WO2002066895A1 - Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein - Google Patents

Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein Download PDF

Info

Publication number
WO2002066895A1
WO2002066895A1 PCT/SE2002/000303 SE0200303W WO02066895A1 WO 2002066895 A1 WO2002066895 A1 WO 2002066895A1 SE 0200303 W SE0200303 W SE 0200303W WO 02066895 A1 WO02066895 A1 WO 02066895A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
metal
burner
flame
treatment
Prior art date
Application number
PCT/SE2002/000303
Other languages
French (fr)
Other versions
WO2002066895A8 (en
Inventor
Joachim VON SCHÉELE
Mats Johansson
Lennart Rangmark
Original Assignee
Aga Aktiebolag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA200300918A priority Critical patent/EA004993B1/en
Priority to KR20037011036A priority patent/KR100806651B1/en
Application filed by Aga Aktiebolag filed Critical Aga Aktiebolag
Priority to MXPA03007584A priority patent/MXPA03007584A/en
Priority to US10/467,840 priority patent/US6923129B2/en
Priority to UA2003098660A priority patent/UA76740C2/en
Priority to PL363541A priority patent/PL197751B1/en
Priority to AU2002233862A priority patent/AU2002233862B2/en
Priority to BR0207442A priority patent/BR0207442A/en
Priority to CA 2439229 priority patent/CA2439229A1/en
Priority to SK1176-2003A priority patent/SK11762003A3/en
Priority to JP2002566175A priority patent/JP2004526115A/en
Priority to DE2002614831 priority patent/DE60214831T2/en
Priority to EP20020700926 priority patent/EP1370803B1/en
Publication of WO2002066895A1 publication Critical patent/WO2002066895A1/en
Priority to NO20033468A priority patent/NO322716B1/en
Publication of WO2002066895A8 publication Critical patent/WO2002066895A8/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/446Waste feed arrangements for liquid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/04Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste liquors, e.g. sulfite liquors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates generally to a method 5 and an apparatus for treatment of sludge and more particularly a method and an apparatus for treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein.
  • recovery is often a preferred solution to the above- mentioned problem of taking care of the waste mate- 30 rial.
  • recovery often means some kind of external processing, resulting in transportation to plants and processes lying beside the normal chain of processes.
  • the patent document DE 24 60 799 discloses a method of burning oil containing metal particles.
  • the object of the disclosed method is the destruction of the oil while avoiding unwanted exhaust particles.
  • the burning relies solely on the energy supplied by the oil itself.
  • the patent document DE 42 41 283 discloses a process of gasification wherein particles are recovered. No separate fuel supply is provided.
  • An object of the present invention is to provide an improved method and apparatus for treatment of sludge and more particularly a method and an apparatus for treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein wherein the above-mentioned drawbacks with known techniques are avoided or at least mitigated.
  • the invention is based on the realisation that the wet material can be fed directly to the flame of a burner wherein vaporisation is effected and metal-containing particles are melted.
  • the problems of prior art are overcome or at least mitigated.
  • the wet material is treated directly in a furnace, saving costs for extra equipment and also resulting in a shorter treatment time.
  • FIG. 1 is a schematic diagram of a plant according to the invention for treatment of sludge and other wet waste materials
  • FIG. 2 is a sectional view of a burner used with the method according to the invention.
  • FIG. 3 is a schematic front view of the burner shown in FIG. 2.
  • sludge is used for the material supplied to the apparatus .
  • this term includes other materials, such as slurry, slime, or mud co - prising carbon containing particles, including coke, char etc., and oil residue, waste from the crude oil production, refineries, and petrochemical industries, sewage sludge etc.
  • the metal content of the sludge is at least 5%, more preferably at least 20%, and most preferably at least 50%.
  • FIG. 10 an overall diagram of a plant for treatment of sludge and other wet waste materials, generally designated 10, is shown.
  • the plant is built around a burner 20 installed in a side-wall of a furnace 30.
  • the burner is a so-called oxy-fuel burner and is thus supplied with fuel through a first feeding line 21 and with oxygen through a second feeding line 22.
  • oxygen is in this context meant a gas with an 0 2 content exceeding 21% and preferably so-called technical oxygen having an 0 2 content of approx. 90-100%.
  • Sludge is supplied to the burner through a third feeding line 23.
  • the third feeding line 23 is connected to a feeder, generally designated 40.
  • the feeder 40 com- prises a container 42, into which the wet starting material in the form of sludge is fed.
  • the sludge is directed from the container 42 to an arrangement comprising a feeding pump 45 driven by a motor 46.
  • the feeding pump 45 By means of the feeding pump 45, the sludge is moved to the burner 20 at a rate determined by the speed of the feeding pump.
  • the burner 20 is also supplied with a suitable medium for atomising the sludge, such as oxygen or another gas etc . This atomising medium is supplied to the burner from a source (not shown) through the input 25.
  • the furnace 30 is a separate unit having an outlet 32 near the lower portion thereof for the output of molten metal containing particles recovered by the treatment of the sludge.
  • the furnace also comprises an exhaust outlet 34 in the upper portion thereof for the output of exhausts created from the vaporisation and combustion of the sludge during burning.
  • a charge 36 resulting from the material supplied to the furnace 30 through the burner.
  • a first embodiment of the burner 20 will be described in more detail below with reference to figs . 2 and 3 , wherein fig. 2 is a sectional view of the front portion of the burner and fig. 3 is a front view.
  • This burner is adapted to be used with fuel in the form of a gas, such as propane, natural gas, or butane, or with oil fuel.
  • the burner 20 comprises a main portion 24, to which the supply lines 21-23 and 25 shown in figure 1 are connected.
  • the portion 24 is provided with an essentially circular cross-section, see figure 3, in which the configuration of the supply lines 21-23 appears in more detail.
  • Fuel is supplied through the first supply line 21 in the form of six equidistant pipes 21a-f placed at a constant distance from the centre axis of the main portion 24.
  • Oxygen is supplied through an annular outer portion 22 and thus surrounds the fuel supplied through the pipes 21a-f .
  • sludge is supplied through the pipe 23, which is co-axially placed in the burner.
  • an atomising arrangement designated 26.
  • the atomising medium such as oxygen, is input to the burner at 25 through a number of pipes. These pipes end in the central pipe 23 for the sludge and connect thereto in an angle thereto, thereby atomising or dividing the sludge leaving the pipe 23.
  • the burner 20 is mounted in the side-wall of the furnace 30.
  • the burner can be tilted, i.e., can be positioned in different angles relative to the horizontal and the vertical. The different orientations can be used for obtaining desired characteristics for the burning process.
  • sludge is supplied to the container 42 of the feeder 40.
  • the sludge is of the above mentioned character, i.e., it has a liquid part and metal- containing particles intermixed in that liquid part.
  • the metal-containing particles comprise metal, metal oxide or metal hydroxide.
  • the sludge is transferred from the container and into the feeding pump 45, wherein it is transported to the burner 20 by means of the pump 45. The rate by which the sludge is fed to the burner is determined by the speed of the feeding pump 45.
  • the operation of the oxy-fuel burner 20 is controlled by means of the amount of fuel and oxygen supplied through the first and second supply lines 21 and 22, respectively.
  • the supply lines are connected to sources of fuel and oxygen (not shown), as is conventional.
  • a source of atomising medium is also connected to the burner through input 25.
  • Sludge is supplied through the central feeding pipe 23 at a rate that is controlled by the feeding pump.
  • the sludge is atomised by means of the atomiser 26.
  • the combustion can be maintained by energy contained in the sludge and in those cases the fuel supplied through the supply line 21 is used mainly for starting the combustion.
  • the sludge leaving the front portion of the burner is divided into small fractions, making an efficient heating thereof possible.
  • Fuel is supplied in the feeding pipes 21a-f, see figure 3, while an envelope of oxygen is supplied through the annular feeding area 22.
  • the oxy-fuel mixture results in the flame 27 having properties, such as length, temperature etc., that are controlled by the supply rate of fuel and oxygen.
  • the sludge is injected into the central portion of the flame.
  • the metal containing particles of the sludge injected into the flame is brought to agglomerate, thus creating agglomerates of a larger size than the particles found in the sludge.
  • the agglomeration process is controlled by means of several parameters, of which can be mentioned: temperature and velocity of the flame 27, energy content or density of the injected sludge, stoichiometry, i.e., the ratio oxidising gas to added fuel, the oxygen content of the oxidising gas, the supply rate of oxygen and added fuel, the rate of injection of sludge and its characteristics, the travel time of the sludge in the flame, and burner characteristics and configu- ration, such as tilting.
  • the wet part of the sludge is vaporised by the high temperature of the flame, resulting in exhausts rising through the furnace 30 and subsequently leaving through the exhaust outlet 34.
  • the created agglom- erates and droplets fall to the bottom of the furnace 30, wherein they are added to the charge 36.
  • the charge is subsequently used in liquid or solid phase as it is .
  • the charge is returned to a process.
  • a preferred embodiment of the method and the apparatus according to the invention has been described. The person skilled in the art realises that this can be varied within the scope of the appended claims.
  • an oxy-fuel burner 20 has been shown, other conventional burners can be used, such as plasma burners or in some cases air-fuel burners having a high thermal efficiency.
  • furnace unit 30 has been shown.
  • the method according to the invention is equally applicable to other kinds of furnaces, such as electric arc furnaces, induction furnaces, reverbera- tory furnaces, electrically heated furnaces, blast furnaces, cupola furnaces, and converters etc.
  • the burner is positioned in a side-wall of a furnace.
  • suitable positions such as in the upper part of the furnace.
  • a configuration with more than one burner is possible. It is then possible to inject the atomised sludge between three burner flames, for example.
  • the sludge is fed to the furnace by means of a feeding pump.
  • the sludge supplied to the furnace could also be free- flowing etc.
  • a specific burner configuration has been shown. It is also appreciated that any suitable burner configuration having different number of pipes etc can be used. A separate input for atomising medium has been described. It is realised that the same oxygen source can be used for both the atomising medium and the burner feed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method for treatment of sludge is disclosed, wherein the sludge has a liquid part and metal-containing particles intermixed therein. The particles comprise metal, metal oxide or metal hydroxide and the method comprises the following steps: atomising the sludge; supplying the atomised sludge to a flame of a burner provided in a furnace; bringing the liquid part of the sludge to vaporise by means of the flame while maintaining said flame by means of a separate fuel supply; and bringing at least part of the metal-containing particles to melt by means of the flame. This provides an efficient method for taking care of waste material from plants in the steel or petrochemical industry, for example.

Description

Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein.
FIELD OF INVENTION
The present invention relates generally to a method 5 and an apparatus for treatment of sludge and more particularly a method and an apparatus for treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein.
BACKGROUND
10 Sludge or slurry having waste materials intermixed therein poses a problem in today's industry. In the metallurgical industry, there is no suitable way of treating sludge from coke plants, blast furnaces, converters and rolling mills, for example oil-contamined
15 scales and hydroxides from pickling. In most cases, these materials are deposited in some intermediate storage or taken to a landfill. Another area in which the problem of recovering materials is present is the petrochemical industry, wherein a waste product in the
20 form of sludge is created.
The pressure from both public authorities and customers to find new solutions is constantly increasing. The earlier solution of land-filling is no longer a feasible solution and is in many countries illegal. 25 Existing techniques for conversion and recovery are costly.
From an economic and environmental point of view, recovery is often a preferred solution to the above- mentioned problem of taking care of the waste mate- 30 rial. However, recovery often means some kind of external processing, resulting in transportation to plants and processes lying beside the normal chain of processes.
A known solution to these problems is pelletization or briquetting of the waste material for subsequent feeding to a furnace. However, this solution is accompanied with the problem of extra costs for a separate plant for drying and subsequent pelletization of the waste material .
The patent document DE 24 60 799 discloses a method of burning oil containing metal particles. The object of the disclosed method is the destruction of the oil while avoiding unwanted exhaust particles. The burning relies solely on the energy supplied by the oil itself.
The patent document DE 42 41 283 discloses a process of gasification wherein particles are recovered. No separate fuel supply is provided.
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved method and apparatus for treatment of sludge and more particularly a method and an apparatus for treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein wherein the above-mentioned drawbacks with known techniques are avoided or at least mitigated.
The invention is based on the realisation that the wet material can be fed directly to the flame of a burner wherein vaporisation is effected and metal-containing particles are melted.
According to a first aspect of the present invention there is provided a method for treatment of sludge as defined in claim 1.
According to a second aspect of the present invention there is provided an apparatus for treatment of sludge as defined in claim 8.
With the method and the apparatus according to the in- vention, the problems of prior art are overcome or at least mitigated. Instead of requiring a separate drying step, the wet material is treated directly in a furnace, saving costs for extra equipment and also resulting in a shorter treatment time.
BRIEF DESCRIPTION OF DRAWINGS
The invention is now described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 is a schematic diagram of a plant according to the invention for treatment of sludge and other wet waste materials,
FIG. 2 is a sectional view of a burner used with the method according to the invention, and
FIG. 3 is a schematic front view of the burner shown in FIG. 2.
DETAILED DESCRIPTION OF THE INVENTION
In the following, a detailed description of the method and the apparatus according to the invention will be given. In the following description the term sludge is used for the material supplied to the apparatus . However, it will be appreciated that this term includes other materials, such as slurry, slime, or mud co - prising carbon containing particles, including coke, char etc., and oil residue, waste from the crude oil production, refineries, and petrochemical industries, sewage sludge etc. Also, in the preferred embodiment the metal content of the sludge is at least 5%, more preferably at least 20%, and most preferably at least 50%.
Starting with figure 1, an overall diagram of a plant for treatment of sludge and other wet waste materials, generally designated 10, is shown. The plant is built around a burner 20 installed in a side-wall of a furnace 30. The burner is a so-called oxy-fuel burner and is thus supplied with fuel through a first feeding line 21 and with oxygen through a second feeding line 22. By oxygen is in this context meant a gas with an 02 content exceeding 21% and preferably so-called technical oxygen having an 02 content of approx. 90-100%.
Sludge is supplied to the burner through a third feeding line 23. The third feeding line 23 is connected to a feeder, generally designated 40. The feeder 40 com- prises a container 42, into which the wet starting material in the form of sludge is fed. The sludge is directed from the container 42 to an arrangement comprising a feeding pump 45 driven by a motor 46. By means of the feeding pump 45, the sludge is moved to the burner 20 at a rate determined by the speed of the feeding pump. The burner 20 is also supplied with a suitable medium for atomising the sludge, such as oxygen or another gas etc . This atomising medium is supplied to the burner from a source (not shown) through the input 25.
In the exemplary plant shown in figure 1, the furnace 30 is a separate unit having an outlet 32 near the lower portion thereof for the output of molten metal containing particles recovered by the treatment of the sludge. The furnace also comprises an exhaust outlet 34 in the upper portion thereof for the output of exhausts created from the vaporisation and combustion of the sludge during burning. In the bottom of the furnace there is gathered a charge 36 resulting from the material supplied to the furnace 30 through the burner.
A first embodiment of the burner 20 will be described in more detail below with reference to figs . 2 and 3 , wherein fig. 2 is a sectional view of the front portion of the burner and fig. 3 is a front view. This burner is adapted to be used with fuel in the form of a gas, such as propane, natural gas, or butane, or with oil fuel.
The burner 20 comprises a main portion 24, to which the supply lines 21-23 and 25 shown in figure 1 are connected. The portion 24 is provided with an essentially circular cross-section, see figure 3, in which the configuration of the supply lines 21-23 appears in more detail. Fuel is supplied through the first supply line 21 in the form of six equidistant pipes 21a-f placed at a constant distance from the centre axis of the main portion 24. Oxygen is supplied through an annular outer portion 22 and thus surrounds the fuel supplied through the pipes 21a-f . Finally, sludge is supplied through the pipe 23, which is co-axially placed in the burner.
In the pipe 23 for the sludge, there is provided an atomising arrangement, designated 26. This functions in the following way. The atomising medium, such as oxygen, is input to the burner at 25 through a number of pipes. These pipes end in the central pipe 23 for the sludge and connect thereto in an angle thereto, thereby atomising or dividing the sludge leaving the pipe 23.
As already mentioned, the burner 20 is mounted in the side-wall of the furnace 30. In the preferred embodiment, the burner can be tilted, i.e., can be positioned in different angles relative to the horizontal and the vertical. The different orientations can be used for obtaining desired characteristics for the burning process.
In the following, the method for treatment of sludge will be described in detail.
Initially, sludge is supplied to the container 42 of the feeder 40. The sludge is of the above mentioned character, i.e., it has a liquid part and metal- containing particles intermixed in that liquid part. The metal-containing particles comprise metal, metal oxide or metal hydroxide. The sludge is transferred from the container and into the feeding pump 45, wherein it is transported to the burner 20 by means of the pump 45. The rate by which the sludge is fed to the burner is determined by the speed of the feeding pump 45.
The operation of the oxy-fuel burner 20 is controlled by means of the amount of fuel and oxygen supplied through the first and second supply lines 21 and 22, respectively. The supply lines are connected to sources of fuel and oxygen (not shown), as is conventional. A source of atomising medium is also connected to the burner through input 25.
The operation of the burner 20 will now be described in detail with reference to figs . 2 and 3 , showing a gas or oil burner. Sludge is supplied through the central feeding pipe 23 at a rate that is controlled by the feeding pump. Before reaching a flame 27 resulting from the oxy-fuel mixture and possibly fuel contained in the sludge, the sludge is atomised by means of the atomiser 26. In some cases, the combustion can be maintained by energy contained in the sludge and in those cases the fuel supplied through the supply line 21 is used mainly for starting the combustion. Thus, the sludge leaving the front portion of the burner is divided into small fractions, making an efficient heating thereof possible.
Fuel is supplied in the feeding pipes 21a-f, see figure 3, while an envelope of oxygen is supplied through the annular feeding area 22. The oxy-fuel mixture results in the flame 27 having properties, such as length, temperature etc., that are controlled by the supply rate of fuel and oxygen. The higher the oxygen content, the higher the temperature, resulting in a theoretical flame temperature of approx. 1500°C or more. Thus, the sludge is injected into the central portion of the flame.
As is seen from figure 2, the metal containing particles of the sludge injected into the flame is brought to agglomerate, thus creating agglomerates of a larger size than the particles found in the sludge. The agglomeration process is controlled by means of several parameters, of which can be mentioned: temperature and velocity of the flame 27, energy content or density of the injected sludge, stoichiometry, i.e., the ratio oxidising gas to added fuel, the oxygen content of the oxidising gas, the supply rate of oxygen and added fuel, the rate of injection of sludge and its characteristics, the travel time of the sludge in the flame, and burner characteristics and configu- ration, such as tilting.
The wet part of the sludge is vaporised by the high temperature of the flame, resulting in exhausts rising through the furnace 30 and subsequently leaving through the exhaust outlet 34. The created agglom- erates and droplets fall to the bottom of the furnace 30, wherein they are added to the charge 36. The charge is subsequently used in liquid or solid phase as it is . Alternatively the charge is returned to a process. A preferred embodiment of the method and the apparatus according to the invention has been described. The person skilled in the art realises that this can be varied within the scope of the appended claims. Thus, although an oxy-fuel burner 20 has been shown, other conventional burners can be used, such as plasma burners or in some cases air-fuel burners having a high thermal efficiency.
Furthermore, a separate furnace unit 30 has been shown. The method according to the invention is equally applicable to other kinds of furnaces, such as electric arc furnaces, induction furnaces, reverbera- tory furnaces, electrically heated furnaces, blast furnaces, cupola furnaces, and converters etc.
Also, in the described embodiment, the burner is positioned in a side-wall of a furnace. However, it is realised that other suitable positions are possible, such as in the upper part of the furnace. Also, a configuration with more than one burner is possible. It is then possible to inject the atomised sludge between three burner flames, for example.
In the described embodiment, the sludge is fed to the furnace by means of a feeding pump. However, the sludge supplied to the furnace could also be free- flowing etc.
A specific burner configuration has been shown. It is also appreciated that any suitable burner configuration having different number of pipes etc can be used. A separate input for atomising medium has been described. It is realised that the same oxygen source can be used for both the atomising medium and the burner feed.

Claims

1. A method for treatment of sludge, said sludge having a liquid part and metal-containing particles intermixed therein, wherein said particles comprise metal, metal oxide or metal hydroxide, said method comprising the following steps:
a) atomising said sludge;
b) supplying said atomised sludge to a flame of a burner provided in a furnace;
c) bringing the liquid part of said sludge to vaporise by means of said flame while maintaining said flame by means of a separate fuel supply; and
d) bringing at least part of said metal-containing particles to melt by means of said flame.
2. The method according to claim 1, comprising the additional step of:
e) recovering said metal-containing particles in liquid or solid phase.
3. The method according to claim 1 or 2, wherein said burner is an oxy-fuel burner.
4. The method according to claim 1 or 2 , wherein said burner is a plasma burner.
5. The method according to any of claims 1-4, wherein the metal content of said sludge is at least 5 %, more preferably at least 20 %, and most preferably at least 50 %.
6. The method according to any of claims 1-5, wherein said sludge is a waste product from a process.
7. The method according to any of claims 1-6 , wherein said flame is maintained mainly by energy contained in said sludge.
8. An apparatus for treatment of sludge, comprising:
- a container (42) for sludge having a liquid part and metal-containing particles intermixed therein, wherein said particles comprise metal, metal oxide or metal hydroxide;
- a burner (20) having a flame (27) during operation thereof, said burner having
- a fuel supply line (21) for maintaining said flame,
- a feeding pipe (23) for feeding sludge to said flame, and
- an atomiser (25, 26) for atomising said sludge; and
- a feeder (45, 46) connected between said container and said burner for supplying sludge from said container to said burner.
PCT/SE2002/000303 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein WO2002066895A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA 2439229 CA2439229A1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
BR0207442A BR0207442A (en) 2001-02-22 2002-02-21 Process and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therewith
MXPA03007584A MXPA03007584A (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein.
KR20037011036A KR100806651B1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
UA2003098660A UA76740C2 (en) 2001-02-22 2002-02-21 Method for treatment of slime with particles including metal, oxide of metal or metal hydroxide, and apparatus for implementation of the method
PL363541A PL197751B1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
SK1176-2003A SK11762003A3 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
EA200300918A EA004993B1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
US10/467,840 US6923129B2 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
AU2002233862A AU2002233862B2 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
JP2002566175A JP2004526115A (en) 2001-02-22 2002-02-21 Method for treating sludge having small pieces containing metal, metal oxide or metal hydroxide
DE2002614831 DE60214831T2 (en) 2001-02-22 2002-02-21 METHOD AND TREATMENT OF SLUD WITH PARTICLES CONTAINING MIXED METAL, METAL OXIDE OR METAL HYDROXIDE
EP20020700926 EP1370803B1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
NO20033468A NO322716B1 (en) 2001-02-22 2003-08-05 Method and apparatus for treating sludge with particles comprising mixed metal, metal oxide or metal hydroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0100597-4 2001-02-22
SE0100597A SE522953C2 (en) 2001-02-22 2001-02-22 Method and apparatus for treating sludge by means of a burner

Publications (2)

Publication Number Publication Date
WO2002066895A1 true WO2002066895A1 (en) 2002-08-29
WO2002066895A8 WO2002066895A8 (en) 2004-05-21

Family

ID=20283085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2002/000303 WO2002066895A1 (en) 2001-02-22 2002-02-21 Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein

Country Status (20)

Country Link
US (1) US6923129B2 (en)
EP (1) EP1370803B1 (en)
JP (1) JP2004526115A (en)
KR (1) KR100806651B1 (en)
AT (1) ATE340337T1 (en)
AU (1) AU2002233862B2 (en)
BR (1) BR0207442A (en)
CA (1) CA2439229A1 (en)
CZ (1) CZ20032257A3 (en)
DE (1) DE60214831T2 (en)
EA (1) EA004993B1 (en)
ES (1) ES2273996T3 (en)
MX (1) MXPA03007584A (en)
NO (1) NO322716B1 (en)
PL (1) PL197751B1 (en)
SE (1) SE522953C2 (en)
SK (1) SK11762003A3 (en)
UA (1) UA76740C2 (en)
WO (1) WO2002066895A1 (en)
ZA (1) ZA200306205B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107256A1 (en) * 2005-04-08 2006-10-12 Linde Ag A method for separating metallic iron from oxide
WO2008107120A1 (en) * 2007-03-06 2008-09-12 Gfe Metalle Und Materialien Gmbh Method for the production of a low carbon concentrate rich in heavy metal, produced from carbon-rich heavy metal-containing residues, from crude oil refining in particular
EP3220084A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste
EP3220083A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0402467D0 (en) * 2004-10-12 2004-10-12 Linde Ag A method and use of an apparatus for calcining
US20110311923A1 (en) * 2010-06-22 2011-12-22 Carrier Corporation Induced-Draft Burner With Isolated Gas-Air Mixing
CN108679625B (en) * 2018-04-28 2019-07-26 江苏禾宁流体科技有限公司 A kind of tubular type utilizes the device of waste incineration and generating electricity flue gas burning sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460799A1 (en) * 1974-12-21 1976-06-24 Polyma Anlagenbau Gmbh PROCESS FOR INCINERATING OILS, IN PARTICULAR WASTE OILS
US5129333A (en) * 1991-06-24 1992-07-14 Aga Ab Apparatus and method for recycling waste
DE4241283A1 (en) * 1992-12-08 1994-06-09 Lausitzer Braunkohle Ag Simultaneous disposal of liq., pasty and solid waste - by slurry prodn. and combined gasification and melting
DE4401563C1 (en) * 1994-01-20 1995-02-02 Freiberger Ne Metall Gmbh Process for the thermal reprocessing of waste materials
DE19947343A1 (en) * 1999-10-01 2001-04-12 Abb Schweiz Ag Melting zinc-containing materials containing heavy metals comprises reductively moving the burner and/or the liquid slag so the zinc is converted into the gas phase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839794C3 (en) * 1978-09-13 1981-05-14 Norddeutsche Affinerie, 2000 Hamburg Process for processing metallurgical intermediate products, sulfidic ores and / or ore concentrates
US5217362A (en) * 1991-12-30 1993-06-08 Thompson Richard E Method for enhanced atomization of liquids
US5405537A (en) * 1993-03-26 1995-04-11 Air Products And Chemicals, Inc. Process for combusting dewatered sludge waste in a municipal solid waste incinerator
US5843204A (en) * 1995-12-11 1998-12-01 Sumitomo Heavy Industries, Ltd. Method for recycling iron and steel industry waste
US6200428B1 (en) * 1997-04-07 2001-03-13 Raymond E. Vankouwenberg Wastewater treatment apparatus and method
US6155182A (en) * 1997-09-04 2000-12-05 Tsangaris; Andreas Plant for gasification of waste
JP2000003303A (en) * 1998-06-16 2000-01-07 Nippon Signal Co Ltd:The Device and method for processing information, and storage medium
JP4709588B2 (en) * 2005-06-21 2011-06-22 オークマ株式会社 Thread cutting control method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460799A1 (en) * 1974-12-21 1976-06-24 Polyma Anlagenbau Gmbh PROCESS FOR INCINERATING OILS, IN PARTICULAR WASTE OILS
US5129333A (en) * 1991-06-24 1992-07-14 Aga Ab Apparatus and method for recycling waste
DE4241283A1 (en) * 1992-12-08 1994-06-09 Lausitzer Braunkohle Ag Simultaneous disposal of liq., pasty and solid waste - by slurry prodn. and combined gasification and melting
DE4401563C1 (en) * 1994-01-20 1995-02-02 Freiberger Ne Metall Gmbh Process for the thermal reprocessing of waste materials
DE19947343A1 (en) * 1999-10-01 2001-04-12 Abb Schweiz Ag Melting zinc-containing materials containing heavy metals comprises reductively moving the burner and/or the liquid slag so the zinc is converted into the gas phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107256A1 (en) * 2005-04-08 2006-10-12 Linde Ag A method for separating metallic iron from oxide
WO2008107120A1 (en) * 2007-03-06 2008-09-12 Gfe Metalle Und Materialien Gmbh Method for the production of a low carbon concentrate rich in heavy metal, produced from carbon-rich heavy metal-containing residues, from crude oil refining in particular
EP3220084A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste
EP3220083A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste
EP3220085A1 (en) 2016-03-16 2017-09-20 Linde Aktiengesellschaft Treatment of particulate waste

Also Published As

Publication number Publication date
AU2002233862B2 (en) 2006-08-24
WO2002066895A8 (en) 2004-05-21
SE0100597D0 (en) 2001-02-22
ZA200306205B (en) 2004-11-11
KR100806651B1 (en) 2008-02-26
SE0100597L (en) 2002-08-23
SK11762003A3 (en) 2004-01-08
NO322716B1 (en) 2006-11-27
ES2273996T3 (en) 2007-05-16
CZ20032257A3 (en) 2004-04-14
US20040112264A1 (en) 2004-06-17
DE60214831T2 (en) 2007-09-13
EP1370803B1 (en) 2006-09-20
EP1370803A1 (en) 2003-12-17
PL363541A1 (en) 2004-11-29
NO20033468D0 (en) 2003-08-05
KR20030077037A (en) 2003-09-29
MXPA03007584A (en) 2004-03-18
BR0207442A (en) 2004-04-06
PL197751B1 (en) 2008-04-30
SE522953C2 (en) 2004-03-16
UA76740C2 (en) 2006-09-15
DE60214831D1 (en) 2006-11-02
NO20033468L (en) 2003-08-05
ATE340337T1 (en) 2006-10-15
EA004993B1 (en) 2004-10-28
CA2439229A1 (en) 2002-08-29
EA200300918A1 (en) 2004-02-26
US6923129B2 (en) 2005-08-02
JP2004526115A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
CN100413564C (en) Hazardous waste treatment method and apparatus
KR19980702004A (en) Plasma Pyrolysis and Vitrification of Municipal Waste
WO1988006190A1 (en) Method and furnace for making iron-carbon intermediate products for steel production
CA2143403C (en) Process for the simultaneous smelting of dust and incinerator slag
US6923129B2 (en) Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
US5889810A (en) Apparatus for preheating and melting of scrap and process for the same
AU2002233862A1 (en) Method and treatment of sludge having particles comprising metal, metal oxide or metal hydroxide intermixed therein
AU2001260856C1 (en) A method and an apparatus for recovery of metals
AU2001260856A1 (en) A method and an apparatus for recovery of metals
BE1027793A1 (en) Improved Fumigation Furnace with Plasma Induction
US20070215019A1 (en) Method and Use of an Apparatus for Recovery of Metals or Metal Compounds
JP2001193920A (en) Device for fusing incinerated ash, coupled with rotary kiln incinerator
JPH10227423A (en) Method for melting waste material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003/06205

Country of ref document: ZA

Ref document number: 200306205

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002566175

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PV2003-2257

Country of ref document: CZ

Ref document number: 2002233862

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/007584

Country of ref document: MX

Ref document number: 2439229

Country of ref document: CA

Ref document number: 1020037011036

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002700926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11762003

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 200300918

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020037011036

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002700926

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10467840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV2003-2257

Country of ref document: CZ

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 35/2002 DUE TO A TECHNICAL PROBLEMAT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING UNDER (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION

WWG Wipo information: grant in national office

Ref document number: 2002700926

Country of ref document: EP