WO2002060141A1 - Layered transmission reception device and transmission device - Google Patents

Layered transmission reception device and transmission device Download PDF

Info

Publication number
WO2002060141A1
WO2002060141A1 PCT/JP2002/000476 JP0200476W WO02060141A1 WO 2002060141 A1 WO2002060141 A1 WO 2002060141A1 JP 0200476 W JP0200476 W JP 0200476W WO 02060141 A1 WO02060141 A1 WO 02060141A1
Authority
WO
WIPO (PCT)
Prior art keywords
data sequence
data
signal
modulated signal
sequence
Prior art date
Application number
PCT/JP2002/000476
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Hamada
Original Assignee
Masatoshi Hamada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masatoshi Hamada filed Critical Masatoshi Hamada
Publication of WO2002060141A1 publication Critical patent/WO2002060141A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems

Definitions

  • the present invention relates to a receiving apparatus and a transmitting apparatus that transmit a first data sequence by a signal space diagram and transmit the second and subsequent data sequences by feather transition or layered transmission by a space diagram.
  • DAPSK differential amplitude phase shift keying
  • FIG. 1 shows demodulation of a DAPSK signal as a hierarchical transmission method.
  • FIG. 2 shows a signal space diagram and a feather transition of the DAPSK transmission.
  • the DAPSK signal transmits two QPSK signals with different amplitudes, and 2 bits / symbol in the QPSK signal space diagram and 1 bit / symbol in the difference in screw width, for a total of 3 bits Z Transmit symbol data.
  • the conventional receiver shown in Fig. 1 when demodulating 1 bit / symbol transmitted by the difference in amplitude, it is difficult for the receiver to secure the reference of the absolute value of the amplitude.
  • Differential detection of 1-bit no-symbol differentially modulated signals transmitted with different amplitudes is performed. Specifically, when two consecutive bits of data are the same (0 or 11) in the transmitting device, two bits are transmitted by QPSK of the same amplitude, and the two consecutive bits of data are different.
  • the conventional hierarchical transmission scheme receiving apparatus demodulates at the same point a reception sample point of a modulation signal based on the first data sequence and a reception sample point of a modulation signal based on the second and subsequent data sequences. For this reason, if the received sample points of the modulated signal based on the first data sequence and the received sample points of the modulated signal based on the second and subsequent data sequences are different, the error characteristics deteriorate due to the influence of the respective modulated signals. There was a drawback to do. Similarly, in the case of a modulated signal in which the second and subsequent data sequences are transmitted by feather-transition, there is a disadvantage that the error characteristics are degraded due to the influence of each other's modulated signal.
  • the conventional hierarchical transmission scheme receiving apparatus uses differential detection like DASK demodulation.
  • Differential detection has a disadvantage that error characteristics are deteriorated as compared with synchronous detection. Also, in differential detection, it is necessary to distinguish between 0 and 11 and between 0 and 10, so it is necessary to transmit a signal that distinguishes between these. Since the transmission device of the conventional hierarchical transmission method equally distributes the inter-code distance between the addition signal of the modulation signal of the first data sequence and the addition signal of the modulation signal of the second and subsequent data sequences, There is a disadvantage that the error rate of the first data sequence is greatly deteriorated as compared with the case where the sequence is not transmitted.
  • Receiver capable of demodulation with very small degradation.
  • Another object of the present invention is to provide a receiving apparatus that can perform synchronous detection and can improve error characteristics as compared with differential detection.
  • an object of the present invention is to compare the modulated signal of the first data sequence with the added signal of the modulated signal of the second and subsequent data sequences to make the inter-code distance of the first data sequence uniform.
  • An object of the present invention is to provide a receiving device and a transmitting device capable of reducing error characteristic degradation.
  • the receiving apparatus comprises: means for remodulating a data sequence obtained by demodulating a modulated signal based on a first data sequence; and a means for modulating a data sequence based on a first data sequence and a second data sequence. Modulated signal and second data based on the first data sequence obtained by adding the modulated signal
  • the means for subtracting the re-modulated signal from the added signal of the modulated signal of the series extracts the modulated signal of the second and subsequent data series.
  • the receiving apparatus includes means for performing transmission permission / prohibition of the second and subsequent data sequences by using a pattern of the first data sequence in the transmission device; and a first apparatus for transmitting / receiving the second and subsequent data sequences in the reception device.
  • the means for subtracting the stored remodulated signal from the added signal of the modulated signal due to the second data series extracts the modulated signal due to the second and subsequent data series.
  • the receiving apparatus may further comprise: a receiver that modulates the amplitude of a signal obtained by remodulating data obtained by demodulating the first data sequence by using a second signal modulated by the first data sequence received at a sampling point for demodulating the first data sequence; Synchronous detection is performed by means of controlling the amplitude of the addition signal of the modulation signal based on the data sequence.
  • the transmitting apparatus of the present invention is configured such that an addition signal of the modulated signal based on the first data sequence and the modulated signal based on the second and subsequent data sequences forms the second and subsequent data sequences at sample points of the first data sequence in reception.
  • a means for generating a modulation signal based on the second and subsequent data sequences by means for reducing the modulation signal to 0 is provided.
  • the inter-code distance between the modulated signal based on the first data sequence and the sum signal of the modulated signals based on the second and subsequent data sequences is not equal, and the inter-code distance of the first data sequence is increased.
  • Means for allocating to reduce the inter-code distance of the second and subsequent data sequences reduces error characteristic degradation of the first data sequence.
  • FIG. 1 is a diagram showing an example of a conventional hierarchical transmission system receiving apparatus
  • FIG. 2 is a diagram showing a signal space diagram and a feather transition of the conventional hierarchical transmission
  • FIG. FIG. 4 is a diagram illustrating a receiving device according to the present invention
  • FIG. 4 is a diagram illustrating a transmitting device according to the present invention
  • FIG. 5 is a diagram illustrating a receiving device according to the present invention
  • FIG. 7 is a diagram illustrating a receiving device according to the present invention
  • FIG. 8 is a diagram illustrating a receiving device according to the present invention
  • FIG. 9 is a diagram illustrating a receiving device according to the present invention.
  • FIG. 10 is a diagram showing a speech device
  • FIG. 10 is a diagram showing a speech device
  • FIG. 10 is a diagram showing a receiving device according to the present invention.
  • FIG. 11 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention
  • FIG. 12 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention.
  • FIG. 13 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention.
  • FIG. 14 is a diagram showing a demodulation error characteristic according to the present invention.
  • FIG. 15 is a diagram showing a demodulation error characteristic according to the present invention
  • FIG. 16 is a diagram showing a demodulation error characteristic according to the present invention
  • FIG. 15 is a diagram showing a demodulation error characteristic according to the present invention
  • FIG. 16 is a diagram showing a demodulation error characteristic according to the present invention
  • FIG. 17 is a diagram showing a demodulation error characteristic according to the present invention.
  • FIG. 18 is a diagram illustrating a demodulation error characteristic according to the present invention, and
  • FIG. 19 is a diagram illustrating a demodulation error characteristic according to a conventional technique.
  • FIG. 3 shows an example of a hierarchical receiving apparatus for receiving the modulated signal of the transmitting apparatus shown in FIG. 4 as an embodiment of the present invention.
  • the demodulation shown in FIG. 4 Since the transmitting apparatus shown in FIG. 4 linearly adds the modulated signal based on the first data sequence and the modulated signal based on the second and subsequent data sequences and transmits the resultant signal, the demodulation shown in FIG.
  • the modulated signal of the second data sequence is demodulated from the modulated signal of the second data sequence, and the modulated signal of the first data sequence and the modulated signal of the second data sequence are obtained by remodulating the demodulated first data sequence. From the sum signal of
  • the modulated signal based on the first data sequence is sampled through a reception filter 1 having an impulse response of [Expression 2], which is the sum signal [Expression 1] of the modulated signal based on the first data sequence and the modulated signal based on the second data sequence. Sampling at points 2 This sampling signal
  • Equation 3 is converted by Detection 3, threshold-based judgment and demapping are performed, and demodulated data
  • the demodulated data of the first data series [Equation 5] is re-modulated 4 and the impulse response is obtained using the re-modulated signal [Equation 7] obtained through the transmission filter 5 of [Equation 6].
  • the signal [Equation 9] obtained by canceling the modulation signal by the first data series 7 from the addition signal [Equation 8] of the modulation signal by the first data series and the modulation signal by the second data series delayed 6 obtain.
  • This signal is passed through a reception filter 8 whose impulse response is expressed by the following equation (10), and the signal (Equation 11) sampled at the sampling points 9 is detected by the detection 10, judged by the threshold, de-mapped, and demodulated data 1 2] is output, and it is determined from the demodulated data of the first data sequence [Equation 13] whether transmission of the second and subsequent data sequences is possible or not. In the case of, write to buffer memory 12.
  • FIG. 4 shows an embodiment of a transmitting apparatus, in which a modulated signal based on a first data sequence and a modulated signal based on a second and subsequent data sequences are linearly added.
  • the first data sequence is mapped to QPS ⁇ by two consecutive bits of the transmission data [Equation 14] by the modulation 51, and according to the mapping, the complex signal which becomes [Equation 15]
  • the transmission signal 52 is generated by the transmission filter 52 whose impulse response is expressed by the following equation.
  • the data sequence of the second and subsequent data is transmitted from the buffer memory 54 by a signal that controls whether or not the transmission of the second and subsequent data sequences is possible according to the transmission data of the first data sequence.
  • Equation 1 7) h T main (t)
  • Equation 2 4] s sub (f) Fig. 5, in a third diagram showing an embodiment of a receiving device, an embodiment for controlling the amplitude of the re-modulated signal [Equation 2 5].
  • the amplitude of the signal obtained by sampling the signal 13 obtained by adding the modulated signal of the first data sequence and the modulation signal of the second data sequence [Equation 26] at the reception sampling points of the first data sequence The detection control 14 detects the amplitude of the expression 26 and multiplies the amplitude by 15 with the remodulated signal expression 25.
  • FIG. 6 shows an embodiment of the receiving apparatus.
  • the second and subsequent data series are converted into the first data series pattern.
  • a signal obtained by remodulating the first data sequence that can be transmitted by the second and subsequent data sequences is stored in the receiving apparatus shown in FIG. 3, and the first data sequence is stored.
  • the demodulated data is the second and subsequent data
  • FIG. 7 shows an embodiment of the receiving apparatus, in which the transmitting apparatus shown in FIG. 4 repeats the period for transmitting only the first data sequence, and the receiving apparatus shown in FIG.
  • the reference signal is detected during the period in which only the first data sequence is transmitted from the data obtained by demodulating the sequence, and the amplitude detection and control is performed by ANDing the sample of the first data sequence with the reference signal period extraction.
  • FIG. 8 shows an embodiment of the receiving apparatus.
  • reference signal detection 23 is performed in a period during which only the first data sequence is transmitted from the data obtained by demodulating the first data sequence
  • Amplitude detection 25 is performed by ANDing the sample 22 of the first data series with the reference signal period extraction 24, and threshold information is generated from the amplitude detection 25 to be used as the threshold for detecting the second and subsequent data series. Things.
  • FIG. 7 shows that reference signal detection 23 is performed in a period during which only the first data sequence is transmitted from the data obtained by demodulating the first data sequence
  • Amplitude detection 25 is performed by ANDing the sample 22 of the first data series with the reference signal period extraction 24, and threshold information is generated from the amplitude detection 25 to be used as the threshold for detecting the second and subsequent data series. Things.
  • FIG. 9 shows an embodiment of a receiving apparatus, in which data obtained by demodulating a modulated signal based on a first data sequence is subjected to error correction 26 and error-corrected data is re-modulated.
  • FIG. 10 is an embodiment of a receiving apparatus, in which a modulation signal based on a first data sequence is canceled from an added signal of a modulation signal based on a first data sequence and a modulation signal based on a second and subsequent data sequences. This is an embodiment in which the obtained modulated signal based on the second and subsequent data sequences is added to the signal by signal addition 27.
  • the signal received to demodulate the first data sequence is a signal modulated by the first data sequence.
  • This is an addition signal of the modulation signal based on the signal and the second and subsequent data sequences. For this reason, in the demodulation of the first data sequence, the influence of the demodulated signal due to the second and subsequent data sequences at the reception sample point of the first data sequence and the degradation of the error characteristics of the first data sequence become problems.
  • FIG. 11 is a waveform example of a transmitting apparatus in which the modulation signal of the second and subsequent data sequences becomes 0 at the sampling points of the first data sequence
  • FIG. 12 shows the first data sequence.
  • the inter-symbol distance between the modulation signal due to the modulation signal and the addition signal of the modulation signal due to the second and subsequent data sequences is not uniform, the inter-symbol distance of the first data sequence is increased, and the inter-symbol distance of the second and subsequent data sequences is increased.
  • 7 is an example of a waveform of a transmission device that performs distribution for reducing.
  • FIG. 13 is a waveform example of a transmitting apparatus in which the waveform of FIG. 12 is multi-valued.
  • the receiving apparatus comprises: means for performing transmission permission / prohibition of the second and subsequent data sequences in the transmitting apparatus according to the pattern of the first data sequence; Means for storing a signal obtained by remodulating the first data sequence, which can be transmitted by the second and subsequent data sequences, and a method of storing a pattern by which the data obtained by demodulating the first data sequence can be transmitted by the second and subsequent data sequences.
  • the receiving apparatus may further comprise: a receiver that modulates the amplitude of a signal obtained by remodulating data obtained by demodulating the first data sequence by using a second signal modulated by the first data sequence received at a sampling point for demodulating the first data sequence; Synchronous detection can be performed by means of controlling the amplitude of the addition signal of the modulation signal based on the data sequence, and error characteristics can be improved as compared with differential detection.
  • the inter-code distance between the modulated signal based on the first data sequence and the sum signal of the modulated signals based on the second and subsequent data sequences is not equal, and the inter-code distance of the first data sequence is increased.
  • the modulation signal of the first data sequence when extracting the modulation signal of the second and subsequent data sequences, the modulation signal of the first data sequence is canceled, and thus the modulation signal of the first data sequence is unrelated. Then, a modulated signal of the second and subsequent data series can be generated. Further, as shown in FIG. 13, when a modulated signal based on the second and subsequent data sequences is transmitted in multiple values, the function of detecting the second and subsequent data sequences in the receiving device may be multivalued. As an example of the characteristics of the receiving apparatus according to the present invention, the average power of the modulated signal by the first data sequence is represented by [Equation 29], and the average power of the modulated signal by the second and subsequent data sequences is represented by [Equation 30]. Here, the calculation results of the error characteristics when the power ratio is expressed by [Equation 31] are shown.
  • FIG. 14 shows an example of transmitting the transmission signal of FIG. 11 and using a matched filter as a reception filter, and shows an error characteristic when ⁇ is set to 0.1. This is the error characteristic when ⁇ is set to 0.3.
  • an error characteristic (BER BER) obtained by demodulating the first data sequence is compared with an error characteristic (error characteristic of QPSK) when the second and subsequent data sequences are not transmitted.
  • BER BER error characteristic obtained by demodulating the first data sequence
  • error characteristic of QPSK error characteristic of QPSK
  • Fig. 16 shows an example in which the transmission signal of Fig. 12 is transmitted and a matched filter is used as the reception filter.
  • the error characteristic when is set to 0.1 is shown in Fig. 17. Is the error characteristic when is set to 0.3.
  • FIG. 19 shows an error characteristic in which ⁇ is 0.5, as an example of a conventional case where the inter-code distance is equalized.
  • the error characteristics due to the first data sequence are compared with the error characteristics when the second and subsequent data sequences are not transmitted (the error characteristics of QPS S) as shown in Fig. 19
  • the deterioration of the error characteristic (BER 1) obtained by demodulating the first data sequence can be reduced.
  • Fig. 18 shows an example in which the transmission signal of Fig. 12 is transmitted and a matched filter is used as a reception filter, where a is set to 0.1 and the receiving device modulates the second and subsequent modulated signals three times. This is an example of repeated addition.
  • the present invention it is possible to reduce the deterioration of the error characteristic obtained by demodulating the first data sequence and to improve the error characteristic of the second and subsequent data sequences by repeatedly adding them. it can.
  • the transmitting device and the receiving device using the transmission method according to the present invention can be widely used in the fields of multimedia communication, television broadcasting, telephone, personal computer communication, mobile communication and the like, and the entire broadcasting field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

A layered transmission reception device in which a first data series is transmitted with a signal space diagram whereas second and later data series is transmitted by using Feather transition. A re-modulated signal produced by re-modulating the data produced by modulating the first data series is subtracted from the sum signal of the received modulated signal by the first data series and the modulated signal by the second data series so as to extract/demodulate only a modulated signal by the second and later data series. Therefor it is possible to suppress the degradation of the error characteristics caused by the interference of the modulated signals by the data series. The error characteristics can be further improved either by controlling the amplitude of the re-modulated signal and adopting synchronous detection means as a demodulating means or by adopting a construction in which the code-to-code distance of the sum signal of the modulated signal by the first data series and the modulated signal by the second and subsequent data series is uneven.

Description

明細書  Specification
階層化伝送方式の受信装置、 および送信装置 Hierarchical transmission system receiving device and transmitting device
技術分野 Technical field
本発明は、 第 1のデータ系列を信号空間ダイヤグラムで伝送し、 第 2以降のデ ータ系列をフェザー遷移、 または空間ダイヤグラムで階層化伝送する受信装置お よび送信装置に関するものである。  The present invention relates to a receiving apparatus and a transmitting apparatus that transmit a first data sequence by a signal space diagram and transmit the second and subsequent data sequences by feather transition or layered transmission by a space diagram.
背景技術 Background art
従来の技術の例と して、 参考文献 1のように階層化伝送方式として従来から知ら れている D A P S K (Differential Amplitude Phase Shift Keying) 信号の復調 を例に説明する。 As an example of a conventional technique, demodulation of a differential amplitude phase shift keying (DAPSK) signal conventionally known as a hierarchical transmission scheme as described in Reference 1 will be described.
第 1図は、 階層化伝送方式として D A P S K信号の復調を表している。 第 2図 は、 D A P S K方式の送信の信号空間ダイヤグラムとフェザー遷移を表している。 D A P S K信号は、第 2図のように、振幅の異なる二つの Q P S K信号を伝送し、 Q P S Kの信号空間ダイヤグラムで 2ビッ ト /シンボル、 捩幅の違いで 1 ビッ ト /シンボル、 合計 3ビッ ト Zシンボルのデータを伝送する。 第 1図で表した従来 の受信装置は、 振幅の違いで伝送する 1 ビッ ト /シンボルを復調する際に、 受信 装置において振幅絶対値の基準を確保するのが.困難なため、 送信装置で振幅の違 いで伝送する 1 ビッ トノシンボルの差動変調した信号を差動検波している。 具体 的には、 送信装置で連続する 2 ビッ トのデータが同じ (0 0、 または 1 1 ) の時 は、 同じ振幅の Q P S Kで 2ビッ トを伝送し、 連続する 2 ビッ トのデータが異な FIG. 1 shows demodulation of a DAPSK signal as a hierarchical transmission method. FIG. 2 shows a signal space diagram and a feather transition of the DAPSK transmission. As shown in Fig. 2, the DAPSK signal transmits two QPSK signals with different amplitudes, and 2 bits / symbol in the QPSK signal space diagram and 1 bit / symbol in the difference in screw width, for a total of 3 bits Z Transmit symbol data. In the conventional receiver shown in Fig. 1, when demodulating 1 bit / symbol transmitted by the difference in amplitude, it is difficult for the receiver to secure the reference of the absolute value of the amplitude. Differential detection of 1-bit no-symbol differentially modulated signals transmitted with different amplitudes is performed. Specifically, when two consecutive bits of data are the same (0 or 11) in the transmitting device, two bits are transmitted by QPSK of the same amplitude, and the two consecutive bits of data are different.
る (0 1、 または 1 0 ) の時は、 異なる振幅の Q P S Kで 2ビッ トを伝送する。 受信装置では、 Q P S Kの復調で 2 ビッ トノシンボル、 振幅の違いで 1 ビッ ト Z シンボル、 合計 3ビッ ト /シンボルを復調し、 振幅の違いで復調する 1ビッ トノ シンボルは、 Q P S Kの振幅が変化しない場合は 2ビッ トのデータが同じ(0 0、 または 1 1 ) 出力をし、 Q P S Kの振幅が変化する場合は 2 ビッ トのデータが異 なる (0 1、 または 1 0 ) 出力をする。 参考文献 1 "W.J. iVeber , "Differential encoding for multmle amplitude and phase shifit keying systems" , IEEE Trans. Commun. Vol. COM-26, pp385-391, Mar. 1978 もう一つの従来の技術の例として参考文献 2のように、 送信装置で多値のマツ ビングの方法により階層化伝送を行い、 受信装置で複数の多値の復調を行う技術 がある。 (0 1 or 10), two bits are transmitted with different amplitudes QPSK. The receiver demodulates 2-bit nosymbols for QPSK demodulation, 1-bit Z symbols for amplitude differences, a total of 3 bits / symbol, and demodulates for 1-bit nosymbols with amplitude differences. In this case, two bits of data output the same (00 or 11), and if the amplitude of QPSK changes, the two bits of data output different (01 or 10). Reference 1 "WJ iVeber", "Differential encoding for multmle amplitude and phase shifit keying systems", IEEE Trans. Commun. Vol. COM-26, pp385-391, Mar. 1978 As described above, there is a technique in which a transmitting apparatus performs hierarchical transmission by a multivalued matching method and a receiving apparatus demodulates a plurality of multivalues.
同伝送方式は、符号間距離が均等になるように多値のマッビングを行っている。 参考文献 2 上杉、他:「階層復調を用いた適応変調バケツ トデータ伝送に関して」、 電子情報通信学会 R C S信学技報 , 2000年 9月 8 日  In this transmission system, multi-valued mapping is performed so that the inter-code distance becomes uniform. Reference 2 Uesugi, et al .: "On Adaptive Modulation Bucket Data Transmission Using Hierarchical Demodulation", IEICE Technical Report of IEICE, RCS Technical Report, September 8, 2000.
従来の階層化伝送方式の受信装置は、 第 1のデータ系列による変調信号の受信 標本点と第 2以降のデータ系列による変調信号の受信標本点を同じ点で復調して いる。 このため、 第 1のデ一タ系列による変調信号の受信標本点と第 2以降のデ ータ系列による変調信号の受信標本点が異なる場合は、互いの変調信号の影響で、 誤り特性が劣化する欠点があった。 また同様に、 第 2以降のデ一タ系列をフエザ —遷移で伝送する変調信号の場合も、 互いの変調信号の影響で、 誤り特性が劣化 する欠点があった。 The conventional hierarchical transmission scheme receiving apparatus demodulates at the same point a reception sample point of a modulation signal based on the first data sequence and a reception sample point of a modulation signal based on the second and subsequent data sequences. For this reason, if the received sample points of the modulated signal based on the first data sequence and the received sample points of the modulated signal based on the second and subsequent data sequences are different, the error characteristics deteriorate due to the influence of the respective modulated signals. There was a drawback to do. Similarly, in the case of a modulated signal in which the second and subsequent data sequences are transmitted by feather-transition, there is a disadvantage that the error characteristics are degraded due to the influence of each other's modulated signal.
従来の階層化伝送方式の受信装置は、 D A S K復調のように差動検波を用いて いる。 差動検波は、 同期検波と比較して誤り特性が劣化する欠点があった。 また、差動検波は 0 0と 1 1の区別、 0 1 と 1 0の区別を行う必要があるため、 これらの区別を行う信号を伝送する必要があつた。 従来の階層化伝送方式の送信装置は、 第 1のデータ系列による変調信号と第 2 以降のデータ系列による変調信号の加算信号の符号間距離を均等に配分している ため、 第 2以降のデータ系列を伝送しない場合と比較し、 第 1のデータ系列の誤 り率が大きく劣化する欠点があった。 本発明の目的は、 第 1のデータ系列による変調信号の受信標本点と第 2以降の データ系列による変調信号の受信標本点が異なる場合でも、 互いの変調信号によ る干渉で発生する誤り特性の劣化が非常に小さい復調ができる受信装置。 また同 様に、 第 2以降のデータ系列をフェザー遷移で伝送する変調信号の場合も、 誤り 特性の劣化が非常に小さい復調ができる受信装置を提供することにある。 The conventional hierarchical transmission scheme receiving apparatus uses differential detection like DASK demodulation. Differential detection has a disadvantage that error characteristics are deteriorated as compared with synchronous detection. Also, in differential detection, it is necessary to distinguish between 0 and 11 and between 0 and 10, so it is necessary to transmit a signal that distinguishes between these. Since the transmission device of the conventional hierarchical transmission method equally distributes the inter-code distance between the addition signal of the modulation signal of the first data sequence and the addition signal of the modulation signal of the second and subsequent data sequences, There is a disadvantage that the error rate of the first data sequence is greatly deteriorated as compared with the case where the sequence is not transmitted. It is an object of the present invention to provide an error characteristic generated by interference between modulated signals even when reception sample points of a modulation signal based on the first data sequence are different from reception sample points of a modulation signal based on the second and subsequent data sequences. Receiver capable of demodulation with very small degradation. Similarly, it is an object of the present invention to provide a receiver capable of performing demodulation with very little deterioration in error characteristics even in the case of a modulated signal in which the second and subsequent data sequences are transmitted by feather transition.
また、 本発明の目的は、 同期検波を行うことができ、 差動検波と比較して誤り 特性を改善できる受信装置を提供することにある。  Another object of the present invention is to provide a receiving apparatus that can perform synchronous detection and can improve error characteristics as compared with differential detection.
さらに、 本発明の目的は、 第 1のデータ系列による変調信号と第 2以降のデー タ系列による変調信号の加算信号の符号間距離を均等にした場合と比較して、 第 1のデータ系列の誤り特性劣化を小さくできる受信装置、 送信装置を提供するこ とにある。  Furthermore, an object of the present invention is to compare the modulated signal of the first data sequence with the added signal of the modulated signal of the second and subsequent data sequences to make the inter-code distance of the first data sequence uniform. An object of the present invention is to provide a receiving device and a transmitting device capable of reducing error characteristic degradation.
発明の開示 Disclosure of the invention
本発明の受信装置は、 第 1のデータ系列による変調信号を復調して得られたデ ータ系列を再変調する手段と、 第 1のデータ系列による変調信号と第 2のデ一タ 系列による変調信号を加算した第 1のデータ系列による変調信号と第 2のデータ The receiving apparatus according to the present invention comprises: means for remodulating a data sequence obtained by demodulating a modulated signal based on a first data sequence; and a means for modulating a data sequence based on a first data sequence and a second data sequence. Modulated signal and second data based on the first data sequence obtained by adding the modulated signal
系列による変調信号の加算信号から再変調信号を減算する手段により、 第 2以降 のデータ系列による変調信号を抽出している。 本発明の受信装置は、 送信装置で第 2以降のデータ系列を第 1のデータ系列の パターンによって伝送可否を行う手段と、 受信装置において、 第 2以降のデータ 系列が伝送可とする第 1のデータ系列を再変調した信号を記憶する手段と、 第 1 のデータ系列を復調したデータが第 2以降のデータ系列が伝送可とするパターン の時に、 受信した第 1のデータ系列による変調信号と第 2のデータ系列による変 調信号の加算信号から記憶しておいた再変調信号を減算する手段により、 第 2以 降のデータ系列による変調信 ^を抽出する。 本発明の受信装置は、 第 1のデータ系列を復調したデータを再変調した信号の 振幅を、 第 1のデータ系列を復調する標本点で受信した第 1のデータ系列による 変調信号と第 2のデータ系列による変調信号の加算信号の振幅で制御する手段に より、 同期検波を行っている。 本発明の送信装置は、 第 1のデータ系列による変調信号と第 2以降のデータ系 列による変調信号の加算信号が、 受信における第 1のデータ系列の標本点で第 2 以降のデ一タ系列に変調信号が 0になる手段により、 第 2以降のデータ系列によ る変調信号を生成する手段を有している。 本発明の送信装置は、 第 1のデータ系列による変調信号と第 2以降のデータ系 列による変調信号の加算信号の符号間距離が均等ではなく、 第 1のデータ系列の 符号間距離を増加し、 第 2以降のデータ系列の符号間距離を減少する配分を行う 手段により、 第 1のデータ系列の誤り特性劣化を小さく している。 The means for subtracting the re-modulated signal from the added signal of the modulated signal of the series extracts the modulated signal of the second and subsequent data series. The receiving apparatus according to the present invention includes means for performing transmission permission / prohibition of the second and subsequent data sequences by using a pattern of the first data sequence in the transmission device; and a first apparatus for transmitting / receiving the second and subsequent data sequences in the reception device. Means for storing a signal obtained by remodulating a data sequence; and, when the data obtained by demodulating the first data sequence has a pattern allowing transmission of the second and subsequent data sequences, the received signal modulated by the first data sequence and the second The means for subtracting the stored remodulated signal from the added signal of the modulated signal due to the second data series extracts the modulated signal due to the second and subsequent data series. The receiving apparatus according to the present invention may further comprise: a receiver that modulates the amplitude of a signal obtained by remodulating data obtained by demodulating the first data sequence by using a second signal modulated by the first data sequence received at a sampling point for demodulating the first data sequence; Synchronous detection is performed by means of controlling the amplitude of the addition signal of the modulation signal based on the data sequence. The transmitting apparatus of the present invention is configured such that an addition signal of the modulated signal based on the first data sequence and the modulated signal based on the second and subsequent data sequences forms the second and subsequent data sequences at sample points of the first data sequence in reception. A means for generating a modulation signal based on the second and subsequent data sequences by means for reducing the modulation signal to 0 is provided. In the transmission device of the present invention, the inter-code distance between the modulated signal based on the first data sequence and the sum signal of the modulated signals based on the second and subsequent data sequences is not equal, and the inter-code distance of the first data sequence is increased. Means for allocating to reduce the inter-code distance of the second and subsequent data sequences reduces error characteristic degradation of the first data sequence.
図面の簡単な説明 . Brief description of the drawings.
第 1図は、 従来の階層化伝送方式の受信装置の例を示す図であり、 第 2図は、 従来の階層化伝送の信号空間ダイヤグラムとフェザー遷移を表す図であり、 第 3 図は、 本発明による受信装置を示す図であり、 第 4図は、 本発明による送信装置 を示す図であり、 第 5図は、 本発明による受信装置を示す図であり、 第 6 図は、 本発明による受信装置を示す図であり、 第 7図は、 本発明による受信装置を示す 図であり、 第 8図は、 本発明による受信装置を示す図であり、 第 9図は、 本発明 による受言装置を示す図であり、 第 1 0図は、 本発明による受信装置を示す図。 第 1 1図は、 本発明による送信装置の出力における信号空間ダイヤグラムとフエ ザ一遷移を表す図であり、 第 1 2図は、 本発明による送信装置の出力における信 号空間ダイヤグラムとフェザー遷移を表す図であり、 第 1 3図は、 本発明による 送信装置の出力における信号空間ダイヤグラムとフェザー遷移を表す図であり、 第 1 4図は、 本発明による復調誤り特性を示す図であり、 第 1 5図は、 本発明に よる復調誤り特性を示す図であり、 第 1 6図は、 本発明による復調誤り特性を示 す図であり、 第 1 7図は、 本発明による復調誤り特性を示す図であり、 第 1 8図 は、 本発明による復調誤り特性を示す図であり、 第 1 9図は、 従来の技術による 復調誤り特性を示す図である。 、  FIG. 1 is a diagram showing an example of a conventional hierarchical transmission system receiving apparatus, FIG. 2 is a diagram showing a signal space diagram and a feather transition of the conventional hierarchical transmission, and FIG. FIG. 4 is a diagram illustrating a receiving device according to the present invention, FIG. 4 is a diagram illustrating a transmitting device according to the present invention, FIG. 5 is a diagram illustrating a receiving device according to the present invention, and FIG. FIG. 7 is a diagram illustrating a receiving device according to the present invention, FIG. 8 is a diagram illustrating a receiving device according to the present invention, and FIG. 9 is a diagram illustrating a receiving device according to the present invention. FIG. 10 is a diagram showing a speech device, and FIG. 10 is a diagram showing a receiving device according to the present invention. FIG. 11 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention, and FIG. 12 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention. FIG. 13 is a diagram showing a signal space diagram and a feather transition at the output of the transmitting device according to the present invention. FIG. 14 is a diagram showing a demodulation error characteristic according to the present invention. FIG. 15 is a diagram showing a demodulation error characteristic according to the present invention, FIG. 16 is a diagram showing a demodulation error characteristic according to the present invention, and FIG. 17 is a diagram showing a demodulation error characteristic according to the present invention. FIG. 18 is a diagram illustrating a demodulation error characteristic according to the present invention, and FIG. 19 is a diagram illustrating a demodulation error characteristic according to a conventional technique. ,
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
第 3図は本発明の実施例として、 第 4図で示した送信装置の変調信号を受信す る階層化受信装置の例である。  FIG. 3 shows an example of a hierarchical receiving apparatus for receiving the modulated signal of the transmitting apparatus shown in FIG. 4 as an embodiment of the present invention.
第 4図で示した送信装置は、 第 1のデータ系列による変調信号と第 2以降のデ ータ系列による変調信号を線形加算して伝送するため、 第 3図の復調は、 第 1の データ系列による変調信号を復調し、 第 2以降のデータ系列による変調信号は、 復調した第 1のデータ系列を再変調した信号によって第 1 のデータ系列による変 調信号と第 2のデータ系列による変調信号の加算信号から第 1のデータ系列によ Since the transmitting apparatus shown in FIG. 4 linearly adds the modulated signal based on the first data sequence and the modulated signal based on the second and subsequent data sequences and transmits the resultant signal, the demodulation shown in FIG. The modulated signal of the second data sequence is demodulated from the modulated signal of the second data sequence, and the modulated signal of the first data sequence and the modulated signal of the second data sequence are obtained by remodulating the demodulated first data sequence. From the sum signal of
る変調信号をキャンセルして復調する。 第 1のデ一タ系列による変調信号は、 第 1のデータ系列による変調信号と第 2 のデータ系列による変調信号の加算信号【数式 1】 をインパルス応答が 【数式 2】 の受信フィルタ 1を通して標本点でサンプリング 2する。 このサンプリング信号Demodulated by canceling the modulated signal. The modulated signal based on the first data sequence is sampled through a reception filter 1 having an impulse response of [Expression 2], which is the sum signal [Expression 1] of the modulated signal based on the first data sequence and the modulated signal based on the second data sequence. Sampling at points 2 This sampling signal
【数式 3】 を検波 3で換波、 閾値による判定、 デマッピングを行い、 復調データ[Equation 3] is converted by Detection 3, threshold-based judgment and demapping are performed, and demodulated data
【数式 4】 を出力する。 [Equation 4] is output.
【数式 1】 ^( + ^,( [Equation 1] ^ (+ ^, (
【数式 2】 hR—』 [Equation 2] h R — ”
【数 3】 r„—main = an_main + jbn main [Equation 3] r „— main = a n _ main + jb n main
【数式 4】 [Equation 4]
第 2以降のデータ系列は、 第 1のデータ系列の復調データ 【数式 5】 を再変調 4 し、 インパルス応答が 【数式 6】 の送信フィルタ 5を通して得られる再変調信 号 【数式 7】 を用いて遅延 6 した第 1のデータ系列による変調信号と第 2のデ一 タ系列による変調信号の加算信号 【数式 8】 から第 1のデータ系列による変調信 号をキャンセル 7 した信号 【数式 9】 を得る。 この信号をインパルス応答が 【数 式 1 0】 の受信フィルタ 8を通し、 標本点でサンプリング 9 した信号【数式 1 1】 を検波 1 0により検波、 閾値で判定、 デマッピングして復調データ 【数式 1 2】 を出力し、 第 1のデータ系列の復調データ 【数式 1 3】 から第 2以降のデータ系 列の伝送可否を判定 1 1 した制御信号により、 第 2以降のデータ系列の伝送が可 の場合はバッファメモリ 1 2に書き込む。 For the second and subsequent data series, the demodulated data of the first data series [Equation 5] is re-modulated 4 and the impulse response is obtained using the re-modulated signal [Equation 7] obtained through the transmission filter 5 of [Equation 6]. The signal [Equation 9] obtained by canceling the modulation signal by the first data series 7 from the addition signal [Equation 8] of the modulation signal by the first data series and the modulation signal by the second data series delayed 6 obtain. This signal is passed through a reception filter 8 whose impulse response is expressed by the following equation (10), and the signal (Equation 11) sampled at the sampling points 9 is detected by the detection 10, judged by the threshold, de-mapped, and demodulated data 1 2] is output, and it is determined from the demodulated data of the first data sequence [Equation 13] whether transmission of the second and subsequent data sequences is possible or not. In the case of, write to buffer memory 12.
【数式 5】 (dn mai„ „+ maiJ [Equation 5] (d n mai „„ + mai J
【数式 6】 „ [Equation 6] „
【数式 7】 Ut)  (Equation 7) Ut)
【数式 8】 Smai„ + Ssub [Equation 8] S mai „+ S sub
【数式 9】 t)  (Equation 9) t)
【数式 1 0】 hR sub(t) [Equation 10] h R sub (t)
【数式 1 1】 — sub =d„_sub +jbn_sub 【数式 1 2】 [Equation 1 1] — sub = d „_ sub + jb n _ sub [Equation 1 2]
【数式 1 3】 ( — ", +し ") [Formula 1 3] (— “, + then“)
第 4図は、 送信装置の実施例で、 第 1のデータ系列による変調信号と第 2以降 のデータ系列による変調信号を線形加算するものである。 FIG. 4 shows an embodiment of a transmitting apparatus, in which a modulated signal based on a first data sequence and a modulated signal based on a second and subsequent data sequences are linearly added.
第 4図において、 第 1のデータ系列は変調 5 1により、 伝送データ 【数式 1 4】 の連続する 2ビッ トにより Q P S Κのマッピングを行い、 マッピングに従い 【数 式 1 5】 となる複素信号 【数式 1 6】 を生成し、 ィンパルス応答が 【数式 1 7】 の送信フィルタ 5 2により伝送信号 【数式 1 8】 を発生する。 第 2以降のデータ 系列は、 第 1のデータ系列の伝送デ一タ 【数式 1 9】 により第 2以降のデータ系 列の伝送可否を制御 5 3する信号により、 バッファメモリ 54からデータ 【数式 2 0】 を発生し、 変調 5 5により A S Κのマッピングを行い、 マッピングに従い 【数式 2 1】 となる複素信号 【数式 2 2〗 を生成し、 ィンパルス応答が 【数式 2 3】 の送信フィルタ 5 6により伝送信号 【数式 24】 を発生する。 In FIG. 4, the first data sequence is mapped to QPSΚ by two consecutive bits of the transmission data [Equation 14] by the modulation 51, and according to the mapping, the complex signal which becomes [Equation 15] The transmission signal 52 is generated by the transmission filter 52 whose impulse response is expressed by the following equation. The data sequence of the second and subsequent data is transmitted from the buffer memory 54 by a signal that controls whether or not the transmission of the second and subsequent data sequences is possible according to the transmission data of the first data sequence. 0] is generated, the AS マ ッ ピ ン グ is mapped by the modulation 55, and a complex signal [Equation 22] is generated according to the mapping according to [Equation 21], and the impulse response is represented by the transmission filter 5 6 of [Equation 23]. Generates the transmission signal (Equation 24).
数式 1 4】 (dn ,, 数式 1 5】 mam = 1 数式 1 6】 c„_main = an^main + jbn_ Equation 1 4] (d n ,, Equation 1 5] mam = 1 Equation (1) 6] c "_ main = a n ^ main + jb n _
数式 1 7】 hT main (t) Equation 1 7) h T main (t)
数式 1 8】 a (t) Equation 1 8) a (t)
数式 1 9 j (dn ^ main , dn+ _ main ) Equation 1 9 j (d n ^ main , d n + _ main )
数式 2 0】 d„ sub 数式 2 1】 c„ 数式 2 2】 cnsub = an_sub + jb„_sub Equation 2 0] d „ sub Equation 2 1] c„ Equation 2 2] c n one sub = a n _ sub + jb „_ sub
数式 2 3】 U  Formula 2 3) U
数式 2 4】 ssub (f) 第 5図は、 受信装置の実施例を示した第 3図において、 再変調信号【数式2 5】 の振幅を制御する実施例である。 第 5図のように、 第 1のデータ系列による変調 信号と第 2のデータ系列による変調信号の加算信号 【数式 2 6】 を第 1のデータ 系列の受信標本点でサンプリング 1 3した信号を振幅検出'制御 1 4において【数 式 2 6】 の振幅を検出し、 この振幅を再変調信号 【数式 2 5】 に乗算 1 5する。 Equation 2 4] s sub (f) Fig. 5, in a third diagram showing an embodiment of a receiving device, an embodiment for controlling the amplitude of the re-modulated signal [Equation 2 5]. As shown in Fig. 5, the amplitude of the signal obtained by sampling the signal 13 obtained by adding the modulated signal of the first data sequence and the modulation signal of the second data sequence [Equation 26] at the reception sampling points of the first data sequence The detection control 14 detects the amplitude of the expression 26 and multiplies the amplitude by 15 with the remodulated signal expression 25.
【数式 2 5】 smain {t) [Equation 2 5] s main (t)
【数式 2 6】 smain {t) + Ssub {t) 第 6図は、 受信装置の実施例であり、 第 4図の送信装置で第 2以降のデータ系 列を第 1のデータ系列のパターンによつて伝送可否を行い、 第 3図に示した受信 装置において第 2以降のデータ系列が伝送可とする第 1のデータ系列を再変調し た信号を記憶しておき、 第 1のデータ系列を復調したデータが第 2以降のデータ [Equation 2 6] s main (t) + Ssub (t) FIG. 6 shows an embodiment of the receiving apparatus. In the transmitting apparatus shown in FIG. 4, the second and subsequent data series are converted into the first data series pattern. In the receiving apparatus shown in FIG. 3, a signal obtained by remodulating the first data sequence that can be transmitted by the second and subsequent data sequences is stored in the receiving apparatus shown in FIG. 3, and the first data sequence is stored. The demodulated data is the second and subsequent data
系列が伝送可とするパターンの時に、 受信した第 1のデータ系列による変調信号 と第 2のデータ系列による変調信号の加算信号から記憶しておいた再変調信号発 生 1 6を減算することにより、 第 2以降のデータ系列による変調信号を抽出する ものである。 . 第 7図は、 受信装置の実施例であり、 第 4図の送信装置で第 1のデータ系列だ けを伝送する期間を操り返し設け、 第 3図の受信装置において、 第 1のデータ系 列を復調したデータから第 1のデータ系列だけを伝送する期間でレファレンス信 号検出 1 8 し、 第 1のデータ系列の標本 1 7とレファレンス信号期間抽出 1 9の A N Dにより振幅検出 ·制御 2 0で第 1のデータ系列による変調信号と第 2のデ ータ系列による変調信号の加算信号の振幅を検出して第 1のデータ系列を再変調 した信号の振幅を、 乗算 2 1により制御するものである。 第 8図は、 受信装置の実施例で、 第 7図の受信装置において、 第 1のデータ系 列を復調したデータから第 1のデータ系列だけを伝送する期間でレファレンス信 号検出 2 3 し、 第 1のデータ系列の標本 2 2とレファレンス信号期間抽出 2 4の A N Dにより振幅検出 2 5を行い、 振幅検出 2 5から閾値情報を発生して第 2以 降のデータ系列を検波する閾値とするものである。 第 9図は、 受信装置の実施例で、 第 1のデータ系列による変調信号を復調した データを誤り訂正 2 6 し、 誤り訂正したデータを再変調する例である。 第 1 0図は、 受信装置の実施例で、 第 1のデータ系列による変調信号と第 2以 降のデータ系列による変調信号の加算信号から、 第 1のデータ系列による変調信 号をキャンセルして得られた第 2以降のデータ系列による変調信号を、 信号加算 2 7で信号を加算する実施例である。 By subtracting the stored re-modulated signal generation 16 from the sum signal of the received modulated signal of the first data sequence and the received modulated signal of the second data sequence when the sequence is a pattern that allows transmission. , And extracts a modulated signal based on the second and subsequent data sequences. FIG. 7 shows an embodiment of the receiving apparatus, in which the transmitting apparatus shown in FIG. 4 repeats the period for transmitting only the first data sequence, and the receiving apparatus shown in FIG. The reference signal is detected during the period in which only the first data sequence is transmitted from the data obtained by demodulating the sequence, and the amplitude detection and control is performed by ANDing the sample of the first data sequence with the reference signal period extraction. In this method, the amplitude of the signal obtained by adding the modulation signal of the first data sequence and the modulation signal of the second data sequence is detected, and the amplitude of the signal obtained by remodulating the first data sequence is controlled by multiplication 21. It is. FIG. 8 shows an embodiment of the receiving apparatus. In the receiving apparatus shown in FIG. 7, reference signal detection 23 is performed in a period during which only the first data sequence is transmitted from the data obtained by demodulating the first data sequence, Amplitude detection 25 is performed by ANDing the sample 22 of the first data series with the reference signal period extraction 24, and threshold information is generated from the amplitude detection 25 to be used as the threshold for detecting the second and subsequent data series. Things. FIG. 9 shows an embodiment of a receiving apparatus, in which data obtained by demodulating a modulated signal based on a first data sequence is subjected to error correction 26 and error-corrected data is re-modulated. FIG. 10 is an embodiment of a receiving apparatus, in which a modulation signal based on a first data sequence is canceled from an added signal of a modulation signal based on a first data sequence and a modulation signal based on a second and subsequent data sequences. This is an embodiment in which the obtained modulated signal based on the second and subsequent data sequences is added to the signal by signal addition 27.
復調の実施例を示す第 3図、 第 5図、 第 6図、 第 7図、 第 8図において、 第 1 のデータ系列を復調するために受信する信号は、 第 1のデータ系列による変調信 号と第 2以降のデータ系列による変調信号の加算信号 【数式 2 7】 である。 この ため、 第 1のデータ系列の復調では、 第 1のデータ系列の受信標本点で第 2以降 のデータ系列による復調信号の影響、 および第 1のデータ系列の誤り特性劣化が 問題となる。 In FIG. 3, FIG. 5, FIG. 6, FIG. 7, and FIG. 8, which show an embodiment of demodulation, the signal received to demodulate the first data sequence is a signal modulated by the first data sequence. This is an addition signal of the modulation signal based on the signal and the second and subsequent data sequences. For this reason, in the demodulation of the first data sequence, the influence of the demodulated signal due to the second and subsequent data sequences at the reception sample point of the first data sequence and the degradation of the error characteristics of the first data sequence become problems.
【数式 2 7】 „ ) + り この問題を解決するため、 送信装置の出力信号 【数式 2 8】 の信号空間ダイヤ グラムとフェザー遷移は、 例えば第 1 1図、 または第 1 2図とする。 数 式 数 式 + „+ + + + + + + + + + + + + + + + + + + + + + + + + 信号 + 信号 + 信号 + + + + + 信号 + フ ェ 信号 フ ェ 、 フ ェ フ ェ フ ェ フ ェ 信号 フ ェ.
第 1 1図は、 第 1のデータ系列の標本点で第 2以降のデータ系列による変調信 号が 0になる送信装置の波形例であり、 第 1 2図は、 第 1のデ一タ系列による変 調信号と第 2以降のデータ系列による変調信号の加算信号の符号間距離が均等で はなく、 第 1のデータ系列の符号間距離を増加し、 第 2以降のデータ系列の符号 間距離を減少する配分を行う送信装置の波形例である。  FIG. 11 is a waveform example of a transmitting apparatus in which the modulation signal of the second and subsequent data sequences becomes 0 at the sampling points of the first data sequence, and FIG. 12 shows the first data sequence. The inter-symbol distance between the modulation signal due to the modulation signal and the addition signal of the modulation signal due to the second and subsequent data sequences is not uniform, the inter-symbol distance of the first data sequence is increased, and the inter-symbol distance of the second and subsequent data sequences is increased. 7 is an example of a waveform of a transmission device that performs distribution for reducing.
また、 第 1 3図は、 第 1 2図の波形を多値にした送信装置の波形例である。  FIG. 13 is a waveform example of a transmitting apparatus in which the waveform of FIG. 12 is multi-valued.
【数式 2 8】 , .„( ) + (t) 本発明の受信装置は、 送信装置で第 2以降のデータ系列を第 1のデータ系列の パターンによって伝送可否を行う手段と、 受信装置において、 第 2以降のデータ 系列が伝送可とする第 1のデータ系列を再変調した信号を記憶する手段と、 第 1 のデータ系列を復調したデータが第 2以降のデータ系列が伝送可とするパターン の時に、 受信した第 1のデ一タ系列による変調信号と第 2のデータ系列による変 調信号の加算信号から記憶しておいた再変調信号を減算する手段により、 第 2以 降のデ一タ系列による変調信号の受信標本点が異なる場合でも、 互いの変調信号 The receiving apparatus according to the present invention comprises: means for performing transmission permission / prohibition of the second and subsequent data sequences in the transmitting apparatus according to the pattern of the first data sequence; Means for storing a signal obtained by remodulating the first data sequence, which can be transmitted by the second and subsequent data sequences, and a method of storing a pattern by which the data obtained by demodulating the first data sequence can be transmitted by the second and subsequent data sequences. At this time, the means for subtracting the stored remodulated signal from the added signal of the received modulated signal of the first data sequence and the modulated signal of the second data sequence, Even if the received sample points of the modulated signals by the series are different,
による干渉で発生する誤り特性の劣化が非常に小さい復調ができる。また同様に、 第 2以降のデータ系列をフェザー遷移で伝送する変調信号の場合も、 誤り特性の 劣化が非常に小さい復調ができる。 本発明の受信装置は、 第 1のデータ系列を復調したデータを再変調した信号の 振幅を、 第 1のデータ系列を復調する標本点で受信した第 1のデータ系列による 変調信号と第 2のデータ系列による変調信号の加算信号の振幅で制御する手段に より、 同期検波を行うことができ、 差動検波と比較して誤り特性を改善できる。 本発明の送信装置は、 第 1のデータ系列による変調信号と第 2以降のデータ系 列による変調信号の加算信号の符号間距離が均等ではなく、 第 1のデータ系列の 符号間距離を増加し、 第 2以降のデータ系列の符号間距離を減少する配分を行う 手段により、 第 1のデータ系列による変調信号と第 2以降のデータ系列による変 調信号の加算信号の符号間距離を均等にした場合と比較して、 第 1のデータ系列 の誤り特性劣化を小さくできる。 以上の実施例において、 本発明では、 第 2以降のデータ系列の変調信号を抽出 するときに、 第 1のデータ系列による変調信号をキャンセルするため、 第 1のデ ータ系列の変調信号と無関係に第 2以降のデータ系列の変調信号を生成できる。 また、 第 1 3図のように、 第 2以降のデータ系列による変調信号を多値で伝送 する場合は、 受信装置における第 2以降のデータ系列を検波する機能を多値にす れば良い。 本発明による受信装置の特性例と して、 第 1のデータ系列による変調信号の平 均電力を 【数式 2 9】、 第 2以降のデータ系列による変調信号の平均電力を 【数式 3 0】 とし、 電力比 を 【数式 3 1】 と した場合の誤り特性の計算結果を示す。 Demodulation in which the deterioration of the error characteristic caused by the interference caused by the interference is very small. Similarly, in the case of a modulated signal in which the second and subsequent data sequences are transmitted by feather transition, demodulation with very little deterioration in error characteristics can be performed. The receiving apparatus according to the present invention may further comprise: a receiver that modulates the amplitude of a signal obtained by remodulating data obtained by demodulating the first data sequence by using a second signal modulated by the first data sequence received at a sampling point for demodulating the first data sequence; Synchronous detection can be performed by means of controlling the amplitude of the addition signal of the modulation signal based on the data sequence, and error characteristics can be improved as compared with differential detection. In the transmission device of the present invention, the inter-code distance between the modulated signal based on the first data sequence and the sum signal of the modulated signals based on the second and subsequent data sequences is not equal, and the inter-code distance of the first data sequence is increased. Means for reducing the inter-symbol distance of the second and subsequent data sequences to make the inter-symbol distance of the sum signal of the modulation signal of the first data sequence and the modulation signal of the second and subsequent data sequences uniform. As compared with the case, the error characteristic degradation of the first data sequence can be reduced. In the embodiments described above, according to the present invention, when extracting the modulation signal of the second and subsequent data sequences, the modulation signal of the first data sequence is canceled, and thus the modulation signal of the first data sequence is unrelated. Then, a modulated signal of the second and subsequent data series can be generated. Further, as shown in FIG. 13, when a modulated signal based on the second and subsequent data sequences is transmitted in multiple values, the function of detecting the second and subsequent data sequences in the receiving device may be multivalued. As an example of the characteristics of the receiving apparatus according to the present invention, the average power of the modulated signal by the first data sequence is represented by [Equation 29], and the average power of the modulated signal by the second and subsequent data sequences is represented by [Equation 30]. Here, the calculation results of the error characteristics when the power ratio is expressed by [Equation 31] are shown.
【 0 0 3 9】 [0 0 3 9]
【数式 2 9 I ,  [Equation 2 9 I,
【数式 3 0】  [Equation 30]
凡,  Common,
【数式 3 1】 ― [Equation 3 1] ―
Figure imgf000014_0001
第 1 4図は、 第 1 1図の送信信号を伝送し、 受信フィルタとしてマッチドフィ ルタを使用した場合の例で、 αを 0. 1 とした場合の誤り特性であり、 第 1 5図 は、 αを 0. 3 とした場合の誤り特性である。
Figure imgf000014_0001
FIG. 14 shows an example of transmitting the transmission signal of FIG. 11 and using a matched filter as a reception filter, and shows an error characteristic when α is set to 0.1. This is the error characteristic when α is set to 0.3.
この場合、 第 1 1図において、 【数式 3 2】 となる。  In this case, in FIG. 11, the following expression is obtained.
本発明では、 これらの特性例のように、 第 2以降のデータ系列を伝送しない場 合の誤り特性 (Q P S Kの誤り特性) と比較し、 第 1のデータ系列を復調した誤 り特性 (B ER 1 ) の劣化を小さくできる他、 従来の技術では困難であったフエ ザ一遷移による第 2以降のデータ系列による変調信号も復調できる (B ER 2)。 参考までに同図では、 8相 P S Κの誤り特性も示している。  In the present invention, as in these characteristic examples, an error characteristic (BER BER) obtained by demodulating the first data sequence is compared with an error characteristic (error characteristic of QPSK) when the second and subsequent data sequences are not transmitted. In addition to minimizing the degradation of 1), it is also possible to demodulate the modulated signal of the second and subsequent data sequences due to the feather transition, which was difficult with the conventional technology (BER 2). For reference, the figure also shows the error characteristics of the 8-phase P S Κ.
【数式 3 2】
Figure imgf000014_0002
η , 叫
[Equation 3 2]
Figure imgf000014_0002
η , scream
第 1 6図は、 第 1 2図の送信信号を伝送し、 受信フィルタとしてマッチドフィ ルタを使用した場合の例で、 を 0. 1 と した場合の誤り特性であり、 第 1 7図 は、 αを 0. 3 とした場合の誤り特性である。 Fig. 16 shows an example in which the transmission signal of Fig. 12 is transmitted and a matched filter is used as the reception filter.The error characteristic when is set to 0.1 is shown in Fig. 17. Is the error characteristic when is set to 0.3.
この場合、 第 1 2図において、 【数式 3 3】 となる。  In this case, in FIG. 12, the following equation is obtained.
また、 従来の符号間距離を均等にした場合の例として、 αを 0. 5とした誤り 特性を第 1 9図に示す。  FIG. 19 shows an error characteristic in which α is 0.5, as an example of a conventional case where the inter-code distance is equalized.
従来の技術では、 第 2以降のデータ系列を伝送しない場合の誤り特性 (QP S Κの誤り特性) と比較し、 第 1 9図のように第 1のデータ系列による誤り特性が In the conventional technology, the error characteristics due to the first data sequence are compared with the error characteristics when the second and subsequent data sequences are not transmitted (the error characteristics of QPS S) as shown in Fig. 19
劣化しているが、 本発明では、 第 1のデータ系列を復調した誤り特性 (B E R 1 ) の劣化を小さくできる。 Although deteriorated, in the present invention, the deterioration of the error characteristic (BER 1) obtained by demodulating the first data sequence can be reduced.
【数式 3 3】 δ Pmain A - δ [Equation 3 3] δ P main A-δ
第 1 8図は、 第 1 2図の送信信号を伝送し、 受信フィルタとしてマッチドフィ ルタを使用した場合の例で、 aを 0 . 1 とし、 受信装置で第 2以降による変調信 号を 3回繰り返し加算した例である。 Fig. 18 shows an example in which the transmission signal of Fig. 12 is transmitted and a matched filter is used as a reception filter, where a is set to 0.1 and the receiving device modulates the second and subsequent modulated signals three times. This is an example of repeated addition.
このように、 本発明では、 第 1のデ一タ系列を復調した誤り特性の劣化を小さ く し、 第 2以降のデータ系列の誤り特性は、 繰り返し加算することで誤り特性を 改善することができる。  As described above, according to the present invention, it is possible to reduce the deterioration of the error characteristic obtained by demodulating the first data sequence and to improve the error characteristic of the second and subsequent data sequences by repeatedly adding them. it can.
産業上の利用可能性 Industrial applicability
本発明による伝送方式による送信装置おょぴ受信装置は、マルチメディァ通信、 テレビジョ ン放送、 電話、 パソコン通信、 移動通信等の通信、 放送分野全体にわ たって、 広く利用することができる。  The transmitting device and the receiving device using the transmission method according to the present invention can be widely used in the fields of multimedia communication, television broadcasting, telephone, personal computer communication, mobile communication and the like, and the entire broadcasting field.

Claims

4 請求の範囲 4 Claims
1. 第 1のデータ系列は信号空間ダイヤグラムで伝送し、 第 2以降のデータ系 列はフ ザ一遷移を使用する階層化伝送方式の受信装置において、 第 1のデ一タ 系列を復調したデータを再変調し、 受信した第 1のデータ系列による変調信号と 第 2のデータ系列による変調信号の加算信号から再変調信号を減算することによ り第 1のデータ系列による変調信号と第 2のデータ系列による変調信号の加算信 号から第 1のデータ系列による変調信号をキャンセルして第 2以降のデータ系列 による変調信号を抽出し、 第 2以降のデータ系列による変調信号を復調する機能 を具備した受信装置。 1. The first data sequence is transmitted in a signal space diagram, and the second and subsequent data sequences are data obtained by demodulating the first data sequence in a layered transmission method receiver that uses a fuzzy transition. The modulated signal of the first data sequence and the second modulated signal of the second data sequence are subtracted from the sum of the received modulated signal of the first data sequence and the modulated signal of the second data sequence. A function is provided to cancel the modulated signal of the first data sequence from the added signal of the modulated signal of the data sequence, extract the modulated signal of the second and subsequent data sequences, and demodulate the modulated signal of the second and subsequent data sequences. Receiving device.
2 . 請求の範囲第 1項記載の受信装置において、 第 1のデータ系列を復調した データを再変調した信号の振幅を、 第 1のデータ系列を復調する標本点で受信し た第 1のデータ系列による変調信号と第 2のデ一タ系列による変調信号の加算信 号の振幅で制御する機能を具備した受信装置。 2. The receiving apparatus according to claim 1, wherein the amplitude of the signal obtained by remodulating the data obtained by demodulating the first data sequence is represented by the first data received at a sampling point for demodulating the first data sequence. A receiving device having a function of controlling the amplitude of a sum signal of a modulated signal of a sequence and a modulated signal of a second data sequence.
3 . 送信装置で第 2以降のデータ系列を第 1のデータ系列のパターンによって 伝送可否を行い、 請求の範囲第 1項記載、 請求の範囲第 2項記載の受信装置にお いて、 第 2以降のデータ系列が伝送可とする第 1のデータ系列を再変調した信号 を記憶しておき、 第 1のデータ系列を復調したデータが第 2以降のデータ系列が 伝送可とするパターンの時に、 受信した第 1 のデータ系列による変調信号と第 2 のデータ系列による変調信号の加算信号から記憶しておいた再変調信号を減算す ることにより、 第 2以降のデ一タ系列による変調信号を抽出し、 第 2以降のデ一 タ系列による変調信号を復調する機能を具備した受信装置。 3. The transmitting device determines whether the second and subsequent data sequences can be transmitted according to the pattern of the first data sequence, and the second and subsequent data sequences are described in the receiving device described in claim 1 and claim 2. A signal obtained by remodulating the first data sequence that allows transmission of the first data sequence is stored, and when the data obtained by demodulating the first data sequence has a pattern that allows transmission of the second and subsequent data sequences, reception is performed. By subtracting the stored re-modulated signal from the added signal of the modulated signal of the first data sequence and the modulated signal of the second data sequence, the modulated signal of the second and subsequent data sequences is extracted. And a receiver having a function of demodulating a modulated signal based on the second and subsequent data sequences.
4 . 送信装置で第 1のデ一タ系列だけを伝送する期間を繰り返し設け、 請求の 範囲第 1項記載、 請求の範囲第 2項記載、 請求の範囲第 3項記載の受信装置にお 4. A period in which only the first data sequence is transmitted by the transmitting device is repeatedly provided, and the receiving device described in claim 1, claim 2, or claim 3 is provided.
いて、 送信装置で第 1のデータ系列を復調したデータから第 1のデータ系列だけ を伝送する期間を検出し、 この期間の第 1のデータ系列による変調信号と第 2の データ系列による変調信号の加算信号の振幅を検出して第 1のデータ系列だけに よる変調信号の振幅により、 第 1のデータ系列を復調したデータを再変調、 また は記億して再変調した信号の振幅を制御する機能を具備した受信装置。 The transmission device detects a period during which only the first data sequence is transmitted from the data obtained by demodulating the first data sequence, and determines a period between the modulation signal based on the first data sequence and the modulation signal based on the second data sequence during this period. Detects the amplitude of the addition signal and re-modulates the data obtained by demodulating the first data sequence, or controls the amplitude of the re-modulated signal by storing the data based on the amplitude of the modulation signal based on only the first data sequence. A receiving device with functions.
5 . 請求の範囲第 1項記載、 請求の範囲第 2項記載、 請求の範囲第 3項記載、 請求の範囲第 4項記載の受信装置を使用して受信する階層化伝送の送信装置にお いて、 第 1のデータ系列による変調信号と第 2以降のデータ系列による変調信号 の加算信号が、 受信における第 1のデータ系列の標本点で第 2以降のデータ系列 に変調信号が 0になるように、 第 2以降のデータ系列による変調信号を生成する 機能を具備した送信装置。 5. The transmission device for layered transmission that receives using the receiving device described in claim 1, claim 2, claim 3, or claim 4. In addition, the sum of the modulation signal of the first data sequence and the modulation signal of the second and subsequent data sequences is such that the modulation signal becomes 0 in the second and subsequent data sequences at the sampling point of the first data sequence in reception. And a transmission device having a function of generating a modulated signal based on the second and subsequent data sequences.
6 . 請求の範囲第 1項記載、 請求の範囲第 2項記載、 請求の範囲第 3項記載、 請 求の範囲第 4項記載の受信装置を使用して受信する階層化伝送の送信装置におい て、 第 1のデータ系列による変調信号と第 2以降のデータ系列による変調信号の 加算信号の符号間距離が均等ではなく、第 1のデータ系列の符号間距離を増加し、 第 2以降のデータ系列の符号間距離を減少する配分を行う機能を具備した送信装 6. A transmitter for hierarchical transmission that receives using the receiver described in claim 1, claim 2, claim 3, claim 3, or claim 4. Therefore, the inter-code distance of the addition signal of the modulation signal of the first data sequence and the addition signal of the modulation signal of the second and subsequent data sequences is not uniform, and the inter-code distance of the first data sequence is increased. A transmission device having a function of performing distribution to reduce the inter-code distance of a sequence.
7 . 送信装置で第 1のデータ系列だけを伝送する期間を繰り返し設け、 請求の 範囲第 1項記載、 請求の範囲第 2項記載、 請求の範囲第 3項記載、 請求の範囲第 4項記載の受信装置において、 送信装置で第 1のデータ系列を復調したデータか ら第 1のデータ系列だけを伝送する期間を検出し、 この期間の第 1のデータ系列 による変調信号と第 2のデータ系列による変調信号の加算信号の振幅を検出して 第 1のデータ系列だけによる変調信号の振幅を検出し、 この検出した振幅の情報 信号を閾値とすることにより、 第 2以降のデータ系列による変調信号を復調する 7. A period in which only the first data sequence is transmitted by the transmitting device is repeatedly provided, and the claims are described in claim 1, claim 2, claim 3, claim 3, and claim 4. In the receiving device, a period during which only the first data sequence is transmitted is detected from the data obtained by demodulating the first data sequence by the transmitting device, and a modulation signal based on the first data sequence and a second data sequence during this period are detected. By detecting the amplitude of the added signal of the modulated signal based on the first data sequence and detecting the amplitude of the modulated signal based on only the first data sequence, and using the information signal of the detected amplitude as a threshold, the modulated signal based on the second and subsequent data sequences Demodulate
機能を具備した受信装置。 A receiving device with functions.
8 . 請求の範囲第 5項記載、 請求の範囲第 6項記載の送信装置において、 第 1 のデータ系列に誤り訂正信号を付加し、 請求の範囲第 1項記载、 請求の範囲第 2 項記載、 請求の範囲第 3項記載、 請求の範囲第 4項記載、 請求の範囲第 7項記載 の受信装置において、 第 1のデータ系列を復調したデータの誤り訂正後のデータ による再変調信号、 または記憶しておいた再変調信号で第 2以降のデータ系列に よる変調信号を抽出する機能を具備した受信装置。 8. The transmission device according to claim 5, wherein the error correction signal is added to the first data sequence, and wherein the error correction signal is added to the first data sequence. In the receiving device according to claim 3, the re-modulated signal based on the error-corrected data of the data obtained by demodulating the first data sequence, Alternatively, a receiving apparatus having a function of extracting a modulated signal based on the second and subsequent data sequences from the stored remodulated signal.
9 . 請求の範囲第 1項記載、 請求の範囲第 2項記載、 請求の範囲第 3項記載、 請求の範囲第 4項記載、 請求の範囲第 7項記載、 請求の範囲第 8項記載の受信装 置において、 第 1のデータ系列による変調信号と第 2以降のデータ系列による変 調信号の加算信号から、 第 1のデータ系列による変調信号をキャンセルした第 2 以降のデータ系列による変調信号を繰り返し加算する機能を具備した受信装置。 9. Claim 1, Claim 2, Claim 3, Claim 3, Claim 4, Claim 7, Claim 8, At the receiving device, a modulated signal based on the second and subsequent data sequences in which the modulated signal based on the first data sequence has been canceled is obtained from an addition signal of the modulated signal based on the first data sequence and the modulated signal based on the second and subsequent data sequences. A receiving device having a function of repeatedly adding.
1 0 . 請求の範囲第 1項記載から請求の範囲第 8項記載までの受信装置、 およ び請求の範囲第 5項記載の送信装置において、 T D M、 F D M、 C D M、 O F D Mなどの分割多重の機能を具備した受信装置、 および送信装置。 10. The receiving apparatus according to claim 1 to claim 8 and the transmitting apparatus according to claim 5, wherein a division multiplexing such as TDM, FDM, CDM, OFDM, etc. is used. A receiving device having a function, and a transmitting device.
PCT/JP2002/000476 2001-01-25 2002-01-23 Layered transmission reception device and transmission device WO2002060141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001057460 2001-01-25
JP2001-57460 2001-01-25

Publications (1)

Publication Number Publication Date
WO2002060141A1 true WO2002060141A1 (en) 2002-08-01

Family

ID=18917330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000476 WO2002060141A1 (en) 2001-01-25 2002-01-23 Layered transmission reception device and transmission device

Country Status (1)

Country Link
WO (1) WO2002060141A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247897A (en) * 1997-03-04 1998-09-14 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Diversity reception method, transmitter and receiver therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247897A (en) * 1997-03-04 1998-09-14 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Diversity reception method, transmitter and receiver therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATSUSHI KAMISUGI: "Kaiso fukucho wo mochiita tekiou hencho packet data denso ni kanshite", DENSHI JOHO TSUSHIN GAKKAI GIJUTSU KENKYU HOKOKU, RCS 2000-91-104, vol. 100, no. 278, September 2000 (2000-09-01), pages 21 - 26, XP002908864 *
M. HAMADA: "Iso to iso kiseki ni yoru multimedia denso houshiki", DENSHI JOHO TSUSHIN GAKKAI GIJUTSU KENKYU HOUKOKU, CS2000-46-75, vol. 100, no. 302, September 2000 (2000-09-01), pages 109 - 114, XP002908865 *
WEBER W.J.: "Differential encoding for multiple amplitude and phase shift keying systems", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. COM-26, no. 3, March 1978 (1978-03-01), pages 385 - 391, XP000758736 *
Y. SAKAMOTO ET AL.: "Ido tsushin ni okeru kaiso 16 DAPSK wo mochiita gazo denso houshiki", 1997 NEN DENSHI JOHO TSUSHIN GAKKAI SOGO TAIKA KOUEN RONBUNSHUU TSUSHIN 1B-5-284, vol. 1997, March 1997 (1997-03-01), pages 671, XP002908866 *

Similar Documents

Publication Publication Date Title
CA2489569C (en) Improving hierarchical 8psk performance
KR20060120255A (en) Data detection for a hierarchical coded data transmission
IL100029A (en) Method and apparatus for improving detection of data bits in a slow frequency hopping communication system
KR20070081786A (en) An apparatus and method for multiple input multiple output in communication
KR102061653B1 (en) Method and apparatus for bit to simbol mapping in wireless communication system
WO2007044484A2 (en) Dirty paper precoding with known interference structure at receiver
US8718205B1 (en) Hard and soft bit demapping for QAM non-square constellations
KR20070034003A (en) Datastream Modulation with Constellation Subset Mapping
US20070058756A1 (en) Reduced complexity soft output demapping
US7103098B2 (en) Adaptive receiver for multiplex/multi-access communications
CN110290126B (en) Radio frequency watermark transmission method based on FSK signal modulation
WO2009119736A1 (en) Receiver
JP4714806B2 (en) Method for reducing variance in signal-to-noise ratio estimation for signals with differential phase and coherent amplitude modulation
Wang et al. Interference cancellation for layered asymmetrically clipped optical OFDM with application to optical receiver design
WO2002060141A1 (en) Layered transmission reception device and transmission device
CN111431834B (en) High-efficiency underwater current field communication method with high reliability
US20200313943A1 (en) Symbol demodulator with error reduction
US20070230552A1 (en) Method of differential-phase/absolute-amplitude qam
JPH0746284A (en) Fading compensation device
JP3233092B2 (en) Modulation system and wireless communication system using the same
JP3779311B2 (en) Modulation method and wireless communication system
CN112311801B (en) Anti-interception phase shift keying method
CN110855588B (en) Frequency domain adaptive equalization transmission data processing method, data receiving end and storage medium
KR101999116B1 (en) Method for transmitting and receiving radio signal using iq imbalance
JP2004072251A (en) Ofdm communication apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR NZ SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP