WO2002058287A1 - Optical transmitter/receiver - Google Patents

Optical transmitter/receiver Download PDF

Info

Publication number
WO2002058287A1
WO2002058287A1 PCT/JP2002/000374 JP0200374W WO02058287A1 WO 2002058287 A1 WO2002058287 A1 WO 2002058287A1 JP 0200374 W JP0200374 W JP 0200374W WO 02058287 A1 WO02058287 A1 WO 02058287A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
dummy signal
dummy
optical transceiver
Prior art date
Application number
PCT/JP2002/000374
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ota
Original Assignee
Photonixnet Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonixnet Kabushiki Kaisha filed Critical Photonixnet Kabushiki Kaisha
Priority to JP2002558653A priority Critical patent/JPWO2002058287A1/en
Publication of WO2002058287A1 publication Critical patent/WO2002058287A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/075Monitoring an optical transmission system using a supervisory signal using a pilot tone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/08Shut-down or eye-safety

Definitions

  • the present invention relates to an optical transceiver in an optical communication system using an optical fiber.
  • the present invention relates to an eye-safe mechanism for preventing a laser beam from an optical transceiver from adversely affecting humans.
  • FIG. 9 is a conceptual diagram showing a conventional optical fiber communication system.
  • the optical signal 105 transmitted from the optical transceiver 101 is transmitted to the optical transceiver 102 through the optical fiber 103.
  • the optical signal 106 transmitted from the optical transceiver 102 is transmitted to the optical transceiver 101 through the optical fiber 104.
  • Such an optical communication system is called a point-to-point system.
  • FIG. 9 (b) is a conceptual diagram showing a shared bus type optical communication system using the passive optical splitters 115.
  • the optical signal transmitted from the optical transceiver 111 is split by the passive optical splitter 115, and then transmitted to the optical transceiver 112 or 114.
  • the optical signals transmitted from the optical transceiver 112 or 111'4 are combined by the passive optical splitter 115 this time, and then transmitted to the optical transceiver 111.
  • the optical transceivers 112 and 114 are controlled so as not to transmit optical signals at the same time by adopting a time division method. It is good to think that the passive optical splitter 1 15 has the function of concentrating the optical signal path.
  • FIG. 10 is a time chart showing how an optical signal is transmitted in a conventional optical fiber communication system.
  • FIG. 10 (a) shows the state of optical signal transmission in the point-to-point optical fiber communication system shown in FIG. 9 (a).
  • idle signals 1 2 1 and 1 2 3 are transmitted. That is, during normal operation, some optical signal is always exchanged between the two optical transceivers 101 and 102.
  • FIG. 10 (b) is a time chart showing how an optical signal is transmitted in the shared bus type optical communication system shown in FIG. 9 (b).
  • the valid data period 125 and 126 there is a period during which no idle signal is transmitted and no optical signal is transmitted.
  • the optical signal 135, ie, the laser beam 133 is emitted to the free space, and there is a problem that the human eye 133 is adversely affected.
  • the laser light output from the optical transceiver is limited to avoid these adverse effects, and the optical transceiver is designed so that even if the laser light is emitted into free space, it does not adversely affect human eyes. It was designed.
  • the condition for preventing health damage to the human eye is called the I-Safe condition, and the mechanism for preventing health damage to the eye is called the eye-safe mechanism.
  • wavelength multiplexing technology optical signals of multiple wavelengths are combined into a single optical fiber.Even if individual optical signals meet the eye-safe condition, the bundled bundle of optical signals does not satisfy the eye-safe condition. Because there is.
  • an eye-safe mechanism As an eye-safe mechanism, an eye-safe mechanism has been proposed in which the operation of an optical amplifier is automatically stopped locally when an optical fiber is cut off, and is automatically restored when a cut-off portion is restored (Japanese Patent Laid-Open No. 6-204). No. 948 publication). Disclosure of the invention
  • the present invention relates to an optical transmission and reception method for an optical transceiver applied to a point-to-point optical communication system.
  • the aim is to provide a mechanism that does not adversely affect the human eye even if the signal output is improved.
  • the optical transceiver of the present invention transmits a low-output first dummy signal (S 1) when no signal is received (0), and outputs the first dummy signal (S 1)
  • S 1 When the second dummy signal (S 2) is transmitted, when the second dummy signal (S 2) is received, the high-output regular signal (N) is transmitted when the second dummy signal (S 2) is detected.
  • N When transmitting and receiving a normal signal (N), a high-output normal signal (N) is transmitted.
  • the optical transceiver for optical fiber communication
  • the laser light is emitted into free space, which causes a health hazard to human eyes. Can be prevented.
  • the optical transceiver can automatically return to the normal transmission state. Furthermore, even if only one of the two optical fibers comes off, it is possible to prevent the laser light from being emitted into free space and causing a health hazard to human eyes.
  • the first dummy signal and the second dummy signal can be discriminated by changing the frequency or the like. Further, even when signals of the same frequency are used, discrimination can be performed by taking different sequences. For example, different envelopes may be used, one dummy signal may be intermittent, or an interrupt may be added. In short, it is only necessary that information indicating that a dummy signal is being received from the other party be included in its own dummy signal.
  • FIG. 1 is a block diagram of a first embodiment of the optical transceiver of the present invention.
  • FIG. 2 is a time chart schematically showing the operation of the optical transceiver of the present invention.
  • FIG. 3 is a diagram showing a transmission state and a reception state of the optical transceiver of the present invention.
  • FIG. 4 is a diagram illustrating the structure of the normal signal detector 14 and the dummy signal detector 15.
  • Figure 5 shows a signal attenuated by an optical fiber and transmitted to the optical transceiver of the other party. It is a figure showing a situation.
  • Figure 6 is a signal level diagram showing the relationship between normal signals, dummy signals, and noise.
  • FIG. 7 is a block diagram showing a second embodiment of the optical transceiver of the present invention.
  • FIG. 8 is a schematic diagram showing the relationship between the waveforms of the normal signal and the dummy signal in the second embodiment of the optical transceiver of the present invention.
  • Fig. 9 is a conceptual diagram showing the point-to-point-point method and the shared bus method.
  • FIG. 10 is a time chart showing signal paths in the point-in-point method and the shared bus method.
  • FIG. 11 is a schematic diagram showing that light from an open optical transceiver or an open optical fiber can adversely affect the human eye.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • an electric signal is applied to an input terminal 1, passes through a signal switch 3, drives an LD driver (laser diode driver) 4, and drives a laser diode 5.
  • the laser light (optical signal) 18 emitted from the laser diode 5 is modulated by an electric signal applied to the input terminal 1.
  • the signal switching switch 3 is connected to the first dummy signal oscillator 2a and the second dummy signal oscillator 2b, and if a normal optical signal from the opposing optical transceiver is not detected as described later, it is input.
  • a signal from the first dummy signal oscillator 2a or the second dummy signal oscillator 2b is transmitted as an optical signal 18 instead of the signal from the terminal 1.
  • the oscillation frequencies of the first dummy signal oscillator 2a and the second dummy signal oscillator 2b are selected to be sufficiently lower than the frequency of a normal optical signal. For example, when a normal optical signal is 1 gigabit / second, the first dummy signal from the first dummy signal oscillator 2a is 1 MHz, and the second dummy signal from the second dummy signal oscillator 2a is 2 MHz. Select a value such as z.
  • the optical signal 19 transmitted from the opposing optical transceiver through the optical fiber is photoelectrically converted by the photodetector 11 into a current signal.
  • This current signal is converted into a voltage signal by a transimpedance amplifier 12, then converted into a digital electric signal by a post amplifier 13 having a waveform shaping function, and output from an output terminal 17.
  • a part 20 of the optical signal from the laser guide 5 is sent to a monitor 6 (photodiode) 6 where it is photoelectrically converted and sent to an automatic optical output control mechanism 7.
  • the automatic optical output control mechanism 7 controls the optical signal output transmitted in accordance with either the first reference voltage 9 or the second reference voltage 10 selected by the output switching switch 8 to a constant value.
  • the first reference voltage 9 defines the optical signal output during normal operation, and for example, a reference voltage is selected such that the laser light output is +6 dBm (4 mW).
  • the second reference voltage 10 is a level that does not impair the human eye when the optical fiber is disconnected and the signal from the opposing optical transceiver is not correctly received, for example, — 6 dBm. (0.25 raW) is selected as the reference voltage.
  • FIG. 2 shows a case where the optical transceivers 31 and 32 as shown in FIG. 1 are connected to each other.
  • FIG. 2A shows a state in which the two optical transceivers 31 and 32 are correctly connected by the optical fibers 33 and 34.
  • FIG. 2B shows a state in which the two optical transceivers 31 and 32 are disconnected.
  • FIG. 2 (c) shows the moment when only one optical fiber 34 of the two optical transceivers 31 and 32 that have been disconnected is reconnected.
  • Figure 2 (d) shows the moment when one of the optical fibers 3 4 of the optical transceivers 3 1 and 3 2 is connected, and the other optical fiber 3 3 that was disconnected is reconnected.
  • FIG. 2 (e) is a diagram showing the behavior of the optical transceivers 31 and 32.
  • the first dummy signal S 1 (1 MHz signal) is transmitted, and when the first dummy signal S 1 is received, the second dummy signal S 2 (2 MHz) is received.
  • the regular optical signal N (8 B / 10B code of 1 Gbps) is transmitted, and the regular signal N is received. In this case, the normal signal N is transmitted.
  • the optical transceivers 3 1 and 3 2 When properly connected, the optical transceivers 3 1 and 3 2 transmit a regular optical signal (1 Gbit / s) in high-power mode (+6 dBm), but the optical fiber connection is lost. If hand signal cannot be received, it switches to low power mode (_ 6 dBm), which is safe for human eyes, and the signal to be transmitted is switched to low-speed dummy signal S 1 (1 MHz) instead of regular optical signal. .
  • the reason why the low output light is transmitted without setting the optical signal to zero is to detect the restoration of the connection when the optical transceivers are reconnected. Reconnection cannot be detected if the optical signal is completely cut off.
  • the normal signal output from the optical transceiver 31 becomes the optical fiber when only one optical fiber is connected (Fig. 2 (c)). It is released to free space through 33.
  • two types of dummy signals are prepared.
  • the optical transceiver 31 transmits the second dummy signal S2. This is because the optical transceiver 31 receives the first dummy signal S1.
  • the optical transceiver since the optical transceiver has not received any signal (0), it transmits the dummy signal S1.
  • the optical transceiver 32 receives the dummy signal S2 and starts transmitting the regular signal N.
  • the optical transceiver 31 that has begun to receive the normal signal N from the optical transceiver 32 also starts transmitting the normal signal N.
  • FIG. 3 is a time chart schematically showing the operation of the optical transceivers 31 and 32 as described above.
  • the optical transceivers 3 1 and 3 2 transmit a regular signal N, and when the connection is broken, output low-output low-frequency dummy signals S 1 and S 2.
  • the normal signal detector 14 detects a normal optical signal.
  • the first dummy signal detector 15a and the second dummy signal detector 15b have a function of detecting a dummy signal (S1 or S2) from the opposing optical transceiver.
  • the structure of the normal signal detector 14 is shown in FIG.
  • the normal signal detector 14 includes a band-pass filter 51a, an effective value detector 52a, a reference voltage 54a, and a voltage comparator 53a.
  • the RMS detector After the input signal passes through the band-pass filter 5 1a, the RMS detector The signal is converted into a DC voltage corresponding to the effective value of the optical signal by 52a.
  • the voltage comparator 53a compares this DC voltage value with the reference voltage 54a, and outputs a high-level digital signal when the effective value exceeds the reference voltage.
  • the band-pass filter 51a has the characteristic of passing a normal signal N (8B / 110B code of l Gb ps).
  • the structure of the first dummy signal detector 15a is shown in FIG. 4 (b).
  • the first dummy signal detector 15a includes a band-pass filter 51b, an effective value detector 52b, a reference voltage 54b, and a voltage comparator 53b. After passing through the low-frequency filter 51b, the input signal is converted to a DC voltage corresponding to the RMS value of the optical signal by the RMS detector.
  • the voltage comparator 53b compares this DC voltage value with the reference voltage 54b, and outputs a high-level digital signal when the effective value exceeds the reference voltage.
  • the structure of the second dummy signal detector 15b is shown in FIG. 4 (c).
  • the second dummy signal detector 15b comprises a band-pass filter 51c, an effective value detector 52c, a reference voltage 54c, and a voltage comparator 53c. After passing through the low-frequency filter 51c, the input signal is converted into a DC voltage corresponding to the effective value of the optical signal by the effective value detector 52c.
  • the voltage comparator 53c compares this DC voltage value with the reference voltage 54c, and outputs a high-level digital signal when the effective value exceeds the reference voltage.
  • Figure 4 (d) shows the relationship between the passband characteristics of the bandpass filters 51a, 51b, and 51c and the normal signal N, the first dummy signal S1, and the second dummy signal S2.
  • FIG. For the bandpass filter 51a, for example, a characteristic 57 that passes from 60 MHz (corresponding to 120 Mbps) to 62 MHz (corresponding to 1.25 Gbps) is selected. Also, as described above, the frequency of the first dummy signal S1 is 1 MHz, the frequency of the second dummy signal S2 is 2 MHz, and the band-pass filters 51 b and 51 c correspond to each other. Transmission characteristics 55 and 56 are defined respectively.
  • the output of the normal signal detector 14 is output to the signal detection terminal 21 and the OR of the output of the second dummy signal detector 15 b is obtained by the OR circuit 16. It is used for controlling the signal switching switch 3 and the output switching switch 8. 1st dam — The output of the signal detector 15a is used to control the signal changeover switch 3. Since the regular signal detector 14 has a function of detecting a normal signal, if the output of the regular signal detector 14 is high level, it may be determined that the optical fiber is correctly connected. so Wear. In addition, since the first dummy signal detector 15a can detect the first dummy signal S1, if the first dummy signal detector 15a is at a high level, only the connection of one of the optical fibers is restored. I can judge.
  • the second dummy signal 15b is at a high level, it can be determined that the connection of both optical fibers has been restored. If the outputs of the normal signal detector 14, the first dummy signal detector 15a, and the second dummy signal detector 15b remain low, the optical fiber was disconnected. It can be determined that it is in the state.
  • the OR circuit 16 outputs the logical sum of the outputs of the normal signal detector 14 and the second dummy signal detector 15b.
  • the output switching switch 8 selects the second reference voltage 10 and the automatic optical output control mechanism 7 sets the output of the laser diode 5 to the low output mode ( ⁇ 6 d B m).
  • the signal switching switch 3 selects the second dummy signal oscillator 2 b and sends it to the LD driver 4, resulting in a low output (_ 6 dBm )
  • a low frequency (1 MHz or 2 MHz) dummy signal will be emitted from the optical transceiver.
  • the signal switch 3 is switched to the second dummy signal. Switched to output 2b output.
  • the partner station will receive the second dummy signal S2, and the partner station will start transmitting the regular signal N.
  • the output of the OR circuit 16 becomes high level, the signal changeover switch 3 selects the normal signal, and the output changeover switch 8 selects the first reference voltage 9.
  • the normal signal N will be transmitted in the high power mode.
  • the first and second dummy signals are lower in frequency than the normal signal for the following reason.
  • the optical signal 36 is attenuated while propagating through the optical fiber 35 to become an optical signal 37.
  • the optical signal 37 may fall to the lower limit signal level that can be received in the output mode.
  • the optical transceivers 31 and 32 are switched to the low output mode. Then, even if the signal is at the lowest level that can be received in the high-power mode, the power is further reduced, so that even if the connection is restored, such a low-level signal cannot be detected.
  • Figure 6 shows such a relationship.
  • Figure 6 is a signal level diagram.
  • Reference numeral 61 indicates the minimum reception level of the normal signal
  • reference numeral 62 indicates the input-converted noise level when the band is 1 GHz (the band of the normal signal).
  • Reference numeral 63 represents the lowest reception level of the dummy signal
  • reference numeral 64 represents the input-converted noise level when the bandwidth is within 1 MHz.
  • FIG. 7 is a block diagram showing a second embodiment of the present invention.
  • Dummy signal oscillators 23a and 23b for oscillating another dummy signal by replacing the dummy signal oscillators 2a and 2b are provided.
  • the normal signal detector 14, the first dummy signal detector 15a, and the second dummy signal detector 15b of the first embodiment are combined with the envelope filter 70, the gate 71, It has been replaced by a timer 72, a counter 73, a normal signal detection digital comparator 74a, a first dummy signal detection digital comparator 74c, and a second dummy signal detection digital comparator 74b.
  • the output control of the laser beam is performed only for one reference voltage 9, and the reference voltage switching mechanism is removed.
  • the dummy signal is different from that of the first embodiment.
  • a high-output pulse with a low duty ratio is used as the dummy signal as shown in Figs. 8 (b) and 8 (c).
  • Fig. 8 (a) shows the waveform of the regular signal.
  • the peak value of the normal signal the line shown as peak 1 in Fig. 8
  • the peak value of the dummy signal the line shown as peak 2 in Fig. 8) were selected at roughly the same level. ing.
  • the effective value of the dummy signal (the line indicated as RMS-2 in Fig.
  • Fig. 8 (b) is lower than the effective value of the normal signal (the line indicated as RMS-1 in Fig. 8). Since the limit of the laser beam exposure to the human eye is specified by the integration value of a considerably long time, on the order of several hundred milliseconds, Figs. 8 (b) and 8 (c) Even a dummy signal as shown in Fig. 1 can prevent health damage to human eyes.
  • the first dummy signal in Fig. 8 (b) has a pulse width of 6 // seconds and a pulse period of 100 ⁇ seconds
  • the second dummy signal in Fig. 8 (c) has a pulse width of 3 seconds
  • the pulse period is set to 50 seconds.
  • the duty ratio is set to 100: 6 (the time ratio at which light is emitted is 6%). Therefore, assuming that the normal signal output is +6 dBm (4 mW), the output is suppressed to 16 dBm (0.24 mW) when the dummy signal is output.
  • the output of the post-amplifier 13 is applied to an envelope fill 73 and a counter 73 through a gate 71.
  • the gate 71 is opened for a predetermined time by a signal from the timer 72.
  • the counter 73 also has a latch function, and counts and latches a pulse count number for a predetermined time by a signal from a timer. In the evening, for example, a signal with a period of 1 millisecond is output.
  • the regular signal detection digit comparator 74a, the first dummy signal detection digital comparator 74c, and the second dummy signal detection digit comparator 74b are counted from the counter (latch) 73.
  • the normal signal, the first dummy signal, and the second dummy signal are detected by comparing the number with the preset numerical value.
  • the output of the latch 73 during one millisecond is approximately zero.
  • the counter 73 (latch) 73 counts a value near 10 within 1 millisecond.
  • the count (latch) 73 counts a value near 5. The state of the received signal can be detected based on the count number.
  • the peak value control type automatic optical output control mechanism 24 since the output limitation of the laser beam at the time of transmitting the dummy signal is performed by the waveform pattern of the dummy signal itself, the peak value control type automatic optical output control mechanism 24 has a reference voltage switching mechanism. There is no need to combine. However, it is necessary to control the output of the laser light according to the peak value of the laser light. Applicability of the invention
  • an optical transceiver for point-in-point optical communication when an optical fiber is disconnected, a laser beam is emitted to free space and the human eye is healthy. Damage can be prevented. Also, when the optical fiber is reconnected correctly, the optical transceiver can automatically return to the normal transmission state.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

An optical transmitter/receiver which can easily discriminate the re-attaching (connection) of an optical fiber without adversely affecting human eyes even when the optical fiber is disconnected from the optical transmitter/receiver body. A failure (O) to transmit an optical signal from the associated optical transmitter/receiver due to disconnected optical fiber is discriminated to change over a switch (8) and send a second reference voltage (10) to an automatic light output control mechanism (7), whereby power of a laser diode (5) is reduced. At the same time, a switch (3) allows the output of a low-frequency first dummy signal (S1) instead of a normal signal, and the associated optical transmitter/receiver also outputs the dummy signal (S1). When an optical fiber on one side is attached, the first dummy signal (S1) is detected and the optical transmitter/receiver sends a low-output second dummy signal (S2). When the optical fiber on the other side is correctly attached, the second dummy signal (S2) is detected at the associated optical transmitter/receiver to switch the transmission signal on the associated side to a normal signal (N) and change a laser diode output to a normal size.

Description

明 細 書 光送受信機 技術分野  Description Optical transceiver Technical field
本発明は光ファイバを用いた光通信システムにおける光送受信機に関する。 本発 明は光送受信機からのレーザ光が人間に対して与える悪影響を防ぐアイセーフ機構 に関する。 背景技術  The present invention relates to an optical transceiver in an optical communication system using an optical fiber. The present invention relates to an eye-safe mechanism for preventing a laser beam from an optical transceiver from adversely affecting humans. Background art
図 9は従来の光ファイバ通信システムを示す概念図である。 図 9 ( a ) において、 光送受信機 1 0 1から送信された光信号 1 0 5は光ファイバ 1 0 3を通って光送受 信機 1 0 2に伝送される。 一方、 光送受信機 1 0 2から送信された光信号 1 0 6は 光ファイバ 1 0 4を通って光送受信機 1 0 1に伝送される。 このような光通信シス テムのことをポイント · ツー -ポイント方式と呼ぶ。  FIG. 9 is a conceptual diagram showing a conventional optical fiber communication system. In FIG. 9A, the optical signal 105 transmitted from the optical transceiver 101 is transmitted to the optical transceiver 102 through the optical fiber 103. On the other hand, the optical signal 106 transmitted from the optical transceiver 102 is transmitted to the optical transceiver 101 through the optical fiber 104. Such an optical communication system is called a point-to-point system.
図 9 ( b ) は受動型光分岐器 1 1 5を用いた共有バス型光通信システムを示す概 念図である。 光送受信機 1 1 1から送信された光信号は受動型光分岐器 1 1 5によ つて分岐された後、 光送受信機 1 1 2又は 1 1 4へと伝送される。 一方、 光送受信 機 1 1 2又は 1 1' 4から送信された光信号は受動型光分岐器 1 1 5によって今度は 合流された後、 光送受信機 1 1 1へと伝送される。 実際の運用にあたっては時分割 方式の採用などにより、 光送受信機 1 1 2及び 1 1 4が同時に光信号送信すること は無いように制御される。 受動型光分岐器 1 1 5は光信号の経路を集線する機能を 司ると考えると良い。  FIG. 9 (b) is a conceptual diagram showing a shared bus type optical communication system using the passive optical splitters 115. The optical signal transmitted from the optical transceiver 111 is split by the passive optical splitter 115, and then transmitted to the optical transceiver 112 or 114. On the other hand, the optical signals transmitted from the optical transceiver 112 or 111'4 are combined by the passive optical splitter 115 this time, and then transmitted to the optical transceiver 111. In actual operation, the optical transceivers 112 and 114 are controlled so as not to transmit optical signals at the same time by adopting a time division method. It is good to think that the passive optical splitter 1 15 has the function of concentrating the optical signal path.
図 1 0は従来の光ファイバ通信システムにおける光信号の伝送される様子を示す 夕ィムチャートである。 図 1 0 ( a ) は図 9 ( a ) に示したポイント · ツー ·ボイ ント方式の光ファイバ通信システムにおける光信号伝送の様子を示している。 有効 なデ一夕 1 2 2及び 1 2 4が無い時はアイ ドル信号 1 2 1及び 1 2 3が伝送されて いる。 すなわち、 正常動作時には常に何らかの光信号が二つの光送受信機 1 0 1 と 1 0 2の間でやり取りされているのである。 これに対して図 1 0 ( b ) は図 9 ( b ) に示した共有バス型光通信システムにお ける光信号の伝送される様子を示すタイムチャートである。 有効なデ一夕 1 2 5及 び 1 2 6の間にはアイ ドル信号は伝送されず、 光信号が全く伝送されない期間が存 在している。 FIG. 10 is a time chart showing how an optical signal is transmitted in a conventional optical fiber communication system. FIG. 10 (a) shows the state of optical signal transmission in the point-to-point optical fiber communication system shown in FIG. 9 (a). When there are no valid data 1 2 2 and 1 2 4, idle signals 1 2 1 and 1 2 3 are transmitted. That is, during normal operation, some optical signal is always exchanged between the two optical transceivers 101 and 102. On the other hand, FIG. 10 (b) is a time chart showing how an optical signal is transmitted in the shared bus type optical communication system shown in FIG. 9 (b). During the valid data period 125 and 126, there is a period during which no idle signal is transmitted and no optical signal is transmitted.
上記のような光送受信機が光フアイバによってきちんと結線されている場合は問 題が無いのであるが、 図 1 1 ( a ) に示すように光送受信機 1 3 1が光ファイバに 接続されていない場合は、 光送受信機 1 3 1からのレーザ光 1 3 2が自由空間に放 出されて人間の目 1 3 3に悪影響を及ぼすという問題が生じていた。 また、 光送受 信機の光ファイバ揷入口に蓋などを設けたとしても、 図 1 1 ( b ) に示すように光 ファイバ 1 3 4の一端が光送受信機 1 3 1に差し込まれ、 もう一端が自由空間に開 放されている場合は、 光信号 1 3 5すなわちレーザ光 1 3 6が自由空間に放出され 人間の目 1 3 3に悪影響を及ぼすという問題点が生じていた。 従来は、 これらの悪 影響を避けるために光送受信機からのレーザ光出力を制限し、 たとえ、 レーザ光が 自由空間に放出されたとしても人間の目に悪影響を与えないように光送受信機は設 計されていた。このように人間の目に対する健康被害を防ぐ条件をァイセ一フ条件、 また、 目に対する健康被害を防ぐ機構をアイセーフ機構と呼んでいる。  There is no problem when the optical transceiver as described above is properly connected by an optical fiber, but the optical transceiver 13 1 is not connected to the optical fiber as shown in Fig. 11 (a). In such a case, there has been a problem that the laser beam 132 from the optical transceiver 13 1 is emitted into free space and adversely affects the human eyes 133. Even if a cover is provided at the entrance of the optical fiber of the optical transmitter / receiver, one end of the optical fiber 13 4 is inserted into the optical transceiver 13 1 and the other end is inserted as shown in Fig. 11 (b). When the laser beam is released to free space, the optical signal 135, ie, the laser beam 133, is emitted to the free space, and there is a problem that the human eye 133 is adversely affected. Conventionally, the laser light output from the optical transceiver is limited to avoid these adverse effects, and the optical transceiver is designed so that even if the laser light is emitted into free space, it does not adversely affect human eyes. It was designed. The condition for preventing health damage to the human eye is called the I-Safe condition, and the mechanism for preventing health damage to the eye is called the eye-safe mechanism.
しかしながら、 光信号の伝送速度が高速化するにつれてより大出力のレーザ光を 使わないと、 光ファイバを長距離伝送して減衰した光信号を正しく受信できなくな るという事態が生じつつある。 また、 波長多重化技術の普及に伴い、 アイセーフの 問題はより重要となってきている。 波長多重化技術では複数の波長の光信号を一本 の光ファイバにまとめるために、個々の光信号がアイセーフ条件を満たしていても、 複数の光信号が束ねられることによってアイセーフ条件を満たさなくなることがあ るからである。  However, as the transmission speed of optical signals increases, unless high power laser light is used, it is becoming impossible to correctly receive optical signals attenuated by long-distance optical fiber transmission. Also, with the spread of wavelength multiplexing technology, the eye-safe problem has become more important. In wavelength multiplexing technology, optical signals of multiple wavelengths are combined into a single optical fiber.Even if individual optical signals meet the eye-safe condition, the bundled bundle of optical signals does not satisfy the eye-safe condition. Because there is.
アイセーフ機構として光ファイバの分断の際に光増幅器の作動を局部的に自動中 止させ、 また、 分断箇所の修復時の自動復帰させるアイセーフ機構の提案がなされ ている (特開平 6— 2 0 4 9 4 8号公報) 。 発明の開示  As an eye-safe mechanism, an eye-safe mechanism has been proposed in which the operation of an optical amplifier is automatically stopped locally when an optical fiber is cut off, and is automatically restored when a cut-off portion is restored (Japanese Patent Laid-Open No. 6-204). No. 948 publication). Disclosure of the invention
本発明はボイント , ヅー ·ボイントの光通信方式に適用される光送受信機の光送 信出力を向上させても人間の目に悪影響を与えないような機構を提供することを目 的としている。 The present invention relates to an optical transmission and reception method for an optical transceiver applied to a point-to-point optical communication system. The aim is to provide a mechanism that does not adversely affect the human eye even if the signal output is improved.
本発明によれば、 上述の目的を達成するために特許請求の範囲に記載のとおりの 構成を採用している。 ここでは、 特許請求の範囲に関連して補充的な説明を行う。 上記課題を解決するために、 本発明の光送受信機は、 何も受信されない状態 (0 ) においては、 低出力の第 1ダミー信号 (S 1 ) を送信し、 第 1ダミー信号 (S 1 ) が受信された場合においては、 低出力の第 2ダミー信号 (S 2 ) を送信し、 第 2ダ ミ一信号 (S 2 ) が検出された場合においては、 高出力の正規信号 (N ) を送信し、 正規信号 (N ) が受信された場合においては、 高出力の正規信号 (N ) を送信する 構成としている。  According to the present invention, in order to achieve the above object, a configuration as described in the claims is adopted. Here, a supplementary explanation will be given in connection with the claims. In order to solve the above problem, the optical transceiver of the present invention transmits a low-output first dummy signal (S 1) when no signal is received (0), and outputs the first dummy signal (S 1) When the second dummy signal (S 2) is transmitted, when the second dummy signal (S 2) is received, the high-output regular signal (N) is transmitted when the second dummy signal (S 2) is detected. When transmitting and receiving a normal signal (N), a high-output normal signal (N) is transmitted.
上記構成によれば、 ボイント · ヅ一 'ボイント光ファイバ通信用光送受信機にお いて、 光ファイバの接続が外れた場合にレーザ光が自由空間に放出されて人間の目 に健康被害を与えることを防ぐことができる。 また、 光ファイバが正しく再接続さ れた時には光送受信機は自動的に正規の送信状態に復帰することができる。さらに、 2本の光ファイバの片方のみが外れた場合にもレーザ光が自由空間に放出されて人 間の目に健康被害を与えることを防ぐことができる。  According to the above configuration, in the point-to-point optical transceiver for optical fiber communication, when the optical fiber is disconnected, the laser light is emitted into free space, which causes a health hazard to human eyes. Can be prevented. Also, when the optical fiber is reconnected correctly, the optical transceiver can automatically return to the normal transmission state. Furthermore, even if only one of the two optical fibers comes off, it is possible to prevent the laser light from being emitted into free space and causing a health hazard to human eyes.
なお、 第 1ダミー信号及び第 2ダミー信号は周波数を異ならせる等して弁別する ことが可能である。 また、 同一の周波数の信号を用いる場合でも、 異なるシ一ケン スをとるようにして弁別させることもできる。 例えば、 異なるエンベロープにした り、 一方のダミー信号を間欠的にしたり、 中断を加えたりしても良い。 要するに、 相手方からのダミー信号を受信していることを示す情報を自らのダミー信号に含ま せられればよい。 図面の簡単な説明  It should be noted that the first dummy signal and the second dummy signal can be discriminated by changing the frequency or the like. Further, even when signals of the same frequency are used, discrimination can be performed by taking different sequences. For example, different envelopes may be used, one dummy signal may be intermittent, or an interrupt may be added. In short, it is only necessary that information indicating that a dummy signal is being received from the other party be included in its own dummy signal. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光送受信機の第 1実施例のブロック図である。  FIG. 1 is a block diagram of a first embodiment of the optical transceiver of the present invention.
図 2は、 本発明の光送受信機の動作を模式的に示したタイムチャートである。 図 3は、 本発明の光送受信機の送信状態と受信状態を示す図である。  FIG. 2 is a time chart schematically showing the operation of the optical transceiver of the present invention. FIG. 3 is a diagram showing a transmission state and a reception state of the optical transceiver of the present invention.
図 4は、 正規信号検出器 1 4とダミー信号検出器 1 5の構造を説明する図である。 図 5は、 光ファイバによって信号.が減衰されて相手方の光送受信機に伝送される 様子を示す図である。 FIG. 4 is a diagram illustrating the structure of the normal signal detector 14 and the dummy signal detector 15. Figure 5 shows a signal attenuated by an optical fiber and transmitted to the optical transceiver of the other party. It is a figure showing a situation.
図 6は、 正規信号、 ダミー信号、 ノイズとの関係を示す信号レベルダイアグラム である。  Figure 6 is a signal level diagram showing the relationship between normal signals, dummy signals, and noise.
図 7は、 本発明の光送受信機の第 2実施例を示すプロック図である。  FIG. 7 is a block diagram showing a second embodiment of the optical transceiver of the present invention.
図 8は、 本発明の光送受信機の第 2実施例における正規信号とダミー信号の波形 の関係を示す概略図である。  FIG. 8 is a schematic diagram showing the relationship between the waveforms of the normal signal and the dummy signal in the second embodiment of the optical transceiver of the present invention.
• 図 9は、 ポイント · ヅ一 ·ボイント方式と共有バス方式を示す概念図である。  • Fig. 9 is a conceptual diagram showing the point-to-point-point method and the shared bus method.
図 1 0は、 ポイント · ヅ一 ·ボイント方式と共有バス方式の信号パ夕一ンを示す タイムチャートである。  FIG. 10 is a time chart showing signal paths in the point-in-point method and the shared bus method.
図 1 1は、 開放された光送受信機あるいは開放された光ファイバからの光が人間 の目に悪影響を与えかねないことを示す概略図である。 発明を実施するための最良の形態  FIG. 11 is a schematic diagram showing that light from an open optical transceiver or an open optical fiber can adversely affect the human eye. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例を参照して本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to examples.
[第 1実施例] [First embodiment]
図 1は本発明の第 1実施例を示すブロック図である。 図 1において、 電気信号は 入力端子 1に加えられ、 信号切替スイッチ 3を経て L D ドライバ (レーザダイォー ドドライバ) 4を経てレーザダイオード 5を駆動する。 レーザダイオード 5から発 せられたレーザ光 (光信号) 1 8は入力端子 1に加えられた電気信号によって変調 されている。 信号切換スィ ツチ 3には第 1ダミー信号発振器 2 a及び第 2ダミー信 号発振器 2 bが接続されており、 後述のように対向する光送受信機からの正規の光 信号が検知されない場合は入力端子 1からの信号に代えて第 1ダミ一信号発振器 2 a又は第 2ダミー信号発振器 2 bからの信号が光信号 1 8となって送信される。 第 1ダミー信号発振器 2 a及び第 2ダミー信号発振器 2 bの発信周波数は通常の光信 号の周波数に比べて十分に低い周波数に選ばれている。 例えば、 通常の光信号が 1 ギガビット /秒であった場合、 第 1ダミー信号発振器 2 aからの第 1ダミー信号は 1 M H z、 第 2ダミー信号発振器 2 aからの第 2ダミー信号は 2 M H zというよう な値に選ぷ。 —方、 対向する光送受信機から光ファイバを通って送られてきた光信号 1 9は光 検出素子 (フォトダイオード) 1 1によって光電変換されて電流信号となる。 この 電流信号はトランスィンピ一ダンスアンプ 1 2によって電圧信号に変換された後、 波形整形機能を有するポス トアンプ 1 3によってディジタル電気信号に変換されて 出力端子 1 7から出力される。 FIG. 1 is a block diagram showing a first embodiment of the present invention. In FIG. 1, an electric signal is applied to an input terminal 1, passes through a signal switch 3, drives an LD driver (laser diode driver) 4, and drives a laser diode 5. The laser light (optical signal) 18 emitted from the laser diode 5 is modulated by an electric signal applied to the input terminal 1. The signal switching switch 3 is connected to the first dummy signal oscillator 2a and the second dummy signal oscillator 2b, and if a normal optical signal from the opposing optical transceiver is not detected as described later, it is input. A signal from the first dummy signal oscillator 2a or the second dummy signal oscillator 2b is transmitted as an optical signal 18 instead of the signal from the terminal 1. The oscillation frequencies of the first dummy signal oscillator 2a and the second dummy signal oscillator 2b are selected to be sufficiently lower than the frequency of a normal optical signal. For example, when a normal optical signal is 1 gigabit / second, the first dummy signal from the first dummy signal oscillator 2a is 1 MHz, and the second dummy signal from the second dummy signal oscillator 2a is 2 MHz. Select a value such as z. On the other hand, the optical signal 19 transmitted from the opposing optical transceiver through the optical fiber is photoelectrically converted by the photodetector 11 into a current signal. This current signal is converted into a voltage signal by a transimpedance amplifier 12, then converted into a digital electric signal by a post amplifier 13 having a waveform shaping function, and output from an output terminal 17.
レーザグイォ一ド 5からの光信号の一部 2 0はモニ夕一光検出器 (フォトダイォ —ド) 6に送られ光電変換されて自動光出力制御機構 7に送られる。 自動光出力制 御機構 7は出力切換スィツチ 8によって選ばれた第 1基準電圧 9又は第 2基準電圧 1 0のどちらかに合わせて送信される光信号出力を一定値に制御する。 第 1基準電 圧 9は正常動作時の光信号出力を規定し、 例えばレーザ光出力が + 6 d Bm ( 4 m W) になるような基準電圧が選ばれている。 一方、 第 2基準電圧 1 0は、 光フアイ バの接続が外れて対向する光送受信機からの信号が正しく受信されない時に送信電 力を人間の目に障害を与えないレベル、 例えば— 6 d Bm ( 0. 2 5 raW) となる ような基準電圧が選ばれている。  A part 20 of the optical signal from the laser guide 5 is sent to a monitor 6 (photodiode) 6 where it is photoelectrically converted and sent to an automatic optical output control mechanism 7. The automatic optical output control mechanism 7 controls the optical signal output transmitted in accordance with either the first reference voltage 9 or the second reference voltage 10 selected by the output switching switch 8 to a constant value. The first reference voltage 9 defines the optical signal output during normal operation, and for example, a reference voltage is selected such that the laser light output is +6 dBm (4 mW). On the other hand, the second reference voltage 10 is a level that does not impair the human eye when the optical fiber is disconnected and the signal from the opposing optical transceiver is not correctly received, for example, — 6 dBm. (0.25 raW) is selected as the reference voltage.
図 1に示すような光送受信機 3 1及び 3 2を互いに接続した場合を図 2に示す。 図 2 ( a) はふたつの光送受信機 3 1及び 3 2が光ファイバ 3 3及び 3 4によって 正しく接続されている状態を示す。 図 2 (b ) はふたつの光送受信機 3 1及び 3 2 の接続が外れた状態を示す。 そして、 図 2 ( c ) は外れていたふたつの光送受信機 3 1及び 3 2の片方の光ファイバ 3 4のみが再接続されたまさにその瞬間を示して いる。 図 2 (d) は光送受信機 3 1¾び 3 2の片方の光ファイバ 3 4は接続されて いて、 さらに外れていたもう一方の光ファイバ 3 3が再接続されたまさにその瞬間 を示している。 図 2 (e ) は光送受信機 3 1及び 3 2の挙動を示す図である。 何の 信号も受信されない状態 (0) においては第 1ダミー信号 S 1 ( 1 MH zの信号) を送信し、 第 1ダミー信号 S 1が受信された場合は第 2ダミー信号 S 2 ( 2 MH z の信号) を送信し、 第 2ダミー信号 S 2が受信された場合は正規の光信号 N ( 1 G b p sの 8 B/ 1 0 B符号) が送信され、 そして、 正規信号 Nが受信された場合は 正規信号 Nが送信される。  FIG. 2 shows a case where the optical transceivers 31 and 32 as shown in FIG. 1 are connected to each other. FIG. 2A shows a state in which the two optical transceivers 31 and 32 are correctly connected by the optical fibers 33 and 34. FIG. 2B shows a state in which the two optical transceivers 31 and 32 are disconnected. FIG. 2 (c) shows the moment when only one optical fiber 34 of the two optical transceivers 31 and 32 that have been disconnected is reconnected. Figure 2 (d) shows the moment when one of the optical fibers 3 4 of the optical transceivers 3 1 and 3 2 is connected, and the other optical fiber 3 3 that was disconnected is reconnected. . FIG. 2 (e) is a diagram showing the behavior of the optical transceivers 31 and 32. When no signal is received (0), the first dummy signal S 1 (1 MHz signal) is transmitted, and when the first dummy signal S 1 is received, the second dummy signal S 2 (2 MHz) is received. z signal), and when the second dummy signal S 2 is received, the regular optical signal N (8 B / 10B code of 1 Gbps) is transmitted, and the regular signal N is received. In this case, the normal signal N is transmitted.
光送受信機 3 1、 3 2は正しく接続されている時は高出力モード (+ 6 d Bm) で正規の光信号 ( 1ギガビッ ト/秒) を送信するが、 光ファイバの接続が外れて相 手の信号が受信できなくなると、 人間の目に安全な低出力モード (_ 6 d B m ) に 切り替わり送信する信号も正規の光信号ではなく低速のダミー信号 S 1 ( 1 M H z ) に切り替わる。 ここで、 光信号をゼロにせずに低出力光を送信するのは、 光送受信 機同志が再接続された時に接続の復帰を検知するためである。 光信号が完全に遮断 されたままでは、 再接続を検知できない。 When properly connected, the optical transceivers 3 1 and 3 2 transmit a regular optical signal (1 Gbit / s) in high-power mode (+6 dBm), but the optical fiber connection is lost. If hand signal cannot be received, it switches to low power mode (_ 6 dBm), which is safe for human eyes, and the signal to be transmitted is switched to low-speed dummy signal S 1 (1 MHz) instead of regular optical signal. . Here, the reason why the low output light is transmitted without setting the optical signal to zero is to detect the restoration of the connection when the optical transceivers are reconnected. Reconnection cannot be detected if the optical signal is completely cut off.
しかしながら、 ダミー信号 S 1が受信されたら正規信号を送信するとしたら、 片 側の光ファイバのみが接続された状態 (図 2 ( c ) ) では光送受信機 3 1からの正 規信号出力が光ファイバ 3 3を経て自由空間に放出されてしまう。 このような問題 が生じることを防ぐために、 本実施例では 2種類のダミー信号を用意している。 図 2 ( c ) のようなケースでは光送受信機 3 1は第 2ダミー信号 S 2を送信する。 な ぜなら、 光送受信機 3 1は第 1ダミー信号 S 1を受信しているからである。 一方、 光送受信機は何も信号を受信していない (0 ) のでダミー信号 S 1を送信する。 さらに、 図 2 ( d ) に示すようにもう一方の光ファイバ 3 3も接続されると、 光 送受信機 3 2はダミー信号 S 2を受信するので正規信号 Nを送信し始める。 次いで 光送受信機 3 2からの正規信号 Nを受信し始めた光送受信機 3 1も正規信号 Nを送 信し始めることになる。  However, if the normal signal is transmitted when the dummy signal S1 is received, the normal signal output from the optical transceiver 31 becomes the optical fiber when only one optical fiber is connected (Fig. 2 (c)). It is released to free space through 33. In order to prevent such a problem from occurring, in this embodiment, two types of dummy signals are prepared. In the case as shown in FIG. 2 (c), the optical transceiver 31 transmits the second dummy signal S2. This is because the optical transceiver 31 receives the first dummy signal S1. On the other hand, since the optical transceiver has not received any signal (0), it transmits the dummy signal S1. Further, when the other optical fiber 33 is connected as shown in FIG. 2D, the optical transceiver 32 receives the dummy signal S2 and starts transmitting the regular signal N. Next, the optical transceiver 31 that has begun to receive the normal signal N from the optical transceiver 32 also starts transmitting the normal signal N.
図 3は光送受信機 3 1、 3 2の上記のような動作を模式的に示したタイムチヤ一 トである。 正しい接続が得られているときは光送受信機 3 1 , 3 2は正規信号 Nを 送信し、 接続が切れた時には低出力低周波数のダミー信号 S 1、 S 2を出力する。 再び図 1に戻り、 上記のような挙動を実現するための機構について説明を行う。 図 1において、 トランスィンピ一ダンスアンプ 1 2からの出力はポストアンプ 1 3 に送られるばかりでなく、 正規信号検出器 1 4、 第 1ダミー信号検出器 1 5 a及び 第 2ダミー信号検出器 1 5 bにも送られる。 正規信号検出器 1 4は正常な光信号を 検出する。 一方、 第 1ダミー信号検出器 1 5 a及び第 2ダミー信号検出器 1 5 bは 対向する光送受信機からのダミー信号 (S 1もしくは S 2 ) を検出する働きを有し ている。  FIG. 3 is a time chart schematically showing the operation of the optical transceivers 31 and 32 as described above. When a correct connection is obtained, the optical transceivers 3 1 and 3 2 transmit a regular signal N, and when the connection is broken, output low-output low-frequency dummy signals S 1 and S 2. Referring back to FIG. 1, the mechanism for realizing the above behavior will be described. In FIG. 1, the output from the transimpedance amplifier 12 is sent not only to the post-amplifier 13 but also to the normal signal detector 14, the first dummy signal detector 15a and the second dummy signal detector 15 Also sent to b. The normal signal detector 14 detects a normal optical signal. On the other hand, the first dummy signal detector 15a and the second dummy signal detector 15b have a function of detecting a dummy signal (S1 or S2) from the opposing optical transceiver.
正規信号検出器 1 4の構造は図 4 ( a ) に示されている。 正規信号検出器 1 4は 帯域通過フィルタ 5 1 a、 実効値検波器 5 2 a、 基準電圧 5 4 a、 電圧比較器 5 3 aから成り立つている。 入力信号は帯域通過フィル夕 5 1 a通過後、 実効値検波器 52 aによって光信号の実効値に対応する直流電圧に変換される。 電圧比較器 5 3 aはこの直流電圧の値と基準電圧 5 4 aとを比較して、 基準電圧を上回る実効値の 場合にはハイレペルのディジ夕ル信号を出力する。 帯域通過フィル夕 5 1 aは正規 信号 N ( l Gb p sの 8 B/1 0 B符号) を通過させる特性を有している The structure of the normal signal detector 14 is shown in FIG. The normal signal detector 14 includes a band-pass filter 51a, an effective value detector 52a, a reference voltage 54a, and a voltage comparator 53a. After the input signal passes through the band-pass filter 5 1a, the RMS detector The signal is converted into a DC voltage corresponding to the effective value of the optical signal by 52a. The voltage comparator 53a compares this DC voltage value with the reference voltage 54a, and outputs a high-level digital signal when the effective value exceeds the reference voltage. The band-pass filter 51a has the characteristic of passing a normal signal N (8B / 110B code of l Gb ps).
第 1ダミー信号検出器 1 5 aの構造は図 4 (b) に示されている。 第 1ダミー信 号検出器 1 5 aは帯域通過フィル夕 5 1 b、 実効値検波器 5 2 b、基準電圧 5 4 b、 電圧比較器 5 3 bから成り立つている。 入力信号は低周波フィル夕 5 1 b通過後、 実効値検波器によって光信号の実効値に対応する直流電圧に変換される。 電圧比較 器 5 3 bはこの直流電圧の値と基準電圧 5 4 bとを比較して、 基準電圧を上回る実 効値の場合にはハイレベルのディジ夕ル信号を出力する。  The structure of the first dummy signal detector 15a is shown in FIG. 4 (b). The first dummy signal detector 15a includes a band-pass filter 51b, an effective value detector 52b, a reference voltage 54b, and a voltage comparator 53b. After passing through the low-frequency filter 51b, the input signal is converted to a DC voltage corresponding to the RMS value of the optical signal by the RMS detector. The voltage comparator 53b compares this DC voltage value with the reference voltage 54b, and outputs a high-level digital signal when the effective value exceeds the reference voltage.
第 2ダミー信号検出器 1 5 bの構造は図 4 ( c) に示されている。 第 2ダミー信 号検出器 1 5 bは帯域通過フィル夕 5 1 c、 実効値検波器 52 c、基準電圧 5 4 c、 電圧比較器 5 3 cから成り立つている。 入力信号は低周波フィル夕 5 1 c通過後、 実効値検波器 5 2 cによって光信号の実効値に対応する直流電圧に変換される。 電 圧比較器 5 3 cはこの直流電圧の値と基準電圧 54 cとを比較して、 基準電圧を上 回る実効値の場合にはハイレベルのディジ夕ル信号を出力する。  The structure of the second dummy signal detector 15b is shown in FIG. 4 (c). The second dummy signal detector 15b comprises a band-pass filter 51c, an effective value detector 52c, a reference voltage 54c, and a voltage comparator 53c. After passing through the low-frequency filter 51c, the input signal is converted into a DC voltage corresponding to the effective value of the optical signal by the effective value detector 52c. The voltage comparator 53c compares this DC voltage value with the reference voltage 54c, and outputs a high-level digital signal when the effective value exceeds the reference voltage.
図 4 (d) は帯域通過フィル夕 5 1 a、 5 1 b、 及び 5 1 cの通過帯域特性と正 規信号 N、 第 1ダミー信号 S 1、及び第 2ダミー信号 S 2との関係を示す図である。 帯域通過フィル夕 5 1 aは例えば 6 0 M H z ( 1 2 0 M b p sに相当) から 6 2 5 MH z ( 1. 2 5 Gb p sに相当) を通過する特性 5 7が選ばれている。 また、 前 述のように、 第 1ダミー信号 S 1の周波数は 1MH z、 第 2ダミー信号 S 2の周波 数は 2MH zであり、 帯域通過フィル夕 5 1 b、 及び 5 1 cはそれぞれ対応する通 過特性 55、 及び 5 6がそれぞれ定められている。  Figure 4 (d) shows the relationship between the passband characteristics of the bandpass filters 51a, 51b, and 51c and the normal signal N, the first dummy signal S1, and the second dummy signal S2. FIG. For the bandpass filter 51a, for example, a characteristic 57 that passes from 60 MHz (corresponding to 120 Mbps) to 62 MHz (corresponding to 1.25 Gbps) is selected. Also, as described above, the frequency of the first dummy signal S1 is 1 MHz, the frequency of the second dummy signal S2 is 2 MHz, and the band-pass filters 51 b and 51 c correspond to each other. Transmission characteristics 55 and 56 are defined respectively.
図 1において、 正規信号検出器 1 4の出力は信号検知端子 2 1に出力されると共 に、 論理和回路 1 6によって第 2ダミー信号検出器 1 5 bの出力との論理和が取ら れて、 信号切換スィッチ 3及び出力切換スィヅチ 8の制御に用いられる。 第 1ダミ —信号検出器 1 5 aの出力は信号切換スイッチ 3の制御に用いられる。 正規信号検 出器 1 4は正常な信号を検出する機能を有しているので、 正規信号検出器 1 4の出 力がハイレペルであれば、 光ファイバが正しく接続されていると判断することがで きる。 また、 第 1ダミー信号検出器 1 5 aは第 1ダミー信号 S 1を検出できるので、 第 1ダミー信号検出器 1 5 aがハイレベルであれば、 片方の光ファイバの接続のみ が回復したと判断できる。 第 2ダミー信号 1 5 bがハイレベルであれば、 双方の光 ファイバの接続が回復したと判断できる。 そして、 正規信号検出器 1 4、 第 1ダミ —信号検出器 1 5 a、 及び第 2ダミー信号検出器 1 5 bの出力がいずれもローレべ ルのままであれば光ファイバの接続が外れた状態であると判断できる。 In FIG. 1, the output of the normal signal detector 14 is output to the signal detection terminal 21 and the OR of the output of the second dummy signal detector 15 b is obtained by the OR circuit 16. It is used for controlling the signal switching switch 3 and the output switching switch 8. 1st dam — The output of the signal detector 15a is used to control the signal changeover switch 3. Since the regular signal detector 14 has a function of detecting a normal signal, if the output of the regular signal detector 14 is high level, it may be determined that the optical fiber is correctly connected. so Wear. In addition, since the first dummy signal detector 15a can detect the first dummy signal S1, if the first dummy signal detector 15a is at a high level, only the connection of one of the optical fibers is restored. I can judge. If the second dummy signal 15b is at a high level, it can be determined that the connection of both optical fibers has been restored. If the outputs of the normal signal detector 14, the first dummy signal detector 15a, and the second dummy signal detector 15b remain low, the optical fiber was disconnected. It can be determined that it is in the state.
論理和回路 1 6は正規信号検出器 1 4と第 2ダミー信号検出器 1 5 bの出力の論 理和を出力する。 論理和回路 1 6の出力がローレベルの時には、 出力切換スィ ヅチ 8は第 2基準電圧 1 0を選択し、 自動光出力制御機構 7はレーザダイオード 5の出 力を低出力モード (― 6 d B m ) に設定する。 また、 論理和回路 1 6の出力が口一 レベルの時には、 信号切換スィツチ 3は第 2ダミー信号発振器 2 bを選択して L D ドライバ 4に送るので、 結果的に低出力 (_ 6 d B m ) 低周波数 ( 1 M H zないし 2 M H z ) のダミー信号が光送受信機から発せられることになる。  The OR circuit 16 outputs the logical sum of the outputs of the normal signal detector 14 and the second dummy signal detector 15b. When the output of the OR circuit 16 is at a low level, the output switching switch 8 selects the second reference voltage 10 and the automatic optical output control mechanism 7 sets the output of the laser diode 5 to the low output mode (−6 d B m). Also, when the output of the OR circuit 16 is at the one-level level, the signal switching switch 3 selects the second dummy signal oscillator 2 b and sends it to the LD driver 4, resulting in a low output (_ 6 dBm ) A low frequency (1 MHz or 2 MHz) dummy signal will be emitted from the optical transceiver.
光ファイバの接続が回復すると、 まず、 第 1ダミー信号 S 1が検出されて第 1ダ ミ一信号検出器 1 5 aの出力がハイレベルになり、 信号切換スイッチ 3は第 2ダミ —信号発振器 2 bの出力を出力するように切り換えられる。 この結果、 光ファイバ が 2本とも正しく接続されている場合は相手局が第 2ダミー信号 S 2を受信するこ とになるので、 相手局は正規信号 Nを送信開始する。 すると、 自局では正規信号 N が検出されるので、 論理和回路 1 6の出力はハイレベルとなり、 信号切換スイッチ 3は正規信号を選択し、 出力切換スィッチ 8は第 1基準電圧 9を選択し、 正規信号 Nが高出力モードで送信されることになる。  When the connection of the optical fiber is restored, first, the first dummy signal S 1 is detected, the output of the first dummy signal detector 15 a becomes high, and the signal switch 3 is switched to the second dummy signal. Switched to output 2b output. As a result, if both optical fibers are correctly connected, the partner station will receive the second dummy signal S2, and the partner station will start transmitting the regular signal N. Then, since the normal signal N is detected in the own station, the output of the OR circuit 16 becomes high level, the signal changeover switch 3 selects the normal signal, and the output changeover switch 8 selects the first reference voltage 9. The normal signal N will be transmitted in the high power mode.
第 1及び第 2ダミー信号を正規信号より低周波としたのは、 次の理由による。 図 5に示すように光ファイバ 3 5を光信号 3 6が伝搬する間に減衰して光信号 3 7と なったとする。 光信号 3 7は、 髙出力モードにおいて受信できる下限の信号レベル まで落ちる可能性がある。 ここで、 光ファイバの接続が外れると、 光送受信機 3 1、 3 2は低出力モードに切り替わる。 すると、 高出力モードで受信可能な最低レベル であったのにさらに出力を落とすわけであるから、 接続が回復しても、 そのような 低レベルの信号は検出できないことになつてしまう。  The first and second dummy signals are lower in frequency than the normal signal for the following reason. As shown in FIG. 5, it is assumed that the optical signal 36 is attenuated while propagating through the optical fiber 35 to become an optical signal 37. The optical signal 37 may fall to the lower limit signal level that can be received in the output mode. Here, when the optical fiber is disconnected, the optical transceivers 31 and 32 are switched to the low output mode. Then, even if the signal is at the lowest level that can be received in the high-power mode, the power is further reduced, so that even if the connection is restored, such a low-level signal cannot be detected.
ところが、 正規信号 ( 1ギガビッ ト/秒) に比べて低周波数 ( ΓΜ Η ζないし 2 M H z ) のダミー信号であれば、 信号検出器の帯域を制限することによって入力換 算雑音を低く抑えることができる。 このため、 正規信号では受信できなくても、 ダ ミ一信号なら受信できるように信号検出器を設計することができるのである。 このような関係を図 6に示す。 図 6は信号レベルダイアグラムである。 参照番号 6 1は正規信号の最低受信レベルを、 参照番号 6 2は帯域を 1 G H z (正規信号の 帯域) とした場合の入力換算雑音レベルをしめす。 また、 参照番号 6 3はダミー信 号の最低受信レベル、 参照番号 6 4は帯域を 1 M H z以内とした時の入力換算雑音 レベルを示している。 [第 2実施例] However, compared to a regular signal (1 Gbit / s), a lower frequency (ΓΜ Η ζ or 2 For a dummy signal of MHz), the input conversion noise can be suppressed low by limiting the band of the signal detector. For this reason, it is possible to design a signal detector that can receive a dummy signal even if it cannot receive a normal signal. Figure 6 shows such a relationship. Figure 6 is a signal level diagram. Reference numeral 61 indicates the minimum reception level of the normal signal, and reference numeral 62 indicates the input-converted noise level when the band is 1 GHz (the band of the normal signal). Reference numeral 63 represents the lowest reception level of the dummy signal, and reference numeral 64 represents the input-converted noise level when the bandwidth is within 1 MHz. [Second embodiment]
図 7は本発明の第 2実施例を示すブロック図である。 ダミー信号発振器 2 a、 2 bに置き換えて別のダミー信号を発振するダミー信号発振器 2 3 a、 2 3 bを備え ている。 また、 第 1実施例 (図 1 ) の正規信号検出器 1 4、 第 1ダミー信号検出器 1 5 a、 第 2ダミー信号検出器 1 5 bとを、 エンベロープフィル夕 7 0、 ゲート 7 1、 夕イマ一 7 2、 カウンタ 7 3、 正規信号検出ディジタル比較器 7 4 a、 第 1ダ ミー信号検出ディジタル比較器 7 4 c、 第 2ダミー信号検出ディジタル比較器 7 4 bに置き換えられている。 そして、 レーザ光の出力制御はひとつの基準電圧 9に対 してのみ行われ、 基準電圧の切換機構は取り除かれている。  FIG. 7 is a block diagram showing a second embodiment of the present invention. Dummy signal oscillators 23a and 23b for oscillating another dummy signal by replacing the dummy signal oscillators 2a and 2b are provided. Further, the normal signal detector 14, the first dummy signal detector 15a, and the second dummy signal detector 15b of the first embodiment (FIG. 1) are combined with the envelope filter 70, the gate 71, It has been replaced by a timer 72, a counter 73, a normal signal detection digital comparator 74a, a first dummy signal detection digital comparator 74c, and a second dummy signal detection digital comparator 74b. The output control of the laser beam is performed only for one reference voltage 9, and the reference voltage switching mechanism is removed.
本実施例では、 ダミー信号が第 1実施例と異なる。 低周波数で低出力のダミー信 号を発振するのでは無く、 図 8 ( b ) 及び図 8 ( c ) に示すように、 デューティ比 の低い高出力パルスをダミー信号として用いるのである。 なお、 図 8 ( a ) には正 規信号の波形を示している。 図 8に示されているように正規信号のピーク値 (図 8 中ピーク 1として表示の線) とダミー信号のピーク値 (図 8中ピーク 2として表示 の線) は概略同等の水準に選ばれている。 しかし、 デューティ比が低いのでダミー 信号の実効値 (図 8中 R M S— 2として表示の線) は正規信号の実効値 (図 8中 R M S— 1として表示の線) に比べて低い値となる。 人間の目に対するレーザ光の被 爆量の限界は、 数百ミ リ秒というようなオーダ一のかなり長い所定時間の積分値で 規定されているので、 図 8 ( b ) 及び図 8 ( c ) に示すようなダミー信号であって も、 人間の目に対する健康被害を防ぐことができる。 一例として、 図 8 ( b ) の第 1ダミー信号は、 パルス幅 6 //秒、 パルス周期 1 0 0〃秒に設定され、 図 8 ( c ) の第 2ダミー信号はパルス幅 3〃秒、 パルス周期 5 0 秒に設定される。 いずれもデュ一ティ比が 1 0 0 : 6 (光が放出される時間割 合が 6 % ) に設定されている。 したがって、 正規信号出力が + 6 d B m ( 4 mW) であるとすると、 ダミー信号出力時は一 6 d B m ( 0 . 2 4 m W) に抑えられる。 図 7において、 ポス トアンプ 1 3の出力はエンベロープフィル夕 7 0、 ゲート 7 1を経てカウン夕 7 3に加えられる。 ゲート 7 1は夕イマ一 7 2からの信号で所定 時間開かれる。 カウン夕 7 3はラツチ機能も有していてタイマ一からの信号によつ て所定時間のパルスカウント数をカウント及びラッチする。 夕イマ一 7 2は、 例え ば、 1 ミ リ秒周期の信号を出す。 In the present embodiment, the dummy signal is different from that of the first embodiment. Instead of oscillating a low-output dummy signal at a low frequency, a high-output pulse with a low duty ratio is used as the dummy signal as shown in Figs. 8 (b) and 8 (c). Fig. 8 (a) shows the waveform of the regular signal. As shown in Fig. 8, the peak value of the normal signal (the line shown as peak 1 in Fig. 8) and the peak value of the dummy signal (the line shown as peak 2 in Fig. 8) were selected at roughly the same level. ing. However, due to the low duty ratio, the effective value of the dummy signal (the line indicated as RMS-2 in Fig. 8) is lower than the effective value of the normal signal (the line indicated as RMS-1 in Fig. 8). Since the limit of the laser beam exposure to the human eye is specified by the integration value of a considerably long time, on the order of several hundred milliseconds, Figs. 8 (b) and 8 (c) Even a dummy signal as shown in Fig. 1 can prevent health damage to human eyes. As an example, the first dummy signal in Fig. 8 (b) has a pulse width of 6 // seconds and a pulse period of 100 周期 seconds, and the second dummy signal in Fig. 8 (c) has a pulse width of 3 seconds, The pulse period is set to 50 seconds. In each case, the duty ratio is set to 100: 6 (the time ratio at which light is emitted is 6%). Therefore, assuming that the normal signal output is +6 dBm (4 mW), the output is suppressed to 16 dBm (0.24 mW) when the dummy signal is output. In FIG. 7, the output of the post-amplifier 13 is applied to an envelope fill 73 and a counter 73 through a gate 71. The gate 71 is opened for a predetermined time by a signal from the timer 72. The counter 73 also has a latch function, and counts and latches a pulse count number for a predetermined time by a signal from a timer. In the evening, for example, a signal with a period of 1 millisecond is output.
正規信号検出ディジ夕ル比較器 7 4 a、 第 1ダミー信号検出ディジタル比較器 7 4 c、 第 2ダミー信号検出ディジ夕ル比較器 7 4 bは、 カウン夕 (ラッチ) 7 3か らのカウント数とプリセヅ トされた数値とを比較して、 正規信号、 第 1ダミー信号、 第 2ダミー信号を検出する。  The regular signal detection digit comparator 74a, the first dummy signal detection digital comparator 74c, and the second dummy signal detection digit comparator 74b are counted from the counter (latch) 73. The normal signal, the first dummy signal, and the second dummy signal are detected by comparing the number with the preset numerical value.
正規信号が受信されている場合、 エンベロープフィル夕 7 0を通過後は常にハイ の状態として検出されるので、 1 ミリ秒の間のカウン夕 (ラッチ) 7 3の出力は概 略ゼロである。 これに対して、 第 1ダミー信号が受信されている場合、 ェンベロ一 プフィル夕 7 0を通過後、 1 ミリ秒の間にカウン夕 (ラッチ) 7 3は 1 0近辺の値 をカウントする。 同様に第 2ダミー信号が受信されている場合はカウン夕 (ラッチ) 7 3は 5近辺の値をカウントする。 このカウント数によって受信されている信号の 状態を検出することができる。  When a normal signal is received, it is always detected as high after passing through the envelope fill 70, so the output of the latch 73 during one millisecond is approximately zero. On the other hand, if the first dummy signal is received, after passing through the envelope 70, the counter 73 (latch) 73 counts a value near 10 within 1 millisecond. Similarly, when the second dummy signal is received, the count (latch) 73 counts a value near 5. The state of the received signal can be detected based on the count number.
本実施例では、 ダミー信号送信時のレーザ光の出力制限はダミー信号の波形パ夕 —ンそのもので行っているので、 ピーク値制御型自動光出力制御機構 2 4には基準 電圧の切換機構を組み合わせる必要が無い。 ただし、 レーザ光の出力制御はレーザ 光のピーク値に合わせて出力を制御する必要がある。 発明の利用可能性  In this embodiment, since the output limitation of the laser beam at the time of transmitting the dummy signal is performed by the waveform pattern of the dummy signal itself, the peak value control type automatic optical output control mechanism 24 has a reference voltage switching mechanism. There is no need to combine. However, it is necessary to control the output of the laser light according to the peak value of the laser light. Applicability of the invention
以上、 本発明によればボイント · ヅ一 ·ボイント光通信用光送受信機において、 光フアイバの接続が外れた場合にレーザ光が自由空間に放出されて人間の目に健康 被害を与えることを防ぐことができる。 また、 光ファイバが正しく再接続された時 には光送受信機は自動的に正規に送信状態に復帰することができる。 As described above, according to the present invention, in an optical transceiver for point-in-point optical communication, when an optical fiber is disconnected, a laser beam is emitted to free space and the human eye is healthy. Damage can be prevented. Also, when the optical fiber is reconnected correctly, the optical transceiver can automatically return to the normal transmission state.

Claims

請求の範囲 The scope of the claims
1 . 光ファイバに接続して一対一の光通信システムを形成すべく用いられる光送 受信機において、 1. An optical transmitter / receiver used to form a one-to-one optical communication system by connecting to an optical fiber,
何も受信されない状態 (0 ) においては、 低出力の第 1のダミー信号 (S 1 ) を 送信し、  In a state where nothing is received (0), the first dummy signal (S1) having a low output is transmitted,
第 1のダミー信号 (S 1 ) が受信された場合においては、 低出力の第 2のダミー 信号 (S 2 ) を送信し、  When the first dummy signal (S 1) is received, a low-output second dummy signal (S 2) is transmitted,
第 2のダミー信号 (S 2 ) が検出された場合においては、 髙出力の正規信号 (N ) ' を送信し、  When the second dummy signal (S 2) is detected, the 髙 output normal signal (N) 'is transmitted,
正規信号 (N ) が受信された場合においては、 高出力の正規信号 (N ) を送信す ることを特徴とする光送受信機。  An optical transceiver that transmits a high-power regular signal (N) when the regular signal (N) is received.
2 . 上記第 1及び第 2のダミー信号は正規信号に対して低周波の信号とした請求 の範囲 1記載の光送受信機。 2. The optical transceiver according to claim 1, wherein the first and second dummy signals are lower-frequency signals than normal signals.
3 . 上記送信電力の低減をパルスのデューティ比を小さくして行うようにした請 求の範囲 1記載の光送受信機。 3. The optical transceiver according to claim 1, wherein the transmission power is reduced by reducing a pulse duty ratio.
4 . 第 1のダミー信号と第 2のダミー信号の周期を変えてダミー信号識別を行う こととした請求の範囲 1記載の光送受信機。 4. The optical transceiver according to claim 1, wherein the dummy signal identification is performed by changing the cycle of the first dummy signal and the second dummy signal.
5 . 光ファイバに接続して一対一の光通信システムを形成すべく用いられる光送受 信機において、 5. In an optical transceiver used to form a one-to-one optical communication system by connecting to an optical fiber,
第 1のダミー信号発生手段と、  First dummy signal generation means;
第 2のダミー信号発生手段と、  Second dummy signal generating means;
相手方の光送受信機からの正規信号の検出手段と、  Means for detecting a regular signal from the optical transceiver of the other party;
相手方の光送受信機からの第 1のダミー信号の検出手段と、  Means for detecting a first dummy signal from the optical transceiver of the other party;
相手方の光送受信機からの第 2のダミー信号の検出手段と、 正規信号、 第 1のダミー信号、 第 2のダミー信号の切換手段と、 送信電力の変更手段とを備え、 Means for detecting a second dummy signal from the other party's optical transceiver; A normal signal, a first dummy signal, a second dummy signal switching means, and a transmission power changing means,
相手となる光送受信機から信号が検出されない時、 及び、 第 1のダミー信号が検 出された時は送信電力を低減することを特徴とする光送受信機。  An optical transceiver that reduces transmission power when no signal is detected from a partner optical transceiver and when a first dummy signal is detected.
6 . 上記第 1及び第 2のダミー信号は正規信号に対して低周波の信号とした請求 の範囲 5記載の光送受信機。 6. The optical transceiver according to claim 5, wherein the first and second dummy signals are lower-frequency signals than normal signals.
7 . 上記送信電力の低減をパルスのデューティ比を小さく して行うようにした請 求の範囲 5記載の光送受信機。 7. The optical transceiver according to claim 5, wherein the transmission power is reduced by reducing the duty ratio of the pulse.
8 . 第 1のダミー信号と第 2のダミー信号の周期を変えてダミー信号識別を行う こととした請求の範囲 5記載の光送受信機。 8. The optical transceiver according to claim 5, wherein the dummy signal identification is performed by changing the cycle of the first dummy signal and the second dummy signal.
PCT/JP2002/000374 2001-01-19 2002-01-21 Optical transmitter/receiver WO2002058287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002558653A JPWO2002058287A1 (en) 2001-01-19 2002-01-21 Optical transceiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-10978 2001-01-19
JP2001010978 2001-01-19

Publications (1)

Publication Number Publication Date
WO2002058287A1 true WO2002058287A1 (en) 2002-07-25

Family

ID=18878182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000374 WO2002058287A1 (en) 2001-01-19 2002-01-21 Optical transmitter/receiver

Country Status (2)

Country Link
JP (1) JPWO2002058287A1 (en)
WO (1) WO2002058287A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400511A (en) * 2003-03-06 2004-10-13 Fujitsu Ltd Restoring power in an optical fibre communication system using pilot signals
JP2007043521A (en) * 2005-08-04 2007-02-15 Hitachi Communication Technologies Ltd Optical transceiver and wavelength multiplexing communication system
JP2016208133A (en) * 2015-04-17 2016-12-08 ソニー株式会社 Communication device, communication method, and communication system
JP2017519394A (en) * 2014-06-09 2017-07-13 インテル・コーポレーション Optical device having multiple transmit power levels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232438A (en) * 1990-12-28 1992-08-20 Fujitsu Ltd Optical transmission device
JPH0730495A (en) * 1993-07-09 1995-01-31 Sony Corp Bidirectional optical communication equipment
JPH0730494A (en) * 1993-07-06 1995-01-31 Smk Corp Bidirectional optical communication method and its device
JPH10336764A (en) * 1997-05-27 1998-12-18 Matsushita Electric Works Ltd Control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232438A (en) * 1990-12-28 1992-08-20 Fujitsu Ltd Optical transmission device
JPH0730494A (en) * 1993-07-06 1995-01-31 Smk Corp Bidirectional optical communication method and its device
JPH0730495A (en) * 1993-07-09 1995-01-31 Sony Corp Bidirectional optical communication equipment
JPH10336764A (en) * 1997-05-27 1998-12-18 Matsushita Electric Works Ltd Control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400511A (en) * 2003-03-06 2004-10-13 Fujitsu Ltd Restoring power in an optical fibre communication system using pilot signals
GB2400511B (en) * 2003-03-06 2006-05-31 Fujitsu Ltd Automatic power restoring method and optical communication system
US7437069B2 (en) 2003-03-06 2008-10-14 Fujitsu Limited Automatic power restoring method and optical communication system
US7664392B2 (en) 2003-03-06 2010-02-16 Fujitsu Limited Automatic power restoring method and optical communication system
US7792430B2 (en) 2003-03-06 2010-09-07 Fujitsu Limited Automatic power restoring method and optical communication system
JP2007043521A (en) * 2005-08-04 2007-02-15 Hitachi Communication Technologies Ltd Optical transceiver and wavelength multiplexing communication system
JP2017519394A (en) * 2014-06-09 2017-07-13 インテル・コーポレーション Optical device having multiple transmit power levels
JP2016208133A (en) * 2015-04-17 2016-12-08 ソニー株式会社 Communication device, communication method, and communication system
TWI757233B (en) * 2015-04-17 2022-03-11 日商新力股份有限公司 Communication device, communication method, and communication system

Also Published As

Publication number Publication date
JPWO2002058287A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP2001217778A (en) Optical transmitter/receiver
US8942556B2 (en) Optical transceiver integrated with optical time domain reflectometer monitoring
JP2778967B2 (en) Control of optical system
US20030113118A1 (en) Smart single fiber optic transceiver
US6580530B1 (en) Optical communication system
JPH0756956B2 (en) Laser communication terminal device and free space laser communication system
JP5842438B2 (en) Relay device, relay method, and optical transmission system
JP2001339345A (en) Optical reception station, optical communication system and spread control method
US8582969B1 (en) Passive optical network (PON) having optical network unit (ONU) using feedback to detect rogue conditions and related method
JP2003087194A (en) Optical transmitter-receiver and communication transmission medium converter
CN115001583B (en) 10G speed OLT end receiving and transmitting integrated chip based on XGPON and DFB laser
EA010669B1 (en) Method of controlling optical amplifier located along an optical link
JP4625284B2 (en) Optical transmission equipment
JP4111163B2 (en) Abnormal light detection and blocking device
WO2002058287A1 (en) Optical transmitter/receiver
JP2008199233A (en) Optical reception device and method, and station-side optical terminator
US10615867B1 (en) Optical amplifier signaling systems and methods for shutoff coordination and topology discovery
JP2003110505A (en) Optical transmitter and wavelength division multiplexing transmission system
EP1878143B1 (en) Passive optical test termination
US8463139B2 (en) Transmitter disabling device
JP3949503B2 (en) Optical amplifier and optical communication system using the amplifier
CN101442374B (en) TDM optical network system, device and method for preventing signal collision
JPH10256990A (en) Redundant constitution standby system monitor method and redundant constitution optical transmission-reception equipment
WO2024061171A1 (en) Optical module, optical communication device, and optical communication system
US20050128939A1 (en) Method of performing protected transmission over a wavelengh-division multiplexed network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002558653

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase