WO2002064849A1 - Production of aluminum alloy foils having high strength and good rollability - Google Patents

Production of aluminum alloy foils having high strength and good rollability Download PDF

Info

Publication number
WO2002064849A1
WO2002064849A1 PCT/CA2002/000170 CA0200170W WO02064849A1 WO 2002064849 A1 WO2002064849 A1 WO 2002064849A1 CA 0200170 W CA0200170 W CA 0200170W WO 02064849 A1 WO02064849 A1 WO 02064849A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
foil
cast
final
process according
Prior art date
Application number
PCT/CA2002/000170
Other languages
French (fr)
Inventor
Iljoon Jin
Kevin Gatenby
Christopher Gabryel
Toshiya Anami
Takahiko Watai
Ichiro Okamoto
Original Assignee
Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Limited filed Critical Alcan International Limited
Priority to CA002432694A priority Critical patent/CA2432694A1/en
Priority to KR10-2003-7010573A priority patent/KR20040014455A/en
Priority to BR0207219-0A priority patent/BR0207219A/en
Priority to EP02701112A priority patent/EP1362130B1/en
Priority to DE60213951T priority patent/DE60213951T2/en
Priority to JP2002564161A priority patent/JP4281355B2/en
Publication of WO2002064849A1 publication Critical patent/WO2002064849A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • This invention relates to the production of aluminum alloy foil products. Specifically, it relates to a process for manufacturing an aluminum alloy foil using a continuous strip casting process in which the material has excellent rollability in the final rolling step and good strength of final foil product.
  • Thin gauge foils are generally prepared by casting an ingot of an aluminum alloy such as AA8021 in a process known as DC or direct chill casting.
  • the ingots are generally heated to a high temperature, hot rolled to a re-roll gauge thickness of between 1 and 10 mm, then cold rolled to a "foil-stock" gauge typically 0.2 to 0.4 mm thick.
  • the strip is often subjected to an interanneal step during the cold rolling process.
  • the "foil-stock” is then subject to further cold rolling operations, often using double rolling techniques to produce a final foil thickness of about 5 to 150 microns.
  • An AA8021-type alloy has the nominal composition of less than 0.2% by weight silicon and 1.2 to 1.7% by weight iron, with the balance aluminum and incidental impurities.
  • This alloy is widely used, e.g. in Japan, in the production of foil, where it is normally cast by direct chill casting.
  • the resulting strip does not have the same microstructure as that obtained by direct chill casting. For instance, belt casting creates cooling rates during solidification much higher than in DC casting and this generates a wide variety of intermetallic sizes and concentrations that negatively affect microstructure control.
  • a twin roll casting process for producing high strength aluminum foil is described in Furukawa Alum, Japanese Patent JP01-034548. That process used an aluminum alloy containing, in percentages by weight, 0.8 to 2% Fe, 0.1 to 1% Si, 0.01 to 0.5% Cu, 0.01 to 0.5% Mg and 0.01 to 1% Mn . Ti and B were also included at grain refining levels. The alloy was twin roll cast to a thickness of 0.5 to 3 mm and rolled to foil. A heat treatment at 200 to 450°C was also included.
  • Ward et al. U.S. Patent 5,725,695 utilized an AA8111 alloy (containing 0.30 to 1.0% by weight Si and 0.40 to 1.0% by weight Fe) which was processed via twin roll casting, cold rolling with interanneal to a maximum of 441°C and final anneal.
  • the alloy used contained silicon in an amount equal to or higher than the amount of iron.
  • a further continuous strip casting technique using Al-Fe-Si type aluminum alloy is described in Katano et al. WO 99/23269.
  • the continuous cast material was interannealed in a two step process using two different temperature ranges.
  • Another procedure for producing high strength foil material based on Al-Fe-Si alloy is described in Furukawa JP06-101004. In this procedure the alloy was strip cast to a preferred thickness of 5 to 10 mm followed by interanneal, cold rolling and final anneal.
  • the problem of producing a quality aluminum alloy foil using a continuous strip caster has been solved by way of a new alloy composition and a new processing route.
  • the alloy that is used is one containing 1.2 to 1.7 wt% Fe and 0.35 to 0.8 wt% Si, with the balance aluminum and incidental impurities.
  • the above alloy is then cast in a continuous strip caster to a strip thickness of less than about 25 mm, preferably about 5 to 25 mm, followed by cold rolling to interanneal gauge.
  • the interannealing is carried out at a temperature of at least 400°C, followed by cold rolling to final gauge and final anneal.
  • the interanneal is preferably carried out at a temperature of about 400 to 520 °C for about 1 to 8 hours.
  • the final anneal is preferably at a temperature of about 250 to 400 °C for about 1 to 12 hours and the continuous strip casting is preferably conducted on a belt caster.
  • the continuously cast strip is optionally hot rolled to a re-roll gauge (typically 1 to 5 mm) before cold rolling to the interanneal gauge.
  • the cold rolling reduction prior to interanneal is typically at least 40%.
  • both the heating and cooling rates in the interanneal stage are maintained within the range of about 20 to 60°C/h.
  • the use of the above alloy composition has substantially eliminated the "fir tree effect".
  • the absence of this fir tree effect means that the surface quality of the final foil is improved and the pin hole frequency in the final foil is reduced.
  • the invention provides the structure and properties of foil material that are essential for making a good quality, high strength foil, namely:
  • the Fe is the primary strengthening element and forms Fe containing intermetallic particles during casting (which are broken into smaller particles during subsequent rolling stages) . These particles contribute to strengthening by particle strengthening and by stimulating grain nucleation in the final anneal stage, resulting in a fine grain structure in the final product. If Fe is less than 1.2 wt%, this strengthening is insufficient, and if Fe is greater than 1.7 wt%, large primary intermetallic particles form during casting which are harmful for rolling and the quality of the foil products.
  • the Si retards formation of non-equilibrium intermetallic compounds during casting, which therefore improves the uniformity of the cast structure (eliminates "fir-tree” effect). It also improves rollability. If Si is lower than 0.35 wt%, it is insufficient to promote the uniformity of the cast structure, whereas when Si exceeds 0.8 wt%, it can increase the work hardening rate, causing adverse effects on rolling.
  • the continuous casting step is preferably conducted in a twin belt caster. The final properties of the strip are dependent on achieving a fine grain size, and twin-roll casting is not able to achieve as fine a grain size as belt casting when the alloy and subsequent processing of the present invention are used.
  • belt-caster is capable of substantially higher production rates than a twin-roll caster.
  • Belt casting is a form of continuous strip casting carried out between moving flexible and cooled belts. Although the belts may exert a force on the strip to ensure adequate cooling, preferably the force is insufficient to compress the strip while it is solidifying. Typically a belt caster will cast strips less than about 25 mm thick and preferably greater than about 5 mm thick.
  • the cooling rate for casting alloys of the present invention generally lies between about 20 and 300°C/sec.
  • Fig. 1 shows cast structures in transverse cross section of the as cast strip with varying silicon contents
  • Fig. 2 is a graph relating UTS to the percent cold work for different interannealing conditions
  • Fig. 3 is a graph relating UTS to percent cold work for the product of the invention and direct chill cast AA8021.
  • the alloys in Table 1 were cast on a laboratory twin belt caster to a thickness of about 7.3 mm.
  • the belts used were textured steel belts operated to give heat fluxes 1.5 to 2.5 MW/m 2 . This was equivalent to a cooling rate of between 150 and 275 °C/s averaged through the thickness of the strip.
  • the as-cast strip samples were metallographically prepared to examine the cast structures in the transverse cross section.
  • Figure 1 shows the anodized surfaces of the cross sections for samples from Casts 1, 3 and 4. This reveals the extent of the intermetallic particle non-uniformity. It is apparent that the intermetallic phase uniformity is clearly related to the Si content of the alloy. From this examination, it can be seen that, when the high Fe alloys (with Fe in the inventive range) are cast on a belt caster, a Si level of 0.29 wt% (below the inventive range) results in a non-uniform cast structure. All six alloys were examined by the same method and only alloys 1, 5 and 6 had a uniform microstructure (absence of fir-tree effect) .
  • Alloys 2,3 and 4 were structurally unsound (fir tree effect) . Alloys 1, 5 and 6 were further processed as described in Table 2.
  • the alloy strip from Cast No. 1 was processed using a number of different processing routes, and the work hardening behaviours of the resulting samples were examined.
  • Figure 2 is a plot of UTS v. % cold work showing the work hardening behaviours of the samples that were processed by 3 different interannealing conditions. One sample was interannealed at 400 °C for 4 hours, while a second sample was interannealed at 500°C for 4 hours. A third sample was interannealed at 500°C for 4 hours followed by 400°C for 2 hours.
  • Figure 3 is a plot of UTS v.
  • both belt cast (Cast No. 1, 5 and 6) and DC cast materials were processed to the final gauge and 0 temper annealed, and the rolled samples before and after the final anneal were tensile tested.
  • the processing conditions and results obtained are shown in Table 2.
  • Alloy 5 had a lower Fe and Si than the inventive range, and when processed by belt casting and the preferred interanneal process gave too low a strength in the 0 temper state (after final anneal) .
  • Alloy 6 had a composition within the inventive range and was processed in accordance with the conditions of the present invention except that the interanneal temperature was below the preferred range. This led to a material with excessively high strength after 90% cold reduction
  • Table 2 clearly shows that the material of the present invention has comparable properties to the conventional high strength DC material, and meets the target strength at 90% cold reduction and 0 temper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7 % by weight Fe and about 0.35 to 0.80 % by weight Si, with the balance aluminum and incidental impurities. The alloy is continuously strip cast to form a strip having a thickness less than about 25 mm, which is then cold rolled to interanneal gauge and interannealed at a temperature of at least 400 °C. The interannealed strip is cold rolled and further annealed to form the final foil product, having excellent rollability combined with high strength of the final foil.

Description

PRODUCTION OF ALUMINUM ALLOY FOILS HAVING HIGH STRENGTH
AND GOOD ROLLABILITY
Technical Field
This invention relates to the production of aluminum alloy foil products. Specifically, it relates to a process for manufacturing an aluminum alloy foil using a continuous strip casting process in which the material has excellent rollability in the final rolling step and good strength of final foil product.
Background Art
Thin gauge foils are generally prepared by casting an ingot of an aluminum alloy such as AA8021 in a process known as DC or direct chill casting. The ingots are generally heated to a high temperature, hot rolled to a re-roll gauge thickness of between 1 and 10 mm, then cold rolled to a "foil-stock" gauge typically 0.2 to 0.4 mm thick. The strip is often subjected to an interanneal step during the cold rolling process. The "foil-stock" is then subject to further cold rolling operations, often using double rolling techniques to produce a final foil thickness of about 5 to 150 microns.
There is a cost advantage to using continuous strip casting as the starting point in manufacture of such foils since homogenization prior to hot rolling is not required, and the amount of hot reduction to form re-roll gauges is greatly reduced. Where high volume continuous casting is required, twin belt casting is the preferred method of continuous casting. However, continuous strip casting processes apply different cooling conditions during solidification from those in DC casting, and there is an absence of a high temperature homogenization step prior to hot rolling. Consequently when continuous strip casting processes are used with alloys normally prepared by DC casting and homogenization, this results in the formation of different intermetallic species in the cast product which cause surface defects, known as "fir tree effect", in the final foil stock product. In continuous strip casting, the cooling rate of the strip during casting is' generally higher (in some cases much higher) than the cooling rate in large DC ingots. Thus, such alloys processed in a continuous strip casting process also result in foil stock which has a higher supersaturation of solute elements, and therefore has undesirable hardening and softening properties, resulting in difficulties in rolling the foil stock to the final gauge thickness.
There is a particular interest in being able to produce aluminum foils from AA8021-type alloys by continuous strip casting. An AA8021-type alloy has the nominal composition of less than 0.2% by weight silicon and 1.2 to 1.7% by weight iron, with the balance aluminum and incidental impurities. This alloy is widely used, e.g. in Japan, in the production of foil, where it is normally cast by direct chill casting. When the same AA8021 alloy is cast on a continuous strip caster, the resulting strip does not have the same microstructure as that obtained by direct chill casting. For instance, belt casting creates cooling rates during solidification much higher than in DC casting and this generates a wide variety of intermetallic sizes and concentrations that negatively affect microstructure control. Therefore, the final anneal cannot produce the desired structure for a foil. It is known to produce high strength aluminum foil by continuous strip casting an AA1200-type alloy strengthened by the addition of other strengthening alloying elements, such as Mn, Cu and Si. Such an alloy is easily castable on a continuous strip caster and the final product has excellent strength. However, because of the added strengthening solute elements, there is a high work hardening rate of the material during cold rolling. Thus, it is difficult to roll this material to final thin gauge.
A twin roll casting process for producing high strength aluminum foil is described in Furukawa Alum, Japanese Patent JP01-034548. That process used an aluminum alloy containing, in percentages by weight, 0.8 to 2% Fe, 0.1 to 1% Si, 0.01 to 0.5% Cu, 0.01 to 0.5% Mg and 0.01 to 1% Mn . Ti and B were also included at grain refining levels. The alloy was twin roll cast to a thickness of 0.5 to 3 mm and rolled to foil. A heat treatment at 200 to 450°C was also included.
Ward et al. U.S. Patent 5,725,695 utilized an AA8111 alloy (containing 0.30 to 1.0% by weight Si and 0.40 to 1.0% by weight Fe) which was processed via twin roll casting, cold rolling with interanneal to a maximum of 441°C and final anneal. The alloy used contained silicon in an amount equal to or higher than the amount of iron.
A further continuous strip casting technique using Al-Fe-Si type aluminum alloy is described in Katano et al. WO 99/23269. The continuous cast material was interannealed in a two step process using two different temperature ranges. Another procedure for producing high strength foil material based on Al-Fe-Si alloy is described in Furukawa JP06-101004. In this procedure the alloy was strip cast to a preferred thickness of 5 to 10 mm followed by interanneal, cold rolling and final anneal.
It is an object of the present invention to produce, using continuous strip casting, an aluminum foil having a low work hardening rate and hence good rollability, while providing high strength in the final foil product.
It is a further object of the present invention to produce an aluminum foil having a low work hardening rate and hence good rollability, and high strength in the final foil product by using a high productivity casting method.
Disclosure of the Invention
In accordance with the present invention, the problem of producing a quality aluminum alloy foil using a continuous strip caster has been solved by way of a new alloy composition and a new processing route. Thus, the alloy that is used is one containing 1.2 to 1.7 wt% Fe and 0.35 to 0.8 wt% Si, with the balance aluminum and incidental impurities. The above alloy is then cast in a continuous strip caster to a strip thickness of less than about 25 mm, preferably about 5 to 25 mm, followed by cold rolling to interanneal gauge. The interannealing is carried out at a temperature of at least 400°C, followed by cold rolling to final gauge and final anneal. The interanneal is preferably carried out at a temperature of about 400 to 520 °C for about 1 to 8 hours. The final anneal is preferably at a temperature of about 250 to 400 °C for about 1 to 12 hours and the continuous strip casting is preferably conducted on a belt caster.
In the above procedure, the continuously cast strip is optionally hot rolled to a re-roll gauge (typically 1 to 5 mm) before cold rolling to the interanneal gauge. The cold rolling reduction prior to interanneal is typically at least 40%. For best results both the heating and cooling rates in the interanneal stage are maintained within the range of about 20 to 60°C/h.
The use of the above alloy composition has substantially eliminated the "fir tree effect". The absence of this fir tree effect means that the surface quality of the final foil is improved and the pin hole frequency in the final foil is reduced.
It has also surprisingly been found that with the above combination of alloy composition and processing route, the work hardening behaviour of the alloy is similar to that of fully homogenized direct chill cast AA8021. It is believed that this surprising effect is a result of the accelerated decomposition of the supersaturated alloying elements in the matrix alloy during the interanneal process. Thus, the invention provides the structure and properties of foil material that are essential for making a good quality, high strength foil, namely:
(a) a uniform intermetallic phase distribution in the as-cast state (no fir tree effect) ; (b) low work hardening rate and hence good rollability (UTS after a cold reduction of 90% is below 190 MPa) ; and (c) high strength in the final product (UTS at 0 temper - after final anneal - is greater than 90 MPa) .
In the above alloy, the Fe is the primary strengthening element and forms Fe containing intermetallic particles during casting (which are broken into smaller particles during subsequent rolling stages) . These particles contribute to strengthening by particle strengthening and by stimulating grain nucleation in the final anneal stage, resulting in a fine grain structure in the final product. If Fe is less than 1.2 wt%, this strengthening is insufficient, and if Fe is greater than 1.7 wt%, large primary intermetallic particles form during casting which are harmful for rolling and the quality of the foil products.
In the above alloy, the Si retards formation of non-equilibrium intermetallic compounds during casting, which therefore improves the uniformity of the cast structure (eliminates "fir-tree" effect). It also improves rollability. If Si is lower than 0.35 wt%, it is insufficient to promote the uniformity of the cast structure, whereas when Si exceeds 0.8 wt%, it can increase the work hardening rate, causing adverse effects on rolling. The continuous casting step is preferably conducted in a twin belt caster. The final properties of the strip are dependent on achieving a fine grain size, and twin-roll casting is not able to achieve as fine a grain size as belt casting when the alloy and subsequent processing of the present invention are used. Furthermore the belt-caster is capable of substantially higher production rates than a twin-roll caster. Belt casting is a form of continuous strip casting carried out between moving flexible and cooled belts. Although the belts may exert a force on the strip to ensure adequate cooling, preferably the force is insufficient to compress the strip while it is solidifying. Typically a belt caster will cast strips less than about 25 mm thick and preferably greater than about 5 mm thick. The cooling rate for casting alloys of the present invention generally lies between about 20 and 300°C/sec.
Brief Description of the Drawings
Fig. 1 shows cast structures in transverse cross section of the as cast strip with varying silicon contents; Fig. 2 is a graph relating UTS to the percent cold work for different interannealing conditions; and
Fig. 3 is a graph relating UTS to percent cold work for the product of the invention and direct chill cast AA8021.
Best Modes for Carrying Out the Invention
Example 1
A series of test were carried out with the six alloys listed in Table 1 below:
TABLE 1
Figure imgf000008_0001
The alloys in Table 1 were cast on a laboratory twin belt caster to a thickness of about 7.3 mm. The belts used were textured steel belts operated to give heat fluxes 1.5 to 2.5 MW/m2. This was equivalent to a cooling rate of between 150 and 275 °C/s averaged through the thickness of the strip.
The as-cast strip samples were metallographically prepared to examine the cast structures in the transverse cross section. Figure 1 shows the anodized surfaces of the cross sections for samples from Casts 1, 3 and 4. This reveals the extent of the intermetallic particle non-uniformity. It is apparent that the intermetallic phase uniformity is clearly related to the Si content of the alloy. From this examination, it can be seen that, when the high Fe alloys (with Fe in the inventive range) are cast on a belt caster, a Si level of 0.29 wt% (below the inventive range) results in a non-uniform cast structure. All six alloys were examined by the same method and only alloys 1, 5 and 6 had a uniform microstructure (absence of fir-tree effect) . Alloys 2,3 and 4 were structurally unsound (fir tree effect) . Alloys 1, 5 and 6 were further processed as described in Table 2. The alloy strip from Cast No. 1 was processed using a number of different processing routes, and the work hardening behaviours of the resulting samples were examined. Figure 2 is a plot of UTS v. % cold work showing the work hardening behaviours of the samples that were processed by 3 different interannealing conditions. One sample was interannealed at 400 °C for 4 hours, while a second sample was interannealed at 500°C for 4 hours. A third sample was interannealed at 500°C for 4 hours followed by 400°C for 2 hours. Figure 3 is a plot of UTS v. % cold work giving a comparison of the work hardening behaviours of the belt cast alloy interannealed at 500°C and DC cast AA8021 alloy. From these results it can be seen that the belt cast material according to this invention has essentially the same work hardening behaviour as direct chill cast AA8021.
In order to test if the material meets the target strength of the end product (a UTS of 90 MPa or higher at 0 temper), both belt cast (Cast No. 1, 5 and 6) and DC cast materials were processed to the final gauge and 0 temper annealed, and the rolled samples before and after the final anneal were tensile tested. The processing conditions and results obtained are shown in Table 2.
TABLE 2
Figure imgf000010_0001
rSoaking time = 4 hours
When Alloy 1 was processed with the preferred controlled interanneal process of the present invention (a heat up and cool down rate of 25 C/h) the sheet had a uniform microstructure (no fir tree) and the strength at 90% reduction and after final anneal (0 temper) were comparable to DC cast properties (for AA8021 in the above table) . However when the same alloy, belt cast, but processed with faster heat up and cool down on interanneal than the preferred range, the strength after 90% reduction became higher than that of the same alloy processed by the preferred route.
Alloy 5 had a lower Fe and Si than the inventive range, and when processed by belt casting and the preferred interanneal process gave too low a strength in the 0 temper state (after final anneal) .
Alloy 6 had a composition within the inventive range and was processed in accordance with the conditions of the present invention except that the interanneal temperature was below the preferred range. This led to a material with excessively high strength after 90% cold reduction
Table 2 clearly shows that the material of the present invention has comparable properties to the conventional high strength DC material, and meets the target strength at 90% cold reduction and 0 temper.

Claims

Claims :
1. A process for producing an aluminum foil product by continuous strip casting in which the product exhibits excellent rollability combined with high strength of final foil product comprising the steps of:
(a) providing an aluminum alloy containing 1.2 to 1.7% by weight Fe and 0.35 to 0.80% by weight Si, with the balance aluminum and incidental impurities,
(b) continuous strip casting the alloy to form a cast strip having an as-cast thickness of less than about 25 mm,
(c) cold rolling the cast strip to interanneal gauge,
(d) interannealing the strip at a temperature of at least 400°C,
(e) cold rolling the interanneal strip to final gauge, and (f) subjecting the final gauge strip to a final anneal .
2. The process according to claim 1 wherein the continuous strip casting is conducted on a belt caster.
3. The process according to claim 1 or 2 wherein strip is cast to an as-cast thickness of about 5 to
25 mm.
4. The process according to claim 1, 2 or 3 wherein the as-cast strip is hot rolled prior to cold rolling.
5. The process according to any one of claims 1 to 4 wherein the interanneal is carried out at a temperature of 520°C or less.
6. The process according to claim 5 wherein the interanneal is conducted at a temperature of about 400 to 520°C for about 1 to 8 hours.
7. The process according to any one of claims 1 to 6 wherein the final anneal is conducted at a temperature of about 250 to 400°C
8. The process according to claim 7 wherein the final anneal is conducted at a temperature of about 250 to 400°C for about 1 to 12 hours.
9. The process according to any one of claims 1 to 8 wherein the cooling and heating through the steps following the strip casting are conducted at a cooling or heating rate of about 20 to 60°C/hr.
10. The process according to any one of claims 1 to 9 wherein the strip after interannealing has an ultimate tensile strength (UTS) after a cold reduction of 90% of below 190 MPa and the foil after final anneal has a UTS at 0 temper of greater than 90 MPa.
11. An aluminum alloy foil formed from an alloy containing 1.2 to 1.7% by weight Fe and 0.35 to 0.80% by weight Si, with the balance aluminum and incidental impurities, said foil at final gauge having an ultimate tensile strength (UTS) at 0 temper of greater than 90 MPa.
12. An aluminum alloy foil according to claim 11 wherein the alloy prior to being rolled to final gauge foil has an ultimate tensile strength after a cold reduction of 90% of below 190 MPa.
PCT/CA2002/000170 2001-02-13 2002-02-13 Production of aluminum alloy foils having high strength and good rollability WO2002064849A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002432694A CA2432694A1 (en) 2001-02-13 2002-02-13 Production of aluminum alloy foils having high strength and good rollability
KR10-2003-7010573A KR20040014455A (en) 2001-02-13 2002-02-13 Production of aluminum alloy foils having high strength and good rollability
BR0207219-0A BR0207219A (en) 2001-02-13 2002-02-13 Production of high strength aluminum alloy sheets with good rolling capacity
EP02701112A EP1362130B1 (en) 2001-02-13 2002-02-13 Production of aluminum alloy foils having high strength and good rollability
DE60213951T DE60213951T2 (en) 2001-02-13 2002-02-13 PREPARATION OF HIGH-WET FILMS FROM ALUMINUM ALLOYS WITH GOOD SLABILITY
JP2002564161A JP4281355B2 (en) 2001-02-13 2002-02-13 Method for producing aluminum alloy foil having high strength and good rollability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/782,796 2001-02-13
US09/782,796 US6663729B2 (en) 2001-02-13 2001-02-13 Production of aluminum alloy foils having high strength and good rollability

Publications (1)

Publication Number Publication Date
WO2002064849A1 true WO2002064849A1 (en) 2002-08-22

Family

ID=25127206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2002/000170 WO2002064849A1 (en) 2001-02-13 2002-02-13 Production of aluminum alloy foils having high strength and good rollability

Country Status (10)

Country Link
US (1) US6663729B2 (en)
EP (1) EP1362130B1 (en)
JP (1) JP4281355B2 (en)
KR (1) KR20040014455A (en)
CN (1) CN1294284C (en)
AT (1) ATE336604T1 (en)
BR (1) BR0207219A (en)
CA (1) CA2432694A1 (en)
DE (1) DE60213951T2 (en)
WO (1) WO2002064849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453672C (en) * 2007-06-11 2009-01-21 江苏常铝铝业股份有限公司 Aluminum alloy foil for package and its making method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445027C (en) * 2006-04-29 2008-12-24 东北轻合金有限责任公司 Method for manufacturing aluminium foil of high-voltage anode for electrolytic capacitor
CN100360249C (en) * 2006-06-30 2008-01-09 郑州铝业股份有限公司 Short process production technology of ultrathin aluminium foil
JP2009097077A (en) * 2007-09-27 2009-05-07 Toyo Aluminium Kk Aluminum alloy foil
CN101705459B (en) * 2009-12-04 2013-08-28 山东富海实业股份有限公司 Processing method of 3005 aluminum alloy strip
CN102634700B (en) * 2012-05-15 2014-09-17 山东大学 Casting aluminum-silicon alloy inoculant, and preparation method and application thereof
RU2579861C1 (en) * 2014-12-09 2016-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method for production of deformed semi-finished products of aluminium-based alloy
CN111187947A (en) * 2018-11-14 2020-05-22 中国船舶重工集团公司第七二五研究所 Aluminum alloy anode material for seawater battery and preparation method
CN110468310A (en) * 2019-08-30 2019-11-19 洛阳龙鼎铝业有限公司 A kind of micro preparation method for changing 8021 alloy production aluminum foil for household use
DE102021102404A1 (en) 2021-02-02 2022-08-04 Martin Stachulla Process for the heat treatment of pieces of material
CN113930644B (en) * 2021-10-19 2022-12-02 中南大学 Heat-resistant Al-Fe-Si aluminum alloy and preparation method thereof
CN114164361B (en) * 2021-12-09 2022-10-25 厦门厦顺铝箔有限公司 Production process of aluminum foil for high-ductility high-deep-drawing power aluminum plastic film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524355A (en) * 1975-10-31 1978-09-13 Alcan Res & Dev Aluminium alloy sheet products
EP0064468A1 (en) * 1981-04-13 1982-11-10 Cegedur Societe De Transformation De L'aluminium Pechiney Process for manufacturing foils consisting of hypoeutectic aluminium-iron alloys
JPS6434548A (en) * 1987-07-30 1989-02-06 Furukawa Aluminium Production of high strength aluminum foil
JPH06101004A (en) * 1992-09-22 1994-04-12 Furukawa Alum Co Ltd Manufacture of aluminum foil excellent in strength and foil rollability
JPH06101003A (en) * 1992-09-22 1994-04-12 Furukawa Alum Co Ltd Production of aluminum foil excellent in strength and foil rollability
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
FR2763602A1 (en) * 1997-05-20 1998-11-27 Pechiney Rhenalu PROCESS FOR MANUFACTURING STRIPS OF ALUMINUM ALLOYS BY THIN CONTINUOUS CASTING BETWEEN CYLINDERS
WO1999023269A1 (en) * 1997-10-31 1999-05-14 Nippon Light Metal Company Ltd. Process for producing base foils of aluminum alloys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614224A (en) * 1981-12-04 1986-09-30 Alcan International Limited Aluminum alloy can stock process of manufacture
JPS641004A (en) * 1987-06-23 1989-01-05 Nec Corp Graphic defining system
US5681405A (en) * 1995-03-09 1997-10-28 Golden Aluminum Company Method for making an improved aluminum alloy sheet product
BR9808456A (en) 1997-04-04 2000-05-23 Alcan Int Ltd Aluminum alloy composition and manufacturing process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524355A (en) * 1975-10-31 1978-09-13 Alcan Res & Dev Aluminium alloy sheet products
EP0064468A1 (en) * 1981-04-13 1982-11-10 Cegedur Societe De Transformation De L'aluminium Pechiney Process for manufacturing foils consisting of hypoeutectic aluminium-iron alloys
JPS6434548A (en) * 1987-07-30 1989-02-06 Furukawa Aluminium Production of high strength aluminum foil
JPH06101004A (en) * 1992-09-22 1994-04-12 Furukawa Alum Co Ltd Manufacture of aluminum foil excellent in strength and foil rollability
JPH06101003A (en) * 1992-09-22 1994-04-12 Furukawa Alum Co Ltd Production of aluminum foil excellent in strength and foil rollability
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
FR2763602A1 (en) * 1997-05-20 1998-11-27 Pechiney Rhenalu PROCESS FOR MANUFACTURING STRIPS OF ALUMINUM ALLOYS BY THIN CONTINUOUS CASTING BETWEEN CYLINDERS
WO1999023269A1 (en) * 1997-10-31 1999-05-14 Nippon Light Metal Company Ltd. Process for producing base foils of aluminum alloys

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 214 (M - 827) 18 May 1989 (1989-05-18) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 377 (C - 1225) 15 July 1994 (1994-07-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453672C (en) * 2007-06-11 2009-01-21 江苏常铝铝业股份有限公司 Aluminum alloy foil for package and its making method

Also Published As

Publication number Publication date
US20020153068A1 (en) 2002-10-24
CN1491288A (en) 2004-04-21
DE60213951T2 (en) 2007-09-06
EP1362130B1 (en) 2006-08-16
CA2432694A1 (en) 2002-08-22
JP2004523654A (en) 2004-08-05
EP1362130A1 (en) 2003-11-19
ATE336604T1 (en) 2006-09-15
CN1294284C (en) 2007-01-10
DE60213951D1 (en) 2006-09-28
JP4281355B2 (en) 2009-06-17
US6663729B2 (en) 2003-12-16
BR0207219A (en) 2004-03-09
KR20040014455A (en) 2004-02-14

Similar Documents

Publication Publication Date Title
US9945011B2 (en) Magnesium-based alloy for wrought applications
US7048816B2 (en) Continuously cast magnesium containing, aluminum alloy sheet with copper addition
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
US6663729B2 (en) Production of aluminum alloy foils having high strength and good rollability
CA2434841C (en) Production of high strength aluminum alloy foils
JPH11500787A (en) Aluminum alloy composition and manufacturing method
AU683361B2 (en) Aluminium foil
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JPS61119658A (en) Manufacture of material for aluminum foil
EP1175516B1 (en) Production of aluminum alloy strip for use in making thin gauge foils
JPH0693397A (en) Production of aluminum foil excellent in strength and foil rollability
Szczypiorski et al. The mechanical and metallurgical characteristics of twin-belt cast aluminum strip using current Hazelett technology
JP3982773B2 (en) Aluminum foil with excellent surface roughness
JPH06101004A (en) Manufacture of aluminum foil excellent in strength and foil rollability
JPH0693396A (en) Production of aluminum foil excellent in strength and foil rollability
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property
JPH0361351A (en) Manufacture of al-mg base alloy sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2432694

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002701112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002564161

Country of ref document: JP

Ref document number: 1020037010573

Country of ref document: KR

Ref document number: 028048717

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002701112

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037010573

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2002701112

Country of ref document: EP