WO2002059995A1 - Plaque bipolaire legere pour pile a combustible et son procede de fabrication - Google Patents

Plaque bipolaire legere pour pile a combustible et son procede de fabrication Download PDF

Info

Publication number
WO2002059995A1
WO2002059995A1 PCT/FR2002/000290 FR0200290W WO02059995A1 WO 2002059995 A1 WO2002059995 A1 WO 2002059995A1 FR 0200290 W FR0200290 W FR 0200290W WO 02059995 A1 WO02059995 A1 WO 02059995A1
Authority
WO
WIPO (PCT)
Prior art keywords
plates
bipolar plate
fuel
supply
frame
Prior art date
Application number
PCT/FR2002/000290
Other languages
English (en)
Inventor
Jean-Edmond Chaix
Original Assignee
Helion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helion filed Critical Helion
Priority to DE60226949T priority Critical patent/DE60226949D1/de
Priority to EP02700397A priority patent/EP1358691B1/fr
Priority to US10/466,977 priority patent/US7122273B2/en
Publication of WO2002059995A1 publication Critical patent/WO2002059995A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of fuel cells consisting of a stack of a large number of basic elements, each comprising two pole plates by which the oxidant and the fuel are conveyed to a separating membrane placed between the two pole plates .
  • This type of fuel cell can find its application in electric vehicles which are currently the subject of numerous development studies, in particular urban vehicles of surface public transport, such as buses, trams and other trolleybuses. Many other applications are possible, in particular on fixed installations, such as stationary electricity production systems, such as those used in hospitals or other service buildings where the possibility of an interruption of electricity supply must be excluded.
  • Many fuel cells consist of a succession of basic elements themselves comprising two electrodes, including an anode and a cathode, to which are continuously supplied a oxidizer and a fuel, which remain separated by an ion exchange membrane serving as an electrolyte.
  • the ion exchange membrane can be formed from a solid polymer electrolyte and separates the anode compartment, where oxidation of the fuel, such as hydrogen, occurs from the cathode compartment, where the oxidant, such that the oxygen in the air is reduced.
  • Two simultaneous reactions therefore occur at this level, the oxidation of the fuel at the anode and the reduction of the oxidant at the cathode. These two reactions are accompanied by the establishment of a potential difference between the two electrodes.
  • Each basic element of a fuel cell stack consists of a central assembly therefore comprising the membrane, sandwiched between the two electrodes, this assembly itself being placed between two flanges, called "polar plates". These have several functions.
  • the first of these functions is to bring into contact with the assembly uniting the membrane and the electrodes, on one side the fuel, for example hydrogen, and on the other side the oxidizer, for example air containing oxygen.
  • a channel is provided on the entire face of the pole plates in contact with the membrane.
  • Each channel has an inlet through which the oxidant or fuel enters, for example in the dry or wet gaseous form, and an outlet through which the neutral gases, the water generated by the oxidation-reduction reaction are discharged into the air side and the residual moisture of the hydrogen on its side.
  • the two circuits must be perfectly sealed with respect to one another and each vis-à-vis the outside.
  • the second function of the polar plates is to collect the electrons produced by the redox reaction.
  • the third function of these polar plates is to ensure the evacuation of the calories produced jointly with the electrons during this hydroreduction reaction.
  • pole plates are therefore necessarily, on the one hand, electrically conductive and, on the other hand, insensitive, from the point of view of corrosion, to oxidizer and to fuel, that is to say air oxygen and hydrogen. They can therefore be made of carbon, plastic, loaded, stainless alloy, such than stainless steel, austenitic-ferritic, austenitic, chrome-nickel alloy, chrome-coated aluminum, etc.
  • the pole plates also provide a collective function for the entire stack, such as the constitution of the fuel supply manifolds and oxidizer, and the heat exchange function, thus allowing the refrigeration of the stack made up of the stack.
  • the polar plates are therefore of complex shape and often of two different types, one for each side of the basic element.
  • the object of the invention is to propose a design of basic elements and single pole plates and of simple and inexpensive manufacture.
  • the first main object of the invention is a bipolar plate constituting the first pole plate of a first base element of a fuel cell and the second pole plate of a second base element adjacent to the first element.
  • base of the same fuel cell comprising: - a flat central skeleton consisting of two thin, parallel plates, spaced and fixed to each other by gluing and by means of studs and thus delimiting a first space to allow circulation of refrigerant;
  • the thin plates and the supply plates are made of phenolic graphite.
  • the flat central skeleton is advantageously completed with drilled studs, placed around the collectors formed by the manifold holes and placed between the two thin plates to contribute to the continuity of the collectors.
  • a second main object of the invention is a method of manufacturing a bipolar plate, as defined in the preceding paragraphs.
  • the main steps are successively the following: - joining together of the two thin plates, by means of the studs, by bonding with a conductive adhesive;
  • the silicone seals can be injected onto the surfaces of the frame.
  • each membrane / electrode assembly 1 therefore consists of a membrane 3 surrounded by two electrodes 2 over its entire surface, except at the periphery. Each of these membrane / electrode assemblies 1 must be placed between two bipolar plates 10.
  • Each bipolar plate 10 mainly comprises a flat central skeleton on each side of which are fixed a supply plate 20S and 201 in composite, in the central part, and a frame 11 in dielectric material in the peripheral part.
  • the flat central skeleton is essentially composed of two thin plates 30, spaced from one another by 1 to 2 mm. They are advantageously made with graphite loaded with phenol resin, this allows them to be chemically inert and insensitive to various corrosions, but above all to be light. In their central part, they are fixed in this position by means of studs not shown in this figure 1.
  • a space 31 is thus delimited in the center of this assembly and is intended receiving and containing the circulation of the coolant, such as water intended to cool each stage of the stack of the fuel cell.
  • the thin plates 30 are pierced with several holes at their periphery to contribute to forming continuous collectors 15 of oxidizer and fuel and also making it possible to pass through tie rods, not shown, which ensure the fixing of the different stages of the fuel cell .
  • the two thin plates 30 define a second space which is a supply channel 33, isolated from the first space 31 by means of a hollow supply pad 32.
  • the latter also surrounds the manifold 15 and a fuel or oxidant supply orifice 22 opening into a 2OS supply plate, at the level of a circulation channel 21S, which itself opens onto the external surface of the assembly. Indeed, on each side of the flat central skeleton is applied by bonding a supply plate 20S or 201 intended to distribute the oxidant or the fuel over the entire surface of one of the two electrodes of the whole of a membrane / electrodes 1.
  • the circulation channels 21S and 211 pass, over their entire thickness, their respective plate 20S and 201. It is thus possible to machine these channels in series. In fact, by stacking several supply plates one on top of the other, before the supply channels 21S and 211 are formed, provision may be made to machine several plates at the same time. the same operation.
  • the material of these supply plates 20S and 201 is a composite material such as graphite, in particular graphite loaded with phenol resin. This material can be machined with a water jet. It is thus easily understood that a single machining phase by water jet can allow the channels of several plates to be machined by drilling.
  • using digital control it is possible to draw many different patterns of feed channels 211, 21S on these feed plates 201, 20S. In addition, the machining time is extremely limited.
  • each electrode of the membrane / electrode assemblies 1 can be in contact with the fuel or the oxidizer, when the membrane / electrode assembly 1 is placed between two bipolar plates 10, as shown in the lower part of the figure. .
  • a membrane seal 4 is placed in a peripheral recess 13 surrounding the supply plates 20S and 201. It can be seen that a supply channel 33 feeds only the upper circulation channel 21S.
  • the collector constituted, inter alia, by the collector hole 15 shown in this FIG. 1 contains only oxidizer or fuel.
  • other collectors contain the fuel complementary to that circulating in the circulation channels 21S to supply the lower channels 211.
  • FIG. 2 shows a second type of manifold hole 16 which is not in fluid communication with the circulation channels 21S and 211.
  • the internal wall of each manifold hole 16 is entirely formed by the frame 11.
  • each thin plate 30 has a hole with a diameter greater than the internal diameter of the collector to allow the material, for example dielectric thermoplastic, constituting the frame 11 to occupy the entire height of the pole plate at this level.
  • FIG. 2 it can therefore be seen that the space 31 remains between the two thin plates 30 for the circulation of water contributing to the refrigeration of the stack. It can be seen in FIGS. 1 and 2 that a counterbore 18 is provided on each of the two surfaces of the frame 11, inside the latter, to allow the positioning and the maintenance of each membrane 3.
  • FIG. 3 of the cut-away type, provides a better understanding, among other things, of the difference between the two types of manifold holes.
  • a collector hole 15 as shown in FIG. 1. It therefore puts the fuel or the oxidant circulating in the collector into communication, which it constitutes with the others manifold holes placed above and below it, with circulation channel 211, by through the feed channel 33 and the feed holes 22.
  • a clear distinction is made between the hollow feed stud 32 which surrounds both the manifold hole 15 and the feed hole 22 to form the feed channel 33.
  • a stud 34 In the middle of this FIG. 3, between the two thin plates 30, is a stud 34.
  • the function of the latter is therefore to keep the two metal plates distant from each other, so as to define the different spaces, previously mentioned, namely the first space 31, intended for the cooling of the cell with water, and the supply channels 33.
  • the first spaces 31 are in communication with the outside by outlets 37.
  • the entire fuel cell consisting of the stacking of different stages, each comprising a membrane / electrode assembly and two pole plates, to be bathed in a water bath to facilitate its refrigeration by circulation free of refrigerant, for example water.
  • FIG. 4 shows, in full, a bipolar plate and, more particularly, the manner in which the circulation channels 21S are arranged on a surface of such a bipolar plate.
  • four circulation channels 21S are implanted on the same surface of a bipolar plate 10.
  • Each of these circulation channels 21S has a square spiral shape, the center of which can be distinguished 23.
  • Each of them is fed by one of the collectors, shown here their manifold holes 15 and 16 and is discharged by another of these same collectors. Since there are the same number of circulation channels on the other side of the bipolar plate, the number of collectors is therefore doubled.
  • eight supply collectors and eight discharge collectors are required. The arrows, shown in this figure 4, therefore suggest these supplies and discharges from each of the eight circulation channels of the same bipolar plate.
  • the hollow supply studs 32 which each surround a manifold 15 or 16, a feed orifice 22 and a feed channel 33.
  • the studs 34 now separated in parallel the metal plates.
  • the manufacturing process for this type of bipolar plate is therefore done by a first phase consisting in building a flat central skeleton made up of two thin plates 30, preferably made of phenolic graphite, and studs 32, 34 and 35 of the same material by bonding. hot, in press.
  • the adhesive used 'must be conductive.
  • a polymerization completes the manufacture of these elements.
  • the frame is obtained by injection of dielectric thermoplastic material. Simultaneously with this injection, there is also an injection of the collector seals 5, peripherals 4 and supply silicone 32.
  • This bipolar plate structure is particularly light, since it uses phenolic graphite and plastic.
  • Manufacturing is relatively simple and can be implemented for a large number of bipolar plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

La plaque bipolaire est relativement légère et est de fabrication rapide et simple. Elle est constituée d'un squelette de deux plaques minces (30) espacées par des plots (34, 35) entre lesquelles circule un fluide de réfrigération. Les collecteurs de carburant et de comburant alimentent, par l'intermédiaire de canaux d'alimentation (33), les canaux de circulation (21I), usinés par jet d'eau, dans des plaques d'alimentation (20I, 20S) en composite conducteur. Ces dernières sont collées avec une colle conductrice sur les plaques minces (30). Application aux piles à combustible.

Description

PLAQUE BIPOLAIRE LEGERE POUR PILE A COMBUSTIBLE ET SON PROCEDE DE FABRICATION
DESCRIPTION
Domaine de l'invention
L'invention concerne le domaine des piles à combustible constituées d'un empilement d'un grand nombre d'éléments de base, comprenant chacun deux plaques polaires par lesquelles le comburant et le combustible sont acheminés vers une membrane séparatrice placée entre les deux plaques polaires.
Ce type de piles à combustible peut trouver son application dans les véhicules électriques faisant actuellement l'objet de nombreuses études de développement, en particulier les véhicules urbains de transport en commun de surface, tels que les autobus, les tramways et autres trolleybus . De nombreuses autres applications sont possibles, notamment sur des installations fixes, telles que les systèmes stationnaires de production d'électricité, comme ceux utilisés dans les hôpitaux ou autres bâtiments de service où l'éventualité d'une interruption d'alimentation en électricité doit être exclue.
Art antérieur et problème posé
De nombreuses piles à combustible sont constituées d'une succession d'éléments de base comprenant eux-mêmes deux électrodes, dont une anode et une cathode, auxquelles sont apportés continûment un comburant et un combustible, qui restent séparés par une membrane échangeuse d'ions faisant office d'électrolyte. La membrane échangeuse d'ions peut être formée d'un électrolyte solide polymère et sépare le compartiment de l'anode, où se produit l'oxydation du combustible, tel que l'hydrogène, du compartiment de la cathode, où le comburant, tel que l'oxygène de l'air, est réduit . Deux réactions simultanées se produisent donc à ce niveau, l'oxydation du combustible à l'anode et la réduction du comburant à la cathode. Ces deux réactions s'accompagnent de l'établissement d'une différence de potentiel entre les deux électrodes .
Lorsque le comburant est de l'oxygène, par exemple sous la forme d'air, et le carburant est de l'hydrogène pur gazeux, les ions H+ et O" se combinent et produisent de l'électricité sous la forme de cette différence de potentiels. La réaction peut se détailler de la façon suivante à l'anode :
2H2 + 40H" → 4H20 + 4e".
La réaction à la cathode s'explique par la formule suivante :
02 + 2H20 + 4e" → 40H" .
Chaque élément de base d'un empilement d'une pile à combustible est constitué d'un ensemble central comprenant donc la membrane, prise en sandwich entre les deux électrodes, cet ensemble étant lui-même placé entre deux flasques, appelées "plaques polaires". Ces dernières ont plusieurs fonctions.
La première de ces fonctions est d'amener au contact de l'ensemble réunissant la membrane et les électrodes, d'un côté le carburant, par exemple de l'hydrogène, et de l'autre côté le comburant, par exemple de l'air contenant de l'oxygène. Pour se faire, un canal est prévu sur toute la face des plaques polaires en contact avec la membrane. Chaque canal possède une entrée par laquelle pénètre le comburant ou le carburant, par exemple sous la forme gazeuse sèche ou humide, et une sortie par laquelle sont évacués les gaz neutres, l'eau générée par la réaction d' oxydoréduction dans le côté air et l'humidité résiduelle de l'hydrogène de son côté. Bien entendu, les deux circuits doivent être parfaitement étanches l'un par rapport à l'autre et chacun vis-à-vis de 1 ' extérieur.
La deuxième fonction des plaques polaires est de collecter les électrons produits par la réaction d' oxydoréduction.
La troisième fonction de ces plaques polaires est d'assurer l'évacuation des calories produites conjointement avec les électrons lors de cette réaction d' hydroréduction.
En conséquence, ces plaques polaires sont donc nécessairement, d'une part, conductrices de l'électricité et, d'autre part, insensibles, du point de vue de la corrosion, au comburant et au carburant, c'est-à-dire à l'oxygène de l'air et à l'hydrogène. Elles peuvent donc être réalisées en carbone, en matière plastique, chargé, en alliage inoxydable, tel que l'acier inoxydable, austéno-ferritique, austénitique, en alliage chrome-nickel, en aluminium revêtu de chrome, etc.
D'autre part, dans le cadre des piles à combustible constituées d'un empilement d'éléments de base, les plaques polaires assurent également une fonction collective pour tout l'empilement, tel que la constitution des collecteurs d'alimentation en carburant et en comburant, et la fonction d'échange thermique, permettant ainsi la réfrigération de la pile constituée de l'empilement. Les plaques polaires sont donc de forme complexe et souvent de deux types différents, un pour chaque côté de l'élément de base.
Dans le cadre de la construction de piles à combustible, pour réduire le coût de production, il existe un besoin de limiter les étapes de fabrication des plaques polaires, en particulier les opérations d'usinage longues et coûteuses.
Le but de l'invention est de proposer une conception d'éléments de base et de plaques polaires uniques et de fabrication simple et peu coûteuse.
Résumé de l'invention
A cet effet, le premier objet principal de l'invention est une plaque bipolaire constituant la première plaque polaire d'un premier élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant : - un squelette central plat constitué de deux plaques minces, parallèles, espacées et fixées l'une à l'autre par collage et par l'intermédiaire de plots et délimitant ainsi un premier espace pour permettre une circulation de réfrigérant ;
- deux plaques d'alimentation en matériau composite conducteur placées de part et d'autre du squelette central plat, sauf sur le bord, et sur chacune desquelles est formé au moins un canal de circulation de carburant ou de comburant ; et
- un cadre en matériau diélectrique placé de part et d'autre du squelette central plat et autour des plaques d'alimentation ; des trous de collecteur étant prévus à la périphérie des plaques minces et du cadre pour constituer des collecteurs de carburant, de comburant, des canaux d'alimentation, situés entre ces plaques minces étant prévus pour relier ces trous collecteurs aux canaux de circulation. De préférence, les plaques minces et les plaques d'alimentation sont en graphite phénolique.
Le squelette central plat se complète avantageusement de plots percés, placés autour des collecteurs constitués par les trous de collecteurs et placés entre les deux plaques minces pour contribuer à la continuité des collecteurs.
Il s'avère très avantageux d'utiliser des joints en silicone implantés sur les surfaces du cadre, autour des trous constituant les collecteurs de carburant et de comburant et à la périphérie de la membrane d'un ensemble membrane/électrodes pour assurer l'étanchéité entre deux plaques bipolaires. Lorsque chaque plaque bipolaire a une forme carrée, le au moins un canal de circulation de comburant ou de carburant de chaque surface de plaque d'alimentation a une forme de spirale carrée. Un deuxième objet principal de l'invention est un procédé de fabrication d'une plaque bipolaire, telle qu'elle est définie dans les paragraphes précédents.
Les étapes principales sont successivement les suivantes : - solidarisation entre elles des deux plaques minces, par l'intermédiaire des plots, par collage avec une colle conductrice ;
- usinage au jet d'eau des canaux de circulation dans les deux plaques d'alimentation ; - collage autour du squelette central plat des plaques d'alimentation en composite conducteur avec une colle conductrice ; et
- injection du cadre en matériau thermoplastique électrique . Simultanément à cette quatrième étape, peut s'effectuer l'injection des joints en silicone sur les surfaces du cadre .
Liste des figures
L'invention et ses différentes caractéristiques et avantages seront mieux compris à la lecture de la description suivante d'une réalisation de l'invention.
Elle est accompagnée de quatre figures qui représentent respectivement :
- figure 1, en coupe, deux plaques bipolaires selon l'invention ; - figure 2 , une autre coupe de la même plaque bipolaire selon l'invention ;
- figure 3, en coupe cavalière, le coin de la plaque bipolaire selon l'invention ; et - figure 4, en vue de dessus, une plaque bipolaire selon l'invention.
Description détaillée d'une réalisation de 1' invention
Sur la figure 1, sont représentés deux ensembles membrane/électrodes 1 et deux plaques bipolaires 10. Chaque ensemble membrane/électrodes 1 est donc constitué d'une membrane 3 entourée de deux électrodes 2 sur toute sa surface, excepté à la périphérie. Chacun de ces ensembles membrane/électrodes 1 doit être placé entre deux plaques bipolaires 10.
Chaque plaque bipolaire 10 comprend principalement un squelette central plat de chaque côté duquel sont fixés une plaque d'alimentation 20S et 201 en composite, dans la partie centrale, et un cadre 11 en matériau diélectrique dans la partie périphérique.
Le squelette central plat est composé essentiellement de deux plaques minces 30, espacées l'une de l'autre de 1 à 2 mm. Elles sont avantageusement constituées avec du graphite chargé en résine phénolée, ceci leur permet d'être chimiquement inertes et insensibles aux diverses corrosions, mais surtout d'être légères. Dans leur partie centrale, elles sont fixées dans cette position au moyen de plots non représentés sur cette figure 1. Un espace 31 est ainsi délimité au centre de cet ensemble et est destiné à recevoir et à contenir la circulation du fluide réfrigérant, tel que de l'eau prévue pour réfrigérer chaque étage de l'empilage de la pile à combustible.
Les plaques minces 30 sont percées de plusieurs trous à leur périphérie pour contribuer à former des collecteurs 15 continus de comburant et de carburant et permettant également d'y passer des tirants, non représentées, qui assurent la fixation des différents étages de la pile à combustible. On constate que, au niveau de ces collecteurs 15, les deux plaques minces 30 définissent un deuxième espace qui est un canal d'alimentation 33, isolé du premier espace 31 au moyen d'un plot creux d'alimentation 32. Ce dernier entoure également le collecteur 15 et un orifice d'alimentation 22 en carburant ou en comburant débouchant dans une plaque d'alimentation 2OS, au niveau d'un canal de circulation 21S, qui débouche lui-même sur la surface externe de l'ensemble. En effet, sur chaque côté du squelette central plat est appliquée par collage une plaque d'alimentation 20S ou 201 destinée à distribuer le comburant ou le carburant sur toute la surface d'une des deux électrodes de l'ensemble d'une membrane/électrodes 1.
Une des caractéristique principales de l'invention tient au fait que les canaux de circulation 21S et 211 traversent, sur toute leur épaisseur, leur plaque respective 20S et 201. Il est ainsi possible d'usiner ces canaux en série. En effet, en empilant plusieurs plaques d'alimentation l'une sur l'autre, avant la formation des canaux d'alimentation 21S et 211, on peut prévoir d'usiner plusieurs plaques à la fois en. une même opération. En effet, le matériau constitutif de ces plaques d'alimentation 20S et 201 est un matériau composite comme le graphite, en particulier le graphite chargé de résine phénolée . Cette matière peut être usinée au jet d'eau. On comprend ainsi facilement qu'une seule phase d'usinage par jet d'eau puisse permettre d'usiner par percement les canaux de plusieurs plaques. De plus, en utilisant la commande numérique, il est possible de dessiner de nombreux motifs différents de canaux d'alimentation 211, 21S sur ces plaques d'alimentation 201, 20S. De plus, le temps d'usinage est extrêmement restreint.
Il est facile de comprendre que chaque électrode des ensembles membrane/électrodes 1 peut être en contact avec le carburant ou le comburant, lorsque l'ensemble membrane/électrodes 1 est placé entre deux plaques bipolaires 10, comme représenté dans la partie basse de la figure. Un joint de membrane 4 est placé dans un évidement périphérique 13 entourant les plaques d'alimentation 20S et 201. On constate qu'un canal d'alimentation 33 n'alimente que le canal de circulation supérieur 21S. En effet, le collecteur constitué, entre autre, par le trou de collecteur 15 représenté sur cette figure 1 ne contient que du comburant ou du carburant. De la même façon, d'autres collecteurs contiennent le combustible complémentaire à celui circulant dans les canaux de circulation 21S pour alimenter les canaux inférieurs 211. Ainsi, on fait circuler dans un premier 21S de ses canaux de circulation du carburant, sur une première face, et, sur l'autre face, dans un deuxième canal de circulation 211 du comburant. En référence à la figure 2, il n'est pas nécessaire que tous les trous de collecteur soient en communication avec l'un des deux canaux de circulation 21S et 211 par l'intermédiaire d'un canal d'alimentation 33. En conséquence, la figure 2 montre un deuxième type de trou de collecteur 16 qui n'est pas en communication fluidique avec les canaux de circulation 21S et 211. Dans ce cas, la paroi interne de chaque trou de collecteur 16 est constitué entièrement par le cadre 11. A cet effet, chaque plaque mince 30 possède un trou de diamètre supérieur au diamètre interne du collecteur pour permettre au matériau, par exemple thermoplastique diélectrique, constituant le cadre 11 d'occuper toute la hauteur de la plaque polaire à ce niveau.
Sur cette figure 2, on peut donc constater que l'espace 31 subsiste entre les deux plaques minces 30 pour la circulation de l'eau contribuant à la réfrigération de la pile. On constate sur les figures 1 et 2 qu'un lamage 18 est prévu sur chacune des deux surfaces du cadre 11, à l'intérieur de celui-ci, pour permettre le positionnement et le maintien de chaque membrane 3.
La figure 3, de type écorché, permet de mieux comprendre, entre autres, la différence entre les deux types de trous de collecteurs. En effet, sur la partie droite de cette figure 3 , se trouve un trou de collecteur 15, tel que représenté sur la figure 1. Il met donc en communication le carburant ou le comburant circulant dans le collecteur, qu'il constitue avec les autres trous de collecteurs placés au-dessus et en dessous de lui, avec le canal de circulation 211, par l'intermédiaire du canal d'alimentation 33 et des trous d'alimentation 22. Dans ce cas, on distingue bien le plot creux d'alimentation 32 qui entoure, à la fois, le trou de collecteur 15 et le trou d'alimentation 22 pour former le canal d'alimentation 33.
Au milieu de cette figure 3, entre les deux plaques minces 30, se trouve un plot 34. La fonction de ce dernier est donc de maintenir les deux plaques métalliques distantes l'une de l'autre, de manière à définir les différents espaces, évoqués précédemment, à savoir le premier espace 31, destiné à la réfrigération de la pile par de l'eau, et les canaux d'alimentation 33. On note que les premiers espaces 31 sont en communication avec l'extérieur par des sorties 37. De la sorte, l'ensemble de la pile à combustible, constituée par l'empilage de différentes étages, comprenant chacun un ensemble membrane/électrodes et deux plaques polaires, d'être baigné dans un bain d'eau pour faciliter sa réfrigération par circulation libre du fluide réfrigérant, par exemple de l'eau.
Sur la partie droite de cette figure 3, on voit qu'un autre type de plots 35 est prévu pour entourer les trous de collecteur 16 de deuxième type et maintenir les deux plaques minces 30 à la distance idoine.
Sur cette figure 3, il est facile de voir la forme périphérique rectangulaire du joint périphérique 4 et la forme circulaire des joints de collecteur 5.
La figure 4 montre, en totalité, une plaque bipolaire et, plus particulièrement, la manière dont les canaux de circulation 21S sont agencés sur une surface d'une telle plaque bipolaire. Dans l'exemple représenté, quatre canaux de circulation 21S sont implantés sur une même surface d'une plaque bipolaire 10. Chacun de ces canaux de circulation 21S a une forme de spirale en carrée, dont on peut distinguer le centre 23. Chacun d'entre eux est alimenté par un des collecteurs, représentés ici leurs trous de collecteurs 15 et 16 et est déchargé par un autre de ces mêmes collecteurs. Puisqu'il existe le même nombre de canaux de circulation sur l'autre face de la plaque bipolaire, le nombre de collecteurs est donc doublé. En d'autres termes, avec quatre canaux de circulation de chaque côté de la plaque bipolaire, huit collecteurs d'alimentation et huit collecteurs d'évacuation sont nécessaires. Les flèches, représentées sur cette figure 4, suggèrent donc ces alimentations et évacuations de chacun des huit canaux de circulation d'une même plaque bipolaire .
Sont également représentés en traits interrompus, les plots creux d'alimentation 32, qui entourent à la fois chacun un collecteur 15 ou 16, un orifice d'alimentation 22 et un canal d'alimentation 33. De même, sont représentés en traits interrompus tous les plots 34 maintenant écartés de façon parallèle les plaques métalliques. Le procédé de fabrication de ce type de plaque bipolaire se fait donc par une première phase consistant à construire un squelette central plat constitué des deux plaques minces 30, de préférence en graphite phénolique, et des plots 32, 34 et 35 en même matière par collage à chaud, sous presse.
Plusieurs dizaines de squelettes centraux plats peuvent ainsi être assemblés simultanément. Les plaques d'alimentation 201 et 20S, usinée préalablement au jet d'eau, sont collées sur le squelette central plat ainsi formé.
La colle utilisée' doit être conductrice. Une polymérisation termine la fabrication de ces éléments .
Le cadre est obtenu par injection de matériau thermoplastique diélectrique. Simultanément à cette injection, à lieu également une injection des joints de collecteur 5, périphériques 4 et d'alimentation 32 en silicone .
Avantages de l'invention
Cette structure de plaque bipolaire est particulièrement légère, puisqu'elle met en œuvre du graphite phénolique et du plastique.
La fabrication est relativement simple et peut être mise en œuvre pour un grand nombre de plaques bipolaires.
L'utilisation de plaques en graphite livré en plaque permet d'assurer un parallélisme très précis entre les faces des plaques bipolaires. Un usinage en rodoir est souvent utilisé à cet effet.

Claims

REVENDICATIONS
1. Plaque bipolaire constituant la première plaque polaire d'un élément de base d'une pile à combustible et la deuxième plaque polaire d'un deuxième élément de base adjacent au premier élément de base de la même pile à combustible, comprenant :
- un squelette central plat constitué de deux plaques minces (30) parallèles, espacées et fixées l'une à l'autre par collage au moyen de plots (32, 34, 35) et délimitant ainsi un premier espace (31) pour permettre une circulation de réfrigérant ;
- deux plaques d'alimentation (201, 20S) , en matériau composite conducteur, placées de part et d'autre du squelette central plat, sauf sur le bord, et sur chacune desquelles est formé au moins un canal de circulation (21S, 211) de carburant ou de comburant ; et
- un cadre (11) en matériau diélectrique placé de part et d'autre du squelette central plat et autour des plaques d'alimentation (201, 20S) ; des trous collecteurs (15, 16) étant prévus à la périphérie du squelette central plat et du cadre (11) pour constituer des collecteurs de carburant et de comburant, des canaux d'alimentation (33), étant situés entre les plaques minces (30) et reliant les trous de collecteurs (15, 16) aux canaux de circulation (21S, 211) .
2. Plaque bipolaire selon la revendication 1, caractérisée en ce que les plaques minces (30) et les plaques d'alimentation (201, 20S) sont en graphite phénolique.
3. Plaque bipolaire selon la revendication 1, caractérisée en ce que le squelette comprend des plots percés (35) , placés autour des collecteurs constitués par les trous de collecteur (16) et placés entre les deux plaques minces (30) pour contribuer à la continuité des collecteurs de comburant et de carburant .
4. Plaque bipolaire selon la revendication 1, caractérisée en ce qu'il comprend des joints en silicone (4, 5) implantés sur les surfaces du cadre (11) autour des collecteurs de carburant et de comburant et à la périphérie de la membrane (3) d'un ensemble membrane/électrodes (1) pour assurer l'étanchéité entre deux plaques bipolaires.
5. Plaque bipolaire selon la revendication 1, la forme de la plaque bipolaire étant carrée, caractérisé en ce que le au moins un canal de circulation (21S, 211) de chaque surface des plaques d'alimentation (20) a une forme en spirale carrée.
6. Procédé de fabrication d'une plaque bipolaire selon la revendication 1, caractérisé en ce qu'il comprend les étapes successives suivantes :
- solidarisation entre elles des deux plaques minces (30), par l'intermédiaire des plots (32, 34, 35) , par collage avec une colle conductrice ;
- usinage au jet d'eau des canaux de circulation (21S, 211) dans les deux plaques d'alimentation (201,
2OS) ;
- collage, autour du squelette central plat et des plaques d'alimentation (201, 20S) en composite conducteur, avec une colle conductrice ; et - injection du cadre (il) en matériau thermoplastique diélectrique.
7. Procédé de fabrication selon la revendication 6, d'une plaque bipolaire selon la revendication 6, caractérisé en ce qu'il consiste, simultanément à la troisième étape d'injection du cadre (11), à injecter les joints en silicone (4, 5) sur la surface de ce cadre (11) .
PCT/FR2002/000290 2001-01-26 2002-01-24 Plaque bipolaire legere pour pile a combustible et son procede de fabrication WO2002059995A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60226949T DE60226949D1 (de) 2001-01-26 2002-01-24 Verfahren zur herstellung von leichtgewichtigen bipolaren platten für eine brennstoffzelle
EP02700397A EP1358691B1 (fr) 2001-01-26 2002-01-24 Procede de fabrication de plaques bipolaires legeres pour piles a combustible
US10/466,977 US7122273B2 (en) 2001-01-26 2002-01-24 Light bipolar plate for fuel cell and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/01081 2001-01-26
FR0101081A FR2820244B1 (fr) 2001-01-26 2001-01-26 Plaque bipolaire legere pour pile a combustible et son procede de fabrication

Publications (1)

Publication Number Publication Date
WO2002059995A1 true WO2002059995A1 (fr) 2002-08-01

Family

ID=8859281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000290 WO2002059995A1 (fr) 2001-01-26 2002-01-24 Plaque bipolaire legere pour pile a combustible et son procede de fabrication

Country Status (7)

Country Link
US (1) US7122273B2 (fr)
EP (1) EP1358691B1 (fr)
AT (1) ATE397791T1 (fr)
DE (1) DE60226949D1 (fr)
ES (1) ES2307720T3 (fr)
FR (1) FR2820244B1 (fr)
WO (1) WO2002059995A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846799A1 (fr) * 2002-10-30 2004-05-07 Skf Ab Module pour un systeme de cellules electrochimiques
FR2879353A1 (fr) * 2004-12-10 2006-06-16 Renault Sas Plaque bipolaire comportant un sillon qui s'etend selon une double spirale et qui comporte un segment retiligne agence dans la zone centrale de la spirale
CN100397693C (zh) * 2005-07-26 2008-06-25 比亚迪股份有限公司 燃料电池导流极板及其加工方法
US9966613B2 (en) 2012-10-30 2018-05-08 Compagnie Generale Des Etablissements Michelin Bipolar plate for a fuel cell
US10283786B2 (en) 2012-10-30 2019-05-07 Compagnie Generale Des Etablissements Michelin Bipolar plate for a fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843490B1 (fr) * 2002-08-06 2004-09-03 Centre Nat Rech Scient Pile a combustible utilisant des biofilms en tant que catalyseur de la reaction cathodique et/ou de la reaction anodique
FR2858466A1 (fr) * 2003-07-28 2005-02-04 Renault Sa Plaque bipolaire pour pile a combustible
US7687180B2 (en) * 2004-06-30 2010-03-30 Freudenberg-Nok General Partnership Overmolded support plate for fuel cell
KR100869798B1 (ko) * 2007-04-25 2008-11-21 삼성에스디아이 주식회사 연료 전지용 스택
ES2409454B1 (es) * 2010-07-16 2014-05-12 Consejo Superior De Investigaciones Científicas (Csic) Placa de pila de combustible con varias áreas de reacción química.
CN109411779A (zh) * 2017-08-17 2019-03-01 中国科学院金属研究所 一种钒电池用柔性石墨双极板的制备方法
DE102019218406A1 (de) * 2019-11-27 2021-05-27 Mtu Friedrichshafen Gmbh Strömungsführungsplatte für eine elektrochemische Zelle und Plattenstapel mit einer Mehrzahl solcher Strömungsführungsplatten

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321984A1 (de) * 1982-06-23 1983-12-29 General Electric Co., Schenectady, N.Y. Brennstoffzellenbatterie mit verbesserter membrankuehlung
US5514487A (en) * 1994-12-27 1996-05-07 Ballard Power Systems Inc. Edge manifold assembly for an electrochemical fuel cell stack
WO1997050139A1 (fr) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Pile a combustible a membranes electrolytiques en polymere ayant une plaque bipolaire a conducteur moule integre
JPH10241709A (ja) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd 固体高分子膜型燃料電池及び固体高分子膜型燃料電池用セパレータ
JPH10284094A (ja) * 1997-04-10 1998-10-23 Asahi Glass Co Ltd 燃料電池
JPH11297337A (ja) * 1998-04-08 1999-10-29 Tokai Carbon Co Ltd 固体高分子型燃料電池セパレータ部材及びその製造方法
WO1999056333A1 (fr) * 1998-04-23 1999-11-04 Ballard Power Systems Inc. Structure de champ d'ecoulement de pile a combustible formee par depot de couches
EP0975039A2 (fr) * 1998-07-21 2000-01-26 Matsushita Electric Industrial Co., Ltd. Empilement de piles à combustibles à électrolyte solide
EP1020941A2 (fr) * 1999-01-12 2000-07-19 Nichias Corporation Séparateur pour pile à combustible et son procédé de fabrication
WO2000044059A1 (fr) * 1999-01-21 2000-07-27 Asahi Glass Company, Limited Pile a combustible a electrolyte polymere solide
JP2000231927A (ja) * 1999-02-09 2000-08-22 Mitsubishi Plastics Ind Ltd 固体高分子型燃料電池セパレータ
FR2810795A1 (fr) * 2000-06-27 2001-12-28 Technicatome Plaque bipolaire a deux plaques metalliques pour pile a combustible et son procede de fabrication

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169917A (en) * 1978-07-10 1979-10-02 Energy Research Corporation Electrochemical cell and separator plate thereof
US4732637A (en) * 1983-04-11 1988-03-22 Engelhard Corporation Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
US5770033A (en) * 1993-07-13 1998-06-23 Lynntech, Inc. Methods and apparatus for using gas and liquid phase cathodic depolarizers
US6232010B1 (en) * 1999-05-08 2001-05-15 Lynn Tech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6596427B1 (en) * 2000-11-06 2003-07-22 Ballard Power Systems Inc. Encapsulating seals for electrochemical cell stacks and methods of sealing electrochemical cell stacks

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321984A1 (de) * 1982-06-23 1983-12-29 General Electric Co., Schenectady, N.Y. Brennstoffzellenbatterie mit verbesserter membrankuehlung
US5514487A (en) * 1994-12-27 1996-05-07 Ballard Power Systems Inc. Edge manifold assembly for an electrochemical fuel cell stack
WO1997050139A1 (fr) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Pile a combustible a membranes electrolytiques en polymere ayant une plaque bipolaire a conducteur moule integre
JPH10241709A (ja) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd 固体高分子膜型燃料電池及び固体高分子膜型燃料電池用セパレータ
JPH10284094A (ja) * 1997-04-10 1998-10-23 Asahi Glass Co Ltd 燃料電池
JPH11297337A (ja) * 1998-04-08 1999-10-29 Tokai Carbon Co Ltd 固体高分子型燃料電池セパレータ部材及びその製造方法
WO1999056333A1 (fr) * 1998-04-23 1999-11-04 Ballard Power Systems Inc. Structure de champ d'ecoulement de pile a combustible formee par depot de couches
EP0975039A2 (fr) * 1998-07-21 2000-01-26 Matsushita Electric Industrial Co., Ltd. Empilement de piles à combustibles à électrolyte solide
EP1020941A2 (fr) * 1999-01-12 2000-07-19 Nichias Corporation Séparateur pour pile à combustible et son procédé de fabrication
WO2000044059A1 (fr) * 1999-01-21 2000-07-27 Asahi Glass Company, Limited Pile a combustible a electrolyte polymere solide
EP1154504A1 (fr) * 1999-01-21 2001-11-14 Asahi Glass Company Ltd. Pile a combustible a electrolyte polymere solide
JP2000231927A (ja) * 1999-02-09 2000-08-22 Mitsubishi Plastics Ind Ltd 固体高分子型燃料電池セパレータ
FR2810795A1 (fr) * 2000-06-27 2001-12-28 Technicatome Plaque bipolaire a deux plaques metalliques pour pile a combustible et son procede de fabrication

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14 31 December 1998 (1998-12-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01 31 January 2000 (2000-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846799A1 (fr) * 2002-10-30 2004-05-07 Skf Ab Module pour un systeme de cellules electrochimiques
US7419738B2 (en) 2002-10-30 2008-09-02 Ab Skf Module for a fuel cell arrangement comprising plates joined by a seal
FR2879353A1 (fr) * 2004-12-10 2006-06-16 Renault Sas Plaque bipolaire comportant un sillon qui s'etend selon une double spirale et qui comporte un segment retiligne agence dans la zone centrale de la spirale
CN100397693C (zh) * 2005-07-26 2008-06-25 比亚迪股份有限公司 燃料电池导流极板及其加工方法
US9966613B2 (en) 2012-10-30 2018-05-08 Compagnie Generale Des Etablissements Michelin Bipolar plate for a fuel cell
US10283786B2 (en) 2012-10-30 2019-05-07 Compagnie Generale Des Etablissements Michelin Bipolar plate for a fuel cell

Also Published As

Publication number Publication date
FR2820244A1 (fr) 2002-08-02
FR2820244B1 (fr) 2003-12-12
EP1358691B1 (fr) 2008-06-04
ES2307720T3 (es) 2008-12-01
DE60226949D1 (de) 2008-07-17
ATE397791T1 (de) 2008-06-15
EP1358691A1 (fr) 2003-11-05
US20040058221A1 (en) 2004-03-25
US7122273B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
EP1900054B1 (fr) Plaque bipolaire de pile à combustible à fonction étanchéité intégrée et cellule de pile à combustible comportant de telles plaques
EP3183379B1 (fr) Procédé d'électrolyse ou de co-électrolyse à haute température, procédé de production d'électricité par pile à combustible sofc, interconnecteurs, réacteurs et procédés de fonctionnement associés
FR2810795A1 (fr) Plaque bipolaire a deux plaques metalliques pour pile a combustible et son procede de fabrication
JPH08222237A (ja) 燃料電池用セパレータ
EP1358691B1 (fr) Procede de fabrication de plaques bipolaires legeres pour piles a combustible
EP3360987B1 (fr) Entretoise d'electrolyseur et electrolyseur équipe d'une telle entretoise
FR2997562A1 (fr) Plaque bipolaire pour pile a combustible
FR2564249A1 (fr) Amenagements aux structures des piles a combustible
EP1859500B1 (fr) Plaque bipolaire pour pile a combustible a tole de distribution metallique deformee
EP1528614B1 (fr) Structure pour pile à combustible
EP2707920B1 (fr) Pile a combustible avec collecteurs a joints injecteurs individuels
WO2002056407A1 (fr) Pile a combustible equipee de plaques polaires identiques et a circulation interne de combustible et de refrigerant
EP2915208A1 (fr) Plaque bipolaire pour pile a combustible
FR2816448A1 (fr) Plaque bipolaire a deux plaques metalliques et structures gaufrees pour pile a combustible
EP1695406B1 (fr) Plaque d'alimentation d'une cellule de pile a combustible a circulations coplanaires
EP1941571B1 (fr) Empilement etanche de pile a combustible
WO2019186051A1 (fr) Plaque bipolaire a canaux ondules
FR2901060A1 (fr) "pile a combustible integree a couches laminees"
EP1900051B1 (fr) Plaque bipolaire pour pile a combustible comprenant un canal de liaison
FR2846798A1 (fr) Plaque bipolaire a deux plaques metalliques embouties pour pile a combustible
FR2956522A1 (fr) Ensemble de plaques de pile a combustible, cellules et pile a combustible ainsi obtenues
FR2907968A1 (fr) "plaque bipolaire de pile a combustible a circuit de fluide caloporteur ameliore, procede de fabrication et pile a combustible"
WO2020128322A1 (fr) Plaque bipolaire pour pile a combustible
LU87801A1 (fr) Empilement de piles a combustible a collecteurs entierement internes
EP1873854A2 (fr) Structure de cellule elementaire pour pile à combustion equipée de moyens d etancheité

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10466977

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002700397

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002700397

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2002700397

Country of ref document: EP