明細 ムの分離、 濃縮及び回収方法 技術分野 Technical field
本発明は、 鋼ィォンゃ鉄ィォン等の金属ィォンが共存するパラジウム 含有水溶液からのパラジウムの分離、 濃縮及び回収方法に関する。 The present invention relates to a method for separating, concentrating and recovering palladium from a palladium-containing aqueous solution in which a metal ion such as steel ion and iron ion coexists.
さらに詳しく は、 銅イオンや鉄イオン等が混在したパラジウムメ ッキ 液や無電解メ ッキのパラジウム核付与処理に使われるパラジゥム とス ズとの混合触媒液等の廃液から、 資源的に貴重なパラジウムを工業的に 分離、 濃縮及び回収する方法に関する。 背景技術 In more detail, wastewater such as palladium plating solution mixed with copper ions and iron ions, and mixed catalyst solution of palladium and tin used for the treatment of palladium nuclei for electroless plating is valuable for resources. The present invention relates to a method for industrially separating, concentrating and recovering palladium. Background art
パラジウムは、 耐食性、 対変色性、 低い接触抵抗性、 はんだ付け性に 優れ、 電子工業界でもよ く使われるメ ツキの一つである。 また、 プラス チック材料、 装飾品、 電子機器部品等をメ ツキする際には、 メツキ対象 物品の下地表面に触媒作用を付加するため、 ノ、 °ラジウムとスズの混合触 媒液を用いて、 下地表面にパラジウム核を付与する手法が行われている 。 これらの、 メツキ処理やパラジウム核付与の工程からは、 各種のパラ ジゥム含有廃液が排出されている。 特に、 プリ ント基板のスルーホール メ ッキのために行われるパラジウム核付与の工程からは、 プリ ン ト基板 から溶けだした多量の銅ィォンゃ設備からの溶けだし等に由来する鉄 イオンが混入したパラジウム含有廃液が排出されている。 Palladium has excellent corrosion resistance, discoloration resistance, low contact resistance, and excellent solderability, and is one of the most frequently used plating techniques in the electronics industry. In addition, when plating plastic materials, decorative articles, electronic equipment parts, etc., in order to add a catalytic action to the base surface of the article to be plated, a mixed catalyst liquid of rhodium and tin is used. A technique of providing a palladium nucleus on a base surface has been used. Various wastewater containing palladium is discharged from these plating and palladium nucleation processes. In particular, the palladium nucleation process performed for the through-hole plating of the printed circuit board begins with a large amount of copper ion melted from the printed circuit board. Waste liquid contained is discharged.
このよう なパラジウムを含有する水性廃液からパラジウムを回収す る方法としては、 ( 1 ) 活性炭などの多孔質担体に吸着させて回収する 方法、 ( 2 ) 有機溶媒に溶解したキレー ト試薬で水溶液から抽出する方 法、 ( 3 ) イオン交換樹脂によって回収する方法、 (4 ) 沈殿させて回収 する方法、 などが従来から知られている。 しかしながら、 上記の触媒液 のよう にパラジウムと共にスズが大量に含まれる廃液の場合、 上記いず
れの方法もパラジウムのみを効率よ く回収するのは困難で、 実用的に満 足できる方法ではなかった。 There are two methods for recovering palladium from such aqueous wastewater containing palladium: (1) a method in which the palladium is recovered by adsorbing it on a porous carrier such as activated carbon; and (2) a method in which the palladium is dissolved from an aqueous solution using a chelating reagent dissolved in an organic solvent. A method of extraction, (3) a method of recovering with an ion-exchange resin, and (4) a method of recovering by precipitation have been known. However, in the case of a waste liquid containing a large amount of tin together with palladium as in the above catalyst solution, In these methods, it was difficult to efficiently recover only palladium, and it was not a practically satisfactory method.
一方、 アン トラヒ ドロキノン化合物を多孔質担体に担持した担持物 ( 以下 「金属イオン処理剤」 とよぶ) を用いて選択的に金属イオンを回収 する技術が公開されているが、 上記触媒液の場合は、 共存するスズィォ ンの影響を除くため、 酸化処理が必要とされている。 (日本国 出願公 開番号 特開平 1 1一 2 2 9 0 5 0 ) On the other hand, there has been disclosed a technique for selectively recovering metal ions using a carrier in which an anthrohydroquinone compound is supported on a porous carrier (hereinafter referred to as a “metal ion treating agent”). Oxidation treatment is required to eliminate the effect of coexisting suzuon. (Japanese application publication number: Japanese Patent Application Laid-Open No. H11-221290)
しかしながら、 プリ ン ト基板のスルーホールメッキの触媒付け工程か ら排出されたパラジウムースズ触媒液のよう に銅ィォンが共存する場 合、 この酸化処理によ り、 鋼イオンは銅の 2価イオンに酸化されてしま う。 この鋼の 2価イオンのような金属イオンは、 金属ィォン処理剤上の アン トラヒ ドロキノ ン化合物の酸化型に対応するアン トラキノ ン化合 物よ り も高酸化性の金属ィォンであるため、.還元型のアン トラヒ ドロキ ノ ン化合物をアン トラキノン化合物に酸化してしまう。 そのため、 金属 ィォン処理剤の還元能力が低下してしまうので好ましく ない。 このよう な金属ィォンとしては、 他に鉄の 3価ィォン等が挙げられる。 However, when copper ions coexist, such as the palladium sulfuric acid catalyst solution discharged from the catalysis process of the through-hole plating on the printed circuit board, steel ions are converted to copper divalent ions by this oxidation treatment. It will be oxidized. Metal ions, such as divalent ions in this steel, are metal ions that are more oxidizable than the anthraquinone compounds corresponding to the oxidized form of the anthrahydroquinone compound on the metal ion treatment agent. It oxidizes a type of anthrahydroquinone compound to an anthraquinone compound. Therefore, the reducing ability of the metal ion treating agent is undesirably reduced. Other examples of such a metal ion include trivalent iron.
実際、 本発明者らが、 パラジウムと共に銅イオンを含有する触媒液を 空気酸化した液を上記刊行物に記載された金属イ オン処理剤を充填し たカラムに通液してパラジウムの回収を試みたが、 パラジウムの捕捉量 が少なく、 すぐにパラジウムが漏洩してしまった。 In fact, the present inventors attempted to recover palladium by passing a catalyst solution containing copper ions together with palladium through air oxidation through a column filled with the metal ion treating agent described in the above publication. However, the amount of captured palladium was small, and palladium leaked immediately.
本発明の目的は、 銅の 2価イオンのような金属イオン処理剤上のアン トラヒ ドロキノン化合物の酸化型に対応するアン トラキノン化合物よ り も高酸化性の金属イオンが共存する、 あるいは処理途中で高酸化性金 属イ オンを生成する上記触媒液のよう なパラジウム含有液からパラジ ゥムを選択的に分離、 濃縮及び回収する方法を提供する事にある。 発明の開示 An object of the present invention is to coexist with a metal ion having a higher oxidizing property than an anthraquinone compound corresponding to an oxidized form of an anthrahydroquinone compound on a metal ion treating agent such as a divalent ion of copper, or during the treatment. An object of the present invention is to provide a method for selectively separating, concentrating and recovering palladium from a palladium-containing solution such as the above-mentioned catalyst solution for producing a highly oxidizable metal ion. Disclosure of the invention
本発明者らは、 上記問題を検討した結果、 酸化処理後の上記触媒液に 共存する銅の 2価イオンや鉄の 3価ィォンのみを選択的に還元するこ
とにより、 金属イオン処理剤の能力低下を防げると考え、 該方法を鋭意 検討した結果、 スズの 2価イオン、 好ましくは、 塩化第一スズが鋼の 2 価イオンや鉄の 3価イオンのみを還元し、 過剰のスズの 2価イオン、 例 えば、 塩化第一スズが存在するときも、 緩慢な速度でのパラジウム錯体 形成が先行し、 パラジウムをすぐには還元しないことを見いだし、 第一 の発明を完成した。 The present inventors have studied the above problems, and as a result, selectively reduce only divalent ions of copper and trivalent ions of iron coexisting in the catalyst solution after the oxidation treatment. As a result, the method was studied diligently, and as a result, tin divalent ions, preferably stannous chloride, were able to reduce only divalent ions of steel and trivalent ions of iron. In the presence of an excess of divalent ions of tin, for example, stannous chloride, it is found that palladium complex formation at a slow rate precedes and does not immediately reduce palladium. Completed the invention.
すなわち、 第一の発明は、 アントラヒ ドロキノン化合物を多孔質担体 に担持してなる金属ィオン処理剤を用いて水溶液中のパラジウムィォ ンを回収する方法であって、 水溶液中の共存金属イオンが、 金属イオン 処理剤上のアン トラヒ ドロキノ ン化合物の酸化型に対応するァン トラ キノン化合物より も高酸化性の金属イオンである場合において、 共存金 属イオンを選択的に低酸化性の金属イオンに還元した後に、 金属イオン 処理剤でパラジウムを還元捕捉することを特徴とするパラジウムの回 収方法である。 より具体的には、 共存金属イオンを選択的に低酸化性の 金属イオンに還元するこ とのできる還元剤によ り共存金属ィオンを還 元して、 金属ィォン処理剤でパラジウムを回収する方法である。 That is, the first invention is a method for recovering palladium in an aqueous solution using a metal ion treatment agent in which an anthrohydroquinone compound is supported on a porous carrier, wherein the coexisting metal ion in the aqueous solution is a metal ion When the metal ion is more oxidizable than the anthraquinone compound corresponding to the oxidized form of the anthrahydroquinone compound on the treating agent, the coexisting metal ion is selectively reduced to a lower oxidizable metal ion. This is a method for recovering palladium, which comprises reducing and capturing palladium with a metal ion treating agent. More specifically, a method in which coexisting metal ions are reduced by a reducing agent capable of selectively reducing coexisting metal ions to low-oxidizing metal ions, and palladium is recovered by a metal ion treatment agent It is.
さらに、 塩化スズとパラジウムィォンが共存する系の種々の p Hにお ける挙動を調べたところ、 第一スズ ( 2価)、 第二スズ ( 4価) のいず れも p H値がおよそ 1以上で水酸化物を形成して沈殿するが、 第一スズ のみ特異的にパラジウムを沈殿中に取り込み、 溶液中にはパラジウムィ ォンが殆ど残らないこと、 第二スズはパラジウムを取り込まないこと、 さらに銅ィォンゃ鉄ィォンが共存しても、 これら銅イオンや鉄イオンは 沈瘈中に取り込まれないことを見いだし第二の発明を完成した。 Furthermore, the behavior of tin chloride and palladium ion coexisting systems at various pH values was investigated. The pH values of both stannous (divalent) and stannic (tetravalent) were approximately A hydroxide forms and precipitates at 1 or more, but only stannous specifically incorporates palladium into the precipitate, leaving little palladium ion in the solution, and stannic does not capture palladium In addition, they found that even when copper ion and iron ion coexist, these copper ions and iron ions were not taken up during precipitation, and completed the second invention.
すなわち、 第二の発明は、 スズの 2価イオンによ り安定化されたパラ ジゥムイオンを含有する塩酸酸性溶液の p Hを高めることによ りスズ の水酸化物と共にパラジウムを沈殿させて該塩酸酸性溶液から分離し、 分離した沈殿を別の塩酸酸性溶液に溶解した後、 酸化処理した液を、 ァ ン トラヒ ドロキノン化合物を多孔質担体に担持してなる金属ィオン処 理剤と接触させてパラジウムを回収する方法である。
さらに、 この第二の発明に付随した発明として、 ( 1 ) スズの 2価ィ オンによ り安定化されたパラジウムィォンを含有する塩酸酸性溶液の p Hを高めることによ りスズの水酸化物と共にパラジウムを沈殿させ て該塩酸酸性溶液から分離することを特徴とするパラジウムの分離方 法、 ( 2 ) 該塩酸酸性溶液から分離した沈殿を別の塩酸酸性溶液に溶解 することを特徴とするパラジウムの濃縮方法、 ( 3 ) 該塩酸酸性溶液か ら分離した沈殿を、 別の塩酸酸性溶液に溶解することを特徴とするパラ ジゥムを回収するための前処理方法が挙げられる。 発明を実施するための最良の形態 That is, the second invention raises the pH of a hydrochloric acid acidic solution containing palladium ions stabilized by tin divalent ions, thereby precipitating palladium together with tin hydroxide to form the hydrochloric acid. After separating the precipitate from the acidic solution and dissolving the separated precipitate in another hydrochloric acid solution, the oxidized solution is brought into contact with a metal ion treating agent comprising an anthrahydroquinone compound supported on a porous carrier to form palladium. It is a method of collecting. Further, as the invention accompanying the second invention, (1) increasing the pH of hydrochloric acid acidic solution containing palladium stabilized by tin divalent ion to increase tin hydroxide (2) a method of separating palladium, which comprises precipitating palladium together with a substance and separating it from the hydrochloric acid solution, and (2) dissolving the precipitate separated from the hydrochloric acid solution in another hydrochloric acid solution. A palladium concentration method, and (3) a pretreatment method for recovering palladium characterized by dissolving a precipitate separated from the hydrochloric acid solution in another hydrochloric acid solution. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において処理の対象とされるパラジゥム含有水溶液は、 銅の 2 価ィォンゃ鉄の 3価ィォンを多量に含むパラジウム含有水溶液である。 具体的には、 無電解メ ツキのパラジウム核付与工程に用いられる塩化パ ラジウムと塩化第一スズとの混合触媒液 (以下、 「パラジウム一スズ触 媒液」 ともいう) のような、 塩酸酸性水溶液中でスズの二価イオンで安 定化されたパラジウムイオンを含有する水溶液であり、 銅イオンゃ鉄ィ ォンが不純物として混入した水溶液である。 例えば、 プリ ント基板のス ルーホールメ ツキの触媒付け工程から排出されたパラジウム一スズ触 媒液が挙げられる。 The palladium-containing aqueous solution to be treated in the present invention is a palladium-containing aqueous solution containing a large amount of copper (II) ion and iron (III) ion. More specifically, the acidity of hydrochloric acid, such as a mixed catalyst solution of palladium chloride and stannous chloride used in the step of applying a palladium nucleus for electroless plating (hereinafter also referred to as “palladium-tin tin catalyst”). It is an aqueous solution containing palladium ions stabilized with divalent ions of tin in the aqueous solution, and is an aqueous solution in which copper ions and iron ions are mixed as impurities. For example, a palladium-tin tin catalyst discharged from the process of catalyzing the through-hole plating of the printed substrate may be used.
ここで、 スズの二価イオンで安定化されたパラジウムイオンとは、 ス ズの二価ィォンが周囲に配位したパラジゥムの錯ィォン或いはスズの 二価ィオンに囲まれたパラジゥムのコロイ ド粒子のよう な形態で水溶 液中に安定に存在している状態を意味している。 このような触媒液では 、 塩化パラジウムは塩化第一スズによ り、 原子価が 0に近いコロイ ド粒 子状、 または複雑な錯体を形成しているため、 該パラジウムイオンを金 属ィォン処理剤で回収するには、 酸化等の処理によりパラジウムを二価 のイオンに変える必要がある。 この酸化は具体的には、 ( 1 ) パラジゥ ム含有水溶液に空気や酸素などの気体を吹き込む方法、 ( 2 ) パラジゥ ム含有水溶液に適当な酸化剤を添加する方法、 または、 ( 3 ) 外部電源
を用いて電解する方法、 または、 (4 ) パラジウム含有水溶液に酸還元 電位が 0 . 6 V (対 N H E ) より高い電位を有する物質を添加する方法 、 または、 これに相当する電位を外部電源から与える方法、 などが挙げ られる。 これらの方法は、 単独でも、 2つ以上の方法を組合せることも できる。 Here, the palladium ion stabilized with tin divalent ions is defined as a palladium complex ion in which tin divalent ions are coordinated or a palladium colloid particle surrounded by tin divalent ions. It means a state in which it is stably present in an aqueous solution in such a form. In such a catalyst solution, palladium chloride is formed into a colloidal particle having a valency close to 0 or a complex complex by stannous chloride. Therefore, the palladium ion is treated with a metal ion treatment agent. In order to recover palladium, it is necessary to convert palladium into divalent ions by treatment such as oxidation. Specifically, this oxidation is performed by (1) a method of blowing gas such as air or oxygen into the palladium-containing aqueous solution, (2) a method of adding an appropriate oxidizing agent to the palladium-containing aqueous solution, or (3) an external power supply. Or (4) a method in which a substance having an acid reduction potential higher than 0.6 V (vs. NHE) is added to a palladium-containing aqueous solution, or a potential corresponding to this is supplied from an external power supply. Giving method, and the like. These methods can be used alone or in combination of two or more.
パラジウム含有水溶液について酸化処理する際に使用できる酸化剤 としては、 例えば、 空気、 酸素、 過酸化水素などの酸素系酸化剤、 過塩 素酸塩や気体塩素などの塩素系酸化剤、 三価の鉄イオンのような金属化 合物などが挙げられる。 これらは、 単独でも複数の酸化剤を併用するこ ともできる。 Examples of oxidizing agents that can be used when oxidizing a palladium-containing aqueous solution include oxygen-based oxidizing agents such as air, oxygen, and hydrogen peroxide, chlorine-based oxidizing agents such as perchlorate and gaseous chlorine, and trivalent oxidizing agents. Examples include metal compounds such as iron ions. These can be used alone or in combination of a plurality of oxidizing agents.
これらの酸化剤は、 その添加量が多いと、 酸化処理後に酸化剤がパラ ジゥム含有水溶液中に残存し、 残存した酸化剤の酸化力により、 金属ィ ォン処理剤によるパラジウムの回収能力が低下させられるので好ま し く ない。 一方、 酸化剤の添加量を当量近く まで減らすと、 酸化速度が遅 くなる。 また、 通常は無電解メ ツキの前工程で発生するパラジウム含有 水溶液には、 パラジウムに比べスズが圧倒的に多く、 かつ、 スズが酸化 されてからパラジウムが酸化されるので、 スズに対して酸化剤を若干過 剰に添加した場合でも、 パラジゥムに対してはかなり過剰に添加したこ ととなり、 残存する酸化剤のために、 金属イオン処理剤のパラジウム捕 捉量を大き く低下させることになる。 逆に、 酸化剤が若干少ないだけで も、 パラジウムイオンは酸化されずに、 回収できない。 If these oxidizing agents are added in large amounts, the oxidizing agents remain in the aqueous solution containing palladium after the oxidation treatment, and the oxidizing power of the remaining oxidizing agents reduces the ability of the metal ionizing agent to recover palladium. I don't like it because she is forced to do so. On the other hand, if the amount of the oxidizing agent is reduced to a value close to the equivalent, the oxidation rate is reduced. In addition, the palladium-containing aqueous solution usually generated in the previous process of electroless plating contains much more tin than palladium, and palladium is oxidized after tin is oxidized. Even if the agent is added in a slight excess, the addition to the palladium will be considerably excessive, and the remaining oxidizing agent will greatly reduce the amount of palladium trapped by the metal ion treating agent. . Conversely, even with a small amount of oxidizing agent, palladium ions are not oxidized and cannot be recovered.
つま り、 酸化剤の添加量は、 かなり厳密な当量関係とすることが必要 である。 また、 このような当量関係下の酸化処理では、 終点近くでの酸 化速度が遅く なり、 長時間を要することになり好ましくない。 パラジゥ ム含有水溶液を酸化処理する際の好適な手法は、 酸化剤を過剰に用いて 酸化処理し、 処理後に過剰の酸化剤を除去または失活させ、 その後に金 属ィォン処理剤による回収操作を行なう方法である。 In other words, the amount of the oxidizing agent needs to have a fairly strict equivalence relationship. In addition, in the oxidation treatment under such an equivalence relation, the oxidation rate near the end point becomes slow, and it takes a long time, which is not preferable. A preferred method of oxidizing the aqueous solution containing palladium is to use an excessive amount of an oxidizing agent, remove or inactivate the excess oxidizing agent after the treatment, and then perform a recovery operation using a metal ionizing agent. The way to do it.
酸化剤として空気などの酸素を含有する気体を使用する場合には、 酸 素の水に対する溶解度が小さいので、 酸化処理後に残存する酸素が、 金
属イオン処理剤の能力を大き く低下することはないが、 理想的には、 酸 化が完了した後、 残存する酸素を窒素などの不活性気体で置換するのが 好ましい。 酸化剤として空気や酸素などの気体を用いる場合には、 通常 は、 室温で、 気体を微細な状態でパラジウム含有水溶液に吹き込むこと が望ましい。 吹き込み速度および時間は、 任意に設定できるが、 空気の 場合は、 通常、 1 Lの水溶液に 1 0〜 3 0 0 m 1 /分の速度で約 4 0時 間吹き込むことによ り、 パラジウムを酸化することができる。 この際、 パラジウムの酸化の進行状態は、 パラジウム含有水溶液の着色状態から 確認することができる。 すなわち、 濁度の高い茶褐色の水溶液が、 透明 の橙色に変化すれば、 0価のパラジウムは二価のパラジウムイオンに酸 化されたことを意味する。 When an oxygen-containing gas such as air is used as the oxidizing agent, oxygen remaining in the water after the oxidation treatment is reduced to gold because the solubility of oxygen in water is low. Although the performance of the metal ion treating agent is not greatly reduced, it is ideally preferable to replace the remaining oxygen with an inert gas such as nitrogen after the oxidation is completed. When a gas such as air or oxygen is used as the oxidizing agent, it is usually desirable to blow the gas into a palladium-containing aqueous solution in a fine state at room temperature. The blowing speed and time can be set arbitrarily.In the case of air, palladium is usually blown into a 1 L aqueous solution at a speed of 10 to 300 m1 / min for about 40 hours. Can be oxidized. At this time, the progress of the oxidation of palladium can be confirmed from the coloration of the aqueous solution containing palladium. That is, if the brownish aqueous solution with high turbidity changes to a transparent orange color, it means that zero-valent palladium has been oxidized to divalent palladium ions.
この酸化処理によりパラジウムを回収できるよう になるが、 同時に共 存する銅ィォンゃ鉄ィオンまで銅の 2価ィォンゃ鉄の 3価イオンに酸 化してしまい、 その結果、 金属イオン処理剤の還元能力を低下させてし まう。 そこで、 第一の発明では、 この銅の 2価イオンや鉄の 3価イオン を銅の 1価ィォンゃ鉄の 2価ィォンに選択的に還元し、 金属ィォン処理 剤に通液する。 選択的に還元する方法としては、 パラジウムイオンを還 元しないで、 銅の 2価イオンや鉄の 3価イオンを鋼の 1価イオンや鉄の 2価イオンに選択的に還元できる還元剤.が採用される。 例えば、 塩化第 一スズ、 鋼金属、 鉄金属、 塩酸ヒ ドロキシルァミ ン、 ヒ ドラジンなどが 用いられる。 特に、 スズ化合物はこの液中に既に含まれており、 パラジ ゥムを還元する速度も遅いので好ましい。 逆に、 亜硫酸ソーダでは、 効 果がなく、 酸性条件ではガスの発生等危険であり好ましく ない By this oxidation treatment, palladium can be recovered, but at the same time, coexisting copper ion and iron ion are oxidized to copper divalent ion and iron trivalent ion, and as a result, the reducing ability of the metal ion treating agent is reduced. I will lower it. Therefore, in the first invention, the copper divalent ion or iron trivalent ion is selectively reduced to copper monovalent ion ゃ iron divalent ion and passed through the metal ion treatment agent. As a method for selective reduction, a reducing agent that can selectively reduce copper divalent ions and iron trivalent ions to steel monovalent ions and iron divalent ions without reducing palladium ions is known. Adopted. For example, stannous chloride, steel metal, iron metal, hydroxylamine hydrochloride, hydrazine and the like are used. In particular, a tin compound is already contained in this liquid, and the rate of reducing palladium is low, which is preferable. Conversely, sodium sulfite has no effect, and it is not preferable because it generates dangers such as gas generation under acidic conditions.
塩化第一スズの添加量は、 水溶液に含まれる銅の 2価イオンや鉄の 3 価イオンと電気化学的な当量値が好ましい。 本発明における電気化学的 当量値とは、 銅イオンならば二価から一価、 鉄イオンならば三価から二 価イオンに変化するのに相当するスズの二価から四価への化学量論値 をさす。 なお、 該水溶液中の銅イオンや鉄イオンの含有量は、 排出され る触媒液の工程によって異なるが、 プリ ント基板触媒液においては銅と
して 1 0 m g / L〜4 0 0 O m g / L、 鉄として 1 0 - 2 0 0 m g / L とされる。 The addition amount of stannous chloride is preferably an electrochemical equivalent to divalent copper ions and trivalent iron ions contained in the aqueous solution. The electrochemical equivalent value in the present invention refers to the stoichiometry of tin from divalent to tetravalent, which is equivalent to a change from divalent to monovalent for copper ions and from trivalent to divalent ions for iron ions. Value. The content of copper ions and iron ions in the aqueous solution varies depending on the process of the discharged catalyst solution. From 100 mg / L to 400 Omg / L, and 100 to 200 mg / L as iron.
塩化第一スズによる還元では、 塩化第一スズを小過剰量添加した場合 は、 液相のテトラクロロパラジウムィォンはスズィォンと鮮やかな赤燈 色の錯イオンを形成するが、 時間の経過とともにもとにもどる。 これら のパラジウムィォンは本発明で使用する金属ィォン処理剤を用いて還 元処理が可能である。 一方、 水溶液に塩化第一スズを大過剰に添加した とき。 液相のテ トラクロ口錯イオンは、 スズイオンと濃緑色の錯イオン を形成し、 この濃緑色の錯イオンは本発明における金属イオン処理剤で は還元処理されない。 すなわち、 塩化第一スズの添加量は、 経済的な面 からも実用的な面からも該水溶液中に含まれる銅の 2価イオンならび に鉄の 3価イオンに対し当量値を大き く上回るものであることは好ま しくなく、 当量値の 1から 2倍が適当とされる。 In the reduction with stannous chloride, when a small excess amount of stannous chloride is added, tetrachloropalladium in the liquid phase forms a complex red tinted complex ion with tintin, but over time, Go back. These palladiums can be subjected to a reduction treatment using the metal ion treatment agent used in the present invention. On the other hand, when a large excess of stannous chloride is added to the aqueous solution. The tetrachloride complex ion in the liquid phase forms a dark green complex ion with the tin ion, and the dark green complex ion is not reduced by the metal ion treating agent of the present invention. In other words, the amount of stannous chloride added should be much greater than the equivalent value for copper divalent ions and iron trivalent ions contained in the aqueous solution, both economically and practically. Is not preferred, and 1 to 2 times the equivalent value is appropriate.
水溶液に塩化第一スズを添加することにより、 該水溶液酸化還元電位 は鋭敏に変化するが、 該水溶液中に銅の 2価ィォンゃ鉄の 3価ィォンの 電気化学的当量値近傍ではおおむね 2 0 0から 3 0 0 m V、 さらに好ま しく は 2 7 0 m Vから 2 2 0 m Vに保たれる。 (対 S C E ) なお、 本発 明における酸化還元電位は、 市販の O R P計で測定できるが、 電極の選 択制から、 白金電極を用いるのが適当である。 By adding stannous chloride to the aqueous solution, the oxidation-reduction potential of the aqueous solution changes sharply. However, in the vicinity of the electrochemical equivalent value of divalent copper (iron) and trivalent iron (iron) in the aqueous solution, it is approximately 20%. It is kept between 0 and 300 mV, more preferably between 270 mV and 220 mV. The oxidation-reduction potential in the present invention can be measured with a commercially available ORP meter, but it is appropriate to use a platinum electrode from the choice of electrodes.
また、 この塩化第一スズ含有水溶液として、 酸化前の触媒液を用いる こともできる。 酸化前の触媒液を用いるときは、 あらかじめ触媒液中の 塩化第一スズと塩化銅と塩化鉄の含有量を測定し、 銅と鉄の存在量に対 し二分の一モルに相当する塩化第一スズが含まれる液量を別に分離し、 残りを酸化し、 酸化後にこの分離しておいた未酸化処理の液を混合する ことにより、 新たな試薬を用いることなく 目的の液を調製することがで きる。 Further, as the aqueous solution containing stannous chloride, a catalyst solution before oxidation can be used. When using a catalyst solution before oxidation, measure the contents of stannous chloride, copper chloride, and iron chloride in the catalyst solution in advance, and determine the amount of chlorinated chloride equivalent to one-half mole of the abundance of copper and iron. Separating the amount of tin containing liquid separately, oxidizing the rest, and mixing the unoxidized liquid separated after oxidation to prepare the target liquid without using new reagents I can do it.
第一の発明においては、 上記の方法で酸化、 還元処理を行なったパラ ジゥム含有水溶液を、 アントラヒ ドロキノン化合物類を多孔質担体に担 持した金属イオン処理剤に接触させる。 酸化処理によって二価のパラジ
ゥムイオンに酸化されたパラジウムは金属ィォン処理剤上のァン トラ ヒ ドロキノン化合物類の還元作用によ り、 金属パラジウムとして金属ィ オン処理剤上に還元捕捉される。 In the first invention, the palladium-containing aqueous solution which has been oxidized and reduced by the above method is brought into contact with a metal ion treating agent having an anthrohydroquinone compound supported on a porous carrier. Bivalent palladium by oxidation treatment The palladium oxidized to palladium ions is reduced and captured as palladium metal on the metal ion treatment agent by the reducing action of the antrahydroquinone compounds on the metal ion treatment agent.
次に、 第二の発明について述べる。 本発明において対象とされるパラ ジゥム含有水溶液中でパラジウムイオンは、 スズの 2価イオンで安定化 されている。 該パラジウムイオンは、 塩酸酸性水溶液中で安定に存在す るが、 強酸性条件が必要であり、 通常 p H値で 1以下、 好ましく は 0 . 2程度の強酸性条件であるが、 液組成によっては、 よ り高い p Hで安定 な場合もある。 パラジウムイオンに対するスズの存在量は、 通常数モル 倍程度であり、 5〜 1 0モル倍程度で安定に存在するものと思われる。 Next, the second invention will be described. In the palladium-containing aqueous solution targeted in the present invention, palladium ions are stabilized by divalent tin ions. The palladium ion is stably present in an aqueous hydrochloric acid solution, but requires strongly acidic conditions, and is usually under a strongly acidic condition of a pH value of 1 or less, preferably about 0.2. May be stable at higher pH. The abundance of tin with respect to palladium ion is usually about several mole times, and it seems that it exists stably at about 5 to 10 mole times.
このよ う なスズ 2価イオンによつて安定化されたパラジゥムイオン 含有水の p Hを高めることによってスズの水酸化物と共にパラジウム を沈殿させて該水溶液から分離できる。 通常、 この p H操作はアル力リ によ り行うが、 該水溶液へのアルカリ添加、 アルカ リ水溶液との混合或 いはアルカリ水溶液にパラジウム含有水を添加してもよい。 また、 単に 希釈により p Hを高めてもよい。 アル力リ としては、 水酸化ナトリウム 等のアルカリ金属水酸化物や炭酸ナト リ ウムや炭酸水素ナ ト リ ウム等 のアル力リ金属の炭酸塩等が挙げられる。 By increasing the pH of the palladium ion-containing water stabilized by such tin divalent ions, palladium can be precipitated together with the tin hydroxide and separated from the aqueous solution. Usually, this pH operation is carried out using an alkaline solution, but alkali may be added to the aqueous solution, mixed with the alkaline solution, or palladium-containing water may be added to the alkaline aqueous solution. Alternatively, the pH may be increased simply by dilution. Examples of the alkali metal include alkali metal hydroxides such as sodium hydroxide and carbonates of alkali metal such as sodium carbonate and sodium hydrogen carbonate.
通常 p H値を 1 より大き くすることによ り、 スズの 2価イオンは水酸 化物として沈殿するが、 液の組成によつては 2以上必要な場合もある。 この沈殿生成時にパラジウムのみを選択的に取り込んで沈殿するので、 生成した沈殿を水溶液から分離することによ り、 パラジウムを回収する ことができる。 沈殿の分離方法としては、 濾過、 遠心分離、 自然沈降等 通常の方法を採用できる。 なお、 p H値の上限は、 主と して共存イオン が沈殿を生成する p H値又はスズーパラジウムの沈殿が再溶解を起こ す p H値のいずれか低い方が上限となる。 例えば銅ィォンが共存する場 合、 p H値の上限としては 4以下となる。 この条件で操作することによ り、 水溶液中のパラジウムやスズィォン以外の共存ィォンとの分離がで きる。
分離した沈殿は、 スズとパラジウム以外の不純物をほとんど含まない ため、 容易にパラジウムやスズを回収でき、 パラジウムやスズを分離、 回収する様々な方法のための、 前処理方法として有効である。 また、 こ の分離した沈殿を別の塩酸酸性溶液に溶解すれば、 パラジウムの濃縮液 を得ることができ、 必要なら組成の調整をした後、 ノ、。ラジウム一スズ触 媒液として再利用できる。 Normally, when the pH value is set to be higher than 1, tin divalent ions precipitate as hydroxides, but depending on the composition of the solution, two or more tin ions may be required. At the time of this precipitation, only palladium is selectively taken in and precipitated, so that palladium can be recovered by separating the produced precipitate from the aqueous solution. As a method for separating the precipitate, a usual method such as filtration, centrifugation, and natural sedimentation can be employed. The upper limit of the pH value is mainly the lower of the pH value at which coexisting ions form a precipitate and the pH value at which tin-palladium precipitates redissolve. For example, when copper ions coexist, the upper limit of the pH value is 4 or less. By operating under these conditions, separation from coexisting ions other than palladium and sulphonate in the aqueous solution can be achieved. Since the separated precipitate contains almost no impurities other than tin and palladium, palladium and tin can be easily recovered, and it is effective as a pretreatment method for various methods of separating and recovering palladium and tin. If the separated precipitate is dissolved in another hydrochloric acid solution, a concentrated palladium solution can be obtained. If necessary, the composition is adjusted. Reusable as a radium-tin tin catalyst solution.
第二の発明のスズとパラジウムの分離、 回収方法としては、 上記のよ う にして分離したスズーパラジウムの沈殿を別の塩酸酸性溶液に再度 溶解した後、 酸化処理を行い、 スズイオンを 4価に酸化した後、 金属ィ ォン処理剤でパラジウムのみを還元補足する方法である。 この方法は、 パラジウムのみを選択的かつ容易に回収できるので好ましい。 The method for separating and recovering tin and palladium according to the second invention is as follows. The tin-palladium precipitate separated as described above is dissolved again in another hydrochloric acid solution, and then oxidized to convert tin ions to tetravalent. In this method, only palladium is reduced and captured with a metal ionizing agent after oxidation. This method is preferable because only palladium can be selectively and easily recovered.
本発明の金属ィォン処理剤に用いられる多孔質担体としては、 二酸化 珪素等の無機質系多孔質担体、 活性炭や活性炭素繊維等の炭素系多孔質 担体、 その他、 疎水性に調製した活性炭等の炭素粒子、 例えば、 ポリテ トラフルォロエチレンの水性ェマルジヨ ン加工品 (特開昭 5 3 - 9 2 9 8 1号公報を参照)、 有機質系の合成ポリマー粒子、 例えば、 有機合成 吸着剤と して用いられるスチレン一ジビニルペンゼン共重合体、 または 、 これらの成形品などが挙げられる。 中でも活性炭が安価で入手し易い ので、 特に好ましい。 Examples of the porous carrier used in the metal ion treatment agent of the present invention include inorganic porous carriers such as silicon dioxide, carbon-based porous carriers such as activated carbon and activated carbon fiber, and carbon such as activated carbon prepared to be hydrophobic. Particles, for example, an aqueous emulsion processed product of polytetrafluoroethylene (see JP-A-53-92981), organic synthetic polymer particles, for example, used as an organic synthetic adsorbent Styrene-divinyl pentene copolymer, or a molded article thereof. Among them, activated carbon is particularly preferable because it is inexpensive and easily available.
本発明の金属ィォン処理剤に用いられるアン トラヒ ドロキノン化合 物類は、 可逆的な酸化還元能力がある化合物であり、 吸着等によって多 孔質担体に安定に固定される化合物であればよい。 アン トラヒ ドロキノ ン化合物の具体例としては、 例えば、 アン トラヒ ドロキノン ( 9, 1 0 ージヒ ドロキシアン トラセン)、 その水素化化合物、 これらの置換体、 および、 アントラヒ ドロキノン化合物類の水溶性塩、 などが挙げられる ο The anthrahydroquinone compound used in the metal ion treatment agent of the present invention is a compound having a reversible oxidation-reduction ability, and may be any compound that can be stably immobilized on a porous carrier by adsorption or the like. Specific examples of the anthrahydroquinone compound include, for example, anthrahydroquinone (9,10-dihydroxyxanthracene), a hydrogenated compound thereof, a substituted product thereof, and a water-soluble salt of anthrahydroquinone compound. Ο
このアン トラヒ ドロキノン化合物類の水溶性塩の水溶液としては、 例 えば、 ナフ トキノンと対応する 1, 3—ブタジェン化合物とのディール ス ' アルダー反応によって得られる、 1, 4, 4 a , 9 a—テトラヒ ド
口アントラキノン化合物に当量 (キノン化合物に対して 2倍モル) 以上 の水酸化アルカリ金属の水溶液を作用させることによって得られる、 1 , 4 —ジヒ ドロー 9, 1 0—ジヒ ドロキシアン トラセン化合物のジナ ト リウム塩水溶液が挙げられる。 Examples of aqueous solutions of the water-soluble salts of the anthrohydroquinone compounds include, for example, 1,4,4a, 9a- obtained by Diels-Alder reaction of naphthoquinone with the corresponding 1,3-butadiene compound. Tetrahydr 1,4-Dihydro 9,10-Dihydroxy thiacene dinatrium compound obtained by reacting an aqueous solution of an alkali metal hydroxide in an amount equivalent to (more than twice the molar amount of the quinone compound) an oral anthraquinone compound. An aqueous salt solution is mentioned.
前記の多孔質担体に、 上記アン トラヒ ドロキノン化合物類を担持させ た金属イオン処理剤を調製するには、 ( 1 ) アン トラキノ ン化合物類を 有機溶媒に溶解した溶液に多孔質担体を浸潰して含浸させて吸着後、 亜 ニチオン酸ナトリウム (ハイ ドロサルフアイ トナトリウム) 等の還元剤 で処理する方法、 ( 2 ) アン トラヒ ドロキノン化合物類の水溶性塩の水 溶液に多孔質担体を浸漬し、 アン トラヒ ドロキノン化合物の水溶性塩を 多孔質担体に吸着させたのち、 酸洗浄して固定化する方法、 などが挙げ られる。 上記 ( 2 ) の方法は、 上記 ( 1 ) の方法で必須の還元処理が不 要という利点がある。 In order to prepare a metal ion treating agent in which the above-mentioned anthrahydroquinone compound is supported on the porous carrier, (1) the porous carrier is immersed in a solution in which the anthraquinone compound is dissolved in an organic solvent. Impregnated and adsorbed, then treated with a reducing agent such as sodium dithionite (sodium hydrosulfite); (2) Anthrahydrid The porous carrier is immersed in an aqueous solution of a water-soluble salt of a hydroquinone compound. A method in which a water-soluble salt of a droquinone compound is adsorbed on a porous carrier and then washed with an acid to fix the salt. The method (2) has an advantage that the essential reduction treatment in the method (1) is not required.
多孔質担体に担持させるアントラヒ ドロキノン化合物類の量は、 アン トラヒ ドロキノン化合物類の種類、 ノ、。ラジゥム含有水溶液のパラジウム の濃度、 固体の多孔質担体の種類、 粒径、 比表面積などによっても異な るが、 例えば、 1, 4—ジヒ ドロ一 9 , 1 0—ジヒ ドロキシアン トラセ ンのジナトリ ゥム塩と粒状活性炭を使用した場合、 担体 1 L当たり 0 . 3〜 1 . 0モル (M) の範囲で選ぶのが好ましい。 担持量が少ないと、 多量の金属ィォン処理剤を使用しなければならず、 多すぎるとパラジゥ ムに作用しない量が増加して無駄になり、 いずれも好ましくない。 The amount of the anthrahydroquinone compound to be supported on the porous carrier depends on the type of the anthrahydroquinone compound, and the amount of the anthrohydroquinone compound. It depends on the concentration of palladium in the aqueous solution containing radium, the type of solid porous carrier, the particle size, the specific surface area, and the like. For example, dinadium of 1,4-dihydroxy-19,10-dihydroxyxanthracene When a salt and granular activated carbon are used, it is preferable to select from 0.3 to 1.0 mol (M) per 1 L of the carrier. If the supported amount is small, a large amount of the metal ion treating agent must be used, and if the supported amount is too large, the amount that does not act on palladium increases, which is wasteful.
上記の方法で酸化、 還元処理を行ったパラジウム含有水溶液や、 スズ —パラジウムの沈殿を再度溶解した液からパラジウムの回収するには、 上記のように調製した金属イオン処理剤を、 パラジウム含有水溶液のパ ラジウムを還元するに必要な当量以上を添加して撹拌処理した後、 傾瀉 または濾過等で担持物を濾別するような回分式の処理法を採用するこ とができるが、 一般的には、 前記の金属イオン処理剤をカラム (塔) に 充填して、 パラジウム含有水溶液を通液する方法が採用される。 カラム へ通液する方法は、 特に限定されるものではなく、 上向きまたは下向き
など通常の通液方式によることができる。 以下、 本発明を実施例により さらに詳細に説明するが、 本発明は、 そ の趣旨を超えない限り、 以下の記載例に限定されるものではない。 なお 、 実施例中において、 「%」 とは特に記載のない限り 「重量%」 を意味 する。 . To recover palladium from a palladium-containing aqueous solution that has been oxidized or reduced by the above method or from a solution in which tin-palladium precipitate has been redissolved, the metal ion treating agent prepared as described above is treated with a palladium-containing aqueous solution. A batch-type treatment method in which an amount equivalent to or less than that necessary for reducing palladium is added and stirred, and then the supported substance is filtered off by decantation or filtration can be used. A method is employed in which a column (tower) is filled with the metal ion treating agent and a palladium-containing aqueous solution is passed. The method of passing the liquid through the column is not particularly limited, and may be upward or downward. For example, a normal liquid passing method can be used. Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following description examples without departing from the gist thereof. In Examples, "%" means "% by weight" unless otherwise specified. .
「実施例 1」 . `` Example 1 ''.
塩化パラジウム、 塩化第二スズ · 5水和物、 塩化第二銅及び 3 7%塩 酸 (いずれも和光純薬製) を用いて、 下記組成の水溶液を調製し、 モデ ル触媒液とした。 An aqueous solution having the following composition was prepared using palladium chloride, stannic chloride pentahydrate, cupric chloride and 37% hydrochloric acid (all manufactured by Wako Pure Chemical Industries, Ltd.) to obtain a model catalyst solution.
P d : 1 00mg/L P d: 100mg / L
C u : 1 000mg/L C u: 1 000mg / L
S n : 20 g/L S n: 20 g / L
H C 1 : 3. 7 % H C 1: 3.7%
上記調製のモデル触媒液に、 銅相当量の塩化第一スズ 1. 5 gを添加 した、 このとき水溶液の酸化還元電位は 400 mVから 2 50 mVに変 化した。 この水溶液を 1 0m 1の金属イオン処理剤を充填したガラス力 ラムに通水した。 通水速度は 4 Om 1 Zh、 空間速度 (単位 lZh r、 以下 SVと記載する) は 4とした。 処理液中のパラジウムイオンは、 I C P原子発光法 (以下 I C P) で測定した。 その結果を表 1に示した。 表中、 処理液量は、 カラムに充填した金属イオン処理剤の容量に対する 処理した液の容量比 (以下、 BVと記載する) で表した。 1.5 g of stannous chloride equivalent to copper was added to the model catalyst solution prepared above. At this time, the oxidation-reduction potential of the aqueous solution changed from 400 mV to 250 mV. This aqueous solution was passed through a glass drum filled with 10 ml of a metal ion treating agent. The water flow velocity was 4 Om 1 Zh, and the space velocity (unit: lZhr, hereafter referred to as SV) was 4. The palladium ion in the treatment solution was measured by an ICP atomic emission method (hereinafter, ICP). Table 1 shows the results. In the table, the amount of the treatment liquid was represented by the ratio of the volume of the treated solution to the volume of the metal ion treating agent packed in the column (hereinafter referred to as BV).
なお、 本発明で用いた金属イオン処理剤は、 以下に従い調製した。 粒状活性炭 1 L ( 48 7 g) を、 減圧下、 窒素置換処理を繰り返し、 活性炭細孔内の酸素を窒素で置換した後、 窒素雰囲気下で濃度 1 6%の 1, 4ージヒ ドロー 9, 1 0—ジヒ ドロキシアン ト ラセン (以下 D D A という。) のジナトリウム塩 (以下、 DD Aのジナトリウム塩を 「DD AN」 という。 又、 この DD ANの濃度はアントラキノ ンに換算した濃 度として表す。) の水溶液 1 9 5 0 gを加え、 減圧下で 2. 5時間吸着
させた。 この混合物を窒素雰囲気下で吸引濾過し、 得られた濾過ケーキ を 1 0 %硫酸溶液 1 Lで処理した後、 窒素置換した脱塩水 1 Lで洗浄し た。 D D Aの担持量は、 活性炭 1 L当たり 0 . 7 3モルであった。 The metal ion treating agent used in the present invention was prepared as follows. 1 L (487 g) of granular activated carbon was repeatedly subjected to nitrogen replacement under reduced pressure to replace the oxygen in the pores of the activated carbon with nitrogen. 0—The disodium salt of dihydroxyxanthracene (hereinafter referred to as DDA) (hereinafter the disodium salt of DDA is referred to as “DDAN”. The concentration of DDAN is expressed as a concentration converted to anthraquinone. Add 950 g of an aqueous solution of) and adsorb under reduced pressure for 2.5 hours I let it. This mixture was subjected to suction filtration under a nitrogen atmosphere, and the obtained filter cake was treated with 1 L of a 10% sulfuric acid solution, and then washed with 1 L of demineralized water purged with nitrogen. The amount of DDA carried was 0.73 mol per liter of activated carbon.
「比較例 1」 "Comparative Example 1"
実施例 1のモデル触媒液に、 塩化第一スズを加えることなく金属ィォ ン処理剤を充填したガラスカラムに通水した。 通水速度は 4 0 m 1 / h The model catalyst solution of Example 1 was passed through a glass column filled with a metal ion treating agent without adding stannous chloride. Flow rate is 40 m1 / h
( S V ) とした。 処理液中のパラジウムイオンを実施例 1 と同様に測 定し、 結果を表 1に示した。 (S V). The palladium ion in the treatment solution was measured in the same manner as in Example 1, and the results are shown in Table 1.
「比較例 2」 "Comparative Example 2"
実施例 1のモデル触媒液に、 銅に対し 5倍過剰量相当の塩化第一スズ ( 6 . 0 g ) を添加した、 このとき水溶液の酸化還元電位は 4 0 0 m V から 5 0 m Vに変化した。 このとき、 処理液は濃緑色に変化したこの水 溶液を 1 0 m 1 の金属ィォン処理剤を充填したガラスカラムに通水し た。 通水速度は 4 0 m 1 / h ( S V 4 ) とした。 処理液中のパラジウム イオンを実施例 1 と同様に測定し、 結果を表 1に示した。 なお、 表 1中 の棒線部は、 測定を実施しなかったことを意味する。 To the model catalyst solution of Example 1 was added stannous chloride (6.0 g) in an amount equivalent to a 5-fold excess with respect to copper. At this time, the oxidation-reduction potential of the aqueous solution was from 400 mV to 50 mV. Changed to At this time, the treatment solution, which turned dark green, was passed through a glass column filled with 10 ml of a metal ion treatment agent. The water flow rate was 40 m 1 / h (S V 4). Palladium ions in the treatment liquid were measured in the same manner as in Example 1, and the results are shown in Table 1. The bar in Table 1 means that the measurement was not performed.
表 1 table 1
「実施例 2」 "Example 2"
塩化パラジウム、 塩化第ニスズ ' 5水和物、 塩化第二銅、 ならび 3 7 %塩酸 (いずれも和光純薬) を用いて、 下記組成の水溶液を調製し、 モ
デル触媒液とした。 An aqueous solution having the following composition was prepared using palladium chloride, varnish chloride 'pentahydrate, cupric chloride, and 37% hydrochloric acid (all of which were made by Wako Pure Chemical Industries, Ltd.). A Dell catalyst solution was used.
P d : i 0 0 mg/L P d: i 0 0 mg / L
C u : 3 0 0 0 mg/L Cu: 300 mg / L
S n : 2 0 g/L · S n: 20 g / L ·
H C 1 : 3. 7 % H C 1: 3.7%
上記モデル触媒液に、 銅相当量の塩化第一スズ 6. 5 gを添加した。 このとき水溶液の酸化還元電位は 4 2 0 mVから 2 2 0 mVに変化し た。 この水溶液を 1 0 m lの金属ィォン処理剤を充填したガラス力ラム に通水した。 通水速度は 4 0 m 1 /h ( S V 4 ) とした。 処理液中のパ ラジウムイオンは、 I C Pで測定した。 その結果を表 2に示した。 表 2 To the above model catalyst solution, 6.5 g of stannous chloride equivalent to copper was added. At this time, the oxidation-reduction potential of the aqueous solution changed from 420 mV to 220 mV. This aqueous solution was passed through a glass ram filled with 10 ml of a metal ionizing agent. The water flow rate was 40 m 1 / h (S V 4). The palladium ion in the treatment solution was measured by ICP. Table 2 shows the results. Table 2
「実施例 3」 "Example 3"
塩化パラジウム、 塩化第ニスズ ' 5水和物、 塩化第二銅及び 3 796塩 酸 (いずれも和光純薬製) を用いて、 下記組成の水溶液を調製し、 モデ ル触媒液とした。 An aqueous solution having the following composition was prepared using palladium chloride, varnish chloride'pentahydrate, cupric chloride and 3796 hydrochloric acid (all manufactured by Wako Pure Chemical Industries, Ltd.), and used as a model catalyst solution.
P d : 2 0 0 m g/L Pd: 200 mg / L
C u : 2 0 0 0 mg/L . Cu: 2000 mg / L.
S n : 2 0 g/L S n: 20 g / L
H C 1 : 3. 7 % H C 1: 3.7%
モデル触媒液と塩化第一スズ水溶液を酸化還元電位が 2 5 O mVに なるよう に連続的に混合しながら金属ィォン処理剤でカラム処理した。
通液速度は 3 00m l /hとした。 処理液中のパラジウムイオンは. CPで測定し、 その結果を表 3に示した。 表 3 The model catalyst solution and the stannous chloride aqueous solution were column-treated with a metal ion treating agent while continuously mixing so that the oxidation-reduction potential was 25 OmV. The liquid passing speed was 300 ml / h. The palladium ion in the treatment solution was measured by CP, and the results are shown in Table 3. Table 3
「実施例 4」 "Example 4"
プリ ント基板のスルーホールメツキの触媒付与工程から排出したパ ラジウムースズ触媒液を空気酸化して、 下記組成の触媒液を得た。 The palladium soot catalyst solution discharged from the step of applying a catalyst for through-hole plating on a printed substrate was air-oxidized to obtain a catalyst solution having the following composition.
P d : 1 3 0 m g/L Pd: 130 mg / L
C u : 990 m g/L Cu: 990 mg / L
S n : 1 2 g/L S n: 1 2 g / L
H C 1 : 0. 3 %未満 H C 1: less than 0.3%
N a C 1 : 240 g/L N a C 1: 240 g / L
還元剤として、 空気酸化前の触媒液を用い、 空気酸化後の触媒液の酸 化還元電位が 2 7 OmVになるように連続的に混合しながら、 金属ィォ ン処理剤でカラム処理した。 金属ィォン処理剤へのカラム通水速度は 3 0 Om 1 / hとした。 処理液中のパラジウムイオンは、 I CPで測定し 、 その結果を表 4に示した。
表 4 The catalyst solution before air oxidation was used as the reducing agent, and the catalyst solution after air oxidation was continuously mixed so as to have an oxidation-reduction potential of 27 OmV, and the column treatment was performed with a metal ion treatment agent. The flow rate of the column through the metal ion treatment agent was 30 Om 1 / h. The palladium ion in the treatment solution was measured by ICP, and the results are shown in Table 4. Table 4
「実施例 5」 "Example 5"
実施例 4と同じ触媒液に、 酸化還元電位が 2 70 mVになるよう に連 続的に塩化第一スズ水溶液を混合して、 金属ィォン処理剤でカラム処理 した。 カラム通液速度を 6 L/hとした。 処理液中のパラジウムイオン は、 I CPで測定し、 その結果を表 5に示した。 表 5 An aqueous solution of stannous chloride was continuously mixed with the same catalyst solution as in Example 4 so that the oxidation-reduction potential became 270 mV, and the mixture was subjected to column treatment with a metal ionizing agent. The column flow rate was 6 L / h. Palladium ions in the treatment solution were measured by ICP, and the results are shown in Table 5. Table 5
「実施例 6」 "Example 6"
ノ、。ラジウム濃度 1 20mg/L、 銅濃度 3, 000 mgZL、 スズ濃 度 1 2, O O Omg/Lを含むプリ ン ト基板のスルーホールメツキのパ ラジウム核付与工程から排出された触媒廃液 (パラジウムースズ触媒液 ) 1 Lに、 2. 7 %水酸化ナトリウム溶液 1 Lを攪拌下 1時間かけて滴 下して pH 2にして、 沈殿を生成させた。 上澄み中のパラジウム濃度を I CP発行分光分析法で測定したところ検出限界値 (0. l mgZL) 以下であった。 生成した沈殿を吸引ろ過によ り分離して、 パラジウムと スズを水溶液から分離した。
次に、 上記沈殿を塩酸 2 50 m lで再溶解して、 パラジウム一スズ液 とし、 脱塩水 2 50 m lを加え全量を 500 m 1 とした。 このパラジゥ ムースズ液に空気を吹き込み酸化処理した。 空気酸化処理することによ り溶液の色が暗黒色から橙色に変化したことから、 スズとパラジウムの 錯体が分解したものと推測された。 酸化処理した橙色の液中のパラジゥ ム濃度は 240 m g/Lであり、 銅濃度は 6 OmgZLであった。 No ,. Catalyst wastewater (palladium sulfur) discharged from the palladium nucleation process of through-hole plating on printed circuit boards containing a radium concentration of 120 mg / L, a copper concentration of 3,000 mg ZL, a tin concentration of 12, and OO Omg / L To 1 L of the catalyst solution, 1 L of a 2.7% sodium hydroxide solution was added dropwise over 1 hour with stirring to adjust the pH to 2, whereby a precipitate was formed. The concentration of palladium in the supernatant was below the detection limit (0.1 mgZL) as measured by ICP-issued spectroscopy. The precipitate formed was separated by suction filtration to separate palladium and tin from the aqueous solution. Next, the precipitate was redissolved with 250 ml of hydrochloric acid to obtain a palladium-tin tin solution, and 250 ml of demineralized water was added to make the total amount 500 ml. Air was blown into this palladium mousse solution to perform oxidation treatment. The color of the solution changed from dark black to orange by the air oxidation treatment, suggesting that the complex of tin and palladium was decomposed. The oxidized orange liquid had a palladium concentration of 240 mg / L and a copper concentration of 6 OmgZL.
この液 5 0 Om 1をカラムに充填した金属イオン処理剤 1 Om 1 に、 通水速度 2 0m l /h ( S V 2 ) で通液し、 カラムを通過した液中のパ ラジウム濃度を分析したところ 0. l mg/L以下であった。 さらに、 同様に処理した液 500m lをカラムに通液しても、 パラジウムが漏洩 せず、 金属イオン処理剤上に、 パラジウム金属が捕捉されたのが、 目視 で確認できた。 This solution was passed at a flow rate of 20 ml / h (SV 2) through a metal ion treatment agent 1 Om 1 filled with 50 Om 1 in a column, and the palladium concentration in the solution passed through the column was analyzed. However, it was below 0.1 mg / L. Furthermore, even when 500 ml of the liquid treated in the same manner was passed through the column, palladium did not leak, and it was visually confirmed that palladium metal was captured on the metal ion treating agent.
「比較例 3」 "Comparative Example 3"
実施例 6と同様のパラジウム—スズ触媒液 1 Lに空気を吹き込み酸 化処理した。 酸化処理した液のパラジウム濃度は 1 2 Om g/Lであり 、 銅濃度は 3, 000 m g/Lであった。 空気酸化処理することによ り 暗黒色から緑色に変化したことからスズとパラジゥムの錯体を完全に 分解したものと推測される。 この液を実施例 6と同様に金属イオン処理 剤 1 0 mで処理したところ、 カラムを通過した液中にはじめからパラジ ゥムの漏洩が見られ、 ほとんどパラジウムを回収することは出来なかつ た。 上記、 実施例 6と比較例 3の結果を、 表 6に示す。 表 6 Air was blown into 1 L of the same palladium-tin catalyst solution as in Example 6 to perform oxidation treatment. The oxidized solution had a palladium concentration of 12 Omg / L and a copper concentration of 3,000 mg / L. The air oxidation treatment changed the color from dark black to green, suggesting that the complex of tin and palladium was completely decomposed. When this solution was treated with the metal ion treating agent 10 m in the same manner as in Example 6, leakage of palladium was observed from the beginning in the solution passed through the column, and almost no palladium could be recovered. Table 6 shows the results of Example 6 and Comparative Example 3 described above. Table 6
パラジウム濃度 (mgZL) Palladium concentration (mgZL)
処理液量 (BV) 実施例 6 比較例 3 Processing solution volume (BV) Example 6 Comparative Example 3
1 0 0. 1以下 1. 6 1 0 0.1 or less 1.6
20 0. 1以下 1 8 20 0.1 or less 1 8
50 0. 1以下 2 1 50 0.1 or less 2 1
80 0. 1以下 5 1 80 0.1 or less 5 1
100 0. 1以下 6 5
「比較例 4」 100 0.1 or less 6 5 "Comparative Example 4"
比較例 3 と同様のパラジウム—スズ触媒液 1 Lに空気を吹き込み酸 化処理した。 酸化処理した液のパラジウム濃度は 1.20 m g/Lであり 、 銅濃度は 3 000 m g/Lであった。 次に 2. 7 %水酸化ナトリ ウム 溶液 1 Lを攪拌下 1時間かけて滴下し、 pH 2にして、 沈殿を生成させ た。 このときの上澄み液中のパラジウム濃度は 6 OmgZLであった。 パラジウム一スズ触媒液を空気酸化し、 パラジウムイオンとスズの 4価 イオンの形に分解してしまう とアル力リ を添加して p Hを 2に調整し てもスズの 4価のみが沈殿し、 パラジウムは回収できなかった。 Air was blown into 1 L of the same palladium-tin catalyst solution as in Comparative Example 3 to perform an oxidation treatment. The oxidized solution had a palladium concentration of 1.20 mg / L and a copper concentration of 3000 mg / L. Next, 1 L of a 2.7% sodium hydroxide solution was added dropwise over 1 hour with stirring to adjust the pH to 2, and a precipitate was formed. At this time, the palladium concentration in the supernatant was 6 OmgZL. If the palladium-tin tin catalyst solution is air-oxidized and decomposed into palladium ion and tetravalent ion form of tin, only tetravalent tin precipitates even if the pH is adjusted to 2 by adding aluminum chloride. The palladium could not be recovered.
「実施例 7」 "Example 7"
パラジウム濃度 20 0 m g/L, 銅濃度 1 00 OmgZLを含む p H 1の水溶液 500 m 1に、 塩化第一スズ塩酸溶液 (スズとして 1 200 m g/L) を 500 m l添加した。 3時間静置すると液の色が黄緑色か ら暗黒色に変化した。 次に、 2 %水酸化ナトリ ウム液を攪拌下、 滴下し 水溶液の p Hを 2に調整し、 脱塩水を加え全量を 2 Lにした。 このとき の上澄み液中のパラジウム濃度を測定したところ検出限界値以下であ つた。 生成した沈殿を吸引ろ過し、 得られた沈殿を塩酸 2 50 m 1で再 溶解させ、 脱塩水 2 50 m lを加え全量を 500 m 1 とした。 この液に 空気を吹き込み酸化処理した。 酸化処理した橙色の液のパラジウム濃度 は 200 m gZLであり、 鋼濃度は 3 0 m gZLであった。 この液を実 施例 6と同様にして金属ィォン処理剤で処理したところ、 カラムを通過 した液中のパラジウム濃度は、 0. 1 m g/L以下で、 パラジウムは漏 洩せず、 金属イオン処理剤上に、 パラジウム金属が捕捉されたのが、 目 視で確認できた。 To 500 ml of an aqueous solution of pH 1 containing 200 mg / L of palladium and 100 mg of copper, 500 ml of a stannous chloride solution (1,200 mg / L as tin) was added. After standing for 3 hours, the color of the solution changed from yellow-green to dark black. Next, a 2% sodium hydroxide solution was added dropwise with stirring, the pH of the aqueous solution was adjusted to 2, and demineralized water was added to make the total volume 2 L. At this time, the concentration of palladium in the supernatant was measured and found to be below the detection limit. The resulting precipitate was suction-filtered, and the resulting precipitate was redissolved in 250 ml of hydrochloric acid, and 250 ml of demineralized water was added to bring the total amount to 500 ml. Air was blown into this solution to perform oxidation treatment. The oxidized orange liquid had a palladium concentration of 200 mgZL and a steel concentration of 30 mgZL. When this solution was treated with a metal ion treating agent in the same manner as in Example 6, the concentration of palladium in the solution that passed through the column was 0.1 mg / L or less, no palladium leaked, and metal ion treatment was performed. It was visually confirmed that palladium metal was captured on the agent.
「実施例 8」 "Example 8"
ノ、。ラジウム濃度 1 2 0 m g / L、 銅濃度 3, 000 m g Z L、 スズ濃
度 1 2, O O O m g Z Lを含むプリ ン ト基板のスルーホールメ ッキのパ ラジウム核付与工程から排出された触媒廃液 (パラジウム一スズ触媒液 ) 5 0 m 1 に水 1, 9 5 0 m 1 を添加し撹拌したところ、 茶色がかつた 灰色に着色した沈殿が生成した。 このときの上澄み液中のパラジウム濃 度を測定したところ検出限界値以下であった。 生成した沈殿を吸引ろ過 し、 得られた沈殿を塩酸 2 5 m 1 で再溶解させ、 脱塩水を加え全量を 5 0 m 1 とした。 この液に空気を吹き込み酸化処理した。 酸化処理した橙 色の液のパラジウム濃度は 1 2 0 m g Z Lであり、 銅濃度は 3 0 m g / Lであった。 この液を実施例 6 と同様にして金属ィォン処理剤で処理し たところ、 カラムを通過した液中のパラジウム濃度は、 0 . l m g / L 以下で、 パラジウムは漏洩せず、 金属イオン処理剤上に、 パラジウム金 属が捕捉されたのが、 目視で確認できた。 産業上の利用可能性 No ,. Radium concentration 120 mg / L, copper concentration 3,000 mg ZL, tin concentration Degree of catalyst waste water (palladium-tin tin catalyst solution) discharged from the palladium nucleation process of the through-hole mech on the printed circuit board containing 12, OOO mg ZL 50 m 1 into 1,950 m water Upon addition of 1 and stirring, a brownish-grey colored precipitate formed. At this time, the palladium concentration in the supernatant was measured and found to be below the detection limit. The resulting precipitate was filtered by suction, and the obtained precipitate was redissolved in 25 ml of hydrochloric acid, and demineralized water was added to bring the total amount to 50 ml. Air was blown into this liquid to perform oxidation treatment. The oxidized orange liquid had a palladium concentration of 120 mg ZL and a copper concentration of 30 mg / L. When this solution was treated with a metal ion treating agent in the same manner as in Example 6, the concentration of palladium in the solution passed through the column was 0.1 mg / L or less. Then, the palladium metal was captured visually. Industrial applicability
銅ィォンゃ鉄ィォンが混入したパラジウムースズ触媒液中のパラジ ゥムを金属イオン処理剤で回収するにあたり、 ( 1 ) 酸化処理後の銅の 2価イオンや鉄の 3価イオンを選択的に還元する方法や ( 2 ) スズの 2 価ィオンによ り安定化されたパラジウムイオンを、 p Hを高めることに よ りスズとともに選択的に沈殿させ、 この沈殿を分離して再溶解後、 酸 化処理する方法によ り、 共存する銅の 2価イオンや鉄の 3価イオンによ る妨害を防いで、 金属ィォン処理剤によるパラジウムィォンの還元捕捉 が可能となる。 さらに、 ( 2 ) のスズ一パラジウムの沈殿分離方法によ つて分離された沈殿には、 スズ及びパラジウム以外の不純物が含まれな いので、 簡便なスズとパラジウムの分離操作によりパラジウムやスズを 回収できる。 特に、 銅イオンが共存するパラジウムースズ触媒液からパ ラジウムを金属ィォン処理剤で回収する方法の前処理と して好適な方 法である。 また、 この方法を応用することによ り、 沈殿を再溶解すれば 、 パラジウム一スズ触媒液として再利用できる。 さらに、 沈殿を再溶解 後、 酸化処理でスズを 4価に酸化するとスズのみが沈殿するので、 パラ
ジゥム水溶液を得ることができ、 金属ィォン処理剤以外のパラジウム回 収方法の前処理としても有効である。
When recovering the palladium in the palladium catalyst solution mixed with copper ion and iron ion using a metal ion treatment agent, (1) selectively remove copper divalent ions and iron trivalent ions after oxidation treatment. (2) Palladium ion stabilized by tin divalent ion is selectively precipitated together with tin by increasing the pH, and this precipitate is separated and redissolved. According to the method of chemical treatment, interference by coexisting divalent ions of copper and trivalent ions of iron can be prevented, and reduction and capture of palladium by the metal ion treatment agent can be performed. Furthermore, since the precipitate separated by the method of separating and separating tin-palladium in (2) does not contain impurities other than tin and palladium, palladium and tin are recovered by a simple separation operation of tin and palladium. it can. In particular, it is a suitable method as a pretreatment of a method of recovering palladium from a palladium sulfuric acid catalyst solution in which copper ions coexist with a metal ion treating agent. Further, by applying this method, the precipitate can be reused as a palladium-tin tin catalyst solution by re-dissolving the precipitate. Furthermore, after redissolving the precipitate, if tin is oxidized to tetravalent by oxidation treatment, only tin precipitates. An aqueous solution of dime can be obtained, which is also effective as a pretreatment for palladium recovery methods other than the metal ion treatment agent.