (III) is reacted with cyanide compounds (e.g. sodium cyanide, potassium cyanide) in the presence of an inert solvent (e.g. N,N-
dialkylformamides (preferably dimethylformamide) , N,N- dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) ) at reaction temperatures ranging from 50°C to 250°C
(preferably 50°C to 180°C) to afford a compound of Formula (IV) .
A compound of the Formula (IV) is reacted with
compounds of the formula CH3COR-", where ϋ is halogen, cyano, lower alkoxy (1 to 6 carbons) or lower alkanoyloxy (1 to 6 carbons) , in the presence of a base in an inert solvent at reaction temperatures ranging
from -78°C to 200°C to afford a compound of Formula (V) .
Scheme 1 cyanide brominating compound, agent, solvent, solvent heat
Figure imgf000022_0003
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0004
(I)
Bases may include, but are not limited to, alkali metals, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal carbonates, alkali metal hydroxides, alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine) .
Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , water, dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1, 4-dioxane) , N,N-dialkylformamides (preferably dimethylformamide) , N,N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) . Preferred reaction
temperatures range from 0°C to 100°C.
Compounds of Formula (V) may be treated with hydrazine-hydrate in the presence of an inert solvent at
temperatures ranging from 0°C to 200°C, preferably 70°C
to 150°C, to produce compounds of Formula (VI) . Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol) , lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N,N-dialkylformamides (preferably dimethylformamide) , N,N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) .
A compound of Formula (VI) may be treated with
compounds of CH3COCH2C02Re, where Re is alkyl (1 - 6 carbons) , in the presence or absence of acid in an inert
solvent at temperatures ranging from 0°C to 250°C to give a compound of Formula (VII) . Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid) , haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid) , alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid) , hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used.
Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene) . Preferred reaction
temperatures range from 0°C to 100°C.
A compound of Formula (VII) may be treated with a halogenating agent in the presence or absence of a base in the presence or absence of an inert solvent at
reaction temperatures ranging from 50°C to 250°C to give a product of Formula (VIII) (where X is halogen) . Halogenating agents include, but are not limited to, SOC12, POCI3, PCI3, PCI5, POBr3, PBr3 or PBrs . Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine) .
Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1, 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N- methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) , aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloroethane) .
Preferred reaction temperatures range from 80°C to
180°C.
A compound of Formula (VIII) may be reacted with a compound of Formula CH3 (CH3CH2) CHNH2 in the presence or absence of a base in the presence or absence of an inert
solvent at reaction temperatures ranging from -80°C to
250°C to generate a compound of Formula (I) . Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride) , alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide) , alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide) , alkali metal carbonates, alkali metal bicarbonates , alkali metal bis (trialkylsilyl) amides (preferably sodium bis (trimethylsilyl) amide) , trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine) .
Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile) , dialkyl ethers (preferably diethyl ether) , cyclic ethers (preferably tetrahydrofuran or 1 , 4-dioxane) , N, N-dialkylformamides (preferably dimethylformamide) , N, N-dialkylacetamides (preferably dimethylacetamide) , cyclic amides (preferably N-methylpyrrolidin-2-one) , dialkylsulfoxides (preferably dimethylsulfoxide) , aromatic hydrocarbons (preferably benzene or toluene) or aloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane) . Preferred reaction temperatures range
from 0°C to 140°C.
EXAMPLES
Analytical data were recorded for the compounds described below using the following general procedures. Proton NMR spectra were recorded on a Varian VXR or
Unity 300 FT-NMR instruments (300 MHz); chemical shifts
were recorded in ppm (δ) from an internal tetramethysilane standard in deuterochloroform or deuterodimethylsulfoxide as specified below. Mass spectra (MS) or high resolution mass spectra (HRMS) were recorded on a Finnegan MAT 8230 spectrometer or a Hewlett Packard 5988A model spectrometer (using chemi- ionization (CI) with NH3 as the carrier gas, electrospray (ESI) or gas chromatography (GC) ) . Melting points were recorded on a MelTemp 3.0 heating block apparatus and are uncorrected. Boiling points are uncorrected. All pH determinations during workup were made with indicator paper.
Reagents were purchased from commercial sources and, where necessary, purified prior to use according to the general procedures outlined by D. Perrin and W.L.F.
Armarego, Purification of Laboratory Chemicals, 3rd ed. ,
(New York: Pergamon Press, 1988). Chromatography was performed on silica gel using the solvent systems indicated below. For mixed solvent systems, the volume ratios are given. Otherwise, parts and percentages are by weight. Commonly used abbreviations are: DMF (N,N- dimethylformamide) , EtOH (ethanol), MeOH (methanol), EtOAc (ethyl acetate) , HOAc (acetic acid) and THF (tetrahydrofuran) .
The following examples are provided to describe the invention in further detail. These examples, which set forth the best mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention. EXAMPLE 1 Preparation of 7-hydroxy-5-methyl-3- (2-methyl- 4-methoxyphenyl)pyrazolo [1 , 5-a]pyrimidine A. 2-Methyl-4-methoxyphenylacetonitrile
A mixture of 3 , 4-dimethylanisole (24.5 g, 180 mmol), N-bromosuccinimide (32.0 g, 180 mmol) and AIBN (1.0 g) in carbon tetrachloride (350 mL) was stirred at reflux temperature for 2 h. The reaction mixture was cooled to ambient temperature and filtered. Solvent was removed from the filtrate in vacuo to give crude 2- methyl-4-methoxyphenylbenzyl bromide as a yellow oil.
The above oil was aded portionwise to a refluxing mixture of sodium cyanide (12.3 g, 250 mmol) in a mixture of DMF(75 mL) , EtOH (500 mL) and water (250 mL) with stirring. After being cooled to ambient temperature, the reaction mixture was diluted with water (1 L) and extracted three times with EtOAc (25 mL) . The combined organic layers were washed with brine, dried over MgS04 and filtered. Solvent was removed in vacuo to provide an oily solid. Column chromatography (EtOAC:hexanes: :1:9) afforded 2-methyl-4- methoxyphenylacetonitrile (6.5 g) : NMR (CDCl3,300 MHz): 7.25 (br d, 1H, J = 8, 1), 6.80 - 6.70 (m, 2H) , 3.80 (s, 3H) , 3.60 (s, 2H) , GC-MS: 162 (M + H) . B . 1-Cyano-l- ( 2-methyl4 -methoxyphenyl ) propan-2 -one
Sodium pellets 1.2 g, 52.2 mmol) were added portionwise to a solution of 2-methyl-4- methoxyphenylacetonitrile (6.5 g, 40.4 mol) in ethyl acetate (150 mL) at ambient temperature. The reaction mixture was heated to reflux temperature and stirred for 16 hours. The resulting suspension was cooled to room temperature and filtered. The collected precipitate was washed with copious amounts of ether and then air-dried. The solid was dissolved in water and a IN HCl solution was added until the pH = 5-6. The mixture was extracted with ethyl acetate (3 X 200 mL) ; the combined organic layers were dried over MgSθ4 and filtered. Solvent was removed in vacuo to afford a white solid (4.5g) : NMR (CDCl3,300 MHz): 7.30 (dd, 1H, J = 8, 1), 6.85 - 6.75 (m, 2H) , 4.75 (s, 1H) , 3.8 (s, 3H) , 2.3 (s, 3H) , 2.2 (s, 3H) ; CI-MS: 204 (M + H) .
C . 5-Amino-4- (2-methyl-4-methoxyphenyl) -3-methylpyrazole
A mixture of 1-cyano-l- (2-methyl-4- methoxyphenyl)propan-2-one (4.5 g, 22.2 mol), hydrazine- hydrate (2.1 mL, 44.4 mol), glacial acetic acid (4.3 mL, 75 mol) and toluene (57 mL) were stirred at reflux temperature for 18 hours in an apparatus fitted with a Dean-Stark trap. The reaction mixture was cooled to ambient temperature and solvent was removed in vacuo. The residue was dissolved in 6N HCl and the resulting solution was extracted with ether three times. A concentrated sodium hydroxide solution was added to the aqueous layer until pH = 11. The resulting semi- solution was extracted three times with ethyl acetate. The combined organic layers were dried over MgSθ4 and filtered. Solvent was removed in vacuo to give a viscous oil (4.0 g) : NMR (CDCI3, 300 MHz): 7.10 (d, 1H, J = 8), 6.85 (d, 1H, J=l), 6.80 (dd, 1H, J = 8, 1), 3.85 (s, 3H) , 2.2 (s, 3H) , 2.15-2.0 (m, 2H) , b2.10 (s, 3H) ; MS: 218 (M + H) .
D. 7-hydroxy-2 , 5-dimethyl-3- (2-methyl-4-methoxyphenyl) -
pyrazolo [1, 5-a]pyrimidine
5-Amino-4- (2-methyl-4-methoxyphenyl) -3- methylpyrazole (14.5 g, 66.7 mmol) was dissolved in glacial acetic acid (45 mL) with stirring. Ethyl acetoacetate (10.2 mL, 80.1 mmol) was then added dropwise to the resulting solution. The reaction mixture was then heated to reflux temperature and stirred for 16 hours, then cooled to room temperature. Ether (100 mL) was added and the resulting precipitate was collected by filtration. Drying in vacuo afforded a white solid (14.7 g) : NMR (CDCI3, 300Hz): 11.7 (br.s 1H) , 7.12 (d, 1H, J = 8), 6.94 (d, 1H, J = 3), 6.84 (dd, 1H, J = 8,3) , 5.53 (s, 1H) , 3.79 (s, 3H) , 3.34 (s, 1H) , 2.23 (s, 6H) , 2.07 (s, 3H) ; MS: 283 (M+H) .
EXAMPLE 2
7-chloro-2 , 5-dimethyl -3- (2-methyl-4-methoxyphenyl) -
pyrazolo [1 , 5-a]pyrimidine
A mixture of 7 -hydroxy-2 , 5-dimethyl 5-methyl-3- (2-
methyl-4-methoxyphenyl) -pyrazolo [1 , 5-a]pyrimidine (2.83
g, 10.0 mmol), phosphorus oxychloride (6.1 g, 3.7 mL, 40
mmol), di-isopropylethylamine (5.2 g, 7.0 mL, 40 mmol)
and toluene (80 mL) was stirred at reflux temperature
for 3 hours, then it was cooled to ambient temperature.
The volatiles were removed in vacuo. Flash
chromatography (EtOAc :hexane : : 1 : 4) on the residue gave
the title compound (1.2g) as an oil: NMR (CDCI3,
300Hz): 7.16 (d, 1H, J = 8), 6.89 (d, 1H, J = 2), 6.82
(dd, 1H, J = 8, 2), 6.78 (s, 1H) , 3.84 (3, 3H) , 2.53 (s,
3H) , 2.42 (s, 3H) , 2.16 (s, 3H) ; MS: 302, 304 (M+H).
EXAMPLE 3
7- (2- (R) -Butylamino)-2, 5-dimethyl-3- (2-methyl-4-
methoxyphenyl) - [1, 5-a]pyrazolopyrimidine
A solution of (R) -2-butylamine (6.8 g, 5.0 mL, 93
mmol) and 7-chloro-2 , 5-dimethyl-3- (2-methyl-4-
methoxyphenyl) pyrazolo [1, 5-a] pyrimidine (1.2 g, 4 mmol) was stirred at reflux temperature for 2 hours; then it was cooled to ambient temperature. The reaction mixture was then poured onto water (100 mL) and mixed. Three extractions with dichloromethane, washing the combined organic layers with brine, drying over MgSθ4 , and filtration through silica gel on celite afforded a white
solid (1.0): mp = 123.0 °C ; 1H-NMR (CDCI3, 300 MHz):
6 7.17 (d, 1H, J = 8), 6.86 (d, 1H, J = 3), 6.78 (dd,
1H, J = 8, 3), 6.03 (d, 1H, J = 8), 5.77 (s, 1H) , 3.82 (s, 3H) , 3.65 - 3.60 (m, 1H) , 2.45 (s, 3H) , 2.33 (s,
3H) , 2.20 (s, 3H) , 1.76-1.66 (m, 2H) , 1.35 (d, 3H, J =
7), 1.03 (t, 3H, J = 7); 13C-NMR (CDCI3, 100.52 MHz):
δ.159.0, 158.9, 151.8, 146.6, 145.3, 139.7, 132.6, 124.5, 115.7, 111.1, 107.5, 85.0, 55.2, 49.5, 29.7,
25.4, 20.7, 20.3, 13.2, 10.5; IR (neat, KBr, cm-1): 3245 (br, s), 3000 (m) , 2969 (s), 2927 (s), 1617 (s) , 1583 (s), 1556 (s) , 1502 (s), 1473 (s), 1462 (s) , 1453 (s) , 1427 (s) , 1379 (m) , 1364 ( ) , 1323 (s) , 1290 (s) , 1254 (m) , 1237 (s), 1226 (m) , 1185 (m) , 1158 (s) , 1121
(s), 1110 ( ) , 1053 (m) , 1037 (m) , 1002 (s); [α]D 25 = - 37.6° (c = 0.628 g/dL, CH3OH) ; ESI ( + ) -HRMS: Calcd for
C20H26N4O: 339.2185; Found: 339.2185 (M+ + H) . Anal. Calcd for C20H26N4O: C, 70.98, H, 7.74, N, 16.55; Found: C, 71.06, H, 7.70, N, 16.50. Utility Rat CRF Receptor Binding Assay for the Evaluation of Biological Activity
Receptor binding affinity to rat cortical receptors was assayed according to the published methods (E.B. De Souza, J. Neuroscience, 7: 88 (1987).
Curves of the inhibition of [125I-Tyr°] -o-CRF binding to cell membranes at various dilutions of test drug were analyzed by the iterative curve fitting program LIGAND [P.J. Munson and D. Rodbard, Anal . Biochem. 107:220 (1980), which provides Ki values for inhibition which are then used to assess biological activity.
Inhibition of CRF-Stimulated Adenylate Cvclase Activity
Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G.
Battaglia et al . Synapse 1:572 (1987). Briefly, assays are carried out at 37° C for 10 min in 200 ml of buffer containing 100 mM Tris-HCl (pH 7.4 at 37° C) , 10 mM MgCl2, 0.4 mM EGTA, 0.1% BSA, 1 mM isobutylmethylxanthine (IBMX) , 250 units/ml phosphocreatine kinase, 5 mM creatine phosphate, 100 mM guanosine 5 ' -triphosphate, 100 nM oCRF, antagonist peptides (concentration range 10~9 to 10~6 ) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein) . Reactions are initiated by the addition of
1 mM ATP/32P]ATP (approximately 2-4 mCi/tube) and terminated by the addition of 100 ml of 50 mM Tris-
HCL, 45 mM ATP and 2% sodium dodecyl sulfate. In order to monitor the recovery of cAMP, 1 μl of
[3H]CAMP (approximately 40,000 dpm) is added to each tube prior to separation. The separation of
[32p]CAMP from [32p]ATP is performed by sequential elution over Dowex and alumina columns. In vivo Biological Assay
The in vivo activity of a compound of the present invention can be assessed using any one of the biological assays available and accepted within the art. Illustrative of these tests include the Acoustic Startle Assay, the Stair Climbing Test, and the Chronic Administration Assay. These and other models useful for the testing of compounds of the present invention have been outlined in C.W. Berridge and A.J. Dunn Brain Research Reviews 15:71 (1990).
A compound may be tested in any species of rodent or small mammal. A compound of this invention has utility in the treatment of imbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.
A compound of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or in combination of therapeutic agents. It can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
The dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the particular agent, and its mode and route of administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect. For use in the treatment of said diseases or conditions, a compound of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.
Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions, the active ingredient will ordinarily be present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.
The active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups, and/or suspensions. The compounds of this invention can also be administered parenterally in sterile liquid dose formulations.
Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time. Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.
Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance. In general, water, pharmaceutically acceptable oils, saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol, are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, butter substances. Antioxidizing agents, such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents. Also used are citric acid and its salts, and EDTA. In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol . Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences", A. Osol, a standard reference in the field.
Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows: Capsules
A large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate . Soft Gelatin Capsules
A mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried. Tablets
A large number of tablets are prepared by conventional procedures so that the dosage unit was
100 mg active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg lactose. Appropriate coatings may be applied to increase palatability or delayed adsorption.
The compounds of this invention may also be used as reagents or standards in the biochemical study of neurological function, dysfunction, and disease.
Although the present invention has been described and exemplified in terms of certain preferred embodiments, other embodiments will be apparent to those skilled in the art. The invention is, therefore, not limited to the particular embodiments described and exemplified, but is capable of modification or variation without departing from the spirit of the invention, the full scope of which is delineated by the appended claims.

Claims

What is claimed is
A compound of Formula (I)
Figure imgf000041_0001
(I) or isomers thereof, stereoisomeric forms thereof, mixtures of stereoisomeric forms thereof, pharmaceutically acceptable prodrugs thereof, or pharmaceutically acceptable salt forms.
2. A compound of claim 1, isomers thereof, stereoisomeric forms thereof, mixtures of stereoisomeric forms thereof, pharmaceutically acceptable prodrugs thereof, or pharmaceutically acceptable salt forms thereof, wherein said compound is 7- (2- (R) -Butylamino) - 2, 5-dimethyl-3- (2-methyl-4-methoxyphenyl) - [1, 5- a] pyrazolopyrimidine .
3. A compound of claim 1, pharmaceutically acceptable prodrugs thereof, or pharmaceutically acceptable salt forms thereof, wherein said compound is substantially free of its (+) stereoisomer.
4. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 2.
5. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 3.
6. A method of antagonizing a CRF receptor in a mammal, comprising administering to the mammal, a therapeutically effective amount of a compound as claimed in claim 1.
7. A method of treating a disorder manifesting hypersecretion of CRF in a warm-blooded animal, comprising administering to the animal a therapeutically effective amount of a compound as claimed in claim 1.
8. A method for the treatment of a disorder, the treatment of which can be effected or facilitated by antagonizing CRF, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1.
9. A method of antagonizing a CRF receptor in a mammal, comprising administering to the mammal, a therapeutically effective amount of a compound as claimed in claim 3.
10. A method of treating anxiety or depression in mammals, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1.
11. A method of treating anxiety or depression in mammals, comprising administering to the mammal a therapeutically effective amount of a compound of claim 3.
PCT/US2002/006834 2001-03-13 2002-03-06 A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts WO2002072101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27533101P 2001-03-13 2001-03-13
US60/275,331 2001-03-13

Publications (1)

Publication Number Publication Date
WO2002072101A1 true WO2002072101A1 (en) 2002-09-19

Family

ID=23051826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/006834 WO2002072101A1 (en) 2001-03-13 2002-03-06 A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts

Country Status (1)

Country Link
WO (1) WO2002072101A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035586A1 (en) * 2002-10-17 2004-04-29 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
WO2004087709A1 (en) * 2003-04-04 2004-10-14 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
WO2004087710A1 (en) * 2003-04-02 2004-10-14 Pharmacia & Upjohn Company Llc Pyrrolo`1,2-b!pyridazine compounds and their use as crf1 receptor antagonists
WO2004092176A1 (en) * 2003-04-15 2004-10-28 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
US7034023B2 (en) 2003-04-04 2006-04-25 Pfizer Inc Pyrrolo[1,2-B]pyridazine compounds and their uses
US7132426B2 (en) 2003-07-14 2006-11-07 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
CN103694242A (en) * 2013-12-10 2014-04-02 中国科学院昆明植物研究所 Pyrazolopyrimidine compound and pharmaceutical composition thereof as well as pharmaceutical application of pyrazolopyrimidine compound
US8933083B2 (en) 2003-01-14 2015-01-13 Arena Pharmaceuticals, Inc. 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
CN104292233A (en) * 2014-10-09 2015-01-21 武汉大学 Pyrazolo[1,5-a]pyrimidine derivative and anti-tumor applications thereof
US10154988B2 (en) 2012-11-14 2018-12-18 The Johns Hopkins University Methods and compositions for treating schizophrenia
US10894787B2 (en) 2010-09-22 2021-01-19 Arena Pharmaceuticals, Inc. Modulators of the GPR119 receptor and the treatment of disorders related thereto
US11007175B2 (en) 2015-01-06 2021-05-18 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the S1P1 receptor
US11534424B2 (en) 2017-02-16 2022-12-27 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of primary biliary cholangitis
US11884626B2 (en) 2015-06-22 2024-01-30 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compound1) for use in S1P1 receptor-associated disorders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136809A (en) * 1996-07-24 2000-10-24 Dupont Pharmaceuticals Azolo triazines and pyrimidines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136809A (en) * 1996-07-24 2000-10-24 Dupont Pharmaceuticals Azolo triazines and pyrimidines

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035586A1 (en) * 2002-10-17 2004-04-29 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
US7074791B2 (en) 2002-10-17 2006-07-11 Pfizer Inc. Pyrrolo[1,2-b]pyridazine compounds and their uses
US8933083B2 (en) 2003-01-14 2015-01-13 Arena Pharmaceuticals, Inc. 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
WO2004087710A1 (en) * 2003-04-02 2004-10-14 Pharmacia & Upjohn Company Llc Pyrrolo`1,2-b!pyridazine compounds and their use as crf1 receptor antagonists
US7041671B2 (en) 2003-04-02 2006-05-09 Pfizer Inc Pyrrolo[1,2-b]pyridazine compounds and their uses
WO2004087709A1 (en) * 2003-04-04 2004-10-14 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
US7034023B2 (en) 2003-04-04 2006-04-25 Pfizer Inc Pyrrolo[1,2-B]pyridazine compounds and their uses
US7056920B2 (en) 2003-04-04 2006-06-06 Pfizer Inc Pyrrolo[1,2-B]pyridazine compounds and their uses
WO2004092176A1 (en) * 2003-04-15 2004-10-28 Pharmacia & Upjohn Company Llc Pyrrolo[1,2-b]pyridazine compounds and their uses
US8410119B2 (en) 2003-07-14 2013-04-02 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
US7625906B2 (en) 2003-07-14 2009-12-01 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
US7132426B2 (en) 2003-07-14 2006-11-07 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
US10894787B2 (en) 2010-09-22 2021-01-19 Arena Pharmaceuticals, Inc. Modulators of the GPR119 receptor and the treatment of disorders related thereto
US10154988B2 (en) 2012-11-14 2018-12-18 The Johns Hopkins University Methods and compositions for treating schizophrenia
EP3610890A1 (en) 2012-11-14 2020-02-19 The Johns Hopkins University Methods and compositions for treating schizophrenia
US10624875B2 (en) 2012-11-14 2020-04-21 The Johns Hopkins University Methods and compositions for treating schizophrenia
CN103694242A (en) * 2013-12-10 2014-04-02 中国科学院昆明植物研究所 Pyrazolopyrimidine compound and pharmaceutical composition thereof as well as pharmaceutical application of pyrazolopyrimidine compound
CN104292233A (en) * 2014-10-09 2015-01-21 武汉大学 Pyrazolo[1,5-a]pyrimidine derivative and anti-tumor applications thereof
US11007175B2 (en) 2015-01-06 2021-05-18 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the S1P1 receptor
US11884626B2 (en) 2015-06-22 2024-01-30 Arena Pharmaceuticals, Inc. Crystalline L-arginine salt of (R)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta [b]indol-3-yl)acetic acid(Compound1) for use in S1P1 receptor-associated disorders
US11534424B2 (en) 2017-02-16 2022-12-27 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of primary biliary cholangitis

Similar Documents

Publication Publication Date Title
US7662817B2 (en) 4-(2-Butylamino)-2,7-dimethyl-8-(2-methyl-6-methoxypyrid-3-yl)pyrazolo-[1,5-A]-1,3,5-triazine, its enantiomers and pharmaceutically acceptable salts as corticotropin releasing factor receptor ligands
EP1344779B1 (en) Azolo-pyrimidines
US6958341B2 (en) Pyrazolopyrimidines as CRF antagonists
US6436932B1 (en) Aminoalkyl substituted pyrrolo[3,2-e] pyridine and pyrrolo[2,3-b]pyrimidine derivatives: modulators of CRF1 receptors
AU2002245605A1 (en) 4-(2-Butylamino)-2,7-dimethyl-8-(2-methyl-6-methoxypyrid-3-yl) pyrazolo-[1,5-a]-1,3,5- triazine, its enantiomers and pharmaceutically acceptable salts as corticotropin releasing factor receptor ligands
US6960583B2 (en) Pyrazolotriazines as CRF antagonists
WO2002072101A1 (en) A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts
US20030229091A1 (en) Heteroaromatic substituted cyclopropane as corticotropin releasing hormone ligands
US6734185B2 (en) Pyrrolo[3,4-d]pyrimidines as corticotropin releasing factor (CRF) antagonists
WO2004087710A1 (en) Pyrrolo`1,2-b!pyridazine compounds and their use as crf1 receptor antagonists
US20060148807A1 (en) Pyrrolo[1,2b]pyridazine compounds and their uses
MXPA05010667A (en) Pyrrolo[1,2-b]pyridazine compounds and their uses.
MXPA00009575A (en) Aminoalkyl substituted pyrrolo[2,3-b]pyridine and pyrrolo[2,3-d]pyrimidine derivatives:modulators of crf1 receptors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP