WO2002062955A2 - Molécule dentritique enrichie d'activation des lymphocytes secrétés - Google Patents

Molécule dentritique enrichie d'activation des lymphocytes secrétés Download PDF

Info

Publication number
WO2002062955A2
WO2002062955A2 PCT/US2002/003227 US0203227W WO02062955A2 WO 2002062955 A2 WO2002062955 A2 WO 2002062955A2 US 0203227 W US0203227 W US 0203227W WO 02062955 A2 WO02062955 A2 WO 02062955A2
Authority
WO
WIPO (PCT)
Prior art keywords
replaced
polypeptide
slam
seq
sequence
Prior art date
Application number
PCT/US2002/003227
Other languages
English (en)
Other versions
WO2002062955A3 (fr
Inventor
Steven M. Ruben
Paul E. Young
Original Assignee
Human Genome Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences, Inc. filed Critical Human Genome Sciences, Inc.
Priority to AU2002306440A priority Critical patent/AU2002306440A1/en
Publication of WO2002062955A2 publication Critical patent/WO2002062955A2/fr
Publication of WO2002062955A3 publication Critical patent/WO2002062955A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel human gene encoding a polypeptide which is a member of the Secreted Lymphocyte Activation Molecule (SLAM) family. More specifically, the present invention relates to a polynucleotide encoding a novel human polypeptide named Dendritic Enriched Secreted Lymphocyte Activation Molecule, or "D- SLAM.” This invention also relates to D-SLAM polypeptides, as well as vectors, host cells, antibodies directed to D-SLAM polypeptides, and the recombinant methods for producing the same. Also provided are diagnostic methods for detecting disorders related to the immune system, and therapeutic methods for treating, diagnosing, detecting, and/or preventing such disorders. The invention further relates to screening methods for identifying agonists and antagonists of D-SLAM activity.
  • SLAM Secreted Lymphocyte Activation Molecule
  • SLAM Signaling Lymphocytic Activation Molecule
  • SLAM Signaling Lymphocytic Activation Molecule
  • DC dendritic cells
  • DC are the principal antigen presenting cells involved in primary immune responses; their major function is to obtain antigen in tissues, migrate to lymphoid organs, and activate T cells.
  • DC are usually the first immune cells to arrive at sites of inflammation on mucous membranes.
  • DC are also known to directly interact with B cells.
  • the present invention relates to a novel polynucleotide and the encoded polypeptide of D-SLAM. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting and/or diagnosing disorders relates to the polypeptides, and therapeutic methods for treating and/or preventing such disorders. The invention further relates to screening methods for identifying binding partners of D-SLAM. [0006] In accordance with one embodiment of the present invention, there is provided a novel mature D-SLAM polypeptide, as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof.
  • the invention provides for D-SLAM polypeptides and/or polynucleotides (including, but not limited to, fragments and/or variants thereof), and/or agonists thereof, which can be used, for example, to inhibit B-cell proliferation.
  • the invention provides for D-SLAM polypeptides (including, but not limited to, soluble forms of D-SLAM) and/or D-SLAM antagonists, which can be used, for example, to enhance B-cell proliferation.
  • isolated nucleic acid molecules encoding human D-SLAM, including mRNAs, DNAs, cDNAs, genomic DNAs as well as analogs and biologically active and diagnostically or therapeutically useful fragments and derivatives thereof.
  • the present invention provides isolated nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide encoding a cytokine that are structurally similar to Secreted Lymphocyte Activation Molecules (SLAM) and related cytokines and have similar biological effects and activities.
  • SLAM Secreted Lymphocyte Activation Molecules
  • This cytokine is named D-SLAM and the invention includes D-SLAM polypeptides having at least a portion of the amino acid sequence in Figures 1A, IB, IC, and ID (SEQ ID NO:2) or amino acid sequence encoded by the cDNA clone (HDPJ039) deposited on February 6, 1998 assigned ATCC number 209623.
  • the nucleotide sequence determined by sequencing the deposited D-SLAM clone which is shown in Figures 1A, IB, IC, and ID (SEQ ID NO:l), contains an open reading frame encoding a complete polypeptide of 285 amino acid residues including an N-terminal methionine (i.e., amino acid residues 1-285 of SEQ ID NO:2), a predicted signal peptide of about 22 amino acid residues (i.e., amino acid residues 1-22 of SEQ ID NO:2), a predicted mature form of about 263 amino acids (i.e., amino acid residues 23-285 of SEQ ID NO:2), and a deduced molecular weight for the complete protein of about 34.2 kDa.
  • N-terminal methionine i.e., amino acid residues 1-285 of SEQ ID NO:2
  • a predicted signal peptide of about 22 amino acid residues i.e., amino acid residues 1-22 of SEQ ID NO:2
  • one embodiment of the invention provides an isolated nucleic acid molecule comprising, or alternatively consisting of, a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a full-length D-SLAM polypeptide having the complete amino acid sequence in Figures 1A, IB, IC, and ID (SEQ ID NO:2) or as encoded by the cDNA clone contained in the deposit having ATCC accession number 209623; (b) a nucleotide sequence encoding the predicted extracellular domain of the D-SLAM polypeptide having the amino acid sequence at positions 23 to 232 in Figures 1 A, IB, IC, and ID (SEQ ID NO:2) or as encoded by the clone contained in the deposit having ATCC accession number 209623; (c) a nucleotide sequence encoding a fragment of the polypeptide of (b) having D-SLAM functional activity (e
  • nucleic acid molecules that comprise, or alternatively consist of, a polynucleotide having a nucleotide sequence at least 80%, 85% or 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f) or (g) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d), (e), (f) or (g) above.
  • This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.
  • nucleic acid molecules of the invention comprise, or alternatively consist of, a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a D-SLAM polypeptide having an amino acid sequence in (a), (b), (c), (d), (e), (f) or (g) above.
  • a further nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising, or alternatively consisting of, a polynucleotide which encodes the amino acid sequence of a D-SLAM polypeptide having an amino acid sequence which contains at least one amino acid addition, substitution, and/or deletion but not more than 50 amino acid additions, substitutions and/or deletions, even more preferably, not more than 40 amino acid additions, substitutions, and/or deletions, still more preferably, not more than 30 amino acid additions, substitutions, and/or deletions, and still even more preferably, not more than 20 amino acid additions, substitutions, and/or deletions.
  • a polynucleotide which encodes the amino acid sequence of a D-SLAM polypeptide to have an amino acid sequence which contains not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 or 1-100, 1- 50, 1-25, 1-20, 1-15, 1-10, or 1-5 amino acid additions, substitutions and/or deletions. Conservative substitutions are preferable.
  • the present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of D-SLAM polypeptides by recombinant techniques.
  • a process for producing such polypeptides by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a D-SLAM nucleic acid sequence of the invention, under conditions promoting expression of said polypeptide and subsequent recovery of said polypeptide.
  • the invention further provides an isolated D-SLAM polypeptide comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of:
  • D-SLAM functional activity e.g., biological activity (such as, for example, inhibition of B-cell proliferation)
  • D-SLAM functional activity e.g., biological activity (such as, for example, inhibition of B-cell proliferation)
  • amino acid sequence of the predicted extracellular domain of the D-SLAM polypeptide having the amino acid sequence at positions 23 to 232 in Figures 1A, IB, IC, and ID (SEQ ID NO:2) or as encoded by the cDNA plasmid contained in the deposit having ATCC accession number 209623
  • the amino acid sequence of the D- SLAM intracellular domain predicted to constitute amino acid residues from about 256 to about 285 in Figures 1A, IB, IC, and ID (SEQ ID NO:2)
  • amino acid sequence of the D-SLAM transmembrane domain predicted to constitute amino acid residues from about 233 to about 255 in Figures 1A, IB, IC, and ID (SEQ ID NO:
  • polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 85% or 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), (d), (e), (f) or (g) above, as well as polypeptides having an amino acid sequence with at least 80%, 85%, or 90% similarity, and more preferably at least 95% similarity, to those above.
  • polypeptides which comprise, or alternatively consist of, the amino acid sequence of an epitope-bearing portion of a D-SLAM polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e), (f), (g) or (h) above.
  • Polypeptides having the amino acid sequence of an epitope-bearing portion of a D- SLAM polypeptide of the invention include portions of such polypeptides with at least 4, at least 5, at least 6, at least 7, at least 8, and preferably at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and more preferably at least about 30 amino acids to about 50 amino acids, although epitope-bearing polypeptides of any length up to and including the entire amino acid sequence of a polypeptide of the invention described above also are included in the invention.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these polynucleotides and nucleic acid molecules are also encompassed by the invention.
  • Certain non-exclusive embodiments of the invention relate to a polypeptide which has the amino acid sequence of an epitope-bearing portion of a D-SLAM polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e), (f), (g), (h) or (i) above.
  • the invention provides an isolated antibody that binds specifically (i.e., uniquely) to a D-SLAM polypeptide having an amino acid sequence described in (a), (b), (c), (d), (e), (f), (g), (h) or (i) above.
  • the invention further provides methods for isolating antibodies that bind specifically (i.e., uniquely) to a D-SLAM polypeptide having an amino acid sequence as described herein.
  • Such antibodies are useful diagnostically or therapeutically as described below.
  • the invention also provides for pharmaceutical compositions comprising soluble D-SLAM polypeptides, particularly human D-SLAM polypeptides, and/or anti-D- SLAM antibodies which may be employed, for instance, to treat, prevent, prognose and/or diagnose tumor and tumor metastasis, infections by bacteria, viruses and other parasites, immunodeficiencies, inflammatory diseases, lymphadenopathy, autoimmune diseases, graft versus host disease, stimulate peripheral tolerance, destroy some transformed cell lines, mediate cell activation, survival and proliferation, to mediate immune regulation and inflammatory responses, and to enhance or inhibit immune responses.
  • soluble D-SLAM polypeptides particularly human D-SLAM polypeptides
  • anti-D- SLAM antibodies which may be employed, for instance, to treat, prevent, prognose and/or diagnose tumor and tumor metastasis, infections by bacteria, viruses and other parasites, immunodeficiencies, inflammatory diseases, lymphadenopathy, autoimmune diseases, graft versus host disease, stimulate peripheral tolerance, destroy some transformed
  • soluble D-SLAM polypeptides of the invention, and/or antagonists of D-SLAM are administered, to treat, prevent, prognose and/or diagnose an immunodeficiency (e.g., severe combined immunodeficiency (SCID)-X linked, SCTD- autosomal, adenosine deaminase deficiency (ADA deficiency), X-linked agammaglobulmemia (XLA), Bruton's disease, congenital agammaglobulmemia, X-linked infantile agammaglobulmemia, acquired agammaglobulmemia, adult onset agammaglobulmemia, late-onset agammaglobulmemia, dysgammaglobulinemia, hypogammaglobulmemia, transient hypogammaglobulmemia of infancy, unspecified hypogammaglobulmemia, agammaglobulmemia, common variable immunodeficiency (CVID)
  • SCID severe combined immunode
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, prognose and/or diagnose common variable immunodeficiency.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, prognose and/or diagnose X-linked agammaglobulmemia.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, prognose and/or diagnose severe combined immunodeficiency (SCTD).
  • SCTD severe combined immunodeficiency
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, prognose and/or diagnose Wiskott-Aldrich syndrome.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, prognose and/or diagnose X-linked Ig deficiency with hyper IgM.
  • D-SLAM agonists are administered to treat, prevent, prognose and/or diagnose an autoimmune disease (e.g., rheumatoid arthritis, systemic lupus erhythematosus, idiopathic thrombocytopenia purpura, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g, IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch- Scoenlein purpura), Reiter's Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, Guillain-
  • an autoimmune disease
  • rheumatoid arthritis is treated, prevented, prognosed and/or diagnosed using D-SLAM and/or other agonists of the invention.
  • systemic lupus erythemosus is treated, prevented, prognosed, and/or diagnosed using D-SLAM and/or other agonists of the invention
  • idiopathic thrombocytopenia purpura is treated, prevented, prognosed, and/or diagnosed using D-SLAM and/or other agonists of the invention
  • IgA nephropathy is treated, prevented, prognosed and/or diagnosed using D- SLAM and/or other agonists of the invention.
  • the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, prognosed and/or diagnosed using D-SLAM.
  • the invention further provides compositions comprising a D-SLAM polynucleotide, a D-SLAM polypeptide, and/or an anti-D-SLAM antibody, for administration to cells in vitro, to cells ex vivo, and to cells in vivo, or to a multicellular organism, h preferred embodiments, the compositions of the invention comprise a D-SLAM polynucleotide for expression of a D-SLAM polypeptide in a host organism for treatment of disease.
  • compositions of the invention comprise a D- SLAM polynucleotide for expression of a D-SLAM polypeptide in a host organism for treatment of an immunodeficiency and/or conditions associated with an immunodeficiency.
  • a D-SLAM polynucleotide for expression of a D-SLAM polypeptide in a host organism for treatment of an immunodeficiency and/or conditions associated with an immunodeficiency is particularly preferred in this regard.
  • expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of a D-SLAM gene is particularly preferred in this regard.
  • the present invention also provides a screening method for identifying compounds capable of enhancing or inhibiting a cellular response induced by D-SLAM which involves contacting cells which express D-SLAM with the candidate compound, assaying a cellular response, and comparing the cellular response to a standard cellular response, the standard being assayed when contact is made in absence of the candidate compound; whereby, an increased cellular response over the standard indicates that the compound is an agonist and a decreased cellular response over the standard indicates that the compound is an antagonist.
  • a method for identifying D-SLAM receptors is provided, as well as a screening assay for agonists and antagonists using such receptors.
  • This assay involves determining the effect a candidate compound has on D-SLAM binding to the ⁇ D-SLAM receptor, h particular, the method involves contacting a D-SLAM receptor with a D-SLAM polypeptide of the invention and a candidate compound and determining whether D-SLAM polypeptide binding to the D-SLAM receptor is increased or decreased due to the presence of the candidate compound.
  • the agonists maybe employed to prevent septic shock, inflammation, cerebral malaria, activation of the HIV virus, graft-host rejection, bone resorption, rheumatoid arthritis, cachexia (wasting or malnutrition), immune system function, lymphoma, and autoimmune disorders (e.g., rheumatoid arthritis and systemic lupus erythematosus).
  • D-SLAM is highly expressed in dendritic cells and lymph node, and to a lesser extent in spleen, thymus, small intestine, PBLs, bone marrow, T cell lymphoma, and even lesser extent in placenta and lung.
  • D-SLAM polynucleotides and/or polypeptides of the inventon are useful for diagnosis, prevention, treatment, and/or amelioration.
  • D-SLAM gene expression can be detected in certain tissues (e.g., bone marrow) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" D- SLAM gene expression level, i.e., the D-SLAM expression level in tissue or bodily fluids from an individual not having the disorder.
  • tissues e.g., bone marrow
  • bodily fluids e.g., serum, plasma, urine, synovial fluid or spinal fluid
  • the invention provides a diagnostic method useful during diagnosis of a disorder, which involves: (a) assaying D-SLAM gene expression level in cells or body fluid of an individual; (b) comparing the D-SLAM gene expression level with a standard D-SLAM gene expression level, whereby an increase or decrease in the assayed D-SLAM gene expression level compared to the standard expression - level is indicative of a disorder.
  • An additional embodiment of the invention is related to a method for treating an individual in need of an increased or constitutive level of D-SLAM activity in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an isolated D-SLAM polypeptide of the invention or an agonist thereof.
  • anti-D-SLAM antibodies (including anti-D-SLAM antibody fragments) against the polypeptides of the invention may be used to quantitate or qualitate concentrations of cells of dendritic cell lineage (e.g., dendritic cell related leukemias or lymphomas) expressing D-SLAM on their cell surfaces.
  • a still further embodiment of the invention is related to a method for treating an individual in need of a decreased level of D-SLAM activity in the body comprising, administering to such an individual a composition comprising a therapeutically effective amount of an D-SLAM antagonist.
  • Preferred antagonists for use in the present invention are D-SLAM-specific antibodies.
  • Figures 1A-1D show the nucleotide sequence (SEQ ID NO:l) and the deduced amino acid sequence (SEQ ID NO:2) of D-SLAM. The predicted leader sequence located at about amino acids 1-22 is underlined.
  • Figure 2 shows the regions of identity between the amino acid sequence of the
  • D-SLAM protein and the translation product of the human SLAM (Accession No. gi/984969) (SEQ ID NO:3), determined by BLAST analysis. Identical amino acids between the two polypeptides are shaded, while conservative amino acids are boxed. By examining the regions of amino acids shaded and/or boxed, the skilled artisan can readily identify conserved domains between the two polypeptides. These conserved domains are preferred embodiments of the present invention.
  • Figure 3 shows an analysis of the D-SLAM amino acid sequence.
  • Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability are shown, and all were generated using the default settings.
  • the positive peaks indicate locations of the highly antigenic regions of the D-SLAM protein, i.e., regions from which epitope-bearing peptides of the invention can be obtained.
  • the domains defined by these graphs are contemplated by the present invention.
  • Tabular representation of the data summarized graphically in Figure 3 can be found in Table 1.
  • isolated refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state.
  • an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.
  • isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution.
  • Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention.
  • a nucleic acid contained in a clone that is a member of a library e.g., a genomic or cDNA library
  • a chromosome removed from a cell or a cell lysate e.g., a "chromosome spread", as in a karyotype
  • isolated nucleic acid molecules according to the present invention may be produced naturally, recombinantly, or synthetically.
  • a "secreted" D-SLAM protein refers to a protein capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as a D-SLAM protein released into the extracellular space without necessarily containing a signal sequence. If the D-SLAM secreted protein is released into the extracellular space, the D-SLAM secreted protein can undergo extracellular processing to produce a "mature" D-SLAM protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.
  • a D-SLAM “polynucleotide” refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:l or the cDNA contained within the clone deposited with the ATCC.
  • the D-SLAM polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence.
  • a D-SLAM "polypeptide” refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.
  • the polynucleotides of the invention are less than 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, or 7.5 kb in length.
  • polynucleotides of the invention comprise at least 15 contiguous nucleotides of D-SLAM coding sequence, but do not comprise all or a portion of any D-SLAM intron.
  • the nucleic acid comprising D-SLAM coding sequence does not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the D-SLAM gene in the genome). [0044] hi the present invention, the full length D-SLAM sequence identified as SEQ
  • ID NO:l was generated by overlapping sequences of the deposited clone (contig analysis).
  • a representative clone containing all or most of the sequence for SEQ JD NO:l was deposited with the American Type Culture Collection ("ATCC") on February 6, 1998, and was given the ATCC Deposit Number 209623.
  • the ATCC is located at 10801 University Boulevard, Manassas, VA 20110-2209, USA.
  • the ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.
  • a D-SLAM "polynucleotide” also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:l, the complement thereof, or the cDNA within the deposited clone.
  • Stringent hybridization conditions refers to an overnight incubation at 42 C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0. lx SSC at about 65 C.
  • nucleic acid molecules that hybridize to the D-SLAM polynucleotides at moderatetly high stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature.
  • washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
  • blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations.
  • the inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
  • polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide,” since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).
  • the D-SLAM polynucleotide can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • D-SLAM polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double- stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double- stranded or a mixture of single- and double-stranded regions.
  • D-SLAM polynucleotides can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • D-SLAM polynucleotides may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
  • Modified bases include, for example, tritylated bases and unusual bases such as inosine.
  • polynucleotide embraces chemically, enzymatically, or metabolically modified forms.
  • D-SLAM polypeptides can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
  • the D-SLAM polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in the D-SLAM polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • D-SLAM polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic D-SLAM polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, derivatization by known protecting/blocking groups, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma- carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, linkage to an antibody molecule or other cellular ligand, methylation, myristoylation, oxidation, pegylation, proteolytic processing (e.g., cleavage), phosphorylation, prenylation,
  • Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or 0-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression.
  • the polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein, h addition, polypeptides of the invention may be modified by iodination.
  • D-SLAM polypeptides of the invention may also be labeled with biotin.
  • biotinylated D-SLAM polypeptides of the invention may be used, for example, as an imaging agent or as a means of identifying one or more D-SLAM receptor(s) or other coreceptor or coligand molecules.
  • the chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like.
  • the polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing.
  • Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).
  • the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
  • the polyethylene glycol may have a branched structure.
  • Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Morpurgo et al, Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al, Nucleosides Nucleotides iS:2745-2750 (1999); and Caliceti et al, Bioconjug. Chem. 70:638-646 (1999), the disclosures of each of which are incorporated herein by reference.
  • polyethylene glycol molecules should be attached to the protein with consideration of effects on functional or antigenic domains of the protein.
  • attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al., Exp. Hematol. 20:1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride).
  • polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group.
  • Reactive groups are those to which an activated polyethylene glycol molecule may be bound.
  • the amino acid residues having a free amino group may include, for example, lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues, glutamic acid residues, and the C-terminal amino acid residue.
  • Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.
  • polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues.
  • polyethylene glycol can be linked to a proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues.
  • One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) of the protein.
  • One may specifically desire proteins chemically modified at the N-terminus.
  • polyethylene glycol As an illustration, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (or peptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein.
  • the method of obtaining the N-terminally pegylated preparation i.e., separating this moiety from other monopegylated moieties if necessary
  • Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.
  • pegylation of the proteins of the invention may be accomplished by any number of means.
  • polyethylene glycol may be attached to the protein either directly or by an intervening linker. Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al, Crit. Rev. Thera. Drug Carrier Sys.
  • One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol - (MPEG) using tresylchloride (C1S0 2 CH 2 CF 3 ).
  • MPEG monmethoxy polyethylene glycol -
  • C1S0 2 CH 2 CF 3 tresylchloride
  • polyethylene glycol is directly attached to amine groups of the protein.
  • the invention includes protein- polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.
  • Polyethylene glycol can also be attached to proteins using a number of different intervening linkers.
  • U.S. Patent No. 5,612,460 discloses urethane linkers for connecting polyethylene glycol to proteins.
  • Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG-succinimidylsuccinate, MPEG activated with l,l'-carbonyldiimidazole, MPEG-2,4,5-trichloropenylcarbonate, MPEG-p- nitrophenolcarbonate, and various MPEG-succinate derivatives.
  • the number of polyethylene glycol moieties attached to each protein of the invention may also vary.
  • the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules.
  • the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al, Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).
  • the D-SLAM polypeptides can be recovered and purified by known methods which include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography (“HPLC”) is employed for purification.
  • HPLC high performance liquid chromatography
  • SEQ ID NO:l refers to a D-SLAM polynucleotide sequence
  • NO:2 refers to a D-SLAM polypeptide sequence.
  • a D-SLAM polypeptide "having biological activity” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a D-SLAM polypeptide, including mature forms, (e.g., bind monocyte derived dendritic cells, upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54, CD86, CD83), inhibit B-cell proliferation, inhibit BLyS induced cell prohferative activity, bind an antibody which binds D-SLAM) as measured in a particular biological assay, with or without dose dependency.
  • mature forms e.g., bind monocyte derived dendritic cells, upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54, CD86, CD83
  • B-cell proliferation e.g., inhibit B-cell proliferation
  • inhibit BLyS induced cell prohferative activity bind an antibody which
  • the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the D-SLAM polypeptide.
  • Clone HDPJ039 was isolated from a dendritic cell cDNA library. This clone contains the entire coding region identified as SEQ ID NO:2. The deposited clone contains a cDNA having a total of 3220 nucleotides, which encodes a predicted open reading frame of 285 amino acid residues. (See Figures 1A-1D.) The open reading frame begins at a N-terminal methionine located at nucleotide position 92, and ends at a stop codon at nucleotide position 947. The predicted molecular weight of the D-SLAM protein should be about 34.2 kDa.
  • SEQ ID NO:2 was found to be homologous to members of the Secreted Lymphocyte Activation Molecule (SLAM) family. Particularly, SEQ ID NO:2 contains domains homologous to the translation product of the human mRNA for SLAM (Accession No. gi/984969) ( Figure 2) (SEQ ID NO:3), including the following conserved domains: (a) a predicted transmembrane domain located at about amino acids 233- 255; (b) a predicted extracellular domain located at about amino acids 23-232; and (c) a predicted intracellular domain located at about amino acids 256-285. These polypeptide fragments of D-SLAM are specifically contemplated in the present invention.
  • the homology between SLAM (Accession No. gi/984969) and D-SLAM suggests that D-SLAM may also be involved in the activation and proliferation of T- and B-cells.
  • the encoded polypeptide has a predicted leader sequence located at about amino acids 1-22. (See Figures 1A-1D.) Also shown in Figures 1A-1D, the predicted secreted form of D-SLAM encompasses about amino acids 23-232.
  • the D-SLAM nucleotide sequence identified as SEQ ID NO:l was assembled from partially homologous ("overlapping") sequences obtained from the deposited clone, and in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO: 1.
  • SEQ ID NO:l and the translated SEQ ID NO:2 are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
  • SEQ ED NO:l is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:l or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention.
  • polypeptides identified from SEQ ED NO:2 may be used to generate antibodies which bind specifically to D-SLAM .
  • DNA sequences generated by sequencing reactions can contain sequencing errors.
  • the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
  • the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence.
  • the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
  • the present invention provides not only the generated nucleotide sequence identified as SEQ ED NO:l and the predicted translated amino acid sequence identified as SEQ ED NO:2, but also a sample of plasmid DNA containing a human cDNA of D-SLAM deposited with the ATCC.
  • the nucleotide sequence of the deposited D- SLAM clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted D-SLAM amino acid sequence can then be verified from such deposits.
  • amino acid sequence of the protein encoded by the deposited clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human D-SLAM cDNA, collecting the protein, and determining its sequence.
  • the present invention also relates to the D-SLAM gene corresponding to SEQ
  • the D-SLAM gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the D-SLAM gene from appropriate sources of genomic material.
  • Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.
  • the D-SLAM polypeptides can be prepared in any suitable manner.
  • Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
  • the D-SLAM polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.
  • D-SLAM polypeptides are preferably provided in an isolated form, and preferably are substantially purified.
  • a recombinantly produced version of a D-SLAM polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988).
  • D-SLAM polypeptides also can be purified from natural or recombinant sources using antibodies of the invention raised against the D-SLAM protein in methods which are well known in the art.
  • Variant refers to a polynucleotide or polypeptide differing from the D-
  • SLAM polynucleotide or polypeptide but retaining essential properties thereof.
  • variants are overall closely similar, and, in many regions, identical to the D-SLAM polynucleotide or polypeptide.
  • nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the D-SLAM polypeptide.
  • nucleotide sequence at least 95% identical to a reference nucleotide sequence
  • up to 5% of the nucleotides in the reference sequence maybe deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence.
  • the query sequence may be an entire sequence shown of SEQ ED NO:l, the ORF (open reading frame), or any fragment specified as described herein.
  • nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245.) In a sequence alignment the query and subject sequences are both DNA sequences.
  • RNA sequence can be compared by converting U's to T's.
  • the result of said global sequence alignment is in percent identity.
  • the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment.
  • This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
  • This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
  • a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity.
  • the deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end.
  • the 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%.
  • a 90 base subject sequence is compared with a 100 base query sequence.
  • deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query.
  • percent identity calculated by FASTDB is not manually corrected.
  • bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
  • polypeptide having an amino acid sequence at least, for example, 95%
  • amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.
  • These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245).
  • the query and subject sequences are either both nucleotide sequences or both amino acid sequences.
  • the result of said global sequence alignment is in percent identity.
  • the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment.
  • This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
  • This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.
  • a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity.
  • the deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus.
  • the 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%.
  • a 90 residue subject sequence is compared with a 100 residue query sequence.
  • deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query.
  • percent identity calculated by FASTDB is not manually corrected.
  • residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
  • the D-SLAM variants may contain alterations in the coding regions, non- coding regions, or both.
  • polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide.
  • Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred.
  • variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred.
  • D-SLAM polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).
  • Naturally occurring D-SLAM variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes JJ, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non- naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
  • variants may be generated to improve or alter the characteristics of the D-SLAM polypeptides. For instance, one or more amino acids can be deleted from the N-terminus or C-te ⁇ ninus of the secreted protein without substantial loss of biological function.
  • Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)
  • the invention further includes D-SLAM polypeptide variants which show substantial biological activity.
  • Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.
  • the present application is directed to nucleic acid molecules at least 80%,
  • nucleic acid sequences disclosed herein e.g., encoding a polypeptide having the amino acid sequence of an N and or C terminal deletion disclosed below as m-n of SEQ ED NO:2
  • m-n of SEQ ED NO:2 a polypeptide having D-SLAM functional activity.
  • PCR polymerase chain reaction
  • nucleic acid molecules of the present invention that do not encode a polypeptide having D- SLAM functional activity include, inter alia, (1) isolating a D-SLAM gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the D-SLAM gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); and (3) Northern Blot analysis for detecting D-SLAM mRNA expression in specific tissues.
  • FISH in situ hybridization
  • nucleic acid molecules having sequences at least 80%
  • a polypeptide having D-SLAM functional activity is intended polypeptides capable of exhibiting activity similar, but not necessarily identical, to a known functional activity of the D-SLAM polypeptides of the present invention (e.g., complete (full-length) D-SLAM, mature D-SLAM and soluble D-SLAM (e.g., having sequences contained in the extracellular domain of D-SLAM) as measured, for example, in a particular immunoassay or biological assay.
  • Such functional activities include, but are not limited to, biological activity (e.g., ability to bind monocyte derived dendritic cells, ability to upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54, CD86, CD83), ability to inhibit B-cell proliferation, ability to inhibit BLyS induced cell prohferative activity, antigenicity (ability to bind or compete with a D-SLAM polypeptide for binding to an anti-D- SLAM antibody), immunogenicity (ability to generate an antibody which specifically binds to a D-SLAM polypeptide), ability to form multimers with D-SLAM polypeptides of the invention, ability to form heteromultimers, ability to bind to a receptor or ligand).
  • biological activity e.g., ability to bind monocyte derived dendritic cells, ability to upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54
  • a D-SLAM functional activity can routinely be measured by determining the ability of a D-SLAM polypeptide to bind a D-SLAM ligand.
  • D-SLAM functional activity may also be measured by determining the ability of a polypeptide, such as cognate ligand which is free or expressed on a cell surface, to induce cells expressing the polypeptide.
  • SEQ ED NO:l nucleic acid sequence shown in Figure 1
  • degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay.
  • the first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.
  • the second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.
  • tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and He; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gin, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.
  • site directed changes at the amino acid level of D-SLAM can be made by replacing a particular amino acid with a conservative amino acid.
  • Preferred conservative mutations include: Ml replaced with A, G, I, L, S, T, or V; V2 replaced with A, G, I, L, S, T, or M; M3 replaced with A, G, I, L, S, T, or V; R4 replaced with H, or K; L6 replaced with A, G, I, S, T, M, or V; W7 replaced with F, or Y; S8 replaced with A, G, I, L, T, M, or V; L9 replaced with A, G, I, S, T, M, or V; L10 replaced with A, G, I, S, T, M, or V; Lll replaced with A, G, I, S, T, M, or V; W12 replaced with F, or Y; E13 replaced with D; A14 replaced with G, I, L, S, T, M, or V; LI 5 replaced with A
  • the resulting constructs can be routinely screened for activities or functions described throughout the specification and known in the art.
  • the resulting constructs have an increased D-SLAM activity or function, while the remaining D-SLAM activities or functions are maintained. More preferably, the resulting constructs have more than one increased D-SLAM activity or function, while the remaining D-SLAM activities or functions are maintained.
  • variants of D-SLAM include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification.
  • Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.
  • D-SLAM polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity.
  • D-SLAM preferred non-conservative substitutions of D-SLAM.
  • Ml replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • V2 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • M3 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • R4 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C
  • P5 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C
  • L6 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • W7 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C
  • S8 replaced with
  • E, H, K, R, N, Q, F, W, Y, P, or C L9 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; L10 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; LI 1 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; W12 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C; El 3 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C; A14 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; LI 5 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
  • A38 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • R39 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C
  • P40 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C
  • P41 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C
  • G42 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • F43 replaced with D, E, H, K, R, N, Q, A, G, I, L, S, T, M, V, P, or C
  • Q44 replaced with D, E, H, K, R, A,
  • E, H, K, R, N, Q, F, W, Y, P, or C V125 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
  • P126 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C;
  • R127 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;
  • P128 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C;
  • V129 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
  • V130 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; Q131
  • VI 36 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
  • E137 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;
  • R138 replaced with D, E, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;
  • D139 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C;
  • A140 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C;
  • Q141 replaced with D;
  • PI 42 replaced with D,
  • N278 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C
  • P279 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, or C
  • L280 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • V281 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C
  • Q282 replaced with D, E, H, K, R, A, G, I, L, S, T, M, V, F, W, Y, P, or C
  • D283 replaced with H, K, R, A, G, I, L, S, T, M, V, N, Q, F, W, Y, P, or C
  • L284 replaced with D, E, H, K,
  • the resulting constructs can be routinely screened for activities or functions described throughout the specification and known in the art.
  • the resulting constructs have loss of a D-SLAM activity or function, while the remaining D-SLAM activities or functions are maintained. More preferably, the resulting constructs have more than one loss of D-SLAM activity or function, while the remaining D-SLAM activities or functions are maintained.
  • more than one amino acid e.g., 2, 3, 4, 5, 6, 7, 8, 9 and 10 can be replaced with the substituted amino acids as described above (either conservative or nonconservative) .
  • a further embodiment of the invention relates to a polypeptide which comprises, or alternatively consists of, the amino acid sequence of a D-SLAM polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions.
  • a peptide or polypeptide in order of ever- increasing preference, it is highly preferable for a peptide or polypeptide to have an amino acid sequence which comprises, or alternatively consists of, the amino acid sequence of a D- SLAM polypeptide, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions.
  • the number of additions, substitutions, and/or deletions in the amino acid sequence of Figures 1A-1D or fragments thereof is 1-5, 5-10, 5-25, 5-50, 10-50 or 50- 150, conservative amino acid substitutions are preferable.
  • the present invention is further directed to fragments of the isolated nucleic acid molecules described herein.
  • fragments have numerous uses that include, but are not limited to, diagnostic probes and primers as discussed herein.
  • larger fragments such as those of 501-1500 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequences of the deposited cDNA (clone HDP 039) or as shown in Figure 1 (SEQ ED NO:l).
  • a fragment at least 20 nt in length for example, is intended fragments which include 20 or more contiguous bases from, for example, the nucleotide sequence of the deposited cDNA, or the nucleotide sequence as shown in Figure 1 (SEQ ED NO:l).
  • D-SLAM polynucleotide fragments include, for example, fragments having a sequence from about nucleotide number 1-50, 51- 100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401- 1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, and/or 2001 to the end of SEQ ED NO:l or the complementary strand thereto, or the cDNA contained in the
  • the polynucleotide fragments of the invention encode a polypeptide which demonstrates a D-SLAM functional activity.
  • a polypeptide demonstrating a D- SLAM functional. activity is intended polypeptides capable of exhibiting activity similar, but not necessarily identical, to a known functional activity of the D-SLAM polypeptides of the present invention (e.g., complete (full-length) D-SLAM, mature D-SLAM and soluble D- SLAM (e.g., having sequences contained in the extracellular domain of D-SLAM) as measured, for example, in a particular immunoassay or biological assay.
  • Such functional activities include, but are not limited to, biological activity (e.g., ability to bind monocyte derived dendritic cells, ability to upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54, CD86, CD83), ability to inhibit B-cell proliferation, ability to inhibit BLyS induced cell prohferative activity), antigenicity (ability to bind or compete with a D-SLAM polypeptide for binding to an anti-D- SLAM antibody), immunogenicity (ability to generate antibody which binds to a D-SLAM polypeptide), ability to form multimers with D-SLAM polypeptides of the invention, ability to form heteromultimers, ability to bind to a receptor or ligand).
  • biological activity e.g., ability to bind monocyte derived dendritic cells, ability to upregulate cell surface markers indicative of dendritic cell maturation or activation (such as, for example, HLA-DR, CD54, CD
  • D-SLAM polypeptides and fragments, variants derivatives, and analogs thereof, can be assayed by various methods.
  • various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immirnoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
  • competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immirnoassay
  • antibody binding is detected by detecting a label on the primary antibody.
  • the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
  • the secondary antibody is labeled.
  • binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky, E., et al., 1995, Microbiol. Rev. 59:94-123.
  • physiological correlates of D-SLAM binding to its substrates can be assayed.
  • the present invention is further directed to fragments of the D-SLAM polypeptide described herein.
  • a fragment of an isolated the D-SLAM polypeptide for example, encoded by the deposited cDNA (clone HDPJ039)
  • the polypeptide sequence encoded by the deposited cDNA is intended to encompass polypeptide fragments contained in SEQ ED NO:2 or encoded by the cDNA contained in the deposited clone.
  • Protein fragments may be "freestanding,” or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region.
  • polypeptide fragments of the invention include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, 161-180, 181- 200, 201-220, 221-240, 241-260, 261-280, or 281 to the end of the coding region.
  • polypeptide fragments can be at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length.
  • “about” includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.
  • polypeptide fragments include the secreted D-SLAM protein as well as the mature form. Further preferred polypeptide fragments include the secreted D- SLAM protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted D-SLAM polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted D-SLAM protein or mature fonn. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred.
  • polynucleotide fragments encoding these D-SLAM polypeptide fragments are also preferred.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • N-terminal deletions of the D-SLAM polypeptide can be described by the general formula m-285, where m is an integer from 2 to 280, where m corresponds to the position of the amino acid residue identified in SEQ ED NO:2.
  • the invention provides polynucleotides encoding polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues V-2 to P-285; M-3 to P-285; R-4 to P-285; P-5 to P-285; L-6 to P-285; W-7 to P- 285; S-8 to P-285; L-9 to P-285; L-10 to P-285; L-l l to P-285; W-12 to P-285; E-13 to P- 285; A-14 to P-285; L-15 to P-285; L-16 to P-285; P-17 to P-285; 1-18 to P-285; T-19 to P- 285; V-20 to P-285; T-21 to P-285; G-22 to P-285; A-23 to P-285; Q-24 to P-285; V-25 to P- 285; L-26 to P-285; S-27 to P-285; K-28 to P-285; V-29 to P-285; G-30 to
  • polypeptides encoded by these polynucleotides are also encompassed by the invention.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above. .
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • the present invention further provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the D-SLAM polypeptide shown in Figure 1 (SEQ ED NO:2), as described by the general formula 1-n, where n is an integer from 7 to 284, where n corresponds to the position of amino acid residue identified in SEQ ED NO:2.
  • the invention provides polynucleotides encoding polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues M-l to L-284; M-l to D-283; M-l to Q-282; M-l to V-281; M-l to L-280; M-l to P-279; M-l to N-278; M-l to E-277; M- 1 to T-276; M-l to E-275; M-l to P-274; M-l to G-273; M-l to V-272; M-l to R-271; M-l to D-270; M-l to A-269; M-l to H-268; M-l to V-267; M-l to D-266; M-l to K-265; M-l to K- 264; M-l to K-263; M-l to K-262; M-l to G-261; M-l to S-260; M-l to C-259; M-
  • polypeptides encoded by these polynucleotides are also encompassed by the invention.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • any of the above listed N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted D-SLAM polypeptide.
  • the invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ED NO:2, where n and m are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • preferred N- and C-terminal deletion mutants comprise, or in the alternative consist of, the predicted secreted form of D-SLAM.
  • Preferred secreted forms of the D-SLAM include polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues M-l to K-232; V-2 to K-232; M-3 to K-232; R-4 to K-232; P-5 to K-232; L-6 to K-232; W-7 to K-232; S-8 to K-232; L-9 to K- 232; L-10 to K-232; L-l l to K-232; W-12 to K-232; E-13 to K-232; A-14 to K-232; L-15 to K-232; L-16 to K-232; P-17 to K-232; 1-18 to K-232; T-19 to K-232; V-20 to K-232; T-21 to K-232; G-22 to K-232; A-23 to K-232; Q-24 to K-232; V-25
  • polypeptides encoded by these polynucleotides are also encompassed by the invention.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • preferred N- and C-terminal deletion mutants comprise, or in the alternative consist of, fragments lacking the predicted signal sequence of D-SLAM.
  • Preferred fragments of D-SLAM include polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues A-23 to L-284; A-23 to D-283; A-23 to Q-282; A-23 to V-281; A-23 to L-280; A-23 to P-279; A-23 to N-278; A-23 to E-277; A-23 to T-276; A-23 to E-275; A-23 to P-274; A-23 to G-273; A-23 to V-272; A- 23 to R-271; A-23 to D-270; A-23 to A-269; A-23 to H-268; A-23 to V-267; A-23 to D-266; A-23 to K-265; A-23 to K-264; A-23 to K-263; A-23
  • polypeptides encoded by these polynucleotides are also encompassed by the invention.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • the present application is also directed to proteins containing polypeptides at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the D-SLAM polypeptide sequence set forth herein m-n.
  • the application is directed to proteins containing polypeptides at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to polypeptides having the amino acid sequence of the specific D- SLAM N- and C-terminal deletions recited herein.
  • Polynucleotides encoded by these polypeptides are also encompassed by the invention.
  • the present invention is also directed to nucleic acid molecules comprising, or alternatively, consisting of, a polynucleotide sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the polynucleotide sequence encoding the D-SLAM polypeptides described above.
  • the present invention also encompasses the above polynucleotide sequences fused to a heterologous polynucleotide sequence.
  • Polypeptides encoded by these nucleic acids and/or polynucleotide sequences are also encompassed by the invention, as are polypeptides comprising, or alternatively consisting of, an amino acid sequence at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence described above, and polynucleotides that encode such polypeptides.
  • fragments of the invention are fragments characterized by structural or functional attributes of D-SLAM.
  • Such fragments include amino acid residues that comprise, or alternatively consist of, alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet-forming regions ("beta- regions"), turn and turn-forming regions ("turn-regions”), coil and coil-forming regions ("coil-regions”), hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, surface forming regions, and high antigenic index regions (i.e., containing four or more contiguous amino acids having an antigenic index of greater than or equal to 1.5, as identified using the default parameters of the Jameson- Wolf program) of complete (i.e., full-length) D-SLAM (SEQ ED NO:2).
  • Certain preferred regions are those set out in Figure 3 and include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence depicted in Figure 1 (SEQ ED NO:2), such preferred regions include; Garnier-Robson predicted alpha-regions, beta-regions, turn- regions, and coil-regions; Chou-Fasman predicted alpha-regions, beta-regions, turn-regions, and coil-regions; Kyte-Doolittle predicted hydrophilic and hydrophobic regions; Eiseriberg alpha and beta amphipathic regions; E ini surface-forming regions; and Jameson- Wolf high antigenic index regions, as predicted using the default parameters of these computer programs. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the polynucleotides of the invention encode functional attributes of D-SLAM.
  • Preferred embodiments of the invention in this regard include fragments that comprise, or alternatively consist of, alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet forming regions ("beta-regions"), turn and turn- forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions”), . hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions and high antigenic index regions of D- SLAM.
  • the data presented in columns VIJX, IX, X ⁇ X, and XFV of Table I can be used to detennine regions of D-SLAM which exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from the data presented in columns VIJX, IX, XIU, and/or EV by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.
  • the above-mentioned preferred regions set out in Figure 3 and in Table I include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in Figure 1.
  • such preferred regions include Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and coil-regions, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha- and beta-amphipathic regions, Karplus-Schulz flexible regions, Emim surface-forming regions and Jameson- Wolf regions of high antigenic index.
  • fragments in this regard are those that comprise, or alternatively consist of, regions of D-SLAM that combine several structural features, such as several of the features set out in Table 1.
  • Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the D-SLAM polypeptide.
  • the biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
  • polynucleotide sequences such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO:l and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention.
  • ESTs are preferably excluded from the present invention: AA917335; AI094818, AI298413; N62522; AA627522; R11635; AA320408; AA379112; R09841; Z20320; N79421; D45800; T98959; AA217290; N30197; AA286132; and AA633983 (hereby incorporated by reference in their entirety.)
  • AA917335 AI094818, AI298413; N62522; AA627522; R11635; AA320408; AA379112; R09841; Z20320; N79421; D45800; T98959; AA217290; N30197; AA286132; and AA633983
  • polynucleotides comprising, or alternatively consisting of, a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 3206 of SEQ ED NO:l, b is an integer of 15 to 3220, where both a and b correspond to the positions of nucleotide residues shown in SEQ ED NO:l, and where the b is greater than or equal to a + 14.
  • the present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of the polypeptide having an amino acid sequence of SEQ ID NO:2, or an epitope of the polypeptide sequence encoded by a polynucleotide sequence contained in deposited clone HDPJ039 (ATCC Deposit No. 209623) or encoded by a polynucleotide that hybridizes to the complement of the sequence of SEQ ED NO:l or contained in deposited clone HDPJ039 under stringent hybridization conditions or lower stringency hybridization conditions as defined supra.
  • the present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ED NO:l), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or lower stringency hybridization conditions defined supra.
  • epitope of a polypeptide sequence of the invention such as, for example, the sequence disclosed in SEQ ED NO:l
  • polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or lower stringency hybridization conditions defined supra.
  • epitope of a polypeptide sequence of the invention such as, for example, the sequence disclosed in SEQ ED
  • the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide.
  • An "immunogenic epitope,” as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983)).
  • antigenic epitope is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross-reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic.
  • Fragments that function as epitopes may be produced by any conventional means. (See, e.g., Houghten, Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985), further described in U.S. Patent No. 4,631,211).
  • antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, and, most preferably, between about 15 to about 30 amino acids.
  • Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length.
  • Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope.
  • Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al, Science 219:660-666 (1983)).
  • immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985).
  • a preferred immunogenic epitope includes the secreted protein.
  • the polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as, for example, rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented. without a carrier.
  • a carrier protein such as an albumin
  • immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
  • Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al, supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985).
  • animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid.
  • KLH keyhole limpet hemacyanin
  • peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl-N- hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde.
  • Animals such as, for example, rabbits, rats, and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 micrograms of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response.
  • booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody that can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface.
  • the titer of anti- peptide antibodies in serum from an immunized animal may be increased by selection of anti- peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
  • Epitope bearing peptides of the invention may also be synthesized as multiple antigen peptides (MAPs).
  • MAPs consist of multiple copies of a specific peptide attached to a non-immunogenic lysine core.
  • MAPs may be synthesized onto a lysine core matrix attached to a polyethylene glycol-polystyrene (PEG-PS) support.
  • PEG-PS polyethylene glycol-polystyrene
  • the peptide of choice is synthesized onto the lysine residues using 9- fluorenylmethoxycarbonyl (Fmoc) chemistry.
  • MAPs supports such as the ([Fmoc-Lys(Aloc)] 4 -[Lys] 2 -Lys- Ala-PAl-PEG- PS) support which can be used to synthesize MAPs.
  • Cleavage of MAPs from the resin is performed with standard trifloroacetic acid (TFA)-based cocktails. Purification of MAPs, except for desalting, is not necessary.
  • polypeptides of the present invention can be fused to heterologous polypeptide sequences.
  • the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CHI, CH2, CH3, or any combination thereof and portions thereof) resulting in chimeric polypeptides.
  • polypeptides and/or antibodies of the present invention may be fused with albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No.
  • polypeptides and/or antibodies of the present invention are fused with the mature form of human serum albumin (i.e., amino acids 1 - 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incorporated by reference in its entirety.
  • polypeptides and/or antibodies of the present invention are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S.
  • Polypeptides and/or antibodies of the present invention may be fused to either the N- or C-terminal end of the heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide).
  • heterologous protein e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide
  • Polynucleotides encoding fusion proteins of the invention are also encompassed by the invention.
  • Such fusion proteins may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins.
  • IgG Fusion proteins that have a disulfide- linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone.
  • Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification of the expressed polypeptide.
  • an epitope tag e.g., the hemagglutinin ("HA") tag or flag tag
  • HA hemagglutinin
  • a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972- 897).
  • the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues.
  • the tag serves as a matrix-binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni 2+ nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole- containing buffers.
  • DNA shuffling may be employed to modulate the activities of polypeptides of the invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol.
  • alteration of polynucleotides corresponding to SEQ ED NO:l and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling.
  • DNA shuffling involves the assembly of two or more DNA segments by homologous or site-specific recombination to generate variation in the polynucleotide sequence.
  • polynucleotides of the invention may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination.
  • one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide coding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
  • polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of SEQ ED NO: 2, and/or an epitope, of the present invention (as determined by immunoassays well known in the art for assaying specific antibody-antigen binding).
  • TCR T-cell antigen receptors
  • Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen.
  • the immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule.
  • Immunoglobulins may have both a heavy and light chain.
  • An array of IgG, IgE, IgM, IgD, IgA, and IgY heavy chains may be paired with a light chain of the kappa or lambda forms.
  • the immunoglobulin molecules of the invention are IgGl .
  • the immunoglobulin molecules of the invention are IgG4.
  • the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single- chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain.
  • Antigen-binding antibody fragments, including single-chain antibodies may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CHI, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CHI, CH2, and CH3 domains.
  • the antibodies of the invention may be from any animal origin including birds and mammals.
  • the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken.
  • "human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.
  • the antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).
  • Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention which they recognize or specifically bind.
  • the epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, by size in contiguous amino acid residues, or listed in the Tables and Figures.
  • Antibodies which specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides of the present invention, and allows for the exclusion of the same.
  • the antibodies of the invention inhibit one or more biological activities of D-SLAM polypeptides of the invention through specific binding. In more preferred embodiments, the antibody of the invention inhibits D- SLAM-mediated inhibition of B cell proliferation. In additional preferred embodiments, the antibody of the invention stimulates B cell proliferation. In additional preferred embodiments, the antibody of the invention is used in combination with one or more additional antibodies and or polypeptides and/or other agents to regulate B cell proliferation and/or biological phenomena related thereto.
  • Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. En specific embodiments, antibodies of the present invention cross-react with urine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof.
  • Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention.
  • the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein.
  • antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide of the present invention under hybridization conditions are also included in the present invention.
  • Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10 "2 M, 10 "2 M, 5 X 10 '3 M, 10 '3 M, 5 X 10 "4 M, 10 "4 M, 5 X 10 "5 M, 10 "5 M, 5 X 10 "6 M, 10 '6 M, 5 X 10 "7 M, 10 7 M, 5 X 10 "8 M, 10 "8 M, 5 X 10 "9 M, 10 "9 M, 5 X 10 "10 M, 10 “10 M, 5 X 10 "11 M, 10 "n M, 5 X 10 "12 M, 10 "12 M, 5 X 10 "13 M, 10 "13 M, 5 X 10 "14 M, 10 “14 M, 5 X 10 "15 M, or 10- 15 M.
  • the invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for detennining competitive binding, for example, the immunoassays described herein, h preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
  • Antibodies of the present invention may act as agonists or antagonists of the polypeptides of the present invention.
  • the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully.
  • antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof.
  • the invention features both receptor-specific antibodies and ligand-specific antibodies.
  • the invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art.
  • receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra).
  • phosphorylation e.g., tyrosine or serine/threonine
  • antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.
  • the invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand.
  • receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand.
  • neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor.
  • antibodies which activate the receptor are also act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor.
  • the antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein.
  • the above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Patent No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al, Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al, Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J.
  • Antibodies of the present invention may be used, for example, but not limited to, to purify, detect, and target the polypeptides of the present invention, including both in vitro and in vivo diagnostic and therapeutic methods.
  • the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incorporated by reference herein in its entirety).
  • the antibodies of the present invention may be used either alone or in combination with other compositions.
  • the antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions.
  • antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No.
  • the antibodies of the invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response.
  • the antibody derivatives include antibodies that have been modified, e -g- 5 by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.
  • the antibodies of the present invention may be generated by any suitable method known in the art.
  • Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art.
  • a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen.
  • adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
  • Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
  • monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).
  • the term “monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology.
  • the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
  • a “monoclonal antibody” may comprise, or alternatively consist of, two proteins, i.e., a heavy and a light chain.
  • mice can be immunized with a polypeptide of the invention or a cell expressing such peptide.
  • an immune response e.g., antibodies specific for the antigen are detected in the mouse serum
  • the mouse spleen is harvested and splenocytes isolated.
  • the splenocytes are then fused by well-known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC.
  • Hybridomas are selected and cloned by limited dilution.
  • hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention.
  • Ascites fluid which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.
  • the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.
  • Antibody fragments which recognize specific epitopes may be generated by known techniques.
  • Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments).
  • F(ab')2 fragments contain the variable region, the light chain constant region and the CHI domain of the heavy chain.
  • the antibodies of the present invention can also be generated using various phage display methods known in the art.
  • phage display methods functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them.
  • phage can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine).
  • Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead.
  • Phage used in these methods are typically filamentous phage including fd and Ml 3 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene EJX or gene VIJX protein.
  • Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al, J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol.
  • the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below.
  • a chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region.
  • Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al.,
  • Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding.
  • CDRs complementarity determining regions
  • framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions.
  • Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos.
  • Human antibodies are particularly desirable for therapeutic treatment of human patients.
  • Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
  • Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
  • the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
  • the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
  • the mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production.
  • the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
  • the chimeric mice are then bred to produce homozygous offspring which express human antibodies.
  • the transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention.
  • Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology.
  • the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
  • Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection.”
  • a selected non- human monoclonal antibody e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).
  • antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444; (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)).
  • antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand.
  • anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand.
  • anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligands/receptors, and thereby block its biological activity.
  • the invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof.
  • the invention also encompasses polynucleotides that hybridize under stringent or lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide of the invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ED NO:2.
  • the polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art.
  • a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.
  • a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by a suitable source (e.
  • nucleotide sequence and corresponding amino acid sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc.
  • the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well known in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability.
  • CDRs complementarity determining regions
  • one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra.
  • the framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al, J. Mol. Biol.
  • the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention.
  • one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more mtrachain disulfide bonds.
  • Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.
  • a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.
  • the antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.
  • an antibody of the invention or fragment, derivative or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody.
  • a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art.
  • Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.
  • the expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention.
  • the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter.
  • vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.
  • host-expression vector systems may be utilized to express the antibody molecules of the invention.
  • Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ.
  • These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B.
  • subtilis transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mamm
  • bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule.
  • mammalian cells such as Chinese hamster ovary cells (CHO)
  • CHO Chinese hamster ovary cells
  • a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al, Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).
  • a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed.
  • vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable.
  • Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al, EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pEN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem.
  • pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST).
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione.
  • the pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
  • AcNPV is used as a vector to express foreign genes.
  • the virus grows in Spodoptera frugiperda cells.
  • the antibody coding sequence may be cloned individually into non- essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
  • a number of viral-based expression systems may be utilized.
  • the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence.
  • This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non- essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts.
  • a non- essential region of the viral genome e.g., region El or E3
  • Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).
  • a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein.
  • Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
  • eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.
  • Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.
  • cell lines which stably express the antibody molecule may be engineered.
  • host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.
  • appropriate expression control elements e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.
  • engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media.
  • the selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
  • This method may advantageously be used to engineer cell lines which express the antibody molecule.
  • Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.
  • a number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine- guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al, Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively.
  • antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al, Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci.
  • the expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)).
  • vector amplification for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)).
  • a marker in the vector system expressing antibody is amplifiable
  • increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).
  • the host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide.
  • the two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides.
  • a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)).
  • the coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
  • an antibody molecule of the invention may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • chromatography e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography
  • centrifugation e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography
  • differential solubility e.g., differential solubility
  • the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
  • the present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalent and non-covalent conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention to generate fusion proteins.
  • the fusion does not necessarily need to be direct, but may occur through linker sequences.
  • the antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention.
  • antibodies may be used to target the polypeptides of the present invention to particular cell types, either in vitro or in vivo, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors.
  • Antibodies fused or conjugated to the polypeptides of the present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al, supra, and PCT publication WO 93/21232; EP 439,095; Naramura et al, hnmunol. Lett. 39:91-99 (1994); U.S.
  • the present invention further includes compositions comprising the polypeptides of the present invention fused or conjugated to antibody domains other than the variable regions.
  • the polypeptides of the present invention may be fused or conjugated to an antibody Fc region, or portion thereof.
  • the antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CHI domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof.
  • the polypeptides may also be fused or conjugated to the above antibody portions to form multimers.
  • Fc portions fused to the polypeptides of the present invention can form dimers through disulfide bonding between the Fc portions.
  • Higher multimeric fonns can be made by fusing the polypeptides to portions of IgA and IgM.
  • Methods for fusing or conjugating the polypeptides of the present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053; 5,447,851; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 91/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Zheng et al., J.
  • polypeptides corresponding to a polypeptide, polypeptide fragment, or a variant of SEQ ED NO:2 may be fused or conjugated to the above antibody portions to increase the in vivo half life of the polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEQ ED NO:2 may be fused or conjugated to the above antibody portions to facilitate purification.
  • the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties.
  • EP A 232,262 Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired.
  • the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations.
  • human proteins, such as hEL-5 have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol. Chem.
  • the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification.
  • the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • peptide tags useful for purification include, but are not limited to, the "HA” tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al, Cell 37:767 (1984)) and the "flag" tag.
  • the present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent.
  • the antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance.
  • detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.
  • the detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin/biotin and avidrn/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
  • an example of a luminescent material includes luminol;
  • bioluminescent materials include luciferase, luciferin, and aequorin;
  • suitable radioactive material include 125 I,
  • an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213 Bi.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6- mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (El) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
  • the conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, ATM I (See, International Publication No.
  • WO 97/33899 AIM H (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al, Int. Immunol, 6:1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), CD40 Ligand, a thrombotic agent or an anti- angiogenic agent, e.g., angiostatin, endostatin or VEGI (See, International Publication No.
  • WO 99/23105 WO 99/23105
  • biological response modifiers such as, for example, lymphokines, interleukin-1 ("EL-1"), interleukin-2 (“EL-2”), interleukin-6 (“EL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • EL-1 interleukin-1
  • EL-2 interleukin-2
  • EL-6 interleukin-6
  • GM-CSF granulocyte macrophage colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen.
  • solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
  • Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc.
  • D-SLAM binding polypetides of the invention are attached either directly or indirectly, to macrocyclic chelators useful for chelating radiometal ions, including but not limited to Lu, Y, Ho, and Sm, to polypeptides.
  • macrocyclic chelators useful for chelating radiometal ions including but not limited to Lu, Y, Ho, and Sm, to polypeptides.
  • the radiometal ion associated with the macrocyclic chelators attached to D- SLAM polypeptides of the invention is ⁇ n Ln.
  • the radiometal ion associated with the macrocyclic chelator attached to D-SLAM polypeptides of the invention is 90 Y.
  • the macrocyclic chelator is 1,4,7,10- tetraazacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA).
  • the side chain moiety of one or more classical or non-classical amino acids in a D-SLAM binding polypeptide comprises a DOTA molecule.
  • the DOTA is attached to the D-SLAM binding polypeptide of the invention via a linker molecule. Examples of linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art - see, for example, DeNardo et al, Clin. Cancer Res., 4(10):2483-90 (1998); Peterson et al, Bioconjug.
  • An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.
  • the antibodies of the invention may be utilized for immunophenotyping of cell lines and biological samples.
  • the translation product of the gene of the present invention may be useful as a cell specific marker, or more specifically as a cellular marker that is differentially expressed at various stages of differentiation and/or maturation of particular cell types.
  • Monoclonal antibodies directed against a specific epitope, or combination of epitopes will allow for the screening of cellular populations expressing the marker.
  • Various techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid matrix (i.e., plate), and flow cytometry (See, e.g., U.S.
  • MRD minimal residual disease
  • GVHD Graft- versus-Host Disease
  • these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and or differentiation, as might be found in human umbilical cord blood.
  • the antibodies of the invention may be assayed for immunospecific binding by any method known in the art.
  • the immunoassays which can be used, include but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few.
  • Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as REP A buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4 C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer.
  • REP A buffer 1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% S
  • the ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis.
  • One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads).
  • immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.
  • Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., P or I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen.
  • ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen.
  • a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase)
  • the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well.
  • a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well.
  • the binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays.
  • a competitive binding assay is a radioimmunoassay comprising the incubation of labeled .
  • antigen e.g., H or 125 I
  • the affinity of the antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis.
  • Competition with a second antibody can also be determined using radioimmunoassays.
  • the antigen is incubated with antibody of interest conjugated to a labeled compound (e.g., 3 H or 125 I) in the presence of increasing amounts of an unlabeled second antibody.
  • the present invention is further directed to antibody-based therapies which involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions.
  • Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein).
  • the antibodies of the invention can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein (e.g., autoimmune diseases, disorders, or conditions associated with such diseases or disorders, including, but not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g, IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Scoenlein purpura), Reiter'
  • antibodies of the invention are be used to treat, inhibit, prognose, diagnose or prevent rheumatoid arthritis.
  • antibodies of the invention are used to treat, inhibit, prognose, diagnose or prevent systemic lupus erythematosis.
  • the treatment and/or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions.
  • the antibodies of the invention may also be used to target and kill cells expressing D-SLAM on their surface and/or cells having D-SLAM bound to their surface.
  • Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
  • a summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below.
  • the antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., EL-2, EL-3 and EL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
  • the antibodies of the invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy, anti-tumor agents, antibiotics, and immunoglobulin). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred.
  • human antibodies, fragments derivatives, analogs, or nucleic acids are administered to a human patient for therapy or prophylaxis.
  • Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10 "2 M, 10 "2 M, 5 X 10 "3 M, 10 “3 M, 5 X 10 "4 M, 10 “4 M, 5 X 10 "5 M, 10 “5 M, 5 X 10 "6 M, 10 “6 M, 5 X 10 "7 M, 10 “7 M, 5 X 10 -8 M, 10 “8 M, 5 X 10 "9 M, 10 "9 M, 5 X 10 '10 M, 10 "10 M, 5 X 10 "11 M, 10 "11 M, 5 X 10 "12 M, 10 “12 M, 5 X 10 "13 M, 10 " 13 M, 5 X 10 "14 M, 10 “14 M, 5 X 10 "15 M, and 10 "15 M.
  • nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention, by way of gene therapy.
  • Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid, hi this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.
  • the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host.
  • nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific.
  • nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller and Smithies, Proc. Natl.
  • the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.
  • nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid-carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.
  • the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded product.
  • microparticle bombardment e.g., a gene gun; Biolistic, Dupont
  • coating lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc.
  • nucleic acid- ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation.
  • the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; W093/14188, WO 93/20221).
  • the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Roller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).
  • viral vectors that contain nucleic acid sequences encoding an antibody of the invention are used.
  • a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA.
  • the nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of the gene into a patient.
  • retroviral vectors More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy.
  • Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. " Opin. in Genetics and Devel. 3:110-114 (1993).
  • Adenoviruses are other viral vectors that can be used in gene therapy.
  • Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in.
  • adenovirus vectors are used.
  • Adeno-associated virus (AAV) has also been proposed for use in gene therapy
  • Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection.
  • the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.
  • the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell.
  • introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc.
  • Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol.
  • the technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.
  • the resulting recombinant cells can be delivered to a patient by various methods known in the art.
  • Recombinant blood cells e.g., hematopoietic stem or progenitor cells
  • the amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.
  • Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include, but are not limited to, epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.
  • the cell used for gene therapy is autologous to the patient.
  • nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect.
  • stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, Cell 71:973-985 (1992); Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc.
  • the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by controlling the presence or absence of the appropriate inducer of transcription.
  • the compounds or pharmaceutical compositions • of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans.
  • in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample.
  • the effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays.
  • in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
  • the invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably an antibody of the invention.
  • the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side effects).
  • the subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.
  • Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.
  • Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc.
  • Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
  • the compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
  • intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.
  • Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
  • a protein, including an antibody, of the invention care must be taken to use materials to which the protein does not absorb.
  • the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353- 365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)
  • the compound or composition can be delivered in a controlled release system.
  • a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al, N. Engl. J. Med. 321 :574 (1989)).
  • polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Press, Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al, Ann. Neurol. 25:351 (1989); Howard et al, J.Neurosurg. 71:105 (1989)).
  • a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
  • the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No.
  • a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
  • compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
  • Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
  • compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin.
  • Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
  • the formulation should suit the mode of administration.
  • the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings.
  • compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
  • the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
  • the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
  • composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
  • an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
  • the compounds of the invention can be formulated as neutral or salt forms.
  • Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
  • the amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques, hi addition, in vitro assays may optionally be employed to help identify optimal dosage ranges.
  • Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the dosage administered to a patient is typically 0.1 mg/kg to
  • the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight.
  • human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible.
  • the dosage and frequency of admimstration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.
  • the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
  • a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
  • Optionally associated with such containers can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or disorders associated with the aberrant expression and/or activity of a polypeptide of the invention.
  • the invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression.
  • the invention provides a diagnostic assay for diagnosing a disorder, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular disorder.
  • a diagnostic assay for diagnosing a disorder comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular disorder.
  • the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior
  • Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)).
  • Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • Suitable antibody assay labels include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine ( I, I, I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 115m h ⁇ , 113m h ⁇ , 112 In, ⁇ ⁇ In), and technetium ( 99 Tc, 99m Tc), thallium ( 201 Ti), gallium ( 68 Ga, 67 Ga), palladium ( 103 Pd), molybdenum ( 99 Mo), xenon ( 133 Xe), fluorine ( 18 F), 153 Sm, I77 Lu, 159 Gd, 149 Pm, 140 La, 175 Yb, 166 Ho, 90 Y, 47 Sc, 186 Re, 188 Re, 142 Pr, 105 Rh, 97 R U ; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine
  • diagnosis comprises: (a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; (b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); (c) determining background level; and (d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the polypeptide of interest.
  • Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
  • specific embodiments of the invention are directed to the use of the antibodies of the invention to quantitate or qualitate concentrations of cells of B cell lineage or cells of monocytic lineage.
  • antibodies of the invention may be used to treat, diagnose, or prognose an individual having an immunodeficiency.
  • antibodies of the invention are used to treat, diagnose, and/or prognose an individual having common variable immunodeficiency disease (CVED) or a subset of this disease.
  • CVED common variable immunodeficiency disease
  • antibodies of the invention are used to diagnose, prognose, treat or prevent a disorder characterized by deficient serium immunoglobulin production, recurrent infections, and/or immune system dysfunction.
  • antibodies of the invention may be used to treat, diagnose, or prognose an individual having an autoimmune disease or disorder.
  • antibodies of the invention are used to treat, diagnose, and/or prognose an individual having systemic lupus erythematosus, or a subset of the disease.
  • antibodies of the invention are used to treat, diagnose and/or prognose an individual having rheumatoid arthritis, or a subset of this disease.
  • the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99 mTc.
  • the labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein.
  • In vivo tumor imaging is described in S.W. Burchiel et al., ''hnmunopharmacokinetics of Radiolabeled Antibodies and Their Fragments.” (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).
  • the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.
  • monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
  • Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
  • CT computed tomography
  • PET position emission tomography
  • MRI magnetic resonance imaging
  • sonography sonography
  • the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050).
  • the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument.
  • the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography.
  • the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI). Kits
  • kits that can be used in the above methods.
  • a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers.
  • the kits of the present invention contain a substantially isolated polypeptide comprising - an epitope which is specifically immunoreactive with an antibody included in the kit.
  • the kits of the present invention further comprise a control antibody which does not react with the polypeptide of interest.
  • the kits of the present invention comprise two or more antibodies (monoclonal and/or polyclonal) that recognize the same and/or different sequences or regions of the polypeptide of the invention.
  • kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).
  • a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate.
  • the kit is a diagnostic kit for use in screening serum containing antibodies specific against prohferative and/or cancerous polynucleotides and polypeptides.
  • a kit may include a control antibody that does not react with the polypeptide of interest.
  • a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one anti-polypeptide antigen antibody.
  • a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry).
  • the kit may include a recombinantly produced or chemically synthesized polypeptide antigen.
  • the polypeptide antigen of the kit may also be attached to a solid support.
  • the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody, hi this embodiment, binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.
  • the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention.
  • the diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody.
  • the antibody is attached to a solid support.
  • the antibody may be a monoclonal antibody.
  • the detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.
  • test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support.
  • the reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined.
  • the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).
  • a suitable fluorometric, luminescent or colorimetric substrate Sigma, St. Louis, MO.
  • attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group.
  • streptavidin coated plates can be used in conjunction with biotinylated antigen(s).
  • the invention provides an assay system or kit for carrying out this diagnostic method.
  • the kit generally includes a support with surface- bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody.
  • the invention further relates to antibodies which act as agonists or antagonists of the polypeptides of the present invention.
  • the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully. Included are both receptor-specific antibodies and ligand- specific antibodies. Included are receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. Also included are receptor-specific antibodies which both prevent ligand binding and receptor activation.
  • neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor.
  • antibodies which activate the receptor may act as agonists for either all or less than all of the biological activities affected by ligand-mediated receptor activation.
  • the antibodies may be specified as agonists or antagonists for biological activities comprising specific activities disclosed herein.
  • antibodies that bind to D-SLAM irrespective of whether D-SLAM is bound to a D-SLAM Receptor.
  • These antibodies act as D-SLAM agonists as reflected in an decrease in cellular proliferation in response to binding of D-SLAM to a D-SLAM receptor in the presence of these antibodies.
  • the above antibody agonists can be made using methods known in the art. See e.g., WO 96/40281; US Patent 5,811,097; Deng, B. et al., Blood 92(6):1981-1988 (1998); Chen, Z. et al, Cancer Res. 58(16):3668-3678 (1998); Harrop, J.A. et al, J. hnmunol. 161(4):1786-1794 (1998); Zhu, Z. et al., Cancer Res.
  • the invention encompasses antibodies that inhibit or reduce the ability of D-
  • antibodies of the invention inhibit or reduce the ability of D-SLAM to bind D-SLAM receptor in vitro and/or in vivo, hi a specific embodiment, antibodies of the invention inhibit or reduce the ability of D-SLAM to bind D-SLAM receptor in vitro, hi another nonexclusive specific embodiment, antibodies of the invention inhibit or reduce the ability of D-SLAM to bind D-SLAM receptor in vivo. Such inhibition can be assayed using techniques described herein or otherwise known in the art.
  • the invention also encompasses, antibodies that bind specifically to D-SLAM, but do not inhibit the ability of D-SLAM to bind D-SLAM receptor in vitro and or in vivo.
  • antibodies of the invention do not inhibit or reduce the ability of D- SLAM to bind D-SLAM receptor in vitro, hi another nonexclusive specific embodiment, antibodies of the invention do not inhibit or reduce the ability of D-SLAM to bind D-SLAM receptor in vivo.
  • the invention encompasses antibodies that inhibit or reduce a D-SLAM-mediated biological activity in vitro and/or in vivo.
  • antibodies of the invention inhibit or reduce D-SLAM-mediated inhibition of B cell proliferation in vitro. Such inhibition can be assayed by routinely modifying B cell proliferation assays described herein or otherwise known in the art.
  • antibodies of the invention inhibit or reduce D-SLAM-mediated inhibition of B cell proliferation in vivo.
  • the invention also encompasses, antibodies that bind specifically to D-SLAM, but do not inhibit or reduce a D-SLAM-mediated biological activity in vitro and/or in vivo (e.g., inhibition of B cell proliferation).
  • antibodies of the invention do not inhibit or reduce a D-SLAM-mediated biological activity in vitro.
  • antibodies of the invention do not inhibit or reduce a D- SLAM-mediated biological activity in vivo.
  • the invention encompasses antibodies that specifically bind to the same epitope as at least one of the antibodies specifically referred to herein, in vitro and/or in vivo.
  • the antibodies of the invention also have uses as therapeutics and/or prophylactics which include, but are not limited to, in activating monocytes or blocking monocyte activation and/or killing specific cell types that express the membrane bound form of D-SLAM on their cell surfaces (e.g., to treat, prevent, and/or diagnose leukemias, lymphomas, rheumatoid arthritis, and other diseases or conditions associated with these cell types), hi a specific embodiment, the antibodies of the invention fix complement.
  • the antibodies of the invention or fragments thereof are associated with heterologous polypeptides or nucleic acids (e.g. toxins, such as, compounds that bind and activate endogenous cytotoxic effecter systems, and radioisotopes; and cytotoxic prodrugs).
  • antibodies to the D-SLAM polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" the D-SLAM, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444 (1989), and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize D-SLAM ligand.
  • anti-idiotypic antibodies can be used to bind D-SLAM, or to bind D-SLAM receptors on the surface of cells of B cell lineage, and thereby block D-SLAM-mediated inhibition of B cell activation, proliferation, and/or differentiation.
  • Any D-SLAM polypeptide can be used to generate fusion proteins.
  • the D-SLAM polypeptide when fused to a second protein, can be used as an antigenic tag.
  • Antibodies raised against the D-SLAM polypeptide can be used to indirectly detect the second protein by binding to the D-SLAM.
  • secreted proteins target cellular locations based on trafficking signals, the D-SLAM polypeptides can be used as a targeting molecule once fused to other proteins.
  • D-SLAM proteins of the invention comprise, or alternatively consist of, fusion proteins wherein the D-SLAM polypeptides are those described above as m-n.
  • the application is directed to nucleic acid molecules at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences encoding polypeptides having the amino acid sequence of the specific N- and C-terminal deletions recited herein.
  • fusion proteins may also be engineered to improve characteristics of the D-SLAM polypeptide. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the D-SLAM polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the D-SLAM polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the D- SLAM polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.
  • D-SLAM polypeptides of the present invention may be fused with heterologous polypeptide sequences.
  • the polypeptides of the present invention may be fused with parts of the constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CHI, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), or albumin (including but not limited to recombinant albumin), resulting in chimeric polypeptides.
  • immunoglobulins IgA, IgE, IgG, IgM
  • CHI constant domain of immunoglobulins
  • CH2, CH3, and any combination thereof including both entire domains and portions thereof
  • albumin including but not limited to recombinant albumin
  • EP-A-0 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof.
  • the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties.
  • EP-A 0232 262. Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations.
  • human proteins such as hEL-5
  • Fc portions for the purpose of high-throughput screening assays to identify antagonists of hE -5.
  • the D-SLAM polypeptides can be fused to marker sequences, such as a peptide which facilitates purification of D-SLAM.
  • the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • HA hemagglutinin protein
  • the present invention also relates to vectors containing the isolated D-SLAM
  • DNA molecules of the present invention host cells which are genetically engineered with the recombinant vectors, and the production of polypeptides or fragments thereof by recombinant and synthetic techniques.
  • the vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
  • D-SLAM polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
  • the D-SLAM polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan.
  • the expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation.
  • the coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
  • the expression vectors will preferably include at least one selectable marker.
  • markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or arnpicillin resistance genes for culturing in E. coli and other bacteria.
  • Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Sfreptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No.
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, 293, and Bowes melanoma cells
  • plant cells Appropriate culture mediums and conditions for the above-described host cells are known in the art.
  • vectors preferred for use in bacteria include pHE4-5 (ATCC
  • pQE70, pQE60 and pQE-9 available from QIAGEN, Inc.
  • pBluescript vectors Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.
  • ptrc99a pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc.
  • Preferred expression vectors for use in yeast systems include, but are not limited to, pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHEL-D2, pHEL-Sl, pPIC3.5K, pPIC9K, and PA0815 (all available from frivitrogen, Carlsbad, CA).
  • preferred eukaryotic vectors are pWLNEO, pSV2CAT, ⁇ OG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia.
  • Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHEL-D2, pHEL-Sl, pPIC3.5K, pPIC9K, and PA0815 (all available from frivitrogen, Carlsbad, CA).
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • the yeast Pichia pastoris is used to express D-SLAM protein in a eukaryotic system.
  • Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source.
  • a main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using 0 2 . This reaction is catalyzed by the enzyme alcohol oxidase.
  • Pichia pastoris hi order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for 0 2 .
  • alcohol oxidase produced from the AOX1 gene comprises up to approximately 30% of the total soluble protein in Pichia pastoris. See, Ellis, S.B., et al, Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P.J, et al, Yeast 5:167-77 (1989); Tschopp, J.F., et al, Nucl. Acids Res. 15:3859-76 (1987).
  • a heterologous coding sequence such as, for example, a D-SLAM polynucleotide of the present invention, under the transcriptional regulation of all or part of the AOX1 regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.
  • the plasmid vector pPIC9K is used to express DNA encoding a D-SLAM polypeptide of the invention, as set forth herein, in a Pichea yeast system essentially as described in "Pichia Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998.
  • This expression vector allows expression and secretion of a D-SLAM protein of the invention by virtue of the strong AOX1 promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
  • PHO Pichia pastoris alkaline phosphatase
  • yeast vectors could be used in place of pPIC9K, such as, pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHEL-D2, pHEL-Sl, pPIC3.5K, and PA0815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
  • high-level expression of a heterologous coding sequence such as, for example, a D-SLAM polynucleotide of the present invention
  • a heterologous coding sequence such as, for example, a D-SLAM polynucleotide of the present invention
  • an expression vector such as, for example, pGAPZ or pGAPZalpha
  • Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that D-SLAM polypeptides may in fact be expressed by a host cell lacking a recombinant vector.
  • D-SLAM polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography (“HPLC”) is employed for purification.
  • HPLC high performance liquid chromatography
  • D-SLAM polypeptides and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells.
  • a prokaryotic or eukaryotic host including, for example, bacterial, yeast, higher plant, insect, and mammalian cells.
  • the D-SLAM polypeptides may be glycosylated or may be non-glycosylated.
  • D-SLAM polypeptides may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
  • N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.
  • the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., D-SLAM coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with D-SLAM polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous D-SLAM polynucleotides.
  • endogenous genetic material e.g., D-SLAM coding sequence
  • genetic material e.g., heterologous polynucleotide sequences
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous D-SLAM polynucleotide sequences via homologous recombination
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous D-SLAM polynucleotide sequences via homologous recombination
  • polypeptides of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller, M., et al, 1984, Nature 310:105- 111).
  • a peptide corresponding to a fragment of the D-SLAM polypeptides of the invention can be synthesized by use of a peptide synthesizer.
  • nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the D-SLAM polynucleotide sequence.
  • Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline; cysteic acid, t- butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid
  • the invention encompasses D-SLAM polypeptides which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH 4 ; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.
  • Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression.
  • the polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.
  • Also provided by the invention are chemically modified derivatives of D-
  • the chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like.
  • the polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing.
  • Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).
  • polyethylene glycol molecules should be attached to the protein with consideration of effects on functional or antigenic domains of the protein.
  • attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al, Exp. Hematol. 20:1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride).
  • polyethylene glycol may be covalentfy bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group.
  • Reactive groups are those to which an activated polyethylene glycol molecule may be bound.
  • the amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue.
  • Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.
  • polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (or peptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein.
  • the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.
  • Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked, by for example, liposome formation.
  • multimers of the invention such as, for example, homodimers or homotrimers
  • heteromultimers of the invention such as, for example, heterotrimers or heterotetramers
  • polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution.
  • multimers of the invention are formed by covalent associations with and/or between the D-SLAM polypeptides of the invention.
  • covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ED NO:2, or contained in the polypeptide encoded by the clone HDPJ039).
  • the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide.
  • the covalent associations are the consequence of chemical or recombinant manipulation.
  • covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a D-SLAM fusion protein.
  • covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., US Patent Number 5,478,925).
  • the covalent associations are between the heterologous sequence contained in a D- SLAM-Fc fusion protein of the invention (as described herein).
  • covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another Secreted Lymphocyte Activation Molecule (SLAM) family member that is capable of forming covalently associated multimers, such as for example, oseteoprotegerin (see, e.g., International Publication No. WO 98/49305, the contents of which are herein incorporated by reference in its entirety).
  • SLAM Secreted Lymphocyte Activation Molecule
  • two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides of the invention separated by peptide linkers may be produced using conventional recombinant DNA technology.
  • Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found.
  • Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, (1988)), and have since been found in a variety of different proteins.
  • leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize.
  • leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference.
  • Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art.
  • Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity.
  • Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers.
  • a leucine zipper derived from lung surfactant protein D SPD
  • SPD lung surfactant protein D
  • Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides of the invention.
  • proteins of the invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins of the invention containing Flag® polypeptide seuqence.
  • associations proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins of the invention and anti-Flag® antibody.
  • the multimers of the invention may be generated using chemical techniques known in the art.
  • polypeptides desired to be contained in the multimers of the invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • linker molecules and linker molecule length optimization techniques known in the art
  • multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). [0310] Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art.
  • polypeptides contained in multimers of the invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides of the invention which contain a transmembrane domain (or hyrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • D-SLAM polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques. [0312] There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available.
  • sequences can be mapped to chromosomes by preparing PCR primers
  • somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler.
  • sublocalization of the D-SLAM polynucleotides can be achieved with panels of specific chromosome fragments.
  • Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.
  • Precise chromosomal location of the D-SLAM polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread.
  • FISH fluorescence in situ hybridization
  • This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred.
  • Verma et al "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).
  • the D-SLAM polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes).
  • Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.
  • Linkage analysis establishes comheritance between a chromosomal location and presentation of a particular disease.
  • Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) .
  • a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50- 500 potential causative genes.
  • a D-SLAM polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 3:173 (1979); Cooney et al, Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991) ) or to the mRNA itself (antisense - Okano, J. Neurochem.
  • D-SLAM polynucleotides are also useful in gene therapy.
  • One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect.
  • D-SLAM offers a means of targeting such genetic defects in a highly accurate manner.
  • Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.
  • the D-SLAM polynucleotides are also useful for identifying individuals from minute biological samples.
  • the United States military for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel.
  • RFLP restriction fragment length polymorphism
  • an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult.
  • the D-SLAM polynucleotides can be used as additional DNA markers for RFLP.
  • the D-SLAM polynucleotides can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ED database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.
  • DNA-based identification- techniques as disclosed herein.
  • DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc.
  • body fluids e.g., blood, saliva, semen, etc.
  • gene sequences amplified from polymorphic loci such as DQa class Et HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co.
  • D-SLAM polynucleotides can be used as polymorphic markers for forensic purposes.
  • reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin.
  • Appropriate reagents can comprise, or alternatively consist of, for example, DNA probes or primers specific to particular tissue prepared from D-SLAM sequences. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.
  • D-SLAM polynucleotides are useful as hybridization probes for differential identification of the tissue(s) or cell type(s) present in a biological sample.
  • polypeptides and antibodies directed to D-SLAM polypeptides are useful to provide immunological probes for differential identification of the tissue(s) or cell type(s).
  • D-SLAM gene expression may be detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" D-SLAM gene expression level, i.e., the D- SLAM expression level in healthy tissue from an individual not having the immune system disorder.
  • tissues e.g., cancerous and wounded tissues
  • bodily fluids e.g., serum, plasma, urine, synovial fluid or spinal fluid
  • the invention provides a diagnostic method of a disorder, which involves: (a) assaying D-SLAM gene expression level in cells or body fluid of an individual; (b) comparing the D-SLAM gene expression level with a standard D-SLAM gene expression level, whereby an increase or decrease in the assayed D-SLAM gene expression level compared to the standard expression level is indicative of disorder in the immune system.
  • the D-SLAM polynucleotides can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip” or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.
  • D-SLAM polypeptides can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.
  • D-SLAM polypeptides can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al, J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • ELISA enzyme linked immunosorbent assay
  • RIA radioimmunoassay
  • Suitable antibody assay labels include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112m), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • enzyme labels such as, glucose oxidase, and radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112m), and technetium (99mTc)
  • fluorescent labels such as fluorescein and rhodamine, and biotin.
  • proteins can also be detected in vivo by imaging.
  • Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR.
  • suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject.
  • suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.
  • a protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety such as a radioisotope (for example, 1311, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal.
  • an appropriate detectable imaging moiety such as a radioisotope (for example, 1311, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance.
  • the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of D-SLAM polypeptide in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed D-SLAM polypeptide gene expression level compared to the standard expression level is indicative of a disorder.
  • D-SLAM polypeptides can be used to treat, diagnose, detect, and/or prevent disease.
  • patients can be administered D-SLAM polypeptides in an effort to replace absent or decreased levels of the D-SLAM polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).
  • D-SLAM polypeptide e.g., insulin
  • a different polypeptide e.g., hemoglobin S for hemoglobin B
  • an oncogene e.g., an oncogene
  • antibodies directed to D-SLAM polypeptides can also be used to treat, diagnose, detect, and/or prevent disease.
  • administration of an antibody directed to a D-SLAM polypeptide can bind and reduce overproduction of the polypeptide.
  • administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).
  • the D-SLAM polypeptides can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. D-SLAM polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, D-SLAM polypeptides can be used to test the following biological activities.
  • Another aspect of the present invention is to gene therapy methods for treating, diagnosing, detecting, and/or preventing disorders, diseases and/or conditions.
  • the gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of the D-SLAM polypeptide of the present invention.
  • This method requires a polynucleotide which codes for a D-SLAM polypeptide operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue.
  • Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.
  • cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a D-SLAM polynucleotide ex vivo, with the engineered cells then being provided to a patient to be treated (therapeutically and/or prophylactically) and/or diagnosed with the polypeptide.
  • a polynucleotide DNA or RNA
  • Such methods are well-known in the art. For example, see Belldegrun, A., et al, J. Natl. Cancer Lust. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al, J.
  • the cells which are engineered are arterial cells.
  • the arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.
  • the D-SLAM polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like).
  • the D-SLAM polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
  • the D-SLAM polynucleotide is delivered as a naked polynucleotide.
  • naked polynucleotide DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like.
  • the D-SLAM polynucleotides can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos.
  • the D-SLAM polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication.
  • Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEFl/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen.
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalo virus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters.
  • the promoter also may be the native promoter for D-SLAM.
  • one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.
  • the D-SLAM polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue.
  • Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibrob lasts.
  • In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
  • RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated (therapeutically and/or prophylactically) and the route of administration.
  • the preferred route of administration is by the parenteral route of injection into the interstitial space of tissues.
  • parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose.
  • naked D-SLAM DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
  • the naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns”. These delivery methods are known in the art.
  • naked D-SLAM nucleic acid sequences can be administered in vivo results in the successful expression of D-SLAM polypeptide in the femoral arteries of rabbits.
  • constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.
  • the D-SLAM polynucleotide constructs are complexed in a liposome preparation.
  • Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations.
  • cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid.
  • Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Feigner et al, Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc.
  • Cationic liposomes are readily available. For example,
  • N[l-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GEBCO BRL, Grand Island, NY. (See, also, Feigner et al., Proc. Natl Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference).
  • Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).
  • cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (1,2- bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.
  • anionic and neutral liposomes are readily available, such as from
  • Avanti Polar Lipids can be easily prepared using readily available materials.
  • Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others.
  • DOPC dioleoylphosphatidyl choline
  • DOPG dioleoylphosphatidyl glycerol
  • DOPE dioleoylphoshatidyl ethanolamine
  • These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
  • DOPC dioleoylphosphatidyl choline
  • DOPG dioleoylphosphatidyl glycerol
  • DOPE dioleoylphosphatidyl ethanolamine
  • DOPG DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water.
  • the sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC.
  • negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size.
  • Other methods are known and available to those of skill in the art.
  • the liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred.
  • MLVs multilamellar vesicles
  • SUVs large unilamellar vesicles
  • the various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al, Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference.
  • MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated.
  • SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes.
  • the material to be entrapped is added to a suspension of preformed MLVs and then sonicated.
  • liposomes containing cationic lipids the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA.
  • the liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA.
  • SUVs find use with small nucleic acid fragments.
  • LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca 2+ -EDTA chelation (Papahadjopoulos et al, Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell (1979) 17:77); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta (1976) 443:629; Ostro et al., Biochem. Biophys. Res. Commun. (1977) 76:836; Fraley et al., Proc. Natl. Acad. Sci. USA (1979) 76:3348); detergent dialysis (Enoch, H.
  • the ratio of DNA to liposomes will be from about 10:1 to about
  • the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3 : 1 to about 1:3. Still more preferably, the ratio will be about 1:1.
  • U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice.
  • WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals.
  • U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide methods for delivering DNA-cationic lipid complexes to mammals.
  • cells are be engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding D-SLAM.
  • Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative. Sarcoma Virus, and mammary tumor virus.
  • the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
  • packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCREP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy 1 :5-14 (1990), which is incorporated herein by reference in its entirety.
  • the vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP0 4 precipitation.
  • the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
  • the producer cell line generates infectious retroviral vector particles which include polynucleotide encoding D-SLAM. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express D-SLAM.
  • cells are engineered, ex vivo or in vivo, with D-
  • SLAM polynucleotide contained in an adenovirus vector contained in an adenovirus vector.
  • Adenovirus can be manipulated such that it encodes and expresses D-SLAM, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis.
  • adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz, A. R. et al. (1974) Am. Rev. Respir. Dis.l09:233-238).
  • adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha- 1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. (1979) Proc. Natl. Acad. Sci. USA 76:6606).
  • Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Patent No. 5,652,224, which are herein incorporated by reference.
  • the adenovirus vector Ad2 is useful and can be grown in human 293 cells.
  • These cells contain the El region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector.
  • Ad2 other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.
  • the adenoviruses used in the present invention are replication deficient.
  • Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles.
  • the resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, for example, the HARP promoter of the present invention, but cannot replicate in most cells.
  • Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: Ela, Elb, E3, E4, E2a, or LI through L5.
  • the cells are engineered, ex vivo or in vivo, using an adeno-associated virus (AAV).
  • AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.
  • an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration.
  • the D-SLAM polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989).
  • the recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc.
  • Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses.
  • the packaging cells Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the D-SLAM polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo or in vivo. The transduced cells will contain the D-SLAM polynucleotide construct integrated into its genome, and will express D-SLAM.
  • Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding D-SLAM) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Roller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989).
  • This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.
  • Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein.
  • the targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence.
  • the targeting sequence will be sufficiently near the 5' end of the D-SLAM desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.
  • the promoter and the targeting sequences can be amplified using PCR.
  • the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends.
  • the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.
  • the amplified promoter and targeting sequences are digested and ligated together. [0369]
  • the promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above.
  • the P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below. [0370]
  • the promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous D-SLAM sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous D-SLAM sequence.
  • the polynucleotides encoding D-SLAM may be administered along with other polynucleotides encoding other angiongenic proteins.
  • Angiogenic proteins include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.
  • the polynucleotide encoding D-SLAM contains a secretory signal sequence that facilitates secretion of the protein.
  • the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region.
  • the signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.
  • any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect.
  • This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipu ps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery.
  • a preferred method of local administration is by direct injection.
  • a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries.
  • Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.
  • compositions useful in systemic administration include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention.
  • Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site.
  • Preferred methods of systemic administration include intravenous injection, aerosol, oral and percutaneous (topical) delivery.
  • Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.
  • a lipophilic reagent e.g., DMSO
  • Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration.
  • the frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.
  • compositions of the present invention can be administered to any animal, preferably to mammals and birds.
  • Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.
  • SLAM can be used in assays to test for one or more biological activities. If D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, do exhibit activity in a particular assay, it is likely that D-SLAM may be involved in the diseases associated with the biological activity. Therefore, D-SLAM could be used to treat, diagnose, detect, and/or prevent the associated disease.
  • D-SLAM is a cell surface receptor homologous to members of the Secreted
  • Lymphocyte Activation Molecule (SLAM) family and thus should have activity similar to other SLAM family members.
  • D-SLAM may interact specifically with SLAM, with D-SLAM (a homotypic interaction), or other B- and T-cell receptor molecules on the surface of B- and T-cells to affect the activation, proliferation, survival, and/or differentiation of immune cells.
  • soluble D-SLAM may be an important costimulatory molecule for therapeutic uses or immune modulation.
  • Ligands such as antibodies, may mimic the action of soluble D-SLAM by binding to D-SLAM, SLAM, or other dendritic cell receptors.
  • D-SLAM inhibits the proliferation of B-cells. See, the experimental results shown in Examples 32-33, below.
  • D-SLAM and/or D-SLAM agonists can be used to inhibit the proliferation of B-cells.
  • D-SLAM and/or D-SLAM agonists would be useful in treating, preventing, diagnosing, detecting, and/or ameliorating diseases and/or disorders related to an overproliferation of B-cells.
  • D-SLAM antagonists can be used to promote the proliferation of B-cells.
  • D-SLAM antagonists would be useful in treating, preventing, diagnosing, detecting, and/or ameliorating diseases and/or disorders related to a reduced proliferation of B-cells.
  • Binding of D-SLAM induces the production of interferon-gamma from other cell types, particularly T- and B-cells (data not shown.)
  • the binding may occur through homotypic association with membrane bound D-SLAM, association with SLAM, or association with other T- or B-cell receptors.
  • Ligands, such as antibodies, may mimic the induction of interferon-gamma by soluble D-SLAM by binding to D-SLAM, SLAM, or other dendritic cell receptors.
  • this protein may also play a role in stimulating dendritic or antigen presenting cells.
  • a secreted form of D-SLAM containing the extracellular domain or the full-length form, may bind to and stimulate D-SLAM molecules located on the surface of dendritic or antigen-presenting cells in homotypic manner. Binding may also occur to SLAM, or other dendritic cell surface receptors. This binding may regulate the survival, proliferation, differentiation, activation or maturation of dendritic cells or antigen presenting cells, effecting antigen recognition and immune response.
  • D-SLAM may be useful as a therapeutic molecule. It could be used to control the proliferation, activation, maturation, survival, and/or differentiation of hematopoietic cells, in particular B- and T-cells. Particularly, D-SLAM may be a useful therapeutic to mediate immune modulation, and may influence the Th0-TH1-TH2 profile of a patient's immune system. For example, D-SLAM may drive immune response to the ThO- TH1 pathway.
  • This control of immune cells would be particularly important in the treatment, diagnosis, detection, and/or prevention of immune disorders, such as autoimmune diseases or immunosuppression (see below).
  • immune disorders such as autoimmune diseases or immunosuppression (see below).
  • treatment, diagnosis, detection, and/or prevention of immune disorders could be carried out using a secreted form of D-SLAM, gene therapy, or ex vivo applications.
  • inhibitors of D-SLAM either blocking antibodies or mutant forms, could modulate the expression of D-SLAM. These inhibitors may be useful to treat, diagnose, detect, and/or prevent diseases associated with the misregulation of D-SLAM, such as T cell lymphoma.
  • the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (e.g., D-SLAM polypeptides or anti-D-SLAM antibodies) that are associated with heterologous polypeptides or nucleic acids.
  • polypeptides of the invention e.g., D-SLAM polypeptides or anti-D-SLAM antibodies
  • the invention provides a method for delivering a therapeutic protein into the targeted cell.
  • the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.
  • a single stranded nucleic acid e.g., antisense or ribozymes
  • double stranded nucleic acid e.g., DNA that can integrate into the cell'
  • the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention (e.g., D-SLAM polypeptides or anti-D-SLAM antibodies) in association with toxins or cytotoxic prodrugs.
  • polypeptides of the invention e.g., D-SLAM polypeptides or anti-D-SLAM antibodies
  • toxin compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, cytotoxins (cytotoxic agents), or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death.
  • Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcm and cholera toxin.
  • radioisotopes known in the art
  • compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseu
  • Toxin also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213 Bi, or other radioisotopes such as, for example, 103 Pd, 133 Xe, 131 I, 68 Ge, 57 Co, 65 Zn, 85 Sr, 32 P, 35 S, 90 Y, 153 Sm, 153 Gd, 169 Yb, 51 Cr, 54 Mn, 75 Se, 113 Sn, 90 Yttrium, 117 Tin, 186 Rhenium, 166 Holmium, and 188 Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • alpha-emitters such as, for example, 213 Bi
  • radioisotopes such as, for example, 103 Pd, 133 Xe, 131 I, 68 Ge,
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5- fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (Et) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.,
  • cytotoxic prodrug is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound.
  • Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.
  • the invention also provides a method of treatment of an individual in need of an increased level of D- SLAM activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated D-SLAM polypeptide of the invention, or agonist thereof (e.g, an agonistic D-SLAM antibody), effective to increase the D-SLAM activity level in such an individual.
  • a pharmaceutical composition comprising an amount of an isolated D-SLAM polypeptide of the invention, or agonist thereof (e.g, an agonistic D-SLAM antibody), effective to increase the D-SLAM activity level in such an individual.
  • the invention also provides a method of treatment of an individual in need of an dereased level of D-SLAM activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated D- SLAM polypeptide of the invention, or antagonist thereof, effective to decrease the D-SLAM activity level in such an individual.
  • viruses are one example of an infectious agent that can cause disease or symptoms that can be treated by D-SLAM polynucleotides or polypeptides, or agonists of D- SLAM.
  • viruses include, but are not limited to the following DNA and RNA viruses and viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Dengue, EBV, HFV, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza A, Influenza B, and parainfluenza), Pap
  • Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, respiratory syncytial virus, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), Japanese B encephalitis, Junin, Chikungunya, Rift Valley fever, yellow fever, meningitis, opportunistic infections (e.g., AEDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia.
  • arthritis bronchiollitis
  • respiratory syncytial virus e.g., respiratory syncytial virus,
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used to treat, prevent, diagnose, and/or detect any of these symptoms or diseases.
  • D-SLAM polynucleotides, polypeptides, or agonists are used to treat, prevent, and/or diagnose: meningitis, Dengue, EBV, and/or hepatitis (e.g., hepatitis B).
  • hepatitis B e.g., hepatitis B
  • D-SLAM polynucleotides, polypeptides, or agonists are used to treat patients nonresponsive to one or more other commercially available hepatitis vaccines.
  • D-SLAM polynucleotides, polypeptides, or agonists are used to treat, prevent, and/or diagnose AEDS.
  • D-SLAM polynucleotides, polypeptides, agonists, and/or antagonists are used to treat, prevent, and/or diagnose patients with cryptosporidiosis.
  • bacterial or fungal agents that can cause disease or symptoms and that can be treated by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, include, but not limited to, the following Gram-Negative and Gram-positive bacteria and bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Cryptococcus neoformans, Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia (e.g., Borrelia burgdorferi, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, E.
  • Actinomycetales e.g., Corynebacterium, Mycobacterium, Norcardia
  • Enterobacteriaceae Klebsiella, Salmonella (e.g., Salmonella typhi, and Salmonella paratyphi), Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria (e.g, Listeria monocytogenes), Mycoplasmatales, Mycobacterium leprae, Vibrio cholerae, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Meisseria meningitidis, Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus (e.g., Heamophilus influenza type B), Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiace
  • bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., ADDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis (e.g., mengitis types A and B), Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used to treat, prevent, diagnose, and/or detect any of these symptoms or diseases.
  • D-SLAM polynucleotides, polypeptides, or antagonists thereof are used to treat, prevent, and/or diagnose: tetanus, Diptheria, botulism, and/or meningitis type B.
  • parasitic agents causing disease or symptoms that can be treated by
  • D-SLAM polynucleotides or polypeptides, or antagonists of D-SLAM include, but not limited to, the following families or class: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas and Sporozoans (e.g., Plasmodium virax, Plasmodium falciparium, Plasmodium malariae and Plasmodium ovale).
  • D-SLAM polynucleotides or polypeptides, or antagonists or antagonists of D-SLAM can be used to treat, prevent, diagnose, and'or detect any of these symptoms or diseases.
  • D-SLAM polynucleotides, polypeptides, or antagonists thereof are used to treat, prevent, and/or diagnose malaria.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose inner ear infection (such as, for example, otitis media), as well as other infections characterized by infection with Streptococcus pneumoniae and other pathogenic organisms.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists thereof are used to treat or prevent a disorder characterized by deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists thereof may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-bome infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or ' malignancies) including, but not limited to, CVED, other primary immune deficiencies, HFV W
  • CLL chronic myeloma
  • recurrent bronchitis sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pheumocystis carnii.
  • D-SLAM polynucleotides or polypeptides of the invention may be used to diagnose, prognose, treat or prevent one or more of the following diseases or disorders, or conditions associated therewith: primary immuodef ⁇ ciencies, immune-mediated thrombocytopenia, Kawasaki syndrome, bone marrow transplant (e.g., recent bone marrow transplant in adults or children), chronic B-cell lymphocytic leukemia, HEV infection (e.g., adult or pediatric HEV infection), chronic inflammatory demyelinating polyneuropathy, and post-transfusion purpura.
  • diseases or disorders, or conditions associated therewith include: primary immuodef ⁇ ciencies, immune-mediated thrombocytopenia, Kawasaki syndrome, bone marrow transplant (e.g., recent bone marrow transplant in adults or children), chronic B-cell lymphocytic leukemia, HEV infection (e.g., adult or pediatric HEV infection), chronic inflammatory demyelinating polyneuropathy, and post
  • D-SLAM polynucleotides or polypeptides of the invention may be used to diagnose, prognose, treat or prevent one or more of the following diseases, disorders, or conditions associated therewith, Guillain-Barre syndrome, anemia (e.g., anemia associated with parvovirus B19, patients with stable mutliple myeloma who are at high risk for infection (e.g., recurrent infection), autoimmune hemolytic anemia (e.g., warm-type autoimmune hemolytic anemia), thrombocytopenia (e.g, neonatal thrombocytopenia), and immune-mediated neutropenia), transplantation (e.g, cytamegalovirus (CMV)-negative recipients of CMV-positive organs), hypogammaglobulmemia (e.g., hypogammaglobulinemic neonates with risk factor for infection or morbidity), epilepsy (e.g, intractable epilepsy), system
  • anemia e.g., anemia associated with par
  • Additional preferred embodiments of the invention include, but are not limited to, the use of D-SLAM polypeptides, D-SLAM polynucleotides, and functional agonists and/or antagonists thereof, in the following applications:
  • an animal e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human
  • an animal e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human
  • an animal e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human
  • one or more antibodies e.g., IgG, IgA, IgM, and IgE
  • higher affinity antibody production e.g., IgG, IgA, IgM, and IgE
  • D-SLAM polypeptides of the invention and/or agonists thereof are administered to boost the immune system to produce decreased quantities of IgA.
  • D-SLAM polypeptides of the invention and/or agonists thereof are administered to inhibit the immune system to produce decreased quantities of IgM.
  • compositions of the invention may be administered prior to, concomitant with, and or after transplantation.
  • B cell immunodeficiencies that may be ameliorated or treated by administering D-SLAM antagonists of the invention include, but are not limited to, severe combined immunodeficiency (SCED)-X linked, SCED- autosomal, adenosine deaminase deficiency (ADA deficiency), X-linked agammaglobulmemia (XLA), Bruton's disease, congenital agammaglobulmemia, X-linked infantile agammaglobulinemia, acquired agammaglobulmemia, adult onset agammaglobulmemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulmemia, transient hypogammaglobulmemia of infancy, unspecified hypogammaglobulmemia, agammaglobulinemia, common variable immunodeficiency (CVED) (acquired), Wiskott-Al
  • D-SLAM antagonists may be used as agents to boost immunoresponsiveness among individuals having an acquired loss of B cell function.
  • Conditions resulting in an acquired loss of B cell function that may be ameliorated or treated by administering the D- SLAM antagonists of the invention include, but are not limited to, HEV Infection, AEDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).
  • CLL B cell chronic lymphocytic leukemia
  • D-SLAM antagonists may be used as agents to boost immunoresponsiveness among individuals having a temporary immune deficiency.
  • Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering D-SLAM antagonists include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, recovery from surgery.
  • TH2 humoral response
  • TH1 a humoral response
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists may be used to modulate IgE concentrations in vitro or in vivo.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof may be used to treat, prevent, and/or diagnose IgE-mediated allergic reactions.
  • allergic reactions include, but are not limited to, asthma, rhinitis, and eczema.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate selective IgA deficiency.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate ataxia-telangiectasia.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate common variable immunodeficiency.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate X-linked agammaglobulinemia.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate severe combined immunodeficiency (SCED).
  • SCED severe combined immunodeficiency
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate Wiskott-Aldrich syndrome.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate X-linked Ig deficiency with hyper IgM.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists or antagonists (e.g., anti-D-SLAM antibodies) thereof is administered to treat, prevent, and/or diagnose chronic myelogenous leukemia, acute myelogenous leukemia, leukemia, hystiocytic leukemia, monocytic leukemia (e.g., acute monocytic leukemia), leukemic reticulosis, Shilling Type monocytic leukemia, and/or other leukemias derived from monocytes and/or monocytic cells and/or tissues.
  • chronic myelogenous leukemia acute myelogenous leukemia, leukemia, hystiocytic leukemia, monocytic leukemia (e.g., acute monocytic leukemia), leukemic reticulosis, Shilling Type monocytic leukemia, and/or other leukemias derived from monocytes
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate monocytic leukemoid reaction, as seen, for example, with tuberculosis.
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof is administered to treat, prevent, diagnose, and/or ameliorate monocytic leukocytosis, monocytic leukopenia, monocytopenia, and/or monocytosis.
  • D-SLAM polynucleotides or polypeptides of the invention and/or anti-D-SLAM antibodies and/or agonists or antagonists thereof, are used to treat, prevent, detect, and/or diagnose primary B lymphocyte disorders and/or diseases, and/or conditions associated therewith.
  • D-SLAM polynucleotides, polypeptides, and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose diseases or disorders affecting or conditions associated with any one or more of the various mucous membranes of the body.
  • Such diseases or disorders include, but are not limited to, for example, mucositis, mucoclasis, mucocolitis, mucocutaneous leishmaniasis (such as, for example, American leishmaniasis, leishmaniasis americana, nasopharyngeal leishmaniasis, and New World leishmaniasis), mucocutaneous lymph node syndrome (for example, Kawasaki disease), mucoenteritis, mucoepidermoid carcinoma, mucoepidermoid tumor, mucoepithelial dysplasia, mucoid adenocarcinoma, mucoid degeneration, myxoid degeneration; myxomatous degeneration; myxomatosis, mucoid medial degeneration (for example, cystic medial necrosis), mucolipidosis (including, for example, mucolipidosis I, mucolipidosis II, mucolipidosis EH, and mucolipidosis EV), mucolysis disorders, mucomembr
  • D-SLAM polynucleotides, polypeptides, and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose mucositis, especially as associated with chemotherapy.
  • D-SLAM polynucleotides, polypeptides, and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose diseases or disorders affecting or conditions associated with sinusitis.
  • An additional condition, disease or symptom that can be treated, prevented, and/or diagnosed by D-SLAM polynucleotides or polypeptides, or antagonists of D-SLAM, is osteomyelitis.
  • An additional condition, disease or symptom that can be treated, prevented, and/or diagnosed by D-SLAM polynucleotides or polypeptides, or antagonists of D-SLAM, is endocarditis.
  • D-SLAM antagonists may be used as a therapy for B cell malignancies such as
  • ALL Hodgkins disease, non-Hodgkins lymphoma, Chrome lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, and EBV-transformed diseases, as well as a therapy for chronic hypergammaglobulinemeia evident in such diseases as monoclonalgammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonalgammopathies, and plasmacytomas.
  • MGUS monoclonalgammopathy of undetermined significance
  • Waldenstrom's disease related idiopathic monoclonalgammopathies
  • plasmacytomas a therapy for chronic hypergammaglobulinemeia evident in such diseases as monoclonalgammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonalgammopathies, and plasmacytomas.
  • MGUS monoclonalgammopathy of undetermined significance
  • Waldenstrom's disease related idi
  • D-SLAM polypeptides or polynucleotides of the invention, or antagonists may be used to modulate IgE concentrations in vitro or in vivo.
  • administration of D-SLAM polypeptides or polynucleotides of the invention, or antagonists thereof may be used to treat, prevent, and/or diagnose IgE-mediated allergic reactions including, but not limited to, asthma, rhinitis, and eczema.
  • hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human, hi specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.
  • the agonists and antagonists may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as described herein.
  • a pharmaceutically acceptable carrier e.g., as described herein.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof may be used to treat, prevent, and/or diagnose various immune system-related disorders and/or conditions associated with these disorders, in mammals, preferably humans.
  • Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of D- SLAM polynucleotides or polypeptides of the invention and/or agonists and/or agonists thereof that can inhibit an immune response, particularly the proliferation of B cells and/or the production of immunoglobulins, may be an effective therapy in treating and/or preventing autoimmune disorders.
  • D-SLAM agonists of the invention are used to treat, prevent, and/or diagnose an autoimmune disorder.
  • Autoimmune disorders and conditions associated with these disorders include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g, IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Scoenlein purpura), Reiter's Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, Guillain-Bar
  • autoimmune thyroiditis i.e., Hashimoto's thyroiditis
  • hypothyroidism i.e., Hashimoto's thyroiditis
  • systemic lupus erhythematosus often characterized, e.g., by circulating and locally generated immune complexes
  • Goodpasture's syndrome characterized, e.g., by anti-basement membrane antibodies
  • Pemphigus often characterized, e.g., by epidermal acantholytic antibodies
  • Receptor autoimmunities such as, for example, (a) Graves' Disease (often characterized, e.g., by TSH receptor antibodies), (b) Myasthenia Gravis (often characterized, e.g., by acetylcholine receptor antibodies),
  • Additional autoimmune disorders that are probable that may be treated, prevented, and/or diagnosed with the compositions of the invention include, but are not limited to, rheumatoid arthritis (often characterized, e.g., by immune complexes in joints), schleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis/dermatomyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.
  • Additional autoimmune disorders that are possible that may be treated, prevented, and/or diagnosed with the compositions of the invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitchondrial antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM antibodies to IgE), atopic dermatitis
  • the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, and/or diagnosed using anti-D-SLAM antibodies.
  • rheumatoid arthritis is treated, prevented, and/or diagnosed using D-SLAM and or other agonists of the invention.
  • lupus is treated, prevented, and/or diagnosed using D-SLAM and/or other agonists of the invention.
  • nephritis associated with lupus is treated, prevented, and/or diagnosed using D-SLAM and or other agonists of the invention.
  • allergic reactions and conditions such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof.
  • these molecules can be used to treat, prevent, and or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof may also be used to treat, prevent, and/or diagnose organ rejection or graft-versus-host disease (GVHD) and/or conditions associated therewith.
  • Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response.
  • an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof, that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof may also be used to modulate inflammation.
  • D-SLAM polynucleotides or polypeptides of the invention and or agonists and/or antagonists thereof may inhibit the proliferation and differentiation of cells involved in an inflammatory response.
  • anti-D-SLAM antibodies of the invention are used to treat, prevent, modulate, detect, and/or diagnose inflammation.
  • anti-D-SLAM antibodies of the invention are used to treat, prevent, modulate, detect, and/or diagnose inflamatory disorders.
  • anti-D-SLAM antibodies of the invention are used to treat, prevent, modulate, detect, and/or diagnose allergy and/or hypersensitivity.
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose chronic obstructive pulmonary disease (COPD).
  • COPD chronic obstructive pulmonary disease
  • D-SLAM polynucleotides or polypeptides of the invention and/or agonists and/or antagonists thereof are used to treat, prevent, and/or diagnose fibroses and conditions associated with fibroses, such as, for example, but not limited to, cystic fibrosis (including such fibroses as cystic fibrosis of the pancreas, Clarke- Hadfield syndrome, fibrocystic disease of the pancreas, mucoviscidosis, and viscidosis), endomyocardial fibrosis, idiopathic retroperitoneal fibrosis, leptomeningeal fibrosis, mediastinal fibrosis, nodular subepidermal fibrosis, pericentral fibrosis, perimuscular fibrosis, pipestem fibrosis, replacement fibrosis, subadventitial fibrosis, and Symmers' clay pipestem fibrosis.
  • cystic fibrosis including such fibroses as cystic
  • Diseases associated with increased cell survival, or the inhibition of apoptosis include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to, colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders (such as systemic lupus erythematosus and immune-related
  • D-SLAM polynucleotides or polypeptides of the invention abd/or agonists or antagonists thereof, are used to treat, prevent, and/or diagnose autoimmune diseases and/or inhibit the growth, progression, and/or metastasis of cancers, including, but not limited to, those cancers disclosed herein, such as, for example, lymphocytic leukemias (including, for example, MLL and chronic lymphocytic leukemia (CLL)) and follicular lymphomas.
  • lymphocytic leukemias including, for example, MLL and chronic lymphocytic leukemia (CLL)
  • CLL chronic lymphocytic leukemia
  • D-SLAM polynucleotides or polypeptides of the invention are used to activate, differentiate or proliferate cancerous cells or tissue (e.g., B cell lineage related cancers (e.g., CLL and MLL), lymphocytic leukemia, or lymphoma) and thereby render the cells more vulnerable to cancer therapy (e.g., chemotherapy or radiation therapy).
  • cancerous cells or tissue e.g., B cell lineage related cancers (e.g., CLL and MLL), lymphocytic leukemia, or lymphoma
  • cancer therapy e.g., chemotherapy or radiation therapy.
  • D-SLAM polynucleotides or polypeptides of the invention or agonists or antagonists thereof are used to inhibit the growth, progression, and/or metastases of malignancies and related disorders such as leukemia .
  • acute leukemias e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia
  • chronic leukemias e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia
  • polycythemia vera e.g., Hodgkin's disease and non-Hodgkin's disease
  • multiple myeloma Waldenstrom's macroglobulinemia
  • heavy chain disease e.g., Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as f ⁇ brosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosar
  • D-SLAM polynucleotides or polypeptides of the invention include ADDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration); myelodysplastic syndromes (such as aplastic anemia), ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), toxin- induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.
  • ADDS Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration
  • myelodysplastic syndromes such as aplastic anemia
  • ischemic injury such as that caused by myocardial infarction, stroke and reperfusion injury
  • toxin- induced liver disease such as that caused by alcohol
  • septic shock cachexia and anorexia.
  • Polynucleotides and/or polypeptides of the invention and/or agonists and/or antagonists thereof are useful in the diagnosis and treatment or prevention of a wide range of diseases and/or conditions. Such diseases and conditions include, but are not limited to.
  • cancer e.g., immune cell related cancers, breast cancer, prostate cancer, ovarian cancer, follicular lymphoma, cancer associated with mutation or alteration of p53, brain tumor, bladder cancer, uterocervical cancer, colon cancer, colorectal cancer, non-small cell carcinoma of the lung, small cell carcinoma of the lung, stomach cancer, etc.
  • lymphoproliferative disorders e.g., lymphadenopathy
  • microbial (e.g., viral, bacterial, etc.) infection e.g., HFV-1 infection, HEV-2 infection, herpesvirus infection (including, but not limited to, HSV-1, HSV-2, CMV, VZV, XTHV-6, HHV-7, EBV), adenovirus infection, poxvirus infection, human papilloma virus infection, hepatitis infection (e.g., HAV, HBV, HCV, etc.), Helicobacter pylori infection, invasive Staphylococcia, etc
  • osteomyelodysplasia e.g., aplastic anemia, etc.
  • liver disease e.g., acute and chronic hepatitis, liver injury, and cirrhosis
  • autoimmune disease e.g., multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, immune complex glomerulonephritis, autoimmune diabetes, autoimmune thrombocytopenic purpura, Grave's disease, Hashimoto's thyroiditis, etc.
  • cardiomyopathy e.g., dilated cardiomyopathy
  • diabetes diabetic complications (e.g., diabetic nephropathy, diabetic neuropathy, diabetic retinopathy), influenza, asthma, psoriasis, glomerulonephritis, septic shock, and ulcerative colitis.
  • Polynucleotides and/or polypeptides of the invention and/or agonists and/or antagonists thereof are useful in promoting angiogenesis, wound healing (e.g., wounds, burns, and bone fractures). Polynucleotides and/or polypeptides of the invention and/or agonists and/or antagonists thereof are also useful as an adjuvant to enhance immune responsiveness to specific antigen, anti-viral immune responses.
  • polynucleotides and/or polypeptides of the invention and or agonists and/or antagonists thereof are useful in regulating (i.e., elevating or reducing) immune response.
  • polynucleotides and/or polypeptides of the invention may be useful in preparation or recovery from surgery, trauma, radiation therapy, chemotherapy, and transplantation, or may be used to boost immune response and/or recovery in the elderly and immunocompromised individuals.
  • polynucleotides and/or polypeptides of the invention and/or agonists and/or antagonists thereof are useful as immunosuppressive agents, for example in the treatment or prevention of autoimmune disorders, hi specific embodiments, polynucleotides and/or polypeptides of the invention are used to treat or prevent chronic inflammatory, allergic or autoimmune conditions, such as those described herein or are otherwise known in the art.
  • treatment using D-SLAM polynucleotides or polypeptides, and/or agonists or antagonists of D-SLAM could either be by administering an effective amount of D-SLAM polypeptide of the invention, or agonist or antagonist thereof, to the patient, or by removing cells from the patient, supplying the cells with D-SLAM polynucleotide, and returning the engineered cells to the patient (ex vivo therapy).
  • D-SLAM polypeptide or polynucleotide can be used as an adjuvant in a vaccine to raise an immune response against infectious disease.
  • D-SLAM polynucleotides or polypeptides or D-SLAM agonists or antagonists e.g., anti-D-SLAM antibodies
  • D-SLAM agonists or antagonists e.g., anti-D-SLAM antibodies
  • Immunodeficiencies that may be treated, prevented, diagnosed, and/or prognosed with the D-SLAM polynucleotides or polypeptides or D-SLAM agonists or antagonists (e.g., anti-D-SLAM antibodies) of the invention, include, but are not limited to one or more immunodeficiencies selected from: severe combined immunodeficiency (SCED)- X linked, SCED-autosomal, adenosine deaminase deficiency (ADA deficiency), X-linked agammaglobulinemia (XLA), Bruton's disease, congenital agammaglobulinemia, X-linked infantile agammaglobulinemia, acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, transient hypogammaglobulmemia of infancy, un
  • SLAM may be useful in treating, diagnosing, detecting, and/or preventing deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells.
  • Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells.
  • the etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used as a marker or detector of a particular immune system disease or disorder.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used as a marker or detector of a particular immune system disease or disorder.
  • SLAM may be useful in treating, diagnosing, detecting, and/or preventing deficiencies or disorders of hematopoietic cells.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat, diagnose, detect, and/or prevent those disorders associated with a decrease in certain (or many) types hematopoietic cells.
  • immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g.
  • agammaglobulinemia agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HEV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCEDs), Wiskott- Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.
  • SCEDs severe combined immunodeficiency
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation).
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM could be used to treat, diagnose, detect, and/or prevent blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes.
  • blood coagulation disorders e.g., afibrinogenemia, factor deficiencies
  • blood platelet disorders e.g. thrombocytopenia
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting, important in the treatment, diagnosis, detection, and/or prevention of heart attacks (infarction), strokes, or scarring.
  • SLAM may also be useful in treating, diagnosing, detecting, and/or preventing autoimmune disorders.
  • Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of D- SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T- cells, may be an effective therapy in preventing autoimmune disorders.
  • autoimmune disorders that can be treated, diagnosed, detected, and/or prevented include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.
  • D-SLAM polynucleotides or polypeptides may also be treated, diagnosed, detected, and or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM.
  • these molecules can be used to treat, diagnose, detect, and/or prevent anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
  • SLAM may also be used to treat, diagnose, detect, and/or prevent organ rejection or graft- versus-host disease (GVHD).
  • Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response.
  • an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues.
  • the administration of D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells may be an effective therapy in preventing organ rejection or GVHD.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may also be used to modulate inflammation.
  • D- SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may inhibit the proliferation and differentiation of cells involved in an inflammatory response.
  • These molecules can be used to treat, diagnose, detect, and/or prevent inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)
  • infection e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)
  • ischemia-reperfusion injury e.g., endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of
  • SLAM can be used to treat, diagnose, detect, and/or prevent hyperproliferative disorders, including neoplasms.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may inhibit the proliferation of the disorder through direct or indirect interactions.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D- SLAM may proliferate other cells which can inhibit the hyperproliferative disorder.
  • hyperproliferative disorders can be treated, diagnosed, detected, and/or prevented.
  • This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.
  • decreasing an immune response may also be a method of treating, diagnosing, detecting, and/or preventing hyperproliferative disorders, such as a chemotherapeutic agent.
  • Examples of hyperproliferative disorders that can be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.
  • neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin
  • hyperproliferative disorders can also be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM.
  • hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above. Cardiovascular Disorders
  • SLAM encoding D-SLAM may be used to treat, diagnose, detect, and/or prevent cardiovascular disorders, including peripheral artery disease, such as limb ischemia.
  • cardiovascular disorders include cardiovascular abnormalities, such as arterio- arterial fistula, arteriovenous fistula, cerebral arteriovenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome.
  • Congenital heart defects include aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot, transposition of great vessels, double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, trilogy of Fallot, ventricular heart septal defects.
  • Cardiovascular disorders also include heart disease, such as arrhythmias, carcinoid heart disease, high cardiac output, low cardiac * output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post- infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.
  • heart disease such as arrhythmias, carcinoid heart disease, high cardiac output, low
  • Arrhythmias include sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaim-type pre- excitation syndrome, Wolff-Parkinson- White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation.
  • Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, ectopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.
  • Heart valve disease include aortic valve insufficiency, aortic valve stenosis, hear murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, and tricuspid valve stenosis.
  • Myocardial diseases include alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, myocardial reperfusion injury, and myocarditis.
  • Myocardial ischemias include coronary disease, such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
  • coronary disease such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
  • Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-
  • Trenaunay-Weber Syndrome Sturge- Weber Syndrome,. angioneurotic edema, aortic diseases,
  • Aneurysms include dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.
  • Arterial occlusive diseases include arteriosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.
  • Cerebrovascular disorders include carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformation, cerebral artery diseases, cerebral embolism and thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.
  • Embolisms include air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms.
  • Thrombosis include coronary thrombosis, hepatic vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.
  • Ischemia includes cerebral ischemia, ischemic colitis, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfusion injuries, and peripheral limb ischemia.
  • Vasculitis includes aortitis, arteritis, Behcet's Syndrome, Churg- Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch purpura, allergic cutaneous vasculitis, and Wegener's granulomatosis.
  • SLAM are especially effective for the treatment, diagnosis, detection, and/or prevention of critical limb ischemia and coronary disease.
  • administration of D- SLAM polynucleotides and polypeptides to an experimentally induced ischemia rabbit hindlimb may restore blood pressure ratio, blood flow, angiographic score, and capillary density.
  • D-SLAM polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. D-SLAM polypeptides may be administered as part of a pharmaceutical composition, described in more detail below. Methods of delivering D-SLAM polynucleotides are described in more detail herein. Anti-Angiogenesis Activity
  • angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail. Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non- neoplastic diseases.
  • a number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al, Biotech. 9:630-634 (1991); Folkman et al, N. Engl. J. Med., 533:1757-1763 (1995); Auerbach et al, J. Microvasc. Res. 29:401-411 (1985); Folkman, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203 (1985); Patz, Am. J. Opthalmol. :715-743 (1982); and Folkman et al, Science 221:719-725 (1983).
  • the present invention provides for treatment, diagnosis, detection, and/or prevention of diseases or disorders associated with neovascularization by administration of the D-SLAM polynucleotides and/or polypeptides of the invention, as well as agonists or antagonists of D-SLAM.
  • Malignant and metastatic conditions which can be treated, diagnosed, detected, and/or prevented with the polynucleotides and polypeptides, or agonists or antagonists of the invention include, but are not limited to, malignancies, solid tumors, and cancers described herein and otherwise known in the art (for a review of such disorders, see Fishman et al, Medicine, 2d Ed., J. B.
  • Ocular disorders associated with neovascularization which can be treated, diagnosed, detected, and/or prevented with the D-SLAM polynucleotides and polypeptides of the present invention (including D-SLAM agonists and/or antagonists) include, but are not limited to: neovascular glaucoma, diabetic retinopathy, retinoblastoma, retrolental f ⁇ broplasia, uveitis, retinopathy of prematurity macular degeneration, corneal graft neovascularization, as well as other eye inflammatory diseases, ocular tumors and diseases associated with choroidal or iris neovascularization. See, e.g., reviews by Waltman et al, Am. J. Ophthal. 55:704-710 (1978) and Gartner et al, Surv. Ophthal. 22:291-312 (1978).
  • disorders which can be treated, diagnosed, detected, and/or prevented with the D-SLAM polynucleotides and polypeptides of the present invention include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osier-Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.
  • disorders and/or states which can be treated, diagnosed, detected, and/or prevented with the D-SLAM polynucleotides and polypeptides of the present invention (including D-SLAM agonist and/or antagonists) include, but are not limited to, solid tumors, blood born tumors such as leukemias, tumor metastasis, Kaposi's sarcoma, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, rheumatoid arthritis, psoriasis, ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, and uvietis, delayed wound healing, endometriosis, vas
  • D-SLAM polynucleotides or polypeptides include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome,
  • D-SLAM polynucleotides, polypeptides, and/or antagonists of the invention are used to inhibit growth, progression, and/or metasis of cancers, in particular those listed above.
  • Additional diseases or conditions associated with increased cell survival that could be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, ⁇ acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldensfrom's macroglobulinemia, heavy chain
  • D-SLAM polynucleotides or polypeptides include AEDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v.
  • AEDS AEDS
  • neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration and brain tumor or prior associated disease
  • autoimmune disorders such
  • ischemic injury such as that caused by myocardial infarction, stroke and reperfusion injury
  • liver injury e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer
  • toxin-induced liver disease such as that caused by alcohol
  • septic shock cachexia and anorexia.
  • D-SLAM polynucleotides or polypeptides as well as agonists or antagonists of D-SLAM, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associted with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used to promote dermal reestablishment subsequent to dermal loss
  • D-SLAM polynucleotides or polypeptides as well as agonists or antagonists of
  • D-SLAM could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed.
  • D-SLAM polynucleotides or polypeptides will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small infesting, and large intestine.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type U pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract.
  • D-SLAM polynucleotides or polypeptides, agonists or antagonists of D-SLAM may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.
  • D-SLAM could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections.
  • D-SLAM porynuc ⁇ eotides or polypeptides, as well as agonists or antagonists of D-SLAM may have a cytoprotective effect on the small intestine mucosa.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.
  • D-SLAM polynucleotides or polypeptides as well as agonists or antagonists of
  • D-SLAM could further be used in full regeneration of skin in full and partial thickness skin defects, including bums, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment, diagnosis, detection, and/or prevention of other skin defects such as psoriasis.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D- SLAM could be used to treat, diagnose, detect, and/or prevent epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions.
  • D-SLAM polynucleotides or polypeptides could also be used to treat, diagnose, detect, and/or prevent gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly.
  • Inflamamatory bowel diseases such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively.
  • D-SLAM polynucleotides or polypeptides could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease.
  • Treatment, diagnosis, detection, and/or prevention with D-SLAM polynucleotides or polypeptides, agonists or antagonists of D-SLAM is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used to treat, diagnose, detect, and/or prevent diseases associate with the under expression of D- SLAM.
  • D-SLAM polynucleotides or polypeptides could be used to prevent and heal damage to the lungs due to various pathological states.
  • a growth factor such as D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM, which could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat, diagnose, detect, and/or prevent acute or chronic lung damage.
  • emphysema which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated, diagnosed, detected, and/or prevented using D-SLAM polynucleotides or polypeptides, agonists or antagonists of D-SLAM.
  • D-SLAM polynucleotides or polypeptides could be used to stimulate the proliferation of and differentiation of type El pneumocytes, which may help treat, diagnose, detect, and/or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used to stimulate the proliferation of and differentiation of type El pneumocytes, which may help treat, diagnose, detect, and/or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.
  • D-SLAM could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate, treat, diagnose, detect, and/or prevent liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).
  • liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used treat, diagnose, detect, and/or prevent the onset of diabetes mellitus.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease.
  • D-SLAM polynucleotides or polypeptides, as well as agonists or antagonists of D-SLAM could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.
  • SLAM can be used to treat, diagnose, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated, diagnosed, detected, and/or prevented.
  • the immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may also directly inhibit the infectious agent, without necessarily eliciting an immune response.
  • Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM.
  • viruses include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-EI, Lentivirus), and Tobo
  • Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AEDS), pneumonia, Burkitt's Lymphoma, chickenpox , hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used to treat, diagnose, detect, and/or prevent any of these symptoms or diseases.
  • bacterial or fungal agents that can cause disease or symptoms and that can be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legion
  • bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AEDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cell
  • parasitic agents causing disease or symptoms that can be treated, diagnosed, detected, and/or prevented by D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM can be used to treat, diagnose, detect, and/or prevent any of these symptoms or diseases.
  • treatment, diagnosis, detection, and/or prevention using D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM could either be by administering an effective amount of D-SLAM polypeptide to the patient, or by removing cells from the patient, supplying the cells with D-SLAM polynucleotide, and returning the engineered cells to the patient (ex vivo therapy).
  • the D-SLAM polypeptide or polynucleotide can be used as an antigen in a vaccine to raise an immune response against infectious disease.
  • SLAM can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues.
  • the regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.
  • Tissues that could be regenerated using the present invention include organs
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, of the present invention could also be used prophylactically in an effort to avoid damage.
  • Specific diseases that could be treated, diagnosed, detected, and/or prevented include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects.
  • a further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.
  • nerve and brain tissue could also be regenerated by using D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, to proliferate and differentiate nerve cells.
  • Diseases that could be treated, diagnosed, detected, and/or prevented using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke).
  • diseases associated with peripheral nerve injuries e.g., resulting from chemotherapy or other medical therapies
  • peripheral neuropathy e.g., resulting from chemotherapy or other medical therapies
  • localized neuropathies e.g., central nervous system diseases
  • central nervous system diseases e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome
  • SLAM may have chemotaxis activity.
  • a chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation.
  • the mobilized cells can then fight off and/or heal the particular trauma or abnormality.
  • SLAM may increase chemotaxic activity of particular cells.
  • These chemotactic molecules can then be used to treat, diagnose, detect, and/or prevent inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body.
  • chemotaxic molecules can be used to treat, diagnose, detect, and/or prevent wounds and other trauma to tissues by attracting immune cells to the injured location.
  • D-SLAM could also attract fibroblasts, which can be used to treat, diagnose, detect, and/or prevent wounds.
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may inhibit chemotactic activity. These molecules could also be used to treat, diagnose, detect, and/or prevent disorders. Thus, D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM, could be used as an inhibitor of chemotaxis.
  • D-SLAM polypeptides may be used to screen for molecules that bind to D-
  • SLAM or for molecules to which D-SLAM binds.
  • the binding of D-SLAM and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the D-SLAM or the molecule bound.
  • Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors),or small molecules.
  • the molecule is closely related to the natural ligand of D-SLAM, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic.
  • D-SLAM natural ligand of D-SLAM
  • the molecule can be closely related to the natural receptor to which D-SLAM binds, or at least, a fragment of the receptor capable of being bound by D-SLAM (e.g., active site). In either case, the molecule can be rationally designed using known techniques.
  • the screening for these molecules involves producing appropriate cells which express D-SLAM, either as a secreted protein or on the cell membrane.
  • Preferred cells include cells from mammals, yeast, Drosophila, or E. coli.
  • Cells expressing D- SLAM(or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either D-SLAM or the molecule.
  • the assay may simply test binding of a candidate compound toD-SLAM, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to D-SLAM.
  • the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures.
  • the assay may also simply comprise the steps of mixing a candidate compound with a solution containing D-SLAM, measuring D-SLAM/molecule activity or binding, and comparing the D-SLAM/molecule activity or binding to a standard.
  • an ELISA assay can measure D-SLAM level or activity in a sample
  • the antibody can measure D-SLAM level or activity by either binding, directly or indirectly, to D-SLAM or by competing with D-SLAM for a substrate.
  • the receptor to which D-SLAM binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)).
  • expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NEH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the polypeptides.
  • Transfected cells which are grown on glass slides are exposed to the polypeptide of the present invention, after they have been labelled.
  • the polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase.
  • the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.
  • DNA shuffling may be employed to modulate the activities of D-SLAM thereby effectively generating agonists and antagonists of D-SLAM. See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458, and Patten, P. A., et al, Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson, L.
  • alteration of D-SLAM polynucleotides and corresponding polypeptides may be achieved by DNA shuffling.
  • DNA shuffling involves the assembly of two or more DNA segments into a desired D-SLAM molecule by homologous, or site-specific, recombination.
  • D-SLAM polynucleotides and corresponding polypeptides may be alterred by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination, h another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of D-SLAM may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
  • the heterologous molecules are Secreted Lymphocyte Activation Molecule (SLAM) family members.
  • the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor (FGF), TGF-beta, bone morphogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dpp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS, inhibin-alpha, TGF-betal, TGF-beta2, TGF-beta3, TGF-beta5, and glial-derived neurotrophic factor (GDNF).
  • PDGF platelet-derived growth factor
  • IGF-I insulin-like growth factor
  • TGF transforming growth factor
  • EGF epidermal growth factor
  • FGF fibroblast growth factor
  • TGF-beta bone
  • Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the D-SLAM polypeptide.
  • the biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
  • this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide of the present invention.
  • An example of such an assay comprises combining a mammalian fibroblast cell, a the polypeptide of the present invention, the compound to be screened and [ H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate.
  • a control assay may be performed in the absence of the compound to be screened and compared to the amount of fibroblast proliferation in the presence of the compound to determine if the compound stimulates proliferation by detennining the uptake of [ H] thymidine in each case.
  • the amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of [ 3 H] thymidine. Both agonist and antagonist compounds may be identified by this procedure.
  • a mammalian cell or membrane preparation expressing a receptor for a polypeptide of the present invention is incubated with a labeled polypeptide of the present invention in the presence of the compound.
  • the ability of the compound to enhance or block this interaction could then be measured.
  • the response of a known second messenger system following interaction of a compound to be screened and the D-SLAM receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist.
  • second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.
  • the molecules discovered using these assays can be used to treat, diagnose, detect, and/or prevent disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the D-SLAM/molecule.
  • the assays can discover agents which may inhibit or enhance the production of D-SLAM from suitably manipulated cells or tissues. Therefore, the invention includes a method of identifying compounds which bind to D-SLAM comprising the steps of: (a) incubating a candidate binding compound with D- SLAM; and (b) determining if binding has occurred.
  • the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with D-SLAM, (b) assaying a biological activity , and (b) determining if a biological activity of D-SLAM has been altered.
  • antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ED NO:l, or the complementary strand thereof, and/or to nucleotide sequences contained in the deposited clone 209623.
  • antisense sequence is generated internally by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991). Oligodeoxynucleotides as Anitsense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).
  • Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation.
  • Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research 10-1573 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1300 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.
  • the 5' coding portion of a polynucleotide that encodes the mature polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
  • a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor.
  • the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
  • the D-SLAM antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence.
  • a vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA) of the invention.
  • RNA antisense nucleic acid
  • Such a vector would contain a sequence encoding the D-SLAM antisense nucleic acid.
  • Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA.
  • Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others know in the art, used for replication and expression in vertebrate cells.
  • Expression of the sequence encoding D-SLAM, or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells.
  • Such promoters can be inducible or constitutive.
  • Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981), the regulatory sequences of the metallothionein gene (Brinster, et al., Nature 296:39-42 (1982)), etc.
  • the antisense nucleic acids of the invention comprise, or alternatively consist of, a sequence complementary to at least a portion of an RNA transcript of a D-SLAM gene.
  • absolute complementarity although preferred, is not required.
  • a sequence "complementary to at least a portion of an RNA,” referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, fonning a stable duplex; in the case of double stranded D-SLAM antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
  • the ability to hybridize will depend on both the of complementarity and the length of the antisense nucleic acid Generally, the larger the hybridizing nucleic acid, the more base mismatches with a D- SLAM RNA it may contain and still form a stable duplex (or triplex as the case may be).
  • One skilled in the art can ascertain a tolerable of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
  • oligonucleotides complementary to either the 5'- or 3'- non- translated, non-coding regions of D-SLAM shown in Figures 1 A-B could be used in an antisense approach to inhibit translation of endogenous D-SLAM mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon.
  • Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of D-SLAM mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides. '
  • the polynucleotides of the invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
  • the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc.
  • the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A.
  • the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
  • the antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine,
  • the antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.
  • the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
  • the antisense oligonucleotide is an a-anomeric oligonucleotide.
  • An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al, 1987, Nucl. Acids Res. 15:6625-6641).
  • the oligonucleotide is a 2'-0- methylribonucleotide (frioue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (hioue et al., 1987, FEBS Lett. 215:327-330).
  • Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.).
  • an automated DNA synthesizer such as are commercially available from Biosearch, Applied Biosystems, etc.
  • phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209)
  • methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
  • antisense nucleotides complementary to the D-SLAM coding region sequence could be used, those complementary to the transcribed untranslated region are most preferred.
  • Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published October 4, 1990; Sarver et al, Science 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy D-SLAM mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'.
  • hammerhead ribozymes The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, Nature 334:585-591 (1988).
  • the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the D-SLAM mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non- functional mRNA transcripts.
  • the ribozymes of the invention can be composed of modified oligonucleotides (e.g.
  • DNA constructs encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA.
  • a preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol Efl or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous D-SLAM messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
  • Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects of the polypeptides of the present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth.
  • the antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention of the mitogenic activity of the polypeptides of the present invention may also be desirous in cases such as restenosis after balloon angioplasty.
  • the antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.
  • the antagonist/agonist may also be employed to treat, diagnose, detect, and/or prevent the diseases described herein.
  • the invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind D-SLAM polypeptides, and the D-SLAM binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists of D-SLAM polypeptides. Such agonists and antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below.
  • This method comprises the steps of: contacting D-SLAM polypeptides or D-SLAM-like polypeptides with a plurality of molecules; and identifying a molecule that binds the D-SLAM polypeptides or D-SLAM-like polypeptides.
  • the step of contacting D-SLAM polypeptides or D-SLAM-like polypeptides with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing D-SLAM polypeptides or D-SLAM-like polypeptides on a solid support and bringing a solution of the plurality of molecules in contact with the immobilized D-SLAM polypeptides or D-SLAM-like polypeptides. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised of the immobilized D-SLAM polypeptides or D-SLAM-like polypeptides.
  • the molecules having a selective affinity for the D-SLAM polypeptides or D-SLAM-like polypeptides can then be purified by affinity selection.
  • affinity selection The nature of the solid support, process for attachment of the D- SLAM polypeptides or D-SLAM-like polypeptides to the solid support, solvent, and conditions of the affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.
  • the individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage).
  • D-SLAM polypeptides or D-SLAM-like polypeptides can then be "probed" by the D-SLAM polypeptides or D-SLAM-like polypeptides, optionally in the presence of an inducer should one be required for expression, to determine if any selective affinity interaction takes place between the D-SLAM polypeptides or D-SLAM-like polypeptides and the individual clone.
  • the polypeptides Prior to contacting the D-SLAM polypeptides or D-SLAM-like polypeptides with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience.
  • a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon.
  • positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA construct encoding a polypeptide having a selective affinity for D-SLAM polypeptides or D- SLAM-like polypeptides.
  • the amino acid sequence of the polypeptide having a selective affinity for the D-SLAM polypeptides or D-SLAM-like polypeptides can be determined directly by conventional means or the coding sequence of the DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy.
  • Such a wash step may be particularly desirable when the D-SLAM polypeptides or D-SLAM-like polypeptides or the plurality of polypeptides is bound to a solid support.
  • the plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind D-SLAM polypeptides.
  • diversity libraries such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind D-SLAM polypeptides.
  • Many libraries are known in the art that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and in vitro translation-based libraries.
  • a benzodiazepine library see e.g., a benzodiazepine library (see e.g., a benzodiazepine library (see e.g., a benzodiazepine library (see e.g., a benzodiazepine library (see e.g., a benzodiazepine library (see e.g., a benzodiazepine library (see e.g.,
  • Ecker and Crooke 1995, Bio/Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta- mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.
  • Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers.
  • Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine structure.
  • Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and morpholinos.
  • Peptoids peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries.
  • the first non-peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility.
  • Screening the libraries can be accomplished by any of a variety of commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Pa ⁇ nley and Smith, 1989, Adv. Exp. Med. Biol. 251:215-218; Scott and Smith, 1990, Science 249:386-390; Fowlkes et al., 1992; BioTechniques 13:422-427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci.
  • SLAM polypeptides can be carried out by contacting the library members with a D-SLAM polypeptides or D-SLAM-like polypeptides immobilized on a solid phase and harvesting those library members that bind to the D-SLAM polypeptides or D-SLAM-like polypeptides.
  • screening methods termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992, BioTechniques 13:422-427; PCT Publication No. WO 94/18318; and in references cited herein.
  • the two-hybrid system for selecting interacting proteins in yeast can be used to identify molecules that specifically bind to D- SLAM polypeptides or D-SLAM-like polypeptides.
  • the D-SLAM binding molecule is a polypeptide
  • the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries.
  • bias is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity of the resulting collection of molecules, in this case peptides.
  • a truly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position of the peptide is the same for all 20 amino acids.
  • a bias can be introduced into the library, however, by specifying, for example, that a lysine occur every fifth amino acid or that positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine.
  • many types of biases can be contemplated, and the present invention is not restricted to any particular bias.
  • the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA construct comprising a lambda phage vector with a DNA insert.
  • the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids.
  • a D-SLAM binding polypeptide has in the range of 15-
  • the selected D-SLAM binding polypeptide can be obtained by chemical synthesis or recombinant expression.
  • the polypeptide of the present invention may be employed in treatment, diagnosis, detection, and/or prevention for stimulating re-vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. These polypeptide may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.
  • the polypeptide may also be employed for treating, diagnosing, detecting, and/or preventing wounds due to injuries, burns, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.
  • the polypeptide of the present invention may also be employed stimulate neuronal growth and to treat, diagnose, detect, and/or prevent neuronal damage which occurs in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease,
  • D-SLAM may have the ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts.
  • polypeptide of the present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.
  • the D-SLAM polypeptide may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth.
  • polypeptides of the present invention maybe employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.
  • the D-SLAM polypeptide may also be employed to maintain organs before transplantation or for supporting cell culture of primary tissues.
  • polypeptide of the present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos.
  • SLAM may also increase or decrease the differentiation or. proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.
  • SLAM may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape
  • D-SLAM polynucleotides or polypeptides, or agonists or antagonists of D-SLAM may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.
  • SLAM may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.
  • SLAM may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.
  • hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human.
  • the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat.
  • the host is a mammal.
  • the host is a human.
  • pCMVSport 3.0 contains an ampicillin resistance gene and may be transfonned into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59- (1993).)
  • a specific polynucleotide of SEQ ID NO:l with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.
  • the oligonucleotide is labeled, for instance, with 32 P- ⁇ -ATP using T4 polynucleotide kinase and purified according to routine methods.
  • the plasmid mixture is transformed into a suitable host (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents.
  • the transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.
  • appropriate selection agent e.g., ampicillin
  • SEQ ED NO:l (i.e., within the region of SEQ ED NO:l bounded by the 5' NT and the 3' NT of the clone) are synthesized and used to amplify the D-SLAM cDNA using the deposited cDNA plasmid as a template.
  • the polymerase chain reaction is carried out under routine conditions, for instance, in 25 ⁇ l of reaction mixture with 0.5 ug of the above cDNA template.
  • a convenient reaction mixture is 1.5-5 mM MgCl 2 , 0.01% (w/v) gelatin, 20 ⁇ M each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase.
  • RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts.
  • a primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the D-SLAM gene of interest is used to PCR amplify the 5' portion of the D-SLAM full- length gene. This amplified product may then be sequenced and used to generate the full length gene.
  • RNA isolation starts with total RNA isolated from the desired source, although poly-A+ RNA can be used.
  • the RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step.
  • the phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs.
  • This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.
  • This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide.
  • the first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest.
  • the resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the D-SLAM gene.
  • a human genomic PI library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ED NO:l., according to the method described in Example 1. (See also, Sambrook.)
  • Tissue distribution of mRNA expression of D-SLAM is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al.
  • a D-SLAM probe produced by the method described in Example 1 is labeled with P using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPfN- 100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT 1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.
  • MTN Multiple Tissue Northem
  • H human tissues
  • EM human immune system tissues
  • An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ED NO: 1. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions : 30 seconds, 95 C; 1 minute, 56 C; 1 minute, 70 C. This cycle is repeated 32 times followed by one 5 minute cycle at 70 C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.
  • D-SLAM polynucleotide encoding a D-SLAM polypeptide invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments.
  • the primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and Xbal, at the 5' end of the primers in order to clone the amplified product into the expression vector.
  • restriction sites such as BamHI and Xbal correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA).
  • This plasmid vector encodes antibiotic resistance (Amp 1 ), a bacterial origin of replication (ori), an EPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.
  • the pQE-9 vector is digested with BamHI and Xbal and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS.
  • the ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kan 1 ). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected.
  • Plasmid DNA is isolated and confirmed by restriction analysis.
  • SEQ ED NO:2 can be inserted into pQE70. This construct places a HIS tag (6 histidines) at the C-terminus of the predicted extracellular domain of D-SLAM. Primers that can be used include a 5' primer containing a Sph restriction site, shown in bold
  • This construct uses an ATG as a start codon contained within the SphI site, then reading into Q24 of SEQ ED NO:2, and continues until D233 of SEQ ED NO:2.
  • the amino acid sequence encoded by this construct is as follows:
  • IVSNPVSWDLATVTPWDSCHHEAAPGKASYKDHHHHHH (SEQ ED NO: 16).
  • a His tag can be placed on the N-terminus of the predicted mature form containing only the extracellular domain of D-SLAM (e.g., corresponding to
  • TC SEQ ED NO: 18
  • These primer can be used to amplify DNA encoding A23-D233, and then the generated product can be inserted into pQE9.
  • This construct puts a His tag on the N- terminus of the predicted mature extracellular domain of D-SLAM. The His tag will be followed by the Gly-Ser of the BamHI site, and this will then be followed by A23 of SEQ ED NO:2. This construct will continue through D233 of SEQ ED NO:2, and will be followed by a TAA stop codon.
  • the amino acid sequence encoded by this construct is as follows:
  • SLAM amino acids A23 to D233 of SEQ ID NO:2
  • E. coli expression vector such as pHE4 (see below).
  • the 5' primer containing a
  • Nde restriction site indicated in bold, can be used:
  • GCAGCACATATGGCCCAAGTGCTGAGCAAAGTCG SEQ ED NO: 20
  • a 3' primer containing an Asp718 restriction site shown in bold, can be used:
  • GCCTC SEQ ED NO: 21.
  • Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml).
  • the O/N culture is used to inoculate a large culture at a ratio of 1 : 100 to 1 :250.
  • the cells are grown to an optical density 600 (O.D. 600 ) of between 0.4 and 0.6.
  • EPTG Isopropyl-B-D-thiogalacto pyranoside
  • EPTG induces by inactivating the lad repressor, clearing the P/O leading to increased gene expression.
  • Ni-NTA nickel-nitrilo- tri-acetic acid
  • Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).
  • the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.
  • the purified D-SLAM protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl.
  • PBS phosphate-buffered saline
  • the D-SLAM protein can be successfully refolded while immobilized on the Ni-NTA column.
  • the recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors.
  • the renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole.
  • the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a D-SLAM polynucleotide, called pHE4a. (ATCC Accession Number 209645, deposited February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E.
  • the origin of replication is derived from pUC19 (LTI, Gaithersburg, MD).
  • the promoter sequence and operator sequences are made synthetically.
  • the DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for Ndel (5' primer) and Xbal, BamHI, Xhol, or Asp718 (3' primer).
  • the PCR insert is gel purified and restricted with compatible enzymes.
  • the insert and vector are ligated according to standard protocols.
  • the engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.
  • Example 6 Purification of D-SLAM Polypeptide from an Inclusion Body [0618] The following alternative method can be used to purify D-SLAM polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10 C.
  • the cell culture Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10 C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM ⁇ DTA, pH 7.4.
  • the cells are dispersed to a homogeneous suspension using a high shear mixer.
  • the cells are then lysed by passing the solution through a microfluidizer
  • the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM ⁇ DTA by vigorous stirring.
  • the refolded diluted protein solution is kept at 4 C without mixing for 12 hours prior to further purification steps.
  • the diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins.
  • the columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl.
  • the CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A 280 monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS- PAGE) are then pooled.
  • the resultant D-SLAM polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 ug of purified protein is loaded.
  • the purified D-SLAM protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
  • Example 7 Cloning and Expression of D-SLAM in a Baculovirus Expression System
  • the plasmid shuttle vector pA2 is used to insert D-SLAM polynucleotide into a baculovirus to express D-SLAM.
  • This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718.
  • the polyadenylation site of the simian virus 40 (“SV40”) is used for efficient polyadenylation.
  • the plasmid contains the beta-galactosidase gene from E.
  • baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcEMl, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required.
  • Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).
  • the D-SLAM cDNA sequence contained in the deposited clone is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide.
  • the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).
  • Fragments of D-SLAM can be expressed from the baculovirus system.
  • the predicted extracellular domain (M1-K232 of SEQ ID NO:2) can be inserted into pA2 using the primers described throughout the Example section.
  • the amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean,” BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel. [0631] The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).
  • the fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase.
  • E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates.
  • Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.
  • a plasmid containing the polynucleotide Five ug of a plasmid containing the polynucleotide is co-transfected with 1.0 ug of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987).
  • BaculoGoldTM virus DNA and 5 ug of the plasmid are mixed in a sterile well of a microtiter plate containing 50 ul of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD).
  • plaque assay After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra.
  • An agarose gel with "Blue Gal” (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques.
  • a detailed description of a "plaque assay” of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.
  • blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf).
  • the agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 ul of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4 C.
  • Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS.
  • the cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2.
  • MOI multiplicity of infection
  • the medium is removed and is replaced with SF900 El medium minus methionine and cysteine (available from Life Technologies h e, Rockville, MD). After 42 hours, 5 uCi of 35 S-methionine and 5 uCi 35 S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation.
  • the proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled). [0632] Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced D-SLAM protein.
  • D-SLAM polypeptide can be expressed in a mammalian cell.
  • a typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing.
  • Retroviruses e.g., RSV, HTLVI, HFVI and the early promoter of the cytomegalovirus (CMV).
  • LTRs long terminal repeats
  • CMV cytomegalovirus
  • cellular elements can also be used (e.g., the human actin promoter).
  • Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), ,pSV2DHFR (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0.
  • Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NEFX3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.
  • D-SLAM polypeptide can be expressed in stable cell lines containing the D-SLAM polynucleotide integrated into a chromosome.
  • the co-transfection with a selectable marker such as DHFR, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.
  • the transfected D-SLAM gene can also be amplified to express large amounts of the encoded protein.
  • the DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al, J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C, Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M.
  • Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al, Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992).
  • GS glutamine synthase
  • the mammalian cells are grown in selective medium and the cells with the highest resistance are selected.
  • These cell lines contain the amplified gene(s) integrated into a chromosome.
  • Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.
  • Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively.
  • An advantage of glutamine synthase based vectors are the availabilty of cell lines (e.g., the murine myeloma cell line, NSO) which are glutamine synthase negative. It is also possible to amplify vectors that utilize glutamine synthase selection in glutamine synthase expressing cells (e.g., Chinese Hamster Ovary (CHO) cells), however, by providing additional inhibitor to prevent the functioning of the endogenous gene.
  • glutamine synthase expressing cells e.g., Chinese Hamster Ovary (CHO) cells
  • glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657 which are hereby incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors can be obtained from Lonza Biologies, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al, Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995) which are herein incorporated by reference.
  • Derivatives of the plasmid pSV2-DHFR (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and ⁇ C6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV- enhancer (Boshart et al, Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, Xbal and Asp718, facilitate the cloning of D- SLAM.
  • the vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.
  • the plasmid pC6 or pC4 is digested appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art.
  • the vector is then isolated from a 1% agarose gel.
  • D-SLAM polynucleotide is amplified according to the protocol outlined in Example 1. If a naturally occurring signal sequence is used to produce a secreted protein, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence in an effort to secrete the protein from the cell. (See, e.g., WO 96/34891.)
  • the full length D-SLAM protein can be expressed from a mammalian vector, such as pC4, using the following primers:
  • the 5' primer, containing a BamHI in bold, is as follows: GCAGCAGGATCCGCCATCATGGTCATGAGGCCCCTGTGGAGTCTGCTTCTC (SEQ ID NO:22) while the 3' primer contains a Xba site shown in bold:
  • This construct should produce a transmembrane protein that will be expressed on the external cell surface.
  • a construct containing only the soluble portion of D-SLAM can be made by inserting the predicted extracellular domain of D-SLAM in ⁇ C4.
  • DNA encoding M1-K232 of SEQ ED NO:2 can be in inserted into pC4, using a 5' primer, containing a BamHI restriction site shown in bold:
  • GCAGCAGGATCCGCCATCATGGTCATGAGGCCCCTGTGGAGTCTGCTTCTC SEQ ED NO: 22
  • a 3' primer containing a Xba restriction site shown in bold: GCAGCATCTAGATTATTTGTAGGAGGCCTTCCCTGGTGCTGCCTC (SEQ ED NO: 24).
  • the amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean,” BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel. The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 or pC4 using, for instance, restriction enzyme analysis.
  • Chinese hamster ovary cells lacking an active DHFR gene is used for transfection.
  • Five ⁇ g of the expression plasmid pC6 or pC4 is cotransfected with 0.5 ug of the plasmid pSVneo using lipofectin (Feigner et al., supra).
  • the plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418.
  • the cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418.
  • the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM).
  • methotrexate 50 nM, 100 nM, 200 nM, 400 nM, 800 nM.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne une nouvelle protéine humaine, en l'occurrence la molécule dendritique enrichie d'activation des lymphocytes sécrétés, ainsi que des polynucléotides isolés codant cette protéine. L'invention concerne également des vecteurs, des cellules hôtes, des anticorps, et des procédés à recombinaison permettant la production de cette protéine humaine. L'invention concerne enfin des techniques de diagnostic et des procédures thérapeutiques convenant au diagnostic et au traitement de troubles en liaison avec cette protéine humaine.
PCT/US2002/003227 2001-02-06 2002-02-05 Molécule dentritique enrichie d'activation des lymphocytes secrétés WO2002062955A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002306440A AU2002306440A1 (en) 2001-02-06 2002-02-05 Dendritic enriched secreted lymphocyte activation molecule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26752301P 2001-02-06 2001-02-06
US60/267,523 2001-02-06

Publications (2)

Publication Number Publication Date
WO2002062955A2 true WO2002062955A2 (fr) 2002-08-15
WO2002062955A3 WO2002062955A3 (fr) 2003-12-18

Family

ID=23019142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/003227 WO2002062955A2 (fr) 2001-02-06 2002-02-05 Molécule dentritique enrichie d'activation des lymphocytes secrétés

Country Status (2)

Country Link
AU (1) AU2002306440A1 (fr)
WO (1) WO2002062955A2 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040184A1 (fr) * 1998-01-26 1999-08-12 Human Genome Sciences, Inc. Molecule d'activation lymphocytaire secretee enrichie par les cellules dendritiques
WO2001011046A1 (fr) * 1999-08-05 2001-02-15 Human Genome Sciences, Inc. Molecule d'activation lymphocytaire secretee de maniere enrichie par des cellules dendritiques
WO2001046260A2 (fr) * 1999-12-23 2001-06-28 Bristol-Myers Squibb Company Nouveaux membres de la superfamille des immunoglobulines apex-1, apex-2 et apex-3 et leurs utilisations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040184A1 (fr) * 1998-01-26 1999-08-12 Human Genome Sciences, Inc. Molecule d'activation lymphocytaire secretee enrichie par les cellules dendritiques
WO2001011046A1 (fr) * 1999-08-05 2001-02-15 Human Genome Sciences, Inc. Molecule d'activation lymphocytaire secretee de maniere enrichie par des cellules dendritiques
WO2001046260A2 (fr) * 1999-12-23 2001-06-28 Bristol-Myers Squibb Company Nouveaux membres de la superfamille des immunoglobulines apex-1, apex-2 et apex-3 et leurs utilisations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [Online] 04 May 2000 ZHANG ET AL.: 'Novel human cell membrane protein', XP002971502 Retrieved from NCBI Database accession no. (AF146761) *

Also Published As

Publication number Publication date
AU2002306440A1 (en) 2002-08-19
WO2002062955A3 (fr) 2003-12-18

Similar Documents

Publication Publication Date Title
US6861227B2 (en) Antibodies to cytokine receptor common gamma chain like
US20080146505A1 (en) 47 Human Secreted Proteins
US20060121514A1 (en) Prostacyclin-stimulating Factor-2
US20090305991A1 (en) 33 Human Secreted Proteins
AU784332B2 (en) Cytokine receptor common gamma chain like
EP1212342A2 (fr) 18 proteines secretees humaines
US7312051B2 (en) Polynucleotides encoding dendritic enriched secreted lymphocyte activation molecule
US6849413B2 (en) PGRP-L polynucleotides, polypeptides, and antibodies
EP1223946A1 (fr) Recepteur humain du neuropeptide
EP1137656A1 (fr) 31 proteines humaines secretees
EP1206541A1 (fr) Molecule d'activation lymphocytaire secretee de maniere enrichie par des cellules dendritiques
WO2002068588A2 (fr) Analogue de chaine gamma commune de recepteurs de cytokine
EP1121419A1 (fr) Gene 12 lie au recepteur de tnf (tnfr)
EP1248801A1 (fr) Polynucleotides, polypeptides et anticorps humains
WO2000071152A1 (fr) Facteur 10 de croissance des fibroblastes
WO2000042165A2 (fr) Proteine specifique de la moelle osseuse
WO2000071715A1 (fr) Facteur 11 de croissance des fibroblastes
WO2002062955A2 (fr) Molécule dentritique enrichie d'activation des lymphocytes secrétés
WO2000071582A1 (fr) Facteur 14 de croissance du fibroblaste
JP2004506402A (ja) 48のヒト分泌タンパク質
EP1491550A1 (fr) 31 protéines sécrétées humaines
WO2001081402A1 (fr) Gene 12 lie au recepteur de tnf (tnfr)
EP1471072A1 (fr) 18 protéines humaines secretées

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP